0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
UCC28056EVM-296

UCC28056EVM-296

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    UCC28056EVM-296

  • 数据手册
  • 价格&库存
UCC28056EVM-296 数据手册
User's Guide SLUUBS3C – October 2017 – Revised November 2019 UCC28056BEVM-296 Evaluation Module This user’s guide provides basic evaluation instruction from a viewpoint of system operation of a standalone PFC boost power converter. 1 2 3 4 5 6 7 8 9 Contents Introduction ................................................................................................................... 4 Description .................................................................................................................... 4 Performance Specifications ................................................................................................ 6 Test Setup .................................................................................................................... 6 Test Points .................................................................................................................... 8 Terminals ..................................................................................................................... 8 Test Procedure ............................................................................................................... 8 Performance Data and Typical Characteristic Curves................................................................. 10 Schematic, Assembly Drawing and Bill of Materials ................................................................... 17 List of Figures 1 UCC28056BEVM-296 Recommended Test Setup ...................................................................... 7 2 Efficiency .................................................................................................................... 10 3 Load Regulation versus Output Power .................................................................................. 10 4 Line Regulation versus Input Voltage 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ................................................................................... Power Factor versus Output Power ..................................................................................... THD versus Output Power ................................................................................................ 85 VAC Start-up No Load ................................................................................................. 115 VAC Start-up No Load ............................................................................................... 115 VAC Start-up Full Load .............................................................................................. 230 VAC Start-up No Load ............................................................................................... 230 VAC Start-up Full Load .............................................................................................. 265 VAC Start-up No Load ............................................................................................... 265 VAC Start-up Full Load .............................................................................................. Low-Line Voltage and Current ............................................................................................ High-Line Voltage and Current ........................................................................................... 85 VAC Valley Switching 50-mA Load .................................................................................. 115 VAC Valley Switching 50-mA Load ................................................................................. 230 VAC Valley Switching 100-mA Load ............................................................................... 265 VAC Valley Switching 100-mA Load .............................................................................. Q1 Max Vds Stress ........................................................................................................ D4 Max Voltage Stress .................................................................................................... UCC28056BEVM-296 Schematic ........................................................................................ UCC28056BEVM-296 Top Assembly Drawing (Top view) ........................................................... UCC28056BEVM-296 Bottom Layer Assembly Drawing (Top view) ................................................ UCC28056BEVM-296 Top Copper Assembly Drawing (Top view).................................................. UCC28056BEVM-296 Bottom Copper Assembly Drawing (Top view) .............................................. 11 11 12 12 12 12 12 12 12 13 14 14 14 14 14 14 15 16 17 18 18 19 19 List of Tables SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback UCC28056BEVM-296 Evaluation Module Copyright © 2017–2019, Texas Instruments Incorporated 1 www.ti.com 1 EVM Performance Specification ........................................................................................... 6 2 Test Points .................................................................................................................... 8 3 List of Terminals ............................................................................................................. 8 4 Total Standby Power....................................................................................................... 10 5 Bill of Materials ............................................................................................................. 20 Trademarks All trademarks are the property of their respective owners. 2 UCC28056BEVM-296 Evaluation Module SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated www.ti.com 0.1 General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines WARNING Always follow TI’s setup and application instructions, including use of all interface components within their recommended electrical rated voltage and power limits. Always use electrical safety precautions to help ensure your personal safety and those working around you. Contact TI's Product Information Center http://support/ti./com for further information. Save all warnings and instructions for future reference. WARNING Failure to follow warnings and instructions may result in personal injury, property damage or death due to electrical shock and burn hazards. The term TI HV EVM refers to an electronic device typically provided as an open framed, unenclosed printed circuit board assembly. It is intended strictly for use in development laboratory environments, solely for qualified professional users having training, expertise and knowledge of electrical safety risks in development and application of high voltage electrical circuits. Any other use and/or application are strictly prohibited by Texas Instruments. If you are not suitable qualified, you should immediately stop from further use of the HV EVM. 1. Work Area Safety a. Keep work area clean and orderly. b. Qualified observer(s) must be present anytime circuits are energized. c. Effective barriers and signage must be present in the area where the TI HV EVM and its interface electronics are energized, indicating operation of accessible high voltages may be present, for the purpose of protecting inadvertent access. d. All interface circuits, power supplies, evaluation modules, instruments, meters, scopes and other related apparatus used in a development environment exceeding 50Vrms/75VDC must be electrically located within a protected Emergency Power Off EPO protected power strip. e. Use stable and nonconductive work surface. f. Use adequately insulated clamps and wires to attach measurement probes and instruments. No freehand testing whenever possible. 2. Electrical Safety As a precautionary measure, it is always a good engineering practice to assume that the entire EVM may have fully accessible and active high voltages. a. De-energize the TI HV EVM and all its inputs, outputs and electrical loads before performing any electrical or other diagnostic measurements. Revalidate that TI HV EVM power has been safely de-energized. b. With the EVM confirmed de-energized, proceed with required electrical circuit configurations, wiring, measurement equipment connection, and other application needs, while still assuming the EVM circuit and measuring instruments are electrically live. c. After EVM readiness is complete, energize the EVM as intended. WARNING While the EVM is energized, never touch the EVM or its electrical circuits, as they could be at high voltages capable of causing electrical shock hazard. SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback UCC28056BEVM-296 Evaluation Module Copyright © 