0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
S29WS128P0PBAW000

S29WS128P0PBAW000

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    VFBGA84

  • 描述:

    IC FLASH 128MBIT PARALLEL 84FBGA

  • 数据手册
  • 价格&库存
S29WS128P0PBAW000 数据手册
S29WS512P S29WS256P S29WS128P SUPPLEMENT 512/256/128 Mb (32/16/8 M x 16 bit), 1.8 V, Simultaneous Read/Write Flash Features              Single 1.8 V read/program/erase (1.70–1.95 V) 90 nm MirrorBit™ Technology Simultaneous Read/Write operation with zero latency Random page read access mode of 8 words with 20 ns intra page access time 32 Word / 64 Byte Write Buffer Sixteen-bank architecture consisting of 32/16/8 Mwords for 512/256/128P, respectively Four 16 Kword sectors at both top and bottom of memory array 510/254/126 64Kword sectors (WS512/256/128P) Programmable linear (8/16/32) with or without wrap around and continuous burst read modes Secured Silicon Sector region consisting of 128 words each for factory and 128 words for customer 20-year data retention (typical) Cycling Endurance: 100,000 cycles per sector (typical) Command set compatible with JEDEC (42.4) standard             Hardware (WP#) protection of top and bottom sectors Dual boot sector configuration (top and bottom) Handshaking by monitoring RDY Offered Packages – WS512P/WS256P/WS128P: 84-ball FBGA (11.6 mm x 8 mm) Low VCC write inhibit Persistent and Password methods of Advanced Sector Protection Write operation status bits indicate program and erase operation completion Suspend and Resume commands for Program and Erase operations Unlock Bypass program command to reduce programming time Synchronous or Asynchronous program operation, independent of burst control register settings ACC input pin to reduce factory programming time Support for Common Flash Interface (CFI) General Description The Cypress S29WS512/256/128P are Mirrorbit® Flash products fabricated on 90 nm process technology. These burst mode Flash devices are capable of performing simultaneous read and write operations with zero latency on two separate banks using separate data and address pins. These products can operate up to 104 MHz and use a single VCC of 1.7 V to 1.95 V that makes them ideal for today’s demanding wireless applications requiring higher density, better performance and lowered power consumption. Performance Characteristics Read Access Times Speed Option (MHz) Max. Synch Access Time (tIACC) Max. Synch. Burst Access, ns (tBACC) Max OE# Access Time, ns (tOE) Max. Asynch. Access Time, ns (tACC) 104 103.8 7.6 7.6 80 Current Consumption (typical values) Continuous Burst Read @ 104 MHz Simultaneous Operation 104 MHz Program Standby Mode Typical Program & Erase Times Single Word Programming Effective Write Buffer Programming (VCC) Per Word Effective Write Buffer Programming (VACC) Per Word Sector Erase (16 Kword Sector) Sector Erase (64 Kword Sector) Cypress Semiconductor Corporation Document Number: 002-01747 Rev. *B • 198 Champion Court • San Jose, CA 95134-1709 36 mA 40 mA 20 mA 20 µA 40 µs 9.4 µs 6 µs 350 ms 600 ms • 408-943-2600 Revised June 29, 2017 S29WS512P S29WS256P S29WS128P SUPPLEMENT Contents 1. 1.1 Ordering Information ................................................... 3 Valid Combinations ........................................................ 3 2. Input/Output Descriptions & Logic Symbol .............. 4 3. Block Diagrams............................................................ 5 4. 4.1 4.2 4.3 Physical Dimensions/Connection Diagrams............. Related Documents ....................................................... Special Handling Instructions for FBGA Package.......... MCP Look-ahead Connection Diagram ......................... 5. Additional Resources .................................................. 8 6. 6.1 Product Overview ........................................................ 9 Memory Map .................................................................. 9 7. 7.1 7.2 7.3 7.4 7.5 13 13 14 14 15 6 6 6 7 Device Operations ..................................................... Device Operation Table ............................................... Asynchronous Read..................................................... Page Mode Read ......................................................... Synchronous (Burst) Read Operation.......................... Synchronous (Burst) Read Mode & Configuration Register........................................................................ 7.6 Autoselect .................................................................... 7.7 Program/Erase Operations .......................................... 7.8 Simultaneous Read/Program or Erase ........................ 7.9 Writing Commands/Command Sequences.................. 7.10 Handshaking ................................................................ 7.11 Hardware Reset ........................................................... 7.12 Software Reset ............................................................ 26 30 32 48 48 49 49 49 8. 8.1 8.2 8.3 8.4 8.5 8.6 8.7 Advanced Sector Protection/Unprotection ............. Advanced Sector Protection Software Examples ........ Lock Register ............................................................... Persistent Protection Bits............................................. Dynamic Protection Bits............................................... Persistent Protection Bit Lock Bit................................. Password Protection Method ....................................... Hardware Data Protection Methods............................. 51 51 52 53 54 54 54 56 9. 9.1 9.2 9.3 9.4 Power Conservation Modes...................................... Standby Mode.............................................................. Automatic Sleep Mode................................................. Hardware RESET# Input Operation............................. Output Disable (OE#)................................................... 58 58 58 58 58 10. 10.1 10.2 10.3 Secured Silicon Sector Flash Memory Region ....... Factory Secured Silicon Sector.................................... Customer Secured Silicon Sector ................................ Secured Silicon Sector Entry/Exit Command Sequences ................................................................... 59 59 60 Electrical Specifications............................................ Absolute Maximum Ratings ......................................... Operating Ranges........................................................ DC Characteristics ....................................................... Test Conditions ............................................................ Key to Switching Waveforms ....................................... Switching Waveforms .................................................. 62 62 62 63 64 65 65 11. 11.1 11.2 11.3 11.4 11.5 11.6 Document Number: 002-01747 Rev. *B 11.7 Power-up/Initialization................................................... 65 11.8 CLK Characterization.................................................... 66 11.9 AC Characteristics ........................................................ 67 11.10Erase and Programming Performance ......................... 80 12. Appendix ..................................................................... 81 12.1 Common Flash Memory Interface................................. 85 13. Revision History.......................................................... 90 60 Page 2 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT 1. Ordering Information The ordering part number is formed by a valid combination of the following: S29W S 512 P xx BA W 00 0 Packing Type 0 = Tray (standard; see note 1) 2 = 7-inch Tape and Reel 3 = 13-inch Tape and Reel Model Number (Chip Enable Options) 00 = Default Temperature Range W = Wireless (–25C to +85C) Package Type And Material BA= Very Thin Fine-Pitch BGA, Lead (Pb)-free Compliant Package BF= Very Thin Fine-Pitch BGA, Lead (Pb)-free Package Speed Option (Burst Frequency) 0L = 54 MHz 0P = 66 MHz 0S = 80 MHz AB= 104 MHz Process Technology P = 90 nm MirrorBit®Technology Flash Density 512=512 Mb 256=256 Mb 128=128 Mb Device Family S29WS =1.8 Volt-only Simultaneous Read/Write, Burst Mode Flash Memory 1.1 Valid Combinations Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm availability of specific valid combinations and to check on newly released combinations. S29WS512P Valid Combinations (Notes 1, 2) Base Ordering Part Number Product Status Speed Option Package Type, Material, & Temperature Range Packing Type Model Numbers S29WS512P S29WS256P Advance 0L, 0P, 0S, AB S29WS128P BAW (Lead (Pb)-free Compliant), BFW (Lead (Pb)-free) 0, 2, 3 (Note 1) 00 Package Type (Note 2) 11.6 mm x 8 mm 84-ball MCP-Compatible 11.6 mm x 8 mm 84-ball MCP-Compatible Notes: 1. Type 0 is standard. Specify other options as required. 2. BGA package marking omits leading S29 and packing type designator from ordering part number. Document Number: 002-01747 Rev. *B Page 3 of 91 SUPPLEMENT 2. S29WS512P S29WS256P S29WS128P Input/Output Descriptions & Logic Symbol Table identifies the input and output package connections provided on the device. Input/Output Descriptions Symbol AMAX–A0 Type Input Description Address lines (Amax = 24 for WS512P 1CE# option, 23 for WS512P 2CE# option, 23 for WS256P, and 22 for WS128P) DQ15–DQ0 I/O CE# Input Data input/output. Chip Enable. Asynchronous relative to CLK. OE# Input Output Enable. Asynchronous relative to CLK. WE# Input Write Enable. VCC Supply Device Power Supply VCCQ Supply Device Input/Output Power Supply (Must be ramped simultaneously with VCC) VSS Supply Ground. NC No Connect RDY Output Not connected internally. Ready. Indicates when valid burst data is ready to be read. Input Clock Input. In burst mode, after the initial word is output, subsequent active edges of CLK increment the internal address counter. Should be at VIL or VIH while in asynchronous mode. AVD# Input Address Valid. Indicates to device that the valid address is present on the address inputs. When low during asynchronous mode, indicates valid address; when low during burst mode, causes starting address to be latched at the next active clock edge. When high, device ignores address inputs. RESET# Input Hardware Reset. Low = device resets and returns to reading array data. WP# Input Write Protect. At VIL, disables program and erase functions in the four outermost sectors. Should be at VIH for all other conditions. ACC Input Acceleration Input. At VHH, accelerates programming; automatically places device in unlock bypass mode. At VIL, disables all program and erase functions. Should be at VIH for all other conditions. RFU Reserved CLK Reserved for future use (see MCP look-ahead pinout for use with MCP). Document Number: 002-01747 Rev. *B Page 4 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT 3. Block Diagrams Bank Address Bank 0 Latches and Control Logic VSS VCCQ Y-Decoder VCC DQ15–DQ0 AMAX–A0 X-Decoder OE# WP# ACC RESET# WE# CEx# AVD# RDY Bank 1 Latches and Control Logic Y-Decoder Bank Address DQ15–DQ0 X-Decoder AMAX–A0 STATE CONTROL & COMMAND REGISTER DQ15–DQ0 Status Control AMAX–A0 DQ15–DQ0 Bank (n-1) Latches and Control Logic Bank Address AMAX–A0 Y-Decoder X-Decoder DQ15–DQ0 Bank (n) Latches and Control Logic Bank Address Y-Decoder X-Decoder DQ15–DQ0 Notes: 1. AMAX-A0 = A24-A0 for the WS512P, A23-A0 for the WS256P, and A22-A0 for the WS128P. 2. n = 15 for WS512P / WS256P / WS128P. Document Number: 002-01747 Rev. *B Page 5 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT 4. Physical Dimensions/Connection Diagrams This section shows the I/O designations and package specifications for the S29WS-P. 4.1 Related Documents The following documents contain information relating to the S29WS-P devices. Click on the title or go to www.cypress.com to download the PDF file, or request a copy from your sales office.  