0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX5986EVKIT#

MAX5986EVKIT#

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    EVAL KIT MAX5986

  • 数据手册
  • 价格&库存
MAX5986EVKIT# 数据手册
EVALUATION KIT AVAILABLE Click here for production status of specific part numbers. MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter General Description The MAX5986A–MAX5986C/MAX5987A provide a complete power-supply solution as IEEE® 802.3afcompliant Class 1/Class 2 Powered Devices (PDs) in a Power-over-Ethernet (PoE) system. The devices integrate the PD interface with an efficient DC-DC converter, offering a low external part count PD solution. The MAX5987A includes a low-dropout regulator and the MAX5986A– MAX5986C include sleep and ultra-low power modes. The PD interface provides a detection signature and a Class 1/Class 2 classification signature with a single external resistor. The PD interface also provides an isolation power MOSFET, a 60mA (max) inrush current limit, and a 323mA operating current limit. The integrated step-down DC-DC converter uses a peak current-mode control scheme and provides an easy-toimplement architecture with a fast transient response. The step-down converter operates in a wide input voltage range from 8.7V to 60V and supports up to 6.49W of input power. The MAX5986A/MAX5986B/MAX5987A operate at a fixed 215kHz switching frequency and the MAX5986C operates at a fixed 430kHz switching frequency. The DC-DC converter operates at a fixed switching frequency, with an efficiency-boosting frequency foldback that reduces the switching frequency by half at light loads. The devices feature an input undervoltage-lockout (UVLO) with wide hysteresis and long deglitch time to compensate for twisted-pair cable resistive drop and to assure glitch-free transition during power-on/off conditions. The devices also feature overtemperature shutdown, short-circuit protection, output overvoltage protection, and hiccup current limit for enhanced performance and reliability. The MAX5986A–MAX5986C/MAX5987A are available in a 16-pin, 5mm x 5mm, TQFN power package and operate over the -40°C to +85°C temperature range. Ordering Information appears at end of data sheet. IEEE is a registered service mark of the Institute of Electrical and Electronics Engineers, Inc. WiMAX is a registered certification mark and registered service mark of WiMAX Forum. 19-6261; Rev 7; 11/18 Benefits and Features ●● High Integration Saves Space and BOM Cost • Efficient, Integrated DC-DC Converter (with Integrated Switches) • Built-In Output-Voltage Monitoring • Protects Against Overload, Output Short Circuit, Output Overvoltage, and Overtemperature • Integrated TVS Diode Withstands Cable Discharge Event (CDE) • Internal LDO Regulator with Up to 100mA Load (MAX5987A) ●● IEEE 802.3af-Compliant Features Reduce Design Time • PoE Class 1/Class 2 Classification Set with Single Resistor • Intelligent Maintain Power Signature (MPS) Complies with IEEE 802.3af Specification • Simplified Wall Adapter Interface • Pass 2kV, 200m CAT-6 Cable Discharge Event ●● High Efficiency During Light Loads Reduces Power Consumption • Sleep and Ultra-Low-Power Mode (MAX5986A/ MAX5986B/MAX5986C) • Frequency Foldback for High-Efficiency Light-Load Operation • Back-Bias Capability to Optimize the Efficiency ●● Robust Performance • 8.7V to 60V Wide Input Voltage Range • Hiccup-Mode Runaway Current Limit • 49mA (typ) Inrush Current Limit • Open-Drain RESET Output (MAX5987A) ●● Flexible and Easy to Design With • 3.0V to 14V Programmable Output Voltage Range • Internal Compensation • Fixed 215kHz/430kHz Switching Frequency • Fixed 3.3V or Adjustable Output Voltage through an External Resistive Divider Applications ●● ●● ●● ●● ●● IEEE 802.3af-Powered Devices IP Phones Wireless Access Nodes IP Security Cameras WiMAX® Base Stations MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Absolute Maximum Ratings (All voltages referenced to GND, unless otherwise noted.) VDD to GND............................................................