2017–2019, Texas Instruments Incorporated 3 Introduction www.ti.com 3. Personal Safety a. Wear personal protective equipment (for example, latex gloves or safety glasses with side shields) or protect EVM in an adequate lucent plastic box with interlocks to protect from accidental touch. Limitation for safe use: EVMs are not to be used as all or part of a production unit. 1 Introduction The purpose of the UCC28056BEVM-296 (EVM) is to aid in evaluation of the UCC28056X transition mode boost PFC converter. The EVM is a stand-alone PFC converter designed to operate with 85 to 265 VRMS, 47 to 63 Hz, AC input and up to 165-W DC output from 90 VAC to 265 VAC and 140 W at 85 VAC. The EVM can be used as it is delivered without additional work to evaluate a transition mode boost PFC converter. This user’s guide provides basic evaluation instruction from a viewpoint of system operation of a stand-alone PFC boost power converter. 2 Description 2.1 Typical Applications This EVM is used in the following applications: • AC adapter front end • Set top box • Desktop computing • Gaming • Electronic lamp ballast • Digital TV • Entry-level server and web server 2.2 Features This EVM has the following features: • Unified algorithm for working in critical mode (CRM) and discontinuous conduction mode (DCM) with a high power factor across the entire operating range • AC input voltage from 85 to 265 VRMS • AC line frequency from 47 to 63 Hz • Up to 165-W output power • High efficiency • TM, DCM control gives improved light-load efficiency • Burst mode for reduced standby consumption • Non-linear gain gives improved transient response • User-adjustable valley switching • Robust full-featured protection including overtemperature protection, brown-out protection, output overvoltage, cycle-by-cycle overcurrent, and gross overcurrent protections • Test points to facilitate device and topology evaluation 2.3 Using the EVM with UCC28056A To use this EVM with UCC28056A: 1. Replace U1 with UCC28056A. Note that the OVP1 protection level is triggered at 421 V output because of the lower threshold of this variant. 4 UCC28056BEVM-296 Evaluation Module SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Description www.ti.com 2.4 Using the EVM with UCC28056C To use this EVM with UCC28056C: 1. Replace U1 with UCC28056C. SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback UCC28056BEVM-296 Evaluation Module Copyright © 2017–2019, Texas Instruments Incorporated 5 Performance Specifications 3 www.ti.com Performance Specifications Table 1 displays the EVM performance specifications. Table 1. EVM Performance Specification PARAMETER TEST CONDITIONS MIN TYP MAX UNITS VRMS Input Characteristics AC Voltage Range 85 265 AC Voltage Frequency 47 63 VCC UVLO On VCC UVLO Off Hz 10.65 VDC 8.85 VDC Input = 85 VAC, Full Load = 165 W 1.85 Input = 115 VAC, Full Load = 165 W 1.43 Input = 230 VAC, Full Load = 165 W 0.71 Input = 265 VAC, Full Load = 165 W 0.64 Output Voltage No Load to Full Load 390 Output Power 90 to 265 VAC 165 Output Power 85 VAC 140 W 10 Vpp Input DC Current Arms Output Characteristics Output Voltage Ripple VDC W System Characteristics Peak Efficiency Operating Temperature 4 Test Setup 4.1 Test Equipment 97 Natural Convection 25 % °C DC Voltage Source: External DC input for VCC. The DC source must be capable of supplying 12 V and up to 100 mA. AC Voltage Source: Capable of single-phase output AC voltage 85 to 265 VAC, 47 to 63 Hz, adjustable, with minimum power rating 200 W and current limit function. The AC voltage source to be used must meet IEC60950 reinforced insulation requirement. DC Digital Multimeter: One unit capable of 0 to 450 VDC input range, four-digit display preferred Output Load: DC load capable of receiving 380 to 410 VDC, 0.5 A, and 0 to 200 W or greater, with the capability to display load current, load power, and so forth. Digital AC Power Meter: Capable of 0 to 300 VAC voltage measurement, 0 to 10 Arms current measurement. Native power factor measurement and input current THD measurement is preferred. Oscilloscope: Capable of 500-MHz full bandwidth, digital or analog: if digital, 5 Gsps, or better. Fan: 200 to 400 LFM forced air cooling is recommended, but not required. Recommended Wire Gauge: Capable of 10 A, or better than #14 AWG, with the total length of wire less than 8 feet (4 feet input and 4 feet return). 