Considerations for X-ray Inspection of Surface-Mounted Flash Integrated Circuits 4.2 Special Handling Instructions for FBGA Package Special handling is required for Flash Memory products in FBGA packages. Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic cleaning methods. The package and/or data integrity may be compromised if the package body is exposed to temperatures above 150°C for prolonged periods of time. Figure 4.1 84-Ball Fine-Pitch Ball Grid Array, 512, 256 & 128 Mb (Top View, Balls Facing Down, MCP Compatible) A10 A1 NC NC B2 B3 B4 B5 B6 B7 B8 B9 AVD# VSS CLK RFU VCC RFU RFU RFU C2 C3 C4 C5 C6 C7 C8 C9 WP# A7 RFU ACC WE# A8 A11 RFU D2 D3 D4 D5 D6 D7 D8 D9 A3 A6 RFU RESET# RFU A19 A12 A15 E2 E3 E4 A5 A18 E5 E6 E7 E8 E9 RDY A20 A9 A13 A21 Legend Reserved for Future Use Do Not Use Ground A2 F2 F3 A1 A4 F4 A17 F5 RFU F6 F7 F8 F9 A23 A10 A14 A22 G2 G3 G4 G5 G6 G7 G8 G9 A0 VSS DQ1 RFU RFU DQ6 A24 A16 H2 H3 H4 H5 H6 H7 H8 H2 F-CE# OE# DQ9 DQ3 DQ4 DQ13 DQ15 RFU J2 J3 J4 J5 J6 J7 J8 J9 RFU DQ0 DQ10 VCC RFU DQ12 DQ7 VSS K2 K3 K4 K5 K6 K7 K8 K9 RFU DQ8 DQ2 DQ11 RFU DQ5 DQ14 RFU L2 L3 L4 L5 L6 L7 L8 L9 RFU RFU VSS VCC RFU RFU VCCQ RFU Power M1 M10 NC NC Notes: 1. Balls F6 and G8 are RFU on the WS128P. 2. Ball G8 is RFU on the WS256P. 3. VCC pins must ramp simultaneously. Document Number: 002-01747 Rev. *B Page 6 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Figure 4.2 VBH084—84-ball Fine-Pitch Ball Grid Array, 11.6 x 8 mm MCP Compatible Package 0.05 C (2X) D D1 A e 10 9 e 7 8 SE 7 6 E1 E 5 4 3 2 1 M A1 CORNER INDEX MARK L K B 10 H G F E SD 6 0.05 C (2X) J D C B A A1 CORNER 7 NXφb φ 0.08 M C TOP VIEW φ 0.15 M C A B BOTTOM VIEW 0.10 C A2 A A1 C 0.08 C SEATING PLANE SIDE VIEW NOTES: PACKAGE VBH 084 JEDEC N/A 11.60 mm x 8.00 mm NOM PACKAGE SYMBOL MIN NOM MAX A --- --- 1.00 A1 0.18 --- --- A2 0.62 --- 0.76 NOTE OVERALL THICKNESS BODY SIZE 8.00 BSC. BODY SIZE D1 8.80 BSC. BALL FOOTPRINT E1 7.20 BSC. BALL FOOTPRINT MD 12 ROW MATRIX SIZE D DIRECTION ME 10 ROW MATRIX SIZE E DIRECTION 84 0.33 --- ALL DIMENSIONS ARE IN MILLIMETERS. 3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT AS NOTED). 4. 5. N IS THE TOTAL NUMBER OF SOLDER BALLS. 6 DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C. 7 SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW PARALLEL TO THE D OR E DIMENSION, RESPECTIVELY, SD OR SE = 0.000. TOTAL BALL COUNT 0.43 BALL DIAMETER e 0.80 BSC. BALL PITCH SD / SE 0.40 BSC. SOLDER BALL PLACEMENT (A2-A9, B10-L10, M2-M9, B1-L1) DEPOPULATED SOLDER BALLS e REPRESENTS THE SOLDER BALL GRID PITCH. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE "E" DIRECTION. BODY THICKNESS 11.60 BSC. E N DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994. 2. BALL HEIGHT D φb 1. WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE = e/2 8. NOT USED. 9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS. 10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTATION OR OTHER MEANS. 3339 \ 16-038.25b Note: BSC is an ANSI standard for Basic Space Centering. 4.3 MCP Look-ahead Connection Diagram Cypress Inc. provides this standard look-ahead connection diagram that supports  NOR Flash and SRAM densities up to 4 Gigabits  NOR Flash and pSRAM densities up to 4 Gigabits  NOR Flash and pSRAM and data storage densities up to 4 Gigabits The physical package outline may vary between connection diagrams and densities. The connection diagram for any MCP, however, is a subset of the pinout. In some cases, outrigger balls may exist in locations outside the grid shown. These outrigger balls are reserved; do not connect them to any other signal. For further information about the MCP look-ahead pinout, refer to the Design-In Scalable Wireless Solutions with Cypress Products application note (publication number: Design_Scalable_Wireless_AN), available on the web or through a Cypress sales office. Document Number: 002-01747 Rev. *B Page 7 of 91 SUPPLEMENT 5. S29WS512P S29WS256P S29WS128P Additional Resources Visit www.cypress.com to obtain the following related documents: Application Notes  Using the Operation Status Bits in AMD Devices  Understanding Burst Mode Flash Memory Devices  Simultaneous Read/Write vs. Erase Suspend/Resume  MirrorBit® Flash Memory Write Buffer Programming and Page Buffer Read  Design-In Scalable Wireless Solutions with Cypress Products  Common Flash Interface Version 1.4 Vendor Specific Extensions Specification Bulletins Contact your local sales office for details. Drivers and Software Support  Cypress low-level drivers  True Flash File System CAD Modeling Support  VHDL and Verilog  IBIS  ORCAD® Schematic Symbols Technical Support Contact your local sales office or contact Cypress Inc. directly for additional technical support: http://www.cypress.com/flash_memory_products/support/ses/index.html Document Number: 002-01747 Rev. *B Page 8 of 91 SUPPLEMENT 6. S29WS512P S29WS256P S29WS128P Product Overview The S29WS-P family consists of 512, 256, and 128 Mbit, 1.8 volts-only, simultaneous read/write burst mode Flash device optimized for today’s wireless designs that demand a large storage array, rich functionality, and low power consumption. These devices are organized in 32, 16, or 8 Mwords of 16 bits each and are capable of continuous, synchronous (burst) read or linear read (8-, 16-, or 32-word aligned group) with or without wrap around. These products also offer single word programming or a 32-word buffer for programming with program/erase and suspend functionality. Additional features include:  Advanced Sector Protection methods for protecting sectors as required  256 words of Secured Silicon area for storing customer and factory secured information. The Secured Silicon Sector is One Time Programmable. 6.1 Memory Map The S29WS512/256/128P Mbit devices consist of 16 banks organized as shown in Tables –. S29WS512P Sector & Memory Address Map Bank Size Sector Count 4 4 MB Sector Size (KB) Bank Address Range 32 SA000 000000h–003FFFh 32 SA001 004000h–007FFFh 32 SA002 008000h–00BFFFh SA003 00C000h–00FFFFh SA004 010000h–01FFFFh 0 32 … … … 128 31 Sector/ Sector Range 128 SA034 1F0000h–1FFFFFh 200000h–3FFFFFh 128 1 SA035–SA066 4 MB 32 128 2 SA067–SA098 4 MB 32 128 3 SA099–SA130 4 MB 32 128 4 SA131–SA162 4 MB 32 128 5 SA163–SA194 4 MB 32 128 6 SA195–SA226 … … … … 32 4 MB 32 128 7 SA227–SA258 E00000h–FFFFFFh 4 MB 32 128 8 SA259–SA290 1000000-11FFFFF 4 MB 32 128 9 SA291–SA322 4 MB 32 128 10 SA323–SA354 4 MB 32 128 11 SA355–SA386 4 MB 32 128 12 SA387–SA418 4 MB 32 128 13 SA419–SA450 … … … … … 4 MB 4 MB 32 128 14 SA451–SA482 1C00000h-1DFFFFFh Document Number: 002-01747 Rev. *B Notes Sector Starting Address – Sector Ending Address Sector Starting Address – Sector Ending Address (see note) First Sector, Starting Address – Last Sector, Ending Address (see note) Page 9 of 91 SUPPLEMENT S29WS512P S29WS256P S29WS128P S29WS512P Sector & Memory Address Map Sector Count 31 Sector Size (KB) Bank 128 4 MB 15 4 Sector/ Sector Range Address Range SA483 1E00000h-1E0FFFFh … Bank Size 32 SA513 1FE0000h-1FEFFFFh SA514 1FF0000h-1FF3FFFh SA515 1FF4000h-1FF7FFFh SA516 1FF8000h-1FFBFFFh SA517 1FFC000h-1FFFFFFh Notes Sector Starting Address – Sector Ending Address (see note) Sector Starting Address – Sector Ending Address Note This table has been condensed to show sector-related information for an entire device on a single page. Sectors and their address ranges that are not explicitly listed (such as SA005–SA033) have sector starting and ending addresses that form the same pattern as all other sectors of that size. For example, all 128 KB sectors have the pattern xx00000h–xxFFFFh. Document Number: 002-01747 Rev. *B Page 10 of 91 SUPPLEMENT S29WS512P S29WS256P S29WS128P S29WS256P Sector & Memory Address Map Bank Size Sector Count Sector Size (KB) 4 32 15 128 2 MB 16 128 2 MB 16 2 MB 2 MB 2 MB Bank 0 Sector/ Sector Range Address Range SA000 000000h–003FFFh SA001 004000h–007FFFh SA002 008000h–00BFFFh SA003 00C000h–00FFFFh SA004 to SA018 010000h–01FFFFh to 0F0000h–0FFFFFh 1 SA019 to SA034 100000h–10FFFFh to 1F0000h–1FFFFFh 128 2 SA035 to SA050 200000h–20FFFFh to 2F0000h–2FFFFFh 16 128 3 SA051 to SA066 300000h–30FFFFh to 3F0000h–3FFFFFh 16 128 4 SA067 to SA082 400000h–40FFFFh to 4F0000h–4FFFFFh 2 MB 16 128 5 SA083 to SA098 500000h–50FFFFh to 5F0000h–5FFFFFh 2 MB 16 128 6 SA099 to SA114 600000h–60FFFFh to 6F0000h–6FFFFFh 2 MB 16 128 7 SA115 to SA130 700000h–70FFFFh to 7F0000h–7FFFFFh 2 MB 16 128 8 SA131 to SA146 800000h–80FFFFh to 8F0000h–8FFFFFh 2 MB 16 128 9 SA147 to SA162 900000h–90FFFFh to 9F0000h–9FFFFFh 2 MB 16 128 10 SA163 to SA178 A00000h–A0FFFFh to AF0000h–AFFFFFh 2 MB 16 128 11 SA179 to SA194 B00000h–B0FFFFh to BF0000h–BFFFFFh 2 MB 16 128 12 SA195 to SA210 C00000h–C0FFFFh to CF0000h–CFFFFFh 2 MB 16 128 13 SA211 to SA226 D00000h–D0FFFFh to DF0000h–DFFFFFh 2 MB 16 128 14 SA227 to SA242 E00000h–E0FFFFh to EF0000h–EFFFFFh 15 128 SA243 to SA257 F00000h–F0FFFFh to FE0000h–FEFFFFh SA258 FF0000h–FF3FFFh SA259 FF4000h–FF7FFFh SA260 FF8000h–FFBFFFh SA261 FFC000h–FFFFFFh 2 MB 4 32 15 Notes Contains four smaller sectors at bottom of addressable memory. All 128 KB sectors. Pattern for sector address range is xx0000h–xxFFFFh. (see note) Contains four smaller sectors at top of addressable memory. Note This table has been condensed to show sector-related information for an entire device on a single page. Sectors and their address ranges that are not explicitly