-0.3V to +70V (100V, 100ms, RTEST = 3.3kω) (Note 1) VCC, WAD, RREF to GND......................... -0.3V to (VDD + 0.3V) AUX, LDO_IN, LED to GND..................................... -0.3V to 16V LDO_OUT to GND............................... -0.3V to (LDO_IN + 0.3V) LDO_FB to GND.......................................................-0.3V to +6V LX to GND................................................. -0.3V to (VCC + 0.3V) LDO_OUT, V DRV , FB, RESET, WK, SL, ULP, MPS, CLASS2 to GND..........................................-0.3V to +6V VDRV to VDD.............................................. -0.3V to (VDD + 0.3V) PGND to GND.......................................................-0.3V to +0.3V LX Total RMS Current............................................................1.6A Continuous Power Dissipation (TA = + 70NC) TQFN (derate 28.6mW/NC above +70NC)...............2285.7mW Operating Temperature Range........................... -40NC to +85NC Junction Temperature......................................................+150NC Storage Temperature Range............................. -65NC to +150NC Lead Temperature (soldering, 10s).................................+300NC Soldering Temperature (reflow).......................................+260NC Note 1: See Figure 1, Test Circuit. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Thermal Characteristics (Note 2) Junction-to-Ambient Thermal Resistance (qJA)...............35°C/W Junction-to-Case Thermal Resistance (qJC)...................2.7°C/W Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. Electrical Characteristics (VDD = 48V, RSIG = 24.9kω, LED, VCC, SL, ULP, WK, RESET, LDO_OUT unconnected, WAD = LDO_EN = LDO_IN = PGND = GND, C1 = 68nF, C2 = 10µF, C3 = 1µF (see Figure 3), VFB = VAUX = 0V, LX unconnected. VCLASS2 = 0V, VMPS = 0V. All voltages are referenced to GND, unless otherwise noted. TA = TJ = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 10 FA 25.5 kI POWER DEVICE (PD) INTERFACE DETECTION MODE Input Offset Current Effective Differential Input Resistance IOFFSET dR VVDD = 1.4V to 10.1V (Note 4) VVDD = 1.4V to 10.1V with 1V step, (Note 5) 23.95 CLASSIFICATION MODE Classification Enable Threshold VTH,CLS,EN VDD rising 10.2 11.5 12.5 V Classification Disable Threshold VTH,CLS,DIS VDD rising 22 23 23.8 V CLASS2 = GND 9.12 10.5 11.88 CLASS2 = VDRV 16.1 18 20.9 Classification Stability Time Classification Current 2 ICLASS VDD = 12.6V to 20V ms mA POWER MODE VDD Supply Voltage Range VDD VDD Supply Current IDD www.maximintegrated.com 60 VDD = 60V MAX5986A/B/ MAX5987A 3.6 4.5 MAX5986C 4.8 6.6 V mA Maxim Integrated │  2 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Electrical Characteristics (continued) (VDD = 48V, RSIG = 24.9kω, LED, VCC, SL, ULP, WK, RESET, LDO_OUT unconnected, WAD = LDO_EN = LDO_IN = PGND = GND, C1 = 68nF, C2 = 10µF, C3 = 1µF (see Figure 3), VFB = VAUX = 0V, LX unconnected. VCLASS2 = 0V, VMPS = 0V. All voltages are referenced to GND, unless otherwise noted. TA = TJ = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 3) PARAMETER SYMBOL CONDITIONS VDD Turn-On Voltage VON VDD rising VDD Turn-Off Voltage VOFF VDD falling VDD Turn-On/Off Hysteresis VDD Deglitch Time Inrush to Operating Mode Delay Isolation Power MOSFET On-Resistance VHYST_UVLO (Note 6) tOFF_DLY tDELAY RON_ISO MIN TYP MAX MAX5986A/B/C 34.3 35.7 37.6 MAX5987A 37.2 38.7 40 30 31.4 MAX5986A/B/C 3.4 4.2 MAX5987A UNITS V V V 7.2 VDD falling from 40V to 20V (Note 5) 150 Fs tDELAY = time from a (VDD - VCC) 1.5V to 0V 123 ms IVCC = 100mA TJ = +25NC 1.2 TJ = +85NC 1.5 I MAINTAIN POWER SIGNATURE (MPS = VDRV) PoE MPS Current Rising Threshold IMPS_RISE 18 28.7 40 mA PoE MPS Current Falling Threshold IMPS_FALL 14 24 35 mA PoE MPS Current Threshold Hysteresis IMPS_HYS 4.3 mA PoE MPS Output Average Current IMPS_AVE 4.8 mA PoE MPS Peak Output Current IMPS_PEAK 12.6 mA PoE MPS Time High tMPS_HIGH 95 ms PoE MPS Time Low tMPS_LOW 190 ms 10 CURRENT LIMIT Inrush Current Limit Current Limit During Normal Operation IINRUSH ILIM During initial turn-on period, VDD - VCC = 4V, measured at VCC 39 49 60 mA After inrush completed, VCC = VDD 1.5V, measured at VCC 290 323 360 mA 8.8 V WAD Detection Rising Threshold VWAD_RISE (Note 9) WAD Detection Falling Threshold VWAD_FALL (Note 