6 UCC28056BEVM-296 Evaluation Module SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Test Setup www.ti.com 4.2 Recommended Test Setup Figure 1 illustrates the recommended test setup. Figure 1. UCC28056BEVM-296 Recommended Test Setup WARNING High voltages that may cause injury exist on this evaluation module (EVM). Please ensure all safety procedures are followed when working on this EVM. Never leave a powered EVM unattended. SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback UCC28056BEVM-296 Evaluation Module Copyright © 2017–2019, Texas Instruments Incorporated 7 Test Points 5 www.ti.com Test Points Table 2 lists the EVM test points. Table 2. Test Points 6 TEST POINTS NAME TP1 Line TP2 Neutral TP3 Rect TP4 COMP DESCRIPTION AC line AC neutral AC rectifier output Transconductance amplifier output TP5 DRV Gate-drive output TP6 GND Ground TP7 GND Ground TP8 GND Ground VCC sense TP9 VCC TP10 VOSNS TP11 BLK Bulk sense TP12 TP12 Small signal injection terminal TP13 TP13 Small signal injection terminal TP14 VEE DC input ground TP15 RVCC Positive DC input TP16 VOUT+ Output voltage TP17 VOUT– Output voltage return Voltage error amplifier inverting input Terminals Table 3 lists the EVM terminals. Table 3. List of Terminals 7 TERMINAL NAME DESCRIPTION J1 AC Input J3 I_IND Inductor current sense J8 RVCC 2-pin, DC power input, 12 V typical J9 VOUT 4-pin, output voltage terminal, 390 V typical 3-pin, AC power input, 85 V–265 V Test Procedure Use the following steps for the test procedure: 1. Refer to Figure 1 for basic setup. Table 2 lists the required equipment for this measurement. 2. Before making electrical connections, visually check the board to make sure there are no suspected spots of damage. 3. Use a loop of wire to short the J3 terminals. Connect a current probe around the wire loop to measure the inductor current using an oscilloscope. 4. Keep the AC voltage source output off. Connect the AC source to the input of the AC power meter. Connect the output of the AC power meter to J1 with AC_line to J1-3, AC_earth to J1-1, and AC_neutral to J1-2. Isolate the AC voltage source and meet the IEC60950 requirement. Set the AC output voltage and frequency within the range specified in Table 1, between 85 and 265 VAC and 47 to 63 Hz. Set the AC source current limit to 8.5 A. 8 UCC28056BEVM-296 Evaluation Module SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Test Procedure www.ti.com CAUTION While the EVM does have a fuse installed, failure to set an appropriate current limit may result in damage to the fuse or other EVM components. 5. Keep the DC voltage source output off. Connect the DC source to J2. Set the DC output voltage to 12 V and the current limit to 100 mA. 6. Connect an electronic load set to either constant-current mode or constant-resistance mode. The load range is from 0 to 423 mA. 7. If the load does not have a current or a power display, TI recommends inserting a current meter between the output voltage and the electronic load. 8. Connect a voltage meter to TP16 and TP17 to monitor the output voltage 9. Turn on the AC voltage source output. 10. Turn on the DC source output. 7.1 Equipment Shutdown Shut down the equipment using the following steps: 1. Shut down the AC voltage source. 2. Shut down the DC voltage source. 3. Shut down the electronic load. WARNING High voltage may still be present after turning off the AC and DC sources. Use the electronic load to discharge the output capacitance before handling the EVM. SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback UCC28056BEVM-296 Evaluation Module Copyright © 2017–2019, Texas Instruments Incorporated 9 Performance Data and Typical Characteristic Curves www.ti.com 8 Performance Data and Typical Characteristic Curves 8.1 Standby Power Table 4 lists the total standby power measurement. The electronic load is physically disconnected from J9 for this test. The average input power is measured at VI and external VCC over a five minute interval. Table 4. Total Standby Power INPUT VOLTAGE(VRMS) 8.2 INPUT POWER (mW) VCC VOTALGE (V) VCC CURRENT (µA) TOTAL STANDBY POWER (mW) 85 17 12.00743 104.0338 18.22 115 21.3 12.01006 107.022 22.83 230 38.6 12.00832 105.630 39.84 265 47.9 12.00830 105.902 49.11 Efficiency Figure 2 illustrates the EVM efficiency graph. Figure 2. Efficiency 8.3 Load Regulation Figure 3 illustrates the load regulation versus output power graph. Figure 3. Load Regulation versus Output Power 10 UCC28056BEVM-296 Evaluation Module SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Performance Data and Typical Characteristic Curves www.ti.com 8.4 Line Regulation Figure 4 illustrates the line regulation versus input voltage graph. 