listed (such as SA005–SA017) have sector starting and ending addresses that form the same pattern as all other sectors of that size. For example, all 128 KB sectors have the pattern xx00000h–xxFFFFh. Document Number: 002-01747 Rev. *B Page 11 of 91 SUPPLEMENT S29WS512P S29WS256P S29WS128P S29WS128P Sector & Memory Address Map Bank Size Sector Count Sector/ Sector Range Address Range 32 SA000 000000h–003FFFh 32 SA001 004000h–007FFFh SA002 008000h–00BFFFh 32 SA003 00C000h–00FFFFh 7 128 SA004 to SA010 010000h–01FFFFh to 070000h–07FFFFh 1 MB 8 128 1 1 MB 8 128 2 SA019 to SA026 100000h–10FFFFh to 170000h–17FFFFh 1 MB 8 128 3 SA027 to SA034 180000h–18FFFFh to 1F0000h–1FFFFFh 1 MB 8 128 4 SA035 to SA042 200000h–20FFFFh to 270000h–27FFFFh 1 MB 8 128 5 SA043 to SA050 280000h–28FFFFh to 2F0000h–2FFFFFh 1 MB 8 128 6 SA051 to SA058 300000h–30FFFFh to 370000h–37FFFFh 1 MB 8 128 7 SA059 to SA066 380000h–38FFFFh to 3F0000h–3FFFFFh 1 MB 8 128 8 SA067 to SA074 400000h–40FFFFh to 470000h–47FFFFh 1 MB 8 128 9 SA075 to SA082 480000h–48FFFFh to 4F0000h–4FFFFFh 1 MB 8 128 10 SA083 to SA090 500000h–50FFFFh to 570000h–57FFFFh 1 MB 8 128 11 SA091 to SA098 580000h–58FFFFh to 5F0000h–5FFFFFh 1 MB 8 128 12 SA099 to SA106 600000h–60FFFFh to 670000h–67FFFFh 1 MB 8 128 13 SA107 to SA114 680000h–68FFFFh to 6F0000h–6FFFFFh 1 MB 8 128 14 SA115 to SA122 700000h–70FFFFh to 770000h–77FFFFh 7 128 4 1 MB Sector Size (KB) 32 Bank 0 780000h–78FFFFh to 7E0000h–7EFFFFh SA130 7F0000h–7F3FFFh 4 SA131 7F4000h–7F7FFFh 32 SA132 7F8000h–7FBFFFh 32 SA133 7FC000h–7FFFFFh 32 15 Contains four smaller sectors at bottom of addressable memory. SA011 to SA018 080000h–08FFFFh to 0F0000h–0FFFFFh SA123 to SA129 32 1 MB Notes All 128 KB sectors. Pattern for sector address range is xx0000h– xxFFFFh. (see note) Contains four smaller sectors at top of addressable memory. Note: This table has been condensed to show sector-related information for an entire device on a single page. Sectors and their address ranges that are not explicitly listed (such as SA005–SA009) have sector starting and ending addresses that form the same pattern as all other sectors of that size. For example, all 128 KB sectors have the pattern xx00000h–xxFFFFh. Document Number: 002-01747 Rev. *B Page 12 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT 7. Device Operations This section describes the read, program, erase, simultaneous read/write operations, handshaking, and reset features of the Flash devices. Operations are initiated by writing specific commands or a sequence with specific address and data patterns into the command registers (see Table on page 81 and Table on page 83). The command register itself does not occupy any addressable memory location; rather, it is composed of latches that store the commands, along with the address and data information needed to execute the command. The contents of the register serve as input to the internal state machine and the state machine outputs dictate the function of the device. Writing incorrect address and data values or writing them in an improper sequence may place the device in an unknown state, in which case the system must write the reset command to return the device to the reading array data mode. 7.1 Device Operation Table The device must be setup appropriately for each operation. Table describes the required state of each control pin for any particular operation. Device Operations Operation CE# OE# WE# CLK Amax–A0 DQ15–0 RDY RESET# Addr In Output Valid H H L Addr In Output Valid H H L Addr In Input Valid H H Addr In I/O H H X X HIGH Z HIGH Z H X X HIGH Z HIGH Z H L Addr In Output Invalid X H L H H X Output Valid H H H X H X X X HIGH Z HIGH Z H Terminate current Burst read cycle via RESET# X X H X X X HIGH Z HIGH Z L Terminate current Burst read cycle and start new Burst read cycle L X H Addr In Output Invalid X H Asynchronous Read - Addresses Latched L L H X Asynchronous Read AVD# Steady State L L H X Asynchronous Write L H X L H L H X X X X X X X Latch Starting Burst Address by CLK L X Advance Burst read to next address L Terminate current Burst read cycle Synchronous Write Standby (CE#) Hardware Reset AVD# Burst Read Operations Legend: L = Logic 0, H = Logic 1, X = can be either VIL or VIH., = rising edge, = high to low, = toggle. Note: Address is latched on the rising edge of clock. Document Number: 002-01747 Rev. *B Page 13 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT 7.2 Asynchronous Read All memories require access time to output array data. In an asynchronous read operation, data is read from one memory location at a time. Addresses are presented to the device in random order, and the propagation delay through the device causes the data on its outputs to arrive asynchronously with the address on its inputs. The device defaults to reading array data asynchronously after device power-up or hardware reset. To read data from the memory array, the system must first assert a valid address on Amax–A0, while driving AVD# and CE# to VIL. WE# must remain at VIH. The rising edge of AVD# latches the address, preventing changes to the address lines from effecting the address being accessed.. Data is output on DQ15-DQ0 pins after the access time (tACC) has elapsed from the falling edge of AVD#, or the last time the address lines changed while AVD# was low. 7.3 Page Mode Read The device is capable of fast page mode read. This mode provides fast (tPACC) random read access speed for locations within a page. Address bits Amax–A3 select an 8 word page, and address bits A2–A0 select a specific word within that page. This is an asynchronous operation with the microprocessor supplying the specific word location. It does not matter if AVD# stays low or toggles. However, the address input must be always valid and stable if AVD# is low during the page read. The random or initial page access is tACC or tCE (depending on how the device was accessed) and subsequent page read accesses (as long as the locations specified by the microprocessor falls within that page) is equivalent to tPACC. When CE# is deasserted (=VIH), the reassertion of CE# for subsequent access has access time of tCE. Here again, CE# selects the device and OE# is the output control and should be used to gate data to the output inputs if the device is selected. Fast page mode accesses are obtained by keeping Amax–A3 constant and changing A2–A0 to select the specific word within that page. Page Select Word A2 A1 A0 Word 0 0 0 0 Word 1 0 0 1 Word 2 0 1 0 Word 3 0 1 1 Word 4 1 0 0 Word 5 1 0 1 Word 6 1 1 0 Word 7 1 1 1 Document Number: 002-01747 Rev. *B Page 14 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT 7.4 Synchronous (Burst) Read Operation The device is capable of continuous sequential burst operation and linear burst operation of a preset length. When the device first powers up, it is enabled for asynchronous read operations and can be automatically enabled for burst mode. To enter into synchronous mode, the configuration register will need to be set. Prior to entering burst mode, the system should determine how many wait states are desired for the initial word (tIACC) of each burst access, what mode of burst operation is desired and how the RDY signal will transition with valid data. The system would then write the configuration register command sequence. Once the system has written the Set Configuration Register command sequence, the device is enabled for synchronous reads only. The data is output tIACC after the rising edge of the first CLK. Subsequent words are output tBACC after the rising edge of each successive clock cycle, which automatically increments the internal address counter. Note that data is output only at the rising edge of the clock. RDY indicates the initial latency. 7.4.1 Latency Tables for Variable Wait State The following tables show the latency for variable wait state in a continuous Burst operation Address Latency for 11 Wait States Word Initial Wait 0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 2 ws D0 1 D1 D2 D3 D4 D5 D6 D7 1 ws D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 2 ws D0 2 D2 D3 D4 D5 D6 D7 1 ws 1 ws D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 2 ws D0 3 D3 D4 D5 D6 D7 1 ws 1 ws 1 ws D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 2 ws D0 4 D4 D5 D6 D7 1 ws 1 ws 1 ws 1 ws D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 2 ws D0 5 D5 D6 D7 1 ws 1 ws 1 ws 1 ws 1 ws D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 2 ws D0 6 D6 D7 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 2 ws D0 7 D7 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 2 ws D0 11 ws Document Number: 002-01747 Rev. *B Page 15 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Address Latency for 10 Wait States Word Initial Wait 0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 1 ws D0 1 D1 D2 D3 D4 D5 D6 D7 1 ws D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 1 ws D0 2 D2 D3 D4 D5 D6 D7 1 ws 1 ws D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 1 ws D0 3 D3 D4 D5 D6 D7 1 ws 1 ws 1 ws D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 1 ws D0 4 D4 D5 D6 D7 1 ws 1 ws 1 ws 1 ws D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 1 ws D0 5 D5 D6 D7 1 ws 1 ws 1 ws 1 ws 1 ws D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 1 ws D0 6 D6 D7 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 1 ws D0 7 D7 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D8 D9 D10 … D12 D12 D12 D12 4 5 6 7 1 ws D0 10 ws Address Latency for 09 Wait States Word Initial Wait 0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 … D12 4 D12 5 D12 6 D12 7 D0 1 D1 D2 D3 D4 D5 D6 D7 1 ws D8 D9 D10 … D12 4 D12 5 D12 6 D12 7 D0 2 D2 D3 D4 D5 D6 D7 1 ws 1 ws D8 D9 D10 … D12 4 D12 5 D12 6 D12 7 D0 3 D3 D4 D5 D6 D7 1 ws 1 ws 1 ws D8 D9 D10 … D12 4 D12 5 D12 6 D12 7 D0 4 D4 D5 D6 D7 1 ws 1 ws 1 ws 1 ws D8 D9 D10 … D12 4 D12 5 D12 6 D12 7 D0 5 D5 D6 D7 1 ws 1 ws 1 ws 1 ws 1 ws D8 D9 D10 … D12 4 D12 5 D12 6 D12 7 D0 6 D6 D7 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D8 D9 D10 … D12 4 D12 5 D12 6 D12 7 D0 7 D7 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D8 D9 D10 … D12 4 D12 5 D12 6 D12 7 D0 9 ws Document Number: 002-01747 Rev. *B Page 16 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Address Latency for 8 Wait States Word Initial Wait 0 D0 D1 D2 D3 D4 D5 1 D1 D2 D3 D4 D5 2 D2 D3 D4 D5 D6 D3 D4 D5 D6 D4 D5 D6 D7 5 D5 D6 D7 1 ws 1 ws 6 D6 D7 1 ws 1 ws 1 ws 7 D7 1 ws 1 ws 1 ws 1 ws 3 4 8 ws D6 D7 D8 D6 D7 D8 D9 D7 1 ws D8 D9 D7 1 ws 1 ws D8 D9 1 ws 1 ws 1 ws D8 D9 1 ws 1 ws D8 D9 1 ws 1 ws D8 D9 1 ws 1 ws D8 D9 Address Latency