9) WAD Detection Hysteresis WAD Input Current www.maximintegrated.com IWAD VWAD = 24V 5.8 V 0.6 V 125 FA Maxim Integrated │  3 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Electrical Characteristics (continued) (VDD = 48V, RSIG = 24.9kω, LED, VCC, SL, ULP, WK, RESET, LDO_OUT unconnected, WAD = LDO_EN = LDO_IN = PGND = GND, C1 = 68nF, C2 = 10µF, C3 = 1µF (see Figure 3), VFB = VAUX = 0V, LX unconnected. VCLASS2 = 0V, VMPS = 0V. All voltages are referenced to GND, unless otherwise noted. TA = TJ = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 2.9 V LOGIC CLASS2, MPS Voltage Rising Threshold CLASS2, MPS Voltage Falling Threshold 0.4 RESET Output Voltage Low (MAX5987A Only) V ISINK = 1mA CLASS2, MPS Leakage -10 0.2 V +10 FA INTERNAL REGULATOR WITH BACK BIAS VAUX Input Voltage Range VAUX VAUX Input Current Inferred from VAUX input current 4.75 14 V VAUX from 4.75V to 14V 0.65 3.1 mA 4.2 5.5 V 1.6 2.9 V VDRV Output Voltage SLEEP MODE (MAX5986A–MAX5986C) WK and ULP Logic Threshold SL Logic Threshold VWK falling and VULP rising and falling Falling SL Current V SL = 0V 62.5 R SL = 121kI, VLED = 6.5V 5.3 LED Current Amplitude VTH ILED 0.55 0.8 R SL = 60.4kI, VLED = 6.5V 9.2 10.6 12 R SL = 30.2kI, VLED = 6.5V R SL = 30.2kI, VLED = 3.5V 19.2 21.2 23.5 LED Current Programmable Range V SL = 0V mA 21.2 10 LED Current with Grounded SL V FA 20.6 26.4 20 mA 31.4 mA LED Current Frequency fILED Sleep and ultra-low power modes MAX5986B/C 250 Hz LED Current Duty Cycle DILED Sleep and ultra-low power modes MAX5986B/C 25 % IVDD Sleep mode, VLED = 6.5V VDD Current Amplitude Internal Current Duty Cycle DIVDD 10 Sleep and ultra-low power modes 12 14.5 75 mA % Internal Current Enable Time tMPS Ultra-low power mode 76 87 98 ms Internal Current Disable Time tMPDO Ultra-low power mode 205 235 265 ms THERMAL SHUTDOWN Thermal Shutdown Threshold TSD Thermal Shutdown Hysteresis TSD,HYS www.maximintegrated.com TJ rising 151 NC 16 NC Maxim Integrated │  4 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Electrical Characteristics (continued) (VDD = 48V, RSIG = 24.9kω, LED, VCC, SL, ULP, WK, RESET, LDO_OUT unconnected, WAD = LDO_EN = LDO_IN = PGND = GND, C1 = 68nF, C2 = 10µF, C3 = 1µF (see Figure 3), VFB = VAUX = 0V, LX unconnected. VCLASS2 = 0V, VMPS = 0V. All voltages are referenced to GND, unless otherwise noted. TA = TJ = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 3) PARAMETER SYMBOL CONDITIONS MIN Input Voltage Range Inferred from line regulation 4.5 Output Voltage LDO_FB = VDRV Max Output Voltage Setting With external divider to LDO_FB TYP MAX UNITS 14 V LDO (MAX5987A) LDO FB Regulation Voltage 3.3 1.2 LDO FB Leakage Current V 1.227 5.5 V 1.25 V ±1 FA Dropout VLDO_IN = 5V, VLDO_FB = VDRV, ILOAD = 80mA 300 mV Load Regulation ILOAD from 1mA to 80mA 0.5 mV/mA Line Regulation VLDO_IN from 4.5V to 14V 1.4 mV/V Overcurrent Protection Threshold IOVC 85 LDO_FB Rising Threshold mA 3.2 LDO_FB Falling Threshold 2.0 4.2 2.4 V V DC-DC CONVERTER INPUT SUPPLY VDD Voltage Range VDD,RISING VCC = VDD = VWAD - 0.3V, rising VDD,FALLING VCC = VDD = VWAD - 0.3V, falling 8 60 7.7 60 V POWER MOSFETs High-Side pMOS On-Resistance RDSON-H ILX = 0.5A (sourcing) 0.54 I Low-Side nMOS On-Resistance RDSON-L ILX = 0.5A (sinking) 0.16 I LX Leakage Current ILX-LKG VDD = VCC = 28V, VLX = (VPGND + 1V) to (VCC - 1V) -5 +5 FA SOFT-START (SS) Soft-Start Time tSS-TH 10 ms FEEDBACK (FB) FB Regulation Voltage VFB-RG FB Input Bias Current IFB 1.203 VFB = 1.224V 1.225 1.252 V 10 200 nA OUTPUT VOLTAGE Output Voltage Range www.maximintegrated.com VOUT MAX5986A/MAX5987A 3.0 5.6 MAX5986B/MAX5986C 5.4 14 V Maxim Integrated │  5 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Electrical Characteristics (continued) (VDD = 48V, RSIG = 24.9kω, LED, VCC, SL, ULP, WK, RESET, LDO_OUT unconnected, WAD = LDO_EN = LDO_IN = PGND = GND, C1 = 68nF, C2 = 10µF, C3 = 1µF (see Figure 3), VFB = VAUX = 0V, LX unconnected. VCLASS2 = 0V, VMPS = 0V. All voltages are referenced to GND, unless otherwise noted. TA = TJ = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 3) PARAMETER Cycle-by-Cycle Overvoltage Protection SYMBOL VOUT-OV CONDITIONS MIN TYP MAX