395 Output Power = 50W Output Power = 165W 394 393 392 Output Voltage (V) 391 390 389 388 387 386 385 384 383 382 381 380 80 90 100 110 120 130 140 150 160 170 180 190 200 210 Line Voltage (Vrms) 220 230 240 250 260 270 280 D003 Figure 4. Line Regulation versus Input Voltage 8.5 Power Factor Figure 5 illustrates the power factor versus output power graph. 1 0.95 0.9 0.85 Power Factor (%) 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 Vin = 115 V Vin = 230 V 0.3 0.25 0 20 40 60 80 100 Output Power (W) 120 140 160 180 D007 Figure 5. Power Factor versus Output Power 8.6 THD Figure 6 illustrates the THD versus output power graph. SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback UCC28056BEVM-296 Evaluation Module Copyright © 2017–2019, Texas Instruments Incorporated 11 Performance Data and Typical Characteristic Curves www.ti.com 20 Vin = 115 V Vin = 230 V 19 18 17 16 15 14 THD (%) 13 12 11 10 9 8 7 6 5 4 3 2 1 0 70 80 90 100 110 120 130 Output Power (W) 140 150 160 170 D005 Figure 6. THD versus Output Power 8.7 Start-up The following waveforms show the output voltage behavior when the line voltage has already been applied and the instant the VCC voltage exceeds the start-up threshold. From Figure 7 to Figure 13, Channel 1 = VCC, Channel 2 = input voltage, and Channel 3 = output voltage. Figure 7. 85 VAC Start-up No Load 12 UCC28056BEVM-296 Evaluation Module Figure 8. 115 VAC Start-up No Load SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Performance Data and Typical Characteristic Curves www.ti.com Figure 9. 115 VAC Start-up Full Load Figure 10. 230 VAC Start-up No Load Figure 11. 230 VAC Start-up Full Load Figure 12. 265 VAC Start-up No Load Figure 13. 265 VAC Start-up Full Load 8.8 Line Voltage and Line Current Figure 14 and Figure 15 illustrate the low- and high-line voltage and current waveforms. SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback UCC28056BEVM-296 Evaluation Module Copyright © 2017–2019, Texas Instruments Incorporated 13 Performance Data and Typical Characteristic Curves Figure 14. Low-Line Voltage and Current 8.9 www.ti.com Figure 15. High-Line Voltage and Current Valley Switching The following waveforms shows drain to source voltage of the MOSFET and the valley switching action on the EVM. Figure 16. 85 VAC Valley Switching 50-mA Load 14 UCC28056BEVM-296 Evaluation Module Figure 17. 115 VAC Valley Switching 50-mA Load SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Performance Data and Typical Characteristic Curves www.ti.com Figure 18. 230 VAC Valley Switching 100-mA Load Figure 19. 265 VAC Valley Switching 100-mA Load 8.10 Voltage Stress Q1 Figure 20 illustrates the voltage stress Q1 waveform. Figure 20. Q1 Max Vds Stress 8.11 Voltage Stress D4 Figure 21 illustrates the voltage stress D4 waveform. SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback UCC28056BEVM-296 Evaluation Module Copyright © 2017–2019, Texas Instruments Incorporated 15 Performance Data and Typical Characteristic Curves www.ti.com Figure 21. D4 Max Voltage Stress 16 UCC28056BEVM-296 Evaluation Module SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Schematic, Assembly Drawing and Bill of Materials www.ti.com 9 Schematic, Assembly Drawing and Bill of Materials 9.1 Schematic Figure 22 illustrates the EVM schematic. Figure 22. UCC28056BEVM-296 Schematic SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback UCC28056BEVM-296 Evaluation Module Copyright © 2017–2019, Texas Instruments Incorporated 17 Schematic, Assembly Drawing and Bill of Materials 9.2 www.ti.com Assembly Drawing Figure 23 through Figure 26 illustrate the EVM assembly drawings. Figure 23. UCC28056BEVM-296 Top Assembly Drawing (Top view) Figure 24. UCC28056BEVM-296 Bottom Layer Assembly Drawing (Top view) 18 UCC28056BEVM-296 Evaluation Module SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Schematic, Assembly Drawing and Bill of Materials www.ti.com Figure 25. UCC28056BEVM-296 Top Copper Assembly Drawing (Top view) Figure 26. UCC28056BEVM-296 Bottom Copper Assembly Drawing (Top view) SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback UCC28056BEVM-296 Evaluation