for 7 Wait States Word Initial Wait 0 D0 D1 D2 D3 D4 D5 D6 D7 D8 1 D1 D2 D3 D4 D5 D6 D7 D8 D9 2 D2 D3 D4 D5 D6 D7 D8 D9 D10 3 D3 D4 D5 D6 D7 1 ws D8 D9 D10 D4 D5 D6 D7 1 ws 1 ws D8 D9 D10 D5 D6 D7 1 ws 1 ws 1 ws D8 D9 D10 4 7 ws 5 6 D6 D7 1 ws 1 ws 1 ws 1 ws D8 D9 D10 7 D7 1 ws 1 ws 1 ws 1 ws 1 ws D8 D9 D10 Address Latency for 6 Wait States Word Initial Wait 0 D0 D1 D2 D3 D4 D5 D6 D7 D8 1 D1 D2 D3 D4 D5 D6 D7 D8 D9 2 D2 D3 D4 D5 D6 D7 D8 D9 D10 D3 D4 D5 D6 D7 D8 D9 D10 D11 D4 D5 D6 D7 1 ws D8 D9 D10 D11 5 D5 D6 D7 1 ws 1 ws D8 D9 D10 D11 6 D6 D7 1 ws 1 ws 1 ws D8 D9 D10 D11 7 D7 1 ws 1 ws 1 ws 1 ws D8 D9 D10 D11 3 4 6 ws Document Number: 002-01747 Rev. *B Page 17 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Address Latency for 5 Wait States Word Initial Wait 0 D0 D1 D2 D3 D4 D5 D6 D7 1 D1 D2 D3 D4 D5 D6 D7 D8 D9 2 D2 D3 D4 D5 D6 D7 D8 D9 D10 D3 D4 D5 D6 D7 D8 D9 D10 D11 D4 D5 D6 D7 D8 D9 D10 D11 D12 5 D5 D6 D7 1 ws D8 D9 D10 D11 D12 6 D6 D7 1 ws 1 ws D8 D9 D10 D11 D12 7 D7 1 ws 1 ws 1 ws D8 D9 D10 D11 D12 3 4 5 ws D8 Address Latency for 4 Wait States Word Initial Wait 0 D0 D1 D2 D3 D4 D5 D6 D7 D8 1 D1 D2 D3 D4 D5 D6 D7 D8 D9 2 D2 D3 D4 D5 D6 D7 D8 D9 D10 3 D3 D4 D5 D6 D7 D8 D9 D10 D11 D4 D5 D6 D7 D8 D9 D10 D11 D12 5 D5 D6 D7 D8 D9 D10 D11 D12 D13 6 D6 D7 1 ws D8 D9 D10 D11 D12 D13 7 D7 1 ws 1 ws D8 D9 D10 D11 D12 D13 4 4 ws Address Latency for 3 Wait States Word Initial Wait 0 D0 D1 D2 D3 D4 D5 D6 D7 D8 1 D1 D2 D3 D4 D5 D6 D7 D8 D9 2 D2 D3 D4 D5 D6 D7 D8 D9 D10 D3 D4 D5 D6 D7 D8 D9 D10 D11 D4 D5 D6 D7 D8 D9 D10 D11 D12 5 D5 D6 D7 D8 D9 D10 D11 D12 D13 6 D6 D7 D8 D9 D10 D11 D12 D13 D14 7 D7 1 ws D8 D9 D10 D11 D12 D13 D14 3 4 3 ws Document Number: 002-01747 Rev. *B Page 18 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT 7.4.2 Latency for Boundary Crossing during First Read The following tables show the latency at End of Word Line for boundary corssing during First Read in continuous burst operation Address Latency for 11 Wait States Word Initial Wait 0 D120 D121 D122 D123 D124 D125 D126 D127 2 ws 1 D121 D122 D123 D124 D125 D126 D127 1 ws 2 ws D0 2 D122 D123 D124 D125 D126 D127 1 ws 1 ws 2 ws D0 D123 D124 D125 D126 D127 1 ws 1 ws 1 ws 2 ws D0 D124 D125 D126 D127 1 ws 1 ws 1 ws 1 ws 2 ws D0 3 4 11 ws D0 5 D125 D126 D127 1 ws 1 ws 1 ws 1 ws 1 ws 2 ws D0 6 D126 D127 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws 2 ws D0 7 D127 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws 2 ws D0 Address Latency for 10 Wait States Word Initial Wait 0 D120 D121 D122 D123 D124 D125 D126 D127 1 ws D0 1 D121 D122 D123 D124 D125 D126 D127 1 ws 1 ws D0 2 D122 D123 D124 D125 D126 D127 1 ws 1 ws 1 ws D0 3 D123 D124 D125 D126 D127 1 ws 1 ws 1 ws 1 ws D0 D124 D125 D126 D127 1 ws 1 ws 1 ws 1 ws 1 ws D0 5 D125 D126 D127 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D0 6 D126 D127 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D0 7 D127 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D0 4 10 ws Address Latency for 9 Wait States Word Initial Wait 0 D120 D121 D122 D123 D124 D125 D126 D127 D0 1 D121 D122 D123 D124 D125 D126 D127 1 ws D0 2 D122 D123 D124 D125 D126 D127 1 ws 1 ws D0 D123 D124 D125 D126 D127 1 ws 1 ws 1 ws D0 D124 D125 D126 D127 1 ws 1 ws 1 ws 1 ws D0 5 D125 D126 D127 1 ws 1 ws 1 ws 1 ws 1 ws D0 6 D126 D127 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D0 7 D127 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D0 3 4 9 ws Document Number: 002-01747 Rev. *B Page 19 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Address Latency for 8 Wait States Word Initial Wait 0 D120 1 D121 D122 D123 D124 2 D122 D123 D124 D125 D123 D124 D125 D126 D124 D125 D126 D127 5 D125 D126 D127 6 D126 D127 1 ws 7 D127 1 ws 1 ws 3 4 8 ws D121 D122 D123 D124 D125 D126 D127 D0 D125 D126 D127 D0 D1 D126 D127 1 ws D0 D1 D127 1 ws 1 ws D0 D1 1 ws 1 ws 1 ws D0 D1 1 ws 1 ws 1 ws 1 ws D0 D1 1 ws 1 ws 1 ws 1 ws D0 D1 1 ws 1 ws 1 ws 1 ws D0 D1 Address Latency for 7 Wait States Word Initial Wait 0 D120 D121 D122 D123 D124 D125 D126 D127 D0 1 D121 D122 D123 D124 D125 D126 D127 D0 D1 2 D122 D123 D124 D125 D126 D127 D0 D1 D2 3 D123 D124 D125 D126 D127 1 ws D0 D1 D2 D124 D125 D126 D127 1 ws 1 ws D0 D1 D2 D125 D126 D127 1 ws 1 ws 1 ws D0 D1 D2 6 D126 D127 1 ws 1 ws 1 ws 1 ws D0 D1 D2 7 D127 1 ws 1 ws 1 ws 1 ws 1 ws D0 D1 D2 4 7 ws 5 Address Latency for 6 Wait States Word Initial Wait 0 D120 D121 D122 D123 D124 D125 D126 D127 D0 1 D121 D122 D123 D124 D125 D126 D127 D0 D1 2 D122 D123 D124 D125 D126 D127 D0 D1 D2 3 D123 D124 D125 D126 D127 D0 D1 D2 D3 D124 D125 D126 D127 1 ws D0 D1 D2 D3 5 D125 D126 D127 1 ws 1 ws D0 D1 D2 D3 6 D126 D127 1 ws 1 ws 1 ws D0 D1 D2 D3 7 D127 1 ws 1 ws 1 ws 1 ws D0 D1 D2 D3 4 6 ws Document Number: 002-01747 Rev. *B Page 20 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Address Latency for 5 Wait States Word Initial Wait 0 D120 D121 D122 D123 D124 D125 D126 D127 D0 1 D121 D122 D123 D124 D125 D126 D127 D0 D1 2 D122 D123 D124 D125 D126 D127 D0 D1 D2 D123 D124 D125 D126 D127 D0 D1 D2 D3 D124 D125 D126 D127 D0 D1 D2 D3 D4 5 D125 D126 D127 1 ws D0 D1 D2 D3 D4 6 D126 D127 1 ws 1 ws D0 D1 D2 D3 D4 7 D127 1 ws 1 ws 1 ws D0 D1 D2 D3 D4 3 4 5 ws Address Latency for 4 Wait States Word Initial Wait 0 D120 D121 D122 D123 D124 D125 D126 D127 D0 1 D121 D122 D123 D124 D125 D126 D127 D0 D1 2 D122 D123 D124 D125 D126 D127 D0 D1 D2 3 D123 D124 D125 D126 D127 D0 D1 D2 D3 D124 D125 D126 D127 D0 D1 D2 D3 D4 D125 D126 D127 D0 D1 D2 D3 D12 D5 6 D126 D127 1 ws D0 D1 D2 D3 D12 D5 7 D127 1 ws 1 ws D0 D1 D2 D3 D12 D5 4 4 ws 5 Address Latency for 3 Wait States Word Initial Wait 0 D120 D121 D122 D123 D124 D125 D126 D127 D0 1 D121 D122 D123 D124 D125 D126 D127 D0 D1 2 D122 D123 D124 D125 D126 D127 D0 D1 D2 D123 D124 D125 D126 D127 D0 D1 D2 D3 D124 D125 D126 D127 D0 D1 D2 D3 D4 5 D125 D126 D127 D0 D1 D2 D3 D4 D5 6 D126 D127 D0 D1 D2 D3 D4 D5 D6 7 D127 1 ws D0 D1 D2 D3 D4 D5 D6 3 4 3 ws Document Number: 002-01747 Rev. *B Page 21 of 91 SUPPLEMENT 7.4.3 S29WS512P S29WS256P S29WS128P Latency at End of Word Line for Boundary Crossing After Second Read in Continuous Burst Operation The following tables show the latency for boundary crossing after Second Read in a continuous Burst operation. Address Latency for 11 Wait States Word Initial Wait 0 D11 D11 D11 D11 D11 D11 D11 D11 D12 D12 D12 D12 D12 D12 D12 D12 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 2 ws D0 1 D11 D11 D11 D11 D11 D11 D11 3 4 5 6 7 8 9 1 ws D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 2 ws D0 2 D11 D11 D11 D11 D11 D11 4 5 6 7 8 9 1 ws 1 ws D12 D12 D12 D12 D12 D12 D12 D12 4 5 6 7 0 1 2 3 2 ws D0 3 D11 D11 D11 D11 D11 5 6 7 8 9 1 ws 1 ws 1 ws D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 2 ws D0 4 D11 D11 D11 D11 6 7 8 9 1 ws 1 ws 1 ws 1 ws D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 2 ws D0 5 D11 D11 D11 7 8 9 1 ws 1 ws 1 ws 1 ws 1 ws D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 2 ws D0 6 D11 D11 8 9 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 2 ws D0 7 D11 9 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 2 ws D0 11 ws 1 ws Address Latency for 10 Wait States Word Initial Wait 0 D11 D11 D11 D11 D11 D11 D11 D11 D12 D12 D12 D12 D12 D12 D12 D12 4 5 6 7 8 9 0 1 2 3 4 5 6 7 2 3 1 ws D0 1 D11 D11 D11 D11 D11 D11 D11 3 4 5 6 7 8 9 1 ws D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 1 ws D0 2 D11 D11 D11 D11 D11 D11 4 5 6 7 8 9 1 ws 1 ws D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 1 ws D0 3 D11 D11 D11 D11 D11 5 6 7 8 9 1 ws 1 ws 1 ws D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 1 ws D0 4 D11 D11 D11 D11 6 7 8 9 1 ws 1 ws 1 ws 1 ws D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 1 ws D0 5 D11 D11 D11 7 8 9 1 ws 1 ws 1 ws 1 ws 1 ws D12 D12 D12 D12 D12 D12 D12 D12 5 6 7 0 1 2 3 4 1 ws D0 6 D11 D11 8 9 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 1 ws D0 7 D11 9 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 1 ws D0 10 ws 1 ws Document Number: 002-01747 Rev. *B Page 22 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Address Latency for 9 Wait States Word Initial Wait 0 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D12 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 1 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 D12 1 ws 9 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 2 D11 4 D11 5 D11 6 D11 7 D11 8 D11 D12 1 ws 1 ws 9 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 3 D11 5 D11 6 D11 7 D11 8 D11 D12 1 ws 1 ws 1 ws 9 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 4 D11 6 D11 7 D11 8 D11 D12 1 ws 1 ws 1 ws 1 ws 9 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 5 D11 7 D11 8 D11 D12 1 ws 1 ws 1 ws 1 ws 1 ws 9 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 6 D11 8 D11 D12 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws 9 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 7 D11 D12 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws 9 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 9 ws D11 9 Address Latency for 8 Wait States Word Initial Wait 0 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 1 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 D12 1 ws 9 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 D12 1 ws 1 ws 9 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 4 D11 5 D11 6 D11 7 D11 8 D11 D12 1 ws 1 ws 1 ws 9 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 5 D11 6 D11 7 D11 8 D11 D12 1 ws 1 ws 1 ws 1 ws 9 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 6 D11 7 D11 8 D11 D12 1 ws 1 ws 1 ws 1 ws 1 ws 9 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 7 D11 8 D11 D12 1 ws 1 ws 1 ws 1 ws 1 ws 1 ws 9 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 8 ws Document Number: 002-01747 Rev. *B Page 23 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Address Latency for 7 Wait States Word Initial Wait 0 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 D0 1 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 D0 2 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 D12 D12 D12 D12 D12 D12 6 7 0 1 2 3 4 5 D0 3 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 D12 D12 D12 D12 D12 D12 D12 D12 1 ws 9 0 1 2 3 4 5 6 7 D0 4 D11 4 D11 5 D11 6 D11 7 D11 8 D11 D12 D12 D12 D12 D12 D12 D12 D12 1 ws 1 ws 9 0 1 2 3 4 5 6 7 D0 5 D11 5 D11 6 D11 7 D11 8 D11 D12 D12 D12 D12 D12 D12 D12 D12 1 ws 1 ws 1 ws 9 0 1 2 3 4 5 6 7 D0 6 D11 6 D11 7 D11 8 D11 D12 D12 D12 D12 D12 D12 D12 D12 1 ws 1 ws 1 ws 1 ws 9 0 1 2 3 4 5 6 7 D0 7 D11 7 D11 8 D11 D12 D12 D12 D12 D12 D12 D12 D12 1 ws 1 ws 1 ws 1 ws 1 ws 9 0 1 2 3 4 5 6 7 D0 7 ws Address Latency for 6 Wait States Word Initial Wait 0 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 0 1 D12 2 D12 3 D12 D12 D12 D12 4 5 6 7 D0 1 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 0 1 D12 2 D12 3 D12 D12 D12 D12 4 5 6 7 D0 2 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 0 1 D12 2 D12 3 D12 D12 D12 D12 4 5 6 7 D0 3 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 0 1 D12 2 D12 3 D12 D12 D12 D12 4 5 6 7 D0 4 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D12 D12 D11 1 ws 0 1 9 D12 2 D12 3 D12 D12 D12 D12 4 5 6 7 D0 5 D11 4 D11 5 D11 6 D11 7 D11 8 D11 D12 D12 1 ws 1 ws 9 0 1 D12 2 D12 3 D12 D12 D12 D12 4 5 6 7 D0 6 D11 5 D11 6 D11 7 D11 8 D11 D12 D12 1 ws 1 ws 1 ws 9 0 1 D12 2 D12 3 D12 D12 D12 D12 4 5 6 7 D0 7 D11 6 D11 7 D11 8 D11 D12 D12 1 ws 1 ws 1 ws 1 ws 9 0 1 D12 2 D12 3 D12 D12 D12 D12 6 7 4 5 D0 6 ws Document Number: 002-01747 Rev. *B Page 24 of 91 SUPPLEMENT S29WS512P S29WS256P S29WS128P Address Latency for 5 Wait States Word Initial Wait 0 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 D0 1 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 D0 2 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 D12 D12 D12 D12 D12 D12 6 7 0 1 2 3 4 5 D0 3 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 D0 4 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 D0 5 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 D12 D12 D12 D12 D12 D12 D12 D12 1 ws 6 7 9 0 1 2 3 4 5 D0 6 D11 4 D11 5 D11 6 D11 7 D11 8 D11 D12 D12 D12 D12 D12 D12 D12 D12 1 ws 1 ws 9 0 1 2 3 4 5 6 7 D0 7 D11 5 D11 6 D11 7 D11 8 D11 D12 D12 D12 D12 D12 D12 D12 D12 1 ws 1 ws 1 ws 9 0 1 2 3 4 5 6 7 D0 5 ws Address Latency for 4 Wait States Word Initial Wait 0 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 D0 1 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 D0 2 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 D0 3 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 D0 4 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 D0 5 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 D12 D12 D12 D12 D12 D12 D12 0 1 2 3 4 5 6 7 D0 6 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 D12 D12 D12 D12 D12 D12 D12 D12 1 ws 9 0 1 2 3 4 5 6 7 D0 7 D11 4 D11 5 D11 6 D11 7 D11 8 D11 D12 D12 D12 D12 D12 D12 D12 D12 1 ws 1 ws 9 0 1 2 3 4 5 6 7 D0 4 ws Document Number: 002-01747 Rev. *B Page 25 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Address Latency for 3 Wait States Word Initial Wait 0 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 1 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 2 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 3 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 4 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 5 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 6 D11 2 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 9 D12 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 7 D11 3 D11 4 D11 5 D11 6 D11 7 D11 8 D11 D12 1 ws 9 0 D12 1 D12 2 D12 3 D12 4 D12 5 D12 6 D12 7 D0 4 ws 7.5 Synchronous (Burst) Read Mode & Configuration Register See Configuration Registers on page 28, and Table , Memory Array Commands on page 81, for further details. Figure 7.1 Synchronous/Asynchronous State Diagram Power-up/ Hardware Reset Asynchronous Read Mode Only Set Burst Mode Configuration Register Command for Synchronous Mode (CR15 = 0) Set Burst Mode Configuration Register Command for Asynchronous Mode (CR15 = 1) Synchronous Read Mode Only Document Number: 002-01747 Rev. *B Page 26 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Figure 7.2 Synchronous Read Flow Chart Note: Setup Configuration Register parameters Write Unlock Cycles: Address 555h, Data AAh Address 2AAh, Data 55h Write Set Configuration Register Command and Settings: Address 555h, Data D0h Address X00h, Data CR Load Initial Address Address = RA Wait tIACC + Programmable Wait State Setting Read Initial Data RD = DQ[15:0] Wait X Clocks: Additional Latency Due to Starting Address, Clock Frequency, and Boundary Crossing Unlock Cycle 1 Unlock Cycle 2 Command Cycle CR = Configuration Register Bits CR15-CR0 RA = Read Address CR13-CR11 sets initial access time (from address latched to valid data) from 2 to 7 clock cycles RD = Read Data Refer to the Latency tables. Read Next Data RD = DQ[15:0] Delay X Clocks Yes Crossing Boundary? No End of Data? Yes Completed Document Number: 002-01747 Rev. *B Page 27 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT 7.5.1 Continuous Burst Read Mode In the continuous burst read mode, the device outputs sequential burst data from the starting address given and then wraps around to address 000000h when it reaches the highest addressable memory location. The burst read mode continues until the system drives CE# high, or RESET#= VIL. Continuous burst mode can also be aborted by asserting AVD# low and providing a new address to the device. If the address being read crosses a 128-word line boundary with in the same bank, but not into a program or erase suspended sector (as mentioned above), additional latency cycles are required as reflected by the configuration register table (Table ). If the address crosses a bank boundary while the subsequent bank is programming or erasing, the device provides read status information and the clock is ignored. Upon completion of status read or program or erase operation, the host can restart a burst read operation using a new address and AVD# pulse. 7.5.2 8-, 16-, 32-Word Linear Burst Read with Wrap Around In a linear burst read operation, a fixed number of words (8, 16, or 32 words) are read from consecutive addresses that are determined by the group within which the starting address falls. The groups are sized according to the number of words read in a single burst sequence for a given mode (see Table ). For example, if the starting address in the 8-word mode is 3Ch, the address range to be read would be 38-3Fh, and the burst sequence would be 3C-3D-3E-3F-38-39-3A-3Bh. Thus, the device outputs all words in that burst address group until all word are read, regardless of where the starting address occurs in the address group, and then terminates the burst read. In a similar fashion, the 16-word and 32-word Linear Wrap modes begin their burst sequence on the starting address provided to the device, then wrap back to the first address in the selected address group. Note In this mode the address pointer does not cross the boundary that occurs every 128 words; thus, no additional wait states are inserted due to boundary crossing. Burst Address Groups Mode Group Size 8-word 8 words 0-7h, 8-Fh, 10-17h,... 16-word 16 words 0-Fh, 10-1Fh, 20-2Fh,... 32-word 32 words 00-1Fh, 20-3Fh, 40-5Fh,... 7.5.3 Group Address Ranges 8-, 16-, 32-Word Linear Burst without Wrap Around If wrap around is not enabled for linear burst read operations, the 8-word, 16-word, or 32-word burst executes up to the maximum memory address of the selected number of words. The burst stops after 8, 16, or 32 addresses and does not wrap around to the first address of the selected group. For example, if the starting address in the 8-word mode is 3Ch, the address range to be read would be 3Ch-43h, and the burst sequence would be 3C-3D-3E-3F-40-41-42-43h if wrap around is not enabled. The next address to be read requires a new address and AVD# pulse. Note that in this burst read mode, the address pointer may cross the boundary that occurs every 128 words, which will incur the additional boundary crossing wait state. 7.5.4 Configuration Registers This device uses two 16-bit configuration registers to set various operational parameters. Upon power-up or hardware reset, the device defaults to the asynchronous read mode, and the configuration register settings are in their default state. The host system should determine the proper settings for the entire configuration register, and then execute the Set Configuration Register command sequence before attempting burst operations. The Configuration Register can also be read using a command sequence (see Table on page 81). The following list describes the register settings. Document Number: 002-01747 Rev. *B Page 28 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Configuration Register CR Bit Function CR0.15 Set Device Read Mode CR0.14 Reserved (Not used) CR1.0 CR0.13 CR0.12 Programmable Wait State CR0.11 Settings (Binary) 0 = Synchronous Read (Burst Mode) Enabled 1 = Asynchronous Mode (Default) 0 = Reserved 1 = Reserved (Default) 0000 = initial data is valid on the 2nd rising CLK edge after addresses are latched 0001 = initial data is valid on the 3rd rising CLK edge after addresses are latched 0010 = initial data is valid on the 4th rising CLK edge after addresses are latched 0011 = initial data is valid on the 5th rising CLK edge after addresses are latched 0100 = initial data is valid on the 6th rising CLK edge after addresses are latched 0101 = initial data is valid on the 7th rising CLK edge after addresses are latched 0110 = Reserved 0111 = Reserved 1000 = initial data is valid on the 8th rising CLK edge after addresses are latched 1001 = initial data is valid on the 9th rising CLK edge after addresses are latched 1010 = initial data is valid on the 10th rising CLK edge after addresses are latched 1011 = initial data is valid on the 11th rising CLK edge after addresses are latched 1100 = Reserved 1101 = default 1110 = Reserved 1111 = Reserved 0 = RDY signal is active low 1 = RDY signal is active high (Default) CR0.10 RDY Polarity CR0.9 Reserved (Not used) CR0.8 RDY CR0.7 Reserved (Not used) 0 = Reserved 1 = Reserved (Default) CR0.6 Reserved 0 = Reserved 1 = Reserved (Default) CR0.5 Reserved 0 = Reserved (Default) 1 = Reserved CR0.4 RDY Function CR0.3 Burst Wrap Around CR0.2 CR0.1 Burst Length CR0.0 0 = Reserved 1 = Reserved (Default) 0 = RDY active one clock cycle before data 1 = RDY active with data (Default) 0 = RDY (Default) 1 = Reserved 0 = No Wrap Around Burst 1 = Wrap Around Burst (Default) 000 = Continuous (Default) 010 = 8-Word Linear Burst 011 = 16-Word Linear Burst 100 = 32-Word Linear Burst (All other bit settings are reserved) Notes: 1. Device will be in the Asynchronous Mode upon power-up or hardware reset. 2. CR1.0 to CR1.3 and CR1.5 to CR1.15 = 1 (Default). 3. CR0.3 is ignored if in continuous read mode (no warp around). Document Number: 002-01747 Rev. *B Page 29 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT 4. A software reset command is required after reading or writing the configuration registers in order to set the device back to array read mode. 5. Refer to Table on page 81 for reading the settings and writing onto configuration registers command sequences. 