Module Copyright © 2017–2019, Texas Instruments Incorporated 19 Schematic, Assembly Drawing and Bill of Materials 9.3 www.ti.com Bill of Materials Table 5 contains the EVM BOM. Table 5. Bill of Materials DESIGNATOR 20 QTY VALUE DESCRIPTION PACKAGE REFERENCE Printed Circuit Board PART NUMBER !PCB1 1 C1, C2 2 0.33 µF CAP, Film, 0.33 µF, 630 V, ±20%, TH 17.5×16.5×10 mm BFC233841334 C3 1 0.22 ƒF CAP, Film, 0.22 µF, 630 V, ±10%, TH B32922_12.5 mm B32922C3224K C4, C5 2 1000 pF CAP, CERM, 1000 pF, V, ±20%, E, D7xT6mm D7×T6 mm CD45-E2GA102M-NKA C6 1 0.47 µF CAP, Film, 0.47 µF, 450 V, ±5%, TH 18×6.5 mm 450MPK474J C7 1 0.033 µF CAP, CERM, 0.033 µF, 50 V, ±5%, X7R, 0603 0603 06035C333JAT2A C8 1 1 µF CAP, CERM, 1 µF, 25 V, ±10%, X7R, 0603 0603 06033C105KAT2A C9 1 10 pF CAP, CERM, 10 pF, 1000 V, ±5%, C0G/NP0, 0805 0805 VJ0805A100JXGAT5Z C10 1 3300 pF CAP, CERM, 3300 pF, 100 V, ±5%, NP0, 0603 0603 CGA3E2NP02A332J080AA C11 1 470 pF CAP, CERM, 470 pF, 100 V, ±5%, C0G/NP0, 0603 0603 GRM1885C2A471JA01D C12 1 0.47 µF CAP, CERM, 0.47 µF, 50 V, ±10%, X7R, 0805 0805 GRM21BR71H474KA88L C13 1 10 pF CAP, CERM, 10 pF, 10 V, ±10%, X7R, 0603 0603 0603ZC100KAT2A C14 1 2200 pF CAP, CERM, 2200 pF, 50 V, ±5%, C0G/NP0, 1206 1206 GRM3195C1H222JA01D C15 1 10 µF CAP, AL, 10 µF, 50 V, ±20%, TH D5×L11 mm EKMG500ELL100ME11D C16, C17 2 68 µF CAP, AL, 68 µF, 450 V, ±20%, TH D12.5×L45 mm 450BXW68MEFC12.5X45 D1 1 600 V Diode, P-N-Bridge, 600 V, 4 A, TH GBU GBU4J-BP D2 1 600 V Diode, Fast Rectifier, 600 V, 3 A, TH DO-201AD MR856G D3 1 30 V Diode, Schottky, 30 V, 0.35 A, SOD-323 SOD-323 BAT48JFILM D4 1 600 V Diode, Ultrafast, 600 V, 5 A, TH DO-201AD STTH5L06 D5 1 100 V Diode, Switching, 100 V, 0.15 A, SOD-123FL SOD-123FL 1N4148WFL-G3-08 F1 1 Fuse, 5 A, 250 VAC/VDC, TH TR5 fuse 8.5 mm DIA 37215000001 H1, H4, H6, H8 4 HEX STANDOFF 6-32 NYLON 1-1/2" HEX STANDOFF 6-32 NYLON 1-1/2 inch 4824 H2, H5, H7, H9 4 Standoff, Hex, 0.5"L #6-32 Nylon 6-32 HEX Nylon standoff 0.500 mil 1903C H3 1 Custom HeatSink, 120×42×10 mm HeatSink, 120×42×10 mm FL12-013-120x42 H10, H11, H12 3 MACHINE SCREW PAN PHILLIPS, 5/16", 4-40 H13, H14, H15 3 Washer, Split Lock, #4 H16 1 TO-220 Mounting Kit H17, H18, H19 3 Nut, Hex, 1/4" Thick, #4-40 J1 1 Terminal Block, 5.08 mm, 3x1, Brass, TH 3×1 5.08 mm Terminal Block ED120/3DS J2, J4 2 Jumper Wire, 700 mil spacing, Violet, pkg of 150, TH 700 mil Jumper Wire 923345-07-C J3 1 Terminal Block, 5.08 mm, 2x1, TH 2POS Terminal Block 1715721 J5, J6 2 Jumper Wire, 2" spacing, Red, pkg of 100, TH Jumper Wire, 2" Spacing, Red, Pkg of 100 923345-20-C J7 1 Jumper Wire, 500 mil spacing, Green, pkg of 200 500 mil Jumper Wire 923345-05-C J8 1 Terminal Block, 5.08 mm, 2x1, Brass, TH 2×1 5.08 mm Terminal Block ED120/2DS J9 1 Terminal Block, 5.08 mm, 4x1, Brass, TH 4×1 5.08 mm Terminal Block ED120/4DS L1 1 220 µH Inductor, Wirewound, Ferrite, 220 µH, 2.42 A, 0.168 Ω, TH D630×H810mil DC630R-224K L2 1 20 mH Coupled inductor, 20 mH, 3 A, 0.16 Ω, TH 30×35×21 mm 744825320 L3 1 200 µH Inductor, 200 µH, 0.223 Ω, TH, RevA TH, 5-Leads, Body 26.16×26.16 mm 750317130 Q1 1 600 V MOSFET, N-CH, 600 V, 21 A, TO-220FP TO-220FP STF28N60DM2 R1 1 180 k RES, 180 k, 5%, 0.1 W, 0603 0603 CRCW0603180KJNEA R2 1 1.0 RES, 1.0, 5%, 0.125 W, 0805 0805 CRCW08051R00JNEA R3 1 10 RES, 10, 5%, 0.125 W, 0805 0805 CRCW080510R0JNEA R4 1 82.5 k RES, 82.5 k, 1%, 0.125 W, 0805 0805 ERJ-6ENF8252V R5, R6, R7, R15, R16, R17 6 3.24 Meg RES, 3.24 M, 1%, 0.25 W, 1206 1206 CRCW12063M24FKEA R8 1 24.3 k RES, 24.3 k, 1%, 0.1 W, 0603 0603 CRCW060324K3FKEA R9, R10 2 0.13 RES, 0.13, 1%, 0.5 W, 1206 1206 CSR1206FTR130 R11 1 453 k RES, 453 k, 1%, 0.25 W, 1206 1206 CRCW1206453KFKEA R12 1 3.0 k RES, 3.0 k, 5%, 0.1 W, 0603 0603 CRCW06033K00JNEA UCC28056BEVM-296 Evaluation Module SV601296 PMSSS 440 0031 PH 4693 TO-220 Mounting Kit 4880SG HNSS440 SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated Schematic, Assembly Drawing and Bill of Materials www.ti.com Table 5. Bill of Materials (continued) DESIGNATOR QTY VALUE DESCRIPTION PACKAGE REFERENCE PART NUMBER R13 1 0 RES, 0, 5%, 0.25 W, 1206 1206 CRCW12060000Z0EA R14 1 51 RES, 51, 5%, 0.25 W, 1206 1206 CRCW120651R0JNEA R18 1 36.5 k RES, 36.5 k, 1%, 0.25 W, 1206 1206 CRCW120636K5FKEA R19 1 120 k RES, 120 k, 5%, 0.25 W, 1206 1206 CRCW1206120KJNEA R20 1 75 k RES, 75 k, 5%, 0.25 W, 1206 1206 CRCW120675K0JNEA R21 1 390 k RES, 390 k, 5%, 0.25 W, 1206 1206 CRCW1206390KJNEA R22 1 10.0 RES, 10.0, 1%, 0.25 W, 1206 1206 CRCW120610R0FKEA RT1 1 4.70 Ω Thermistor NTC, 4.70 Ω, 20%, 8.5 mm Disc 8.5mm Disc B57153S0479M000 RV1 1 VARISTOR 490 V 1.2KA DISC 7MM Dia. 7 mm V300LA2P SIL1 1 Silicon Thermal Pad 24×21 mm SP900S-0.009-00-114 TP1, TP3, TP9, TP12, TP15, TP16 6 Test Point, Multipurpose, Red, TH Red Multipurpose Testpoint 5010 TP2, TP4, TP5, TP10, TP11 5 Test Point, Multipurpose, White, TH White Multipurpose Testpoint 5012 TP6, TP7, TP8, TP13, TP14, TP17 6 Test Point, Multipurpose, Black, TH Black Multipurpose Testpoint 5011 U1 1 6-Pin Single-Phase Transition-Mode PFC Controller, DBV0006A (SOT-23-6) DBV0006A UCC28056B_DBV C18 0 CAP, Film, 0.47 µF, 450 V, ±5%, TH 18×6.5 mm 450MPK474J 0.47 µF SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback UCC28056BEVM-296 Evaluation Module Copyright © 2017–2019, Texas Instruments Incorporated 21 Revision History www.ti.com Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from B Revision (April 2018) to C Revision .................................................................................................... Page • • • • • • • • • • • Changed Figure 22 to reflect new boost inductance ................................................................................. 1 Added how to use UCC28056A in the Section 2.3 section .......................................................................... 4 Added how to use UCC28056B and UCC28056C in the Section 2.4 section .................................................... 5 Changed Table 4 to reflect UCC28056B ............................................................................................. 10 Changed Figure 2 to reflect UCC28056B ............................................................................................ 10 Changed Figure 3 to reflect UCC28056B ............................................................................................ 10 Changed Figure 4 to reflect UCC28056B ............................................................................................ 11 Changed Figure 5 to reflect UCC28056B ............................................................................................ 11 Changed Figure 6 to reflect UCC28056B ............................................................................................ 11 Changed Figure 22 to reflect new boost inductance ................................................................................ 17 Changed boost inductor value in Table 5 ............................................................................................ 20 Changes from A Revision (January 2018) to B Revision ............................................................................................... Page • • Removed the Advanced Information statement ....................................................................................... 2 Corrected part number for L3 in Figure 22 ........................................................................................... 17 Changes from Original (October 2017) to A Revision .................................................................................................... Page • • • • • • • 22 Updated graphs and waveforms in Section 8. ....................................................................................... Added Standby Power section. ........................................................................................................ Added Startup section. .................................................................................................................. Added Valley Switching section. ....................................................................................................... Moved C2 in the bill of materials. ...................................................................................................... Changed the Q1 part number in the bill of materials. ............................................................................... Changed parameters on RT1 in the bill of materials. ............................................................................... Revision History 10 10 12 14 20 20 20 SLUUBS3C – October 2017 – Revised November 2019 Submit Documentation Feedback Copyright © 2017–2019, Texas Instruments Incorporated IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
UCC28056EVM-296 价格&库存

很抱歉,暂时无法提供与“UCC28056EVM-296”相匹配的价格&库存,您可以联系我们找货

免费人工找货