6. Configuration Registers can not be programmed out of order. CR0 must be programmed prior to CR01 otherwise the configuration registers will retain their previous settings. 7.6 Autoselect The Autoselect is used for manufacturer ID, Device identification, and sector protection information. This mode is primarily intended for programming equipment to automatically match a device with its corresponding programming algorithm. The Autoselect codes can also be accessed in-system. When verifying sector protection, the sector address must appear on the appropriate highest order address bits (see Table on page 30). The remaining address bits are don't care. The most significant four bits of the address during the third write cycle selects the bank from which the Autoselect codes are read by the host. All other banks can be accessed normally for data read without exiting the Autoselect mode.  To access the Autoselect codes, the host system must issue the Autoselect command.  The Autoselect command sequence may be written to an address within a bank that is either in the read or erase-suspend-read mode.  The Autoselect command may not be written while the device is actively programming or erasing. Autoselect does not support simultaneous operations or burst mode.  The system must write the reset command to return to the read mode (or erase-suspend-read mode if the bank was previously in Erase Suspend). See Table on page 81 for command sequence details. Autoselect Addresses Description Address Read Data Manufacturer ID Word 00 (BA) + 00h 0001h Device ID, Word 01 (BA) + 01h 227Eh Sector Lock/Unlock Word 02 (SA) + 02h 0001h = Locked, 0000h = Unlocked Indicator Bits Word 03 (BA) + 03h DQ15 - DQ8 = reserved DQ7 - Factory Lock Bit; 1 = Locked, 0 = Not Locked DQ6 -Customer Lock Bit; 1 = Locked, 0 = Not Locked DQ5 - Handshake Bit; 1 = Reserved, 0 = Standard Handshake DQ4 & DQ3 - WP# Protection Boot Code; 00 = WP# Protects both Top Boot and Bottom Boot Sectors, DQ2 - DQ0 = reserved Device ID, Word 0E (BA) + 0Eh 223Dh (WS512P)-1CE# 2242h (WS256P) 2244h (WS128P) Device ID, Word 0F (BA) + 0Fh 2200h Document Number: 002-01747 Rev. *B Page 30 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Software Functions and Sample Code Autoselect Entry (LLD Function = lld_AutoselectEntryCmd) Cycle Operation Byte Address Word Address Data Unlock Cycle 1 Write Unlock Cycle 2 Write BA+AAAh BA+555h 0x00AAh BA+555h BA+2AAh 0x0055h Autoselect Command Write BA+AAAh BA+555h 0x0090h Autoselect Exit (LLD Function = lld_AutoselectExitCmd) Cycle Operation Byte Address Word Address Data Unlock Cycle 1 Write xxxxh xxxxh 0x00F0h Notes: 1. Any offset within the device works. 2. BA = Bank Address. The bank address is required. 3. base = base address. The following is a C source code example of using the autoselect function to read the manufacturer ID. Refer to the Cypress Low Level Driver User’s Guide for general information on Cypress Flash memory software development guidelines. /* Here is an example of Autoselect mode (getting manufacturer ID) */ /* Define UINT16 example: typedef volatile unsigned short UINT16; */ UINT16 manuf_id; /* Auto Select Entry */ *( (UINT16 *)bank_addr + 0x555 ) = 0x00AA; /* write unlock cycle 1 */ *( (UINT16 *)bank_addr + 0x2AA ) = 0x0055; /* write unlock cycle 2 */ *( (UINT16 *)bank_addr + 0x555 ) = 0x0090; /* write autoselect command */ /* multiple reads can be performed after entry */ manuf_id = *( (UINT16 *)bank_addr + 0x000 ); /* read manuf. id */ /* Autoselect exit */ *( (UINT16 *)base_addr + 0x000 ) = 0x00F0; /* exit autoselect (write reset command) */ Document Number: 002-01747 Rev. *B Page 31 of 91 SUPPLEMENT 7.7 S29WS512P S29WS256P S29WS128P Program/Erase Operations These devices are capable of several modes of programming and or erase operations which are described in detail in the following sections. However, prior to any programming and or erase operation, devices must be setup appropriately as outlined in the configuration register (Table on page 29). During synchronous write operations, including writing command sequences, the system must drive AVD# and CE# to VIL, and OE# to VIH when providing an address to the device, and drive WE# and CE# to VIL, and OE# to VIH when writing commands or programming data. Addresses are latched on the rising edge of AVD# pulse or rising edge of CLK or falling edge of WE#, whichever occurs first. During asynchronous write operations, addresses are latched on the rising edge of AVD# or falling edge of WE# while data is latched on the 1st rising edge of WE#, or CE# whichever comes first. Note the following:  When the Embedded Program/Erase algorithm is complete, the device returns to the read mode.  The system can determine the status of the Program/Erase operation. Refer to Write Operation Status on page 44 for further information.  While 1 can be programmed to 0, a 0 cannot be programmed to a 1. Any such attempt will be ignored as only an erase operation can covert a 0 to a 1. For example: Old Data = 0011 New Data = 0101 Result = 0001  Any commands written to the device during the Embedded Program/Erase Algorithm are ignored except the Program/Erase Suspend commands.  Secured Silicon Sector, Autoselect, and CFI functions are unavailable when a Program/Erase operation is in progress.  A hardware reset and/or power removal immediately terminates the Program/Erase operation and the Program/Erase command sequence should be reinitiated once the device has returned to the read mode to ensure data integrity.  Programming is allowed in any sequence and across sector boundaries only for single word programming operation. See Write Buffer Programming on page 34 when using the write buffer. Document Number: 002-01747 Rev. *B Page 32 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT 7.7.1 Single Word Programming Single word programming mode is the simplest method of programming. In this mode, four Flash command write cycles are used to program an individual Flash address. While the single word programming method is supported by all Cypress devices, in general it is not recommended for devices that support Write Buffer Programming. See Table on page 81 for the required bus cycles and Figure 7.3 for the flowchart. When the Embedded Program algorithm is complete, the device returns to the read mode and addresses are no longer latched. The system can determine the status of the program operation by using DQ7 or DQ6. Refer to the Write Operation Status section for information on these status bits. Figure 7.3 Single Word Program Write Unlock Cycles: Address 555h, Data AAh Address 2AAh, Data 55h Unlock Cycle 1 Unlock Cycle 2 Write Program Command: Address 555h, Data A0h Setup Command Program Address (PA), Program Data (PD) Program Data to Address: PA, PD Perform Polling Algorithm (see Write Operation Status flowchart) Polling Status = Busy? Yes No Yes Polling Status = completed Error condition (Exceeded Timing Limits) No Operation successfully completed Document Number: 002-01747 Rev. *B Operation failed Page 33 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Software Functions and Sample Code Single Word Program (LLD Function = lld_ProgramCmd) Cycle Operation Byte Address Word Address Data Unlock Cycle 1 Write Base + AAAh Base + 555h 00AAh Unlock Cycle 2 Write Base + 554h Base + 2AAh 0055h Program Setup Write Base + AAAh Base + 555h 00A0h Program Write Word Address Word Address Data Word Note: Base = Base Address. The following is a C source code example of using the single word program function. Refer to the Cypress Low Level Driver User’s Guide (available on www.Cypress.com) for general information on Cypress Flash memory software development guidelines. /* Example: Program Command */ *( (UINT16 *)base_addr + 0x555 ) *( (UINT16 *)base_addr + 0x2AA ) *( (UINT16 *)base_addr + 0x555 ) *( (UINT16 *)pa ) /* Poll for program completion */ 7.7.2 = = = = 0x00AA; 0x0055; 0x00A0; data; /* /* /* /* write write write write unlock cycle 1 unlock cycle 2 program setup command data to be programmed */ */ */ */ Write Buffer Programming Write Buffer Programming allows the system to write a maximum of 32 words in one programming operation. This results in a faster effective word programming time than the standard word programming algorithms. The Write Buffer Programming command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle containing the Write Buffer Load command written at the Sector Address in which programming will occur. At this point, the system writes the number of word locations minus 1 that will be loaded into the page buffer at the Sector Address in which programming will occur. This tells the device how many write buffer addresses will be loaded with data and therefore when to expect the Program Buffer to Flash confirm command. The number of locations to program cannot exceed the size of the write buffer or the operation will abort. (NOTE: the size of the write buffer is dependent upon which data are being loaded. Also note that the number loaded = the number of locations to program minus 1. For example, if the system will program 6 address locations, then 05h should be written to the device.) The write-buffer addresses must be in the same sector for all address/data pairs loaded into the write buffer. It is to be noted that Write Buffer Programming cannot be performed across multiple sectors. If the system attempts to load programming data outside of the selected write-buffer addresses, the operation aborts after the Write to Buffer command is executed. Also, the starting address must be the least significant address. All subsequent addresses and write buffer data must be in sequential order. The system then writes the starting address/data combination. This starting address is the first address/data pair to be programmed, and selects the write-buffer-page address. All subsequent address/data pairs must be in sequential order. After writing the Starting Address/Data pair, the system then writes the remaining address/data pairs into the write buffer. Write buffer locations must be loaded in sequential order starting with the lowest address in the page. Note that if the number of address/ data pairs do no match the word count, the program buffer to flash command is ignored. Note that if a Write Buffer address location is loaded multiple times, the address/data pair counter will be decremented for every data load operation. Also, the last data loaded at a location before the Program Buffer to Flash confirm command will be programmed into the device. It is the software’s responsibility to comprehend ramifications of loading a write-buffer location more than once. The counter decrements for each data load operation, NOT for each unique write-buffer-address location. Once the specified number of write buffer locations have been loaded, the system must then write the Program Buffer to Flash command at the Sector Address. Any other address/data write combinations will abort the Write Buffer Programming operation. The device will then go busy. The Data Bar polling techniques should be used while monitoring the last address location loaded into the write buffer. This eliminates the need to store an address in memory because the system can load the last address location, issue the program confirm command at the last loaded address location, and then data bar poll at that same address. DQ7, DQ6, DQ5, DQ2, and DQ1 should be monitored to determine the device status during Write Buffer Programming. Document Number: 002-01747 Rev. *B Page 34 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT The write-buffer embedded programming operation can be suspended using the standard suspend/resume commands. Upon successful completion of the Write Buffer Programming operation, the device will return to READ mode. The Write Buffer Programming Sequence is ABORTED in the following ways:  Load a value that is greater than the buffer size during the Number of Locations to Program step (DQ7 is not valid in this condition).  Write to an address in a sector different than the one specified during the Write-Buffer-Load command.  Write an Address/Data pair to a different write-buffer-page than the one selected by the Starting Address during the write buffer data loading stage of the operation.  Write data other than the Confirm Command after the specified number of data load cycles. Software Functions and Sample Code Write Buffer Program (LLD Functions Used = lld_WriteToBufferCmd, lld_ProgramBufferToFlashCmd) Cycle Description Operation Byte Address Word Address Data 1 Unlock Write Base + AAAh Base + 555h 00AAh 2 Unlock Write Base + 554h Base + 2AAh 0055h 3 Write Buffer Load Command Write Program Address 0025h 4 Write Word Count Write Program Address Word Count (N–1)h Number of words (N) loaded into the write buffer can be from 1 to 32 words. 5 to 36 Load Buffer Word N Write Program Address, Word N Word N Last Write Buffer to Flash Write Sector Address 0029h Notes: 1. Base = Base Address. 2. Last = Last cycle of write buffer program operation; depending on number of words written, the total number of cycles may be from 6 to 37. 3. For maximum efficiency, it is recommended that the write buffer be loaded with the highest number of words (N words) possible. The following is a C source code example of using the write buffer program function. Refer to the Cypress Low Level Driver User’s Guide (available on www.Cypress.com) for general information on Cypress Flash memory software development guidelines. /* Example: Write Buffer Programming Command */ /* NOTES: Write buffer programming limited to 16 words. */ /* All addresses to be written to the flash in */ /* one operation must be within the same write buffer. */ /* A write buffer begins at addresses evenly divisible */ /* by 0x20. UINT16 i; */ UINT16 *src = source_of_data; /* address of source data */ UINT16 *dst = destination_of_data; /* flash destination address */ UINT16 wc = words_to_program -1; /* word count (minus 1) */ *( (UINT16 *)base_addr + 0x555 ) = 0x00AA; /* write unlock cycle 1 */ *( (UINT16 *)base_addr + 0x2AA ) = 0x0055; /* write unlock cycle 2 */ *( (UINT16 *)dst ) = 0x0025; /* write write buffer load command */ *( (UINT16 *)dst ) = wc; /* write word count (minus 1) */ for (i=0;i For WS128 = 2244h, WS256 = 2242h, WS512 = 223Dh. (BA) + 0Fh ----> For WS064/128/256/512 = 2200h 11. The data is 0000h for an unlocked sector and 0001h for a locked sector 12. See Table , Autoselect Addresses on page 30. 13. The Unlock Bypass command sequence is required prior to this command sequence. 14. The Unlock Bypass Reset command is required to return to reading array data when the bank is in the unlock bypass mode. 15. The system may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Program/Erase Suspend command is valid only during a program/ erase operation, and requires the bank address. 16. The Program/Erase Resume command is valid only during the Program/Erase Suspend mode, and requires the bank address. 17. The total number of cycles in the command sequence is determined by the number of words written to the write buffer. The maximum number of cycles in the command sequence is 37. 18. Write Buffer Programming can be initiated after Unlock Bypass Entry. 19. Data is always output at the rising edge of clock. 20. Must be the lowest address. 21. Configuration Registers can not be programmed out of order. CR0 must be programmed prior to CR01 otherwise the configuration registers will retain their previous settings Document Number: 002-01747 Rev. *B Page 82 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Sector Protection Commands (Sheet 1 of 2) Command Sequence (Notes) Entry (5) Secured Program Silicon Read Sector Exit (7) Register Command Set Entry (5) Cycles Bus Cycles (Note 1 - 6) Password Second Third Fourth Fifth Sixth Seventh Data Data Data Data Data Data Data Addr (10) Addr ((10) Addr ((10) Addr ((10) Addr ((10) Addr ((10) Addr ((10) 3 555 AA 2AA 55 555 88 2AA 55 555 A0 PA PD XX 00 4 555 AA 1 SA data 4 555 AA 2AA 55 555 90 3 555 AA 2AA 55 555 40 XX A0 00 data 00 data 555 60 Register Bits 2 Lock Program (6) Register Register Bits Read 1 PPB First Register Command Set Exit (7) 2 XX 90 XX 00 Protection Command Set Entry 3 555 AA 2AA 55 PW D0/ 1/ 2/ 3/ Program (9) 2 XX A0 00/ 01/ 02/ 03 Read Password (10) 4 00 PW D0 01 PW D1 02 PW D2 03 PW D3 Unlock (9) 7 00 25 00 03 00 PW D0 01 PW D1 Protection Command Set Exit 2 XX 90 XX 00 Non-Volatile Sector Protection Command Set Entry (5) 3 555 AA 2AA 55 (BA) 555 C0 Program 2 XX A0 (BA) SA 00 All Erase (8) 2 XX 80 XX 30 Status Read 1 (BA) SA RD( 0) Non-Volatile Sector Protection Command Set Exit (7) 2 XX 90 XX 00 Document Number: 002-01747 Rev. *B 02 PW D2 03 PW D3 00 29 Page 83 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Sector Protection Commands (Sheet 2 of 2) Command Sequence (Notes) Cycles Bus Cycles (Note 1 - 6) First Second 3 555 AA 2AA 55 Set 2 XX A0 XX 00 Status Read 1 XX RD( 0) Global Volatile Sector Protection Freeze Command Set Exit (7) 2 XX 90 XX 00 Volatile Sector Protection Command Set Entry (5) 3 555 AA 2AA 55 Set 2 XX A0 (BA) SA 00 Clear 2 XX A0 (BA) SA 01 Status Read 1 (BA) SA RD( 0) Volatile Sector Protection Command Set Exit (7) 2 XX 90 XX 00 Program 2 555 A0 PA Data Sector Erase 2 555 80 SA 30 Chip Erase Accelera Asynchronous ted Read 2 555 80 555 10 1 RA RD Write to Buffer 4 SA 25 SA WC Program Buffer to Flash 1 SA 29 DYB Fourth Fifth Sixth Seventh Data Data Data Data Data Data Data Addr (10) Addr ((10) Addr ((10) Addr ((10) Addr ((10) Addr ((10) Addr ((10) Global Volatile Sector Protection Freeze Command Set Entry (5) PPB Lock Bit Third 555 50 (BA) 555 E0 PA PD WBL PD Legend X = Don’t care RA = Read Address RD = Read Data PA = Program Address. Addresses latch on the rising edge of the AVD# pulse or active edge of CLK, whichever occurs first. PD = Program Data. Data latches on the rising edge of WE# or CE# pulse, whichever occurs first. SA = Sector Address: WS128P = A22–A14, WS256P = 23–A14 BA = Bank Address: WS128P = A22-A20, and A19; WS256P = A23-A20 CR = Configuration Register data bits D15–D0 PWD3–PWD0 = Password Data. PD3–PD0 present four 16 bit combinations that represent the 64-bit Password. PWA = Password Address. Address bits A1 and A0 are used to select each 16-bit portion of the 64-bit entity. PWD = Password Data RD(0) = DQ0 protection indicator bit. If protected, DQ0 = 0, if unprotected, DQ0 = 1. WBL = Write Buffer Location. Address must be within the same write buffer page as PA. WC = Word Count. Number of write buffer locations to load minus 1. Document Number: 002-01747 Rev. *B Page 84 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Notes 1. See Table for description of bus operations. 2. All values are in hexadecimal. 3. Except for the following, all bus cycles are write cycle: read cycle, fourth through sixth cycles of the Autoselect commands, fourth cycle of the configuration register verify and password verify commands, and any cycle reading at RD(0) and RD(1). 4. Data bits DQ15–DQ8 are don’t care in command sequences, except for RD, PD, WD, PWD, and PWD3-PWD0. 5. Entry commands are required to enter a specific mode to enable instructions only available within that mode. 6. If both the Persistent Protection Mode Locking Bit and the Password Protection Mode Locking Bit are set at the same time, the command operation aborts and returns the device to the default Persistent Sector Protection Mode during 2nd bus cycle. Note that on all future devices, addresses equal 00h, but is currently 77h for the WS512P only. 7. Exit command must be issued to reset the device into read mode; device may otherwise be placed in an unknown state. 8. “All PPB Erase” command pre-programs all PPBs before erasure to prevent over-erasure. 9. Entire two bus-cycle sequence must be entered for each portion of the password. 10. Full address range is required for reading password. 12.1 Common Flash Memory Interface The Common Flash Interface (CFI) specification outlines device and host system software interrogation handshake, which allows specific vendor-specified software algorithms to be used for entire families of devices. Software support can then be deviceindependent, JEDEC ID-independent, and forward- and back-ward-compatible for the specified flash device families. Flash vendors can standardize their existing interfaces for long-term compatibility. This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to address (BA)555h any time the device is ready to read array data. The system can read CFI information at the addresses given in Tables – within that bank. All reads outside of the CFI address range, within the bank, returns non-valid data. Reads from other banks are allowed, writes are not. To terminate reading CFI data, the system must write the reset command. The following is a C source code example of using the CFI Entry and Exit functions. Refer to the Cypress Low Level Driver User’s Guide (available on www.Cypress.com) for general information on Cypress Flash memory software development guidelines. /* Example: CFI Entry command */ *( (UINT16 *)bank_addr + 0x555 ) = 0x0098; /* write CFI entry command */ /* Example: CFI Exit command */ *( (UINT16 *)bank_addr + 0x000 ) = 0x00F0; /* write cfi exit command */ For further information, please refer to the CFI Specification (see JEDEC publications JEP137-A and JESD68.01). Please contact your sales office for copies of these documents. CFI Query Identification String Addresses Data 10h 11h 12h 0051h 0052h 0059h Query Unique ASCII string QRY 13h 14h 0002h 0000h Primary OEM Command Set 15h 16h 0040h 0000h Address for Primary Extended Table 17h 18h 0000h 0000h Alternate OEM Command Set (00h = none exists) 19h 1Ah 0000h 0000h Address for Alternate OEM Extended Table (00h = none exists) Document Number: 002-01747 Rev. *B Description Page 85 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT System Interface String Addresses Data 1Bh 0017h VCC Min. (write/erase) D7–D4: volt, D3–D0: 100 millivolt 1Ch 0019h VCC Max. (write/erase) D7–D4: volt, D3–D0: 100 millivolt 1Dh 0000h VPP Min. voltage (00h = no VPP pin present) 1Eh 0000h VPP Max. voltage (00h = no VPP pin present) 1Fh 0005h Typical Program Time per single word write 2N µs (e.g. 30us) 20h 0009h Typical Program Time using buffer 2N µs (e.g. 300us) (00h = not supported) 21h 000Ah Typical time for sector erase 2N ms 22h 0000h Typical time for full chip erase 2N ms (00h = not supported) 23h 0003h Max. Program Time per single word [2N times typical value] 24h 0003h Max. Program Time using buffer [2N times typical value] 25h 0003h Max. time for sector erase [2N times typical value] 26h 0000h Max. time for full chip erase [2N times typical value] (00h = not supported) Document Number: 002-01747 Rev. *B Description Page 86 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Device Geometry Definition Addresses Data Description 27h 0018h (WS128P) 0019h (WS256P) 001Ah (WS512P) 28h 29h 0001h 0000h Flash Device Interface 0h=x8; 1h=x16; 2h=x8/x16; 3h=x32 [lower byte] [upper byte] (00h = not supported) 2Ah 2Bh 0006h 0000h Max. number of bytes in multi-byte buffer write = 2N [lower byte] [upper byte] (00h = not supported) 2Ch 0003h Number of Erase Block Regions within device 01h = Uniform Sector; 02h = Boot + Uniform; 03h = Boot + Uniform + Boot 2Dh 2Eh 2Fh 30h 0003h 0000h 0080h 0000h Erase Block Region 1 Information (Small Sector Section) [lower byte] - Number of sectors. 00h=1 sector; 01h=2 sectors ... 03h=4 sectors [upper byte] [lower byte] - Equation =>(n = Density in Bytes of any 1 sector/256)h [upper byte] Device Size = 2N byte Erase Block Region 2 Information (Large Sector Section) 31h 32h 33h 34h 007Dh (WS128P) 00FDh (WS256P) 00FDh (WS512P) 0001h 0000h 0002h [lower byte] - Number of sectors. [upper byte] [lower byte] - Equation =>(n = Density in Bytes of any 1 sector/256)h [upper byte] 35h 36h 37h 38h 0003h 0000h 0080h 0000h Erase Block Region 3 Information (Small Sector Section) [lower byte] - Number of sectors. 00h=1 sector; 01h=2 sectors ... 03h=4 sectors [upper byte] [lower byte] - Equation =>(n = Density in Bytes of any 1 sector/256)h [upper byte] 39h 3Ah 3Bh 3Ch 0000h 0000h 0000h 0000h Erase Block Region 4 Information Document Number: 002-01747 Rev. *B Page 87 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Primary Vendor-Specific Extended Query (Sheet 1 of 2) Addresses Data 40h 41h 42h 0050h 0052h 0049h Query-unique ASCII string PRI 43h 0031h Major CFI version number, ASCII 44h 0034h Minor CFI version number, ASCII 45h 0101b Address Sensitive Unlock (Bits 1-0) 00b = Required, 01b = Not Required Silicon Technology (Bits 5-2) 0011b = 130nm; 0100b = 110nm; 0101b = 90nm 001010b = 000Ah 46h 0002h Erase Suspend 0 = Not Supported, 1 = To Read Only, 2 = To Read & Write 47h 0001h Sector Protection per Group 0 = Not Supported, X = Number of sectors in per group 48h 0000h Sector Temporary Unprotect 00 = Not Supported, 01 = Supported 49h 0008h Sector Protect/Unprotect scheme 08h = Advanced Sector Protection; 07h = New Sector Protection Scheme 4Ah 07Bh (WS128P) 0F3h (WS256P) 1E3h (WS512P) 4Bh 0001h Burst Mode Type 00 = Not Supported, 01 = Supported 4Ch 0002h Page Mode Type 00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page, 04 = 16 Word Page 4Dh 0085h ACC (Acceleration) Supply Minimum 00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV 4Eh 0095h ACC (Acceleration) Supply Maximum 00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV 4Fh 0001h Write Protect Function 00h = No Boot, 01h = Dual Boot, 02h = Bottom Boot, 03h = Top Boot 50h 0001h Program Suspend. 00h = not supported 51h 0001h Unlock Bypass 00 = Not Supported, 01=Supported 52h 0008h Secured Silicon Sector (Customer OTP Area) Size 2N bytes 53h 0014h Hardware Reset Low Time-out during an embedded algorithm to read mode Maximum 2N ns (e.g. 10us => n=14) 54h 0014h Hardware Reset Low Time-out not during an embedded algorithm to read mode Maximum 2N ns (e.g. 10us => n=14) 55h 0005h Erase Suspend Time-out Maximum 2N µs 56h 0005h Program Suspend Time-out Maximum 2N µs 57h 0010h Bank Organization: X = Number of banks 58h 0007h (WS064P) 000Bh (WS128P) 0013h (WS256P) 0023h (WS512P) Document Number: 002-01747 Rev. *B Description Simultaneous Operation Number of Sectors in all banks except boot bank Bank 0 Region Information. X = Number of sectors in bank Page 88 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT Primary Vendor-Specific Extended Query (Sheet 2 of 2) Addresses Data 59h 0004h (WS064P) 0008h (WS128P) 0010h (WS256P) 0020h (WS512P) Bank 1 Region Information. X = Number of sectors in bank 5Ah 0004h (WS064P) 0008h (WS128P) 0010h (WS256P) 0020h (WS512P) Bank 2 Region Information. X = Number of sectors in bank 5Bh 0008h (WS128P) 0010h (WS256P) 0020h (WS512P) Bank 3 Region Information. X = Number of sectors in bank 5Ch 0008h (WS128P) 0010h (WS256P) 0020h (WS512P) Bank 4 Region Information. X = Number of sectors in bank 5Dh 0008h (WS128P) 0010h (WS256P) 0020h (WS512P) Bank 5 Region Information. X = Number of sectors in bank 5Eh 0008h (WS128P) 0010h (WS256P) 0020h (WS512P) Bank 6 Region Information. X = Number of sectors in bank 5Fh 0008h (WS128P) 0010h (WS256P) 0020h (WS512P) Bank 7 Region Information. X = Number of sectors in bank 60h 0008h (WS128P) 0010h (WS256P) 0020h (WS512P) Bank 8 Region Information. X = Number of sectors in bank 61h 0008h (WS128P) 0010h (WS256P) 0020h (WS512P) Bank 9 Region Information. X = Number of sectors in bank 62h 0008h (WS128P) 0010h (WS256P) 0020h (WS512P) Bank 10 Region Information. X = Number of sectors in bank 63h 0008h (WS128P) 0010h (WS256P) 0020h (WS512P) Bank 11 Region Information. X = Number of sectors in bank 64h 0008h (WS128P) 0010h (WS256P) 0020h (WS512P) Bank 12 Region Information. X = Number of sectors in bank 65h 0008h (WS128P) 0010h (WS256P) 0020h (WS512P) Bank 13 Region Information. X = Number of sectors in bank 66h 0008h (WS128P) 0010h (WS256P) 0020h (WS512P) Bank 14 Region Information. X = Number of sectors in bank 67h 000Bh (WS128P) 0013h (WS256P) 0023h (WS512P) Bank 15 Region Information. X = Number of sectors in bank Document Number: 002-01747 Rev. *B Description Page 89 of 91 S29WS512P S29WS256P S29WS128P SUPPLEMENT 13. Revision History Document Title:S29WS512P, S29WS256P, S29WS128P 512/256/128 Mb (32/16/8 M x 16 bit), 1.8 V, Simultaneous Read/Write Flash Document Number: 002-01747 Rev. ECN No. Orig. of Change Submission Date 11/03/2006 11/08/2006 03/09/2007 03/27/2007 04/20/2007 ** - WIOB 09/28/2007 01/28/2008 Description of Change Spansion Publication Number: S30MS02GR_SP1_QDB A6:Features: Removed Zero Hold mode Switching Waveforms: Revised VCC Power-up diagram Timing Diagrams: Changed tCR to tRDY in figure 11.7 and figure 11.8 A7:Features: Updated Effective Write Buffer Programming Per Word Erase/Program Timing: tESL changed to Max tPSL changed to Max CMOS Compatible: Removed Note 2 from table. A8:Asynchronous Mode Read: Changed tCR to tRDY in figures 11.9 through 11.12 Common Flash Memory Interface: Revised Device Geometry table: Changed WS512P data to 00FDh Address 32h - Data changed to 001h Address 33h - Data changed to 000h Address 34h - Data changed to 002h Revised CFI table: removed Uniform Bottom, Uniform Top, and All sectors for Address 4Fh DC Characteristics: Revised ICCB Burst table A9:DC Characteristics: Revised ICCB for 108 MHz frequencies to TBA Synchronous/Burst Read: Revised tRACC to 7.6 ns Asynchronous Mode Read: Revised tAAVDH to 4 ns A10:AC Characteristics: Removed wait state below 14 MHz, wait state 2 Added additional wait state to all wait state frequency in table 11.4 Added Continuous Burst Mode Synchronous Wait State Requirement table Revised Burst Access Time to (WS-1) * tCK + (tBACC) A11:Data Sheet Status: Changed to Production Global: Changed all 108 MHz to 104 MHz Latency: Added 10 wait state and 11 wait state latency tables Configuration Registers: Added two more configurations to CR0.11 for 10th and 11th rising CLK edge AC Characteristics: Revised tCES to 6 ns Revised tAVD to tCLK DC Characteristics: Changed description of ICC2 to VCC Active Program/Erase Current Change descritpion of ICC5 to VCC Active Current (Read while Program/Erase) Erase/Program Timing and Performance: Revised: tERS to 40 µs tESL to 40 µs tPSL to 40 µs tPRS to 40 µs Output Slew Rate: Deleted Programmable Outuput Slew Rate Control section A12:Configuration Registers: Changed CR0.14 default setting to 1 AC Characteristics: Added device Vcc ramp rate limit. Updated timing diagrams for Synchronous/Burst Read, Asynchronous Program Operation, Synchronous Program Operation, and Chip Sector Erase Command Sequence. Program/Erase Operations: Added details to Program and Erase Suspend/Resume operations *A 5046533 WIOB 12/14/2015 Updated to Cypress Template *B 5790689 NIBK 06/29/2017 Updated to Cypress Logo and Copyright. Document Number: 002-01747 Rev. *B Page 90 of 91 SUPPLEMENT S29WS512P S29WS256P S29WS128P Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC®Solutions Products ARM® Cortex® Microcontrollers Automotive cypress.com/arm cypress.com/automotive Clocks & Buffers Interface cypress.com/clocks cypress.com/interface Internet of Things Memory cypress.com/iot cypress.com/memory Microcontrollers cypress.com/mcu PSoC cypress.com/psoc Power Management ICs Cypress Developer Community Forums | WICED IoT Forums | Projects | Video | Blogs | Training | Components Technical Support cypress.com/support cypress.com/pmic Touch Sensing cypress.com/touch USB Controllers Wireless Connectivity PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 cypress.com/usb cypress.com/wireless © Cypress Semiconductor Corporation, 2006-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-01747 Rev. *B Revised June 29, 2017 Page 91 of 91
S29WS128P0PBAW000 价格&库存

很抱歉,暂时无法提供与“S29WS128P0PBAW000”相匹配的价格&库存,您可以联系我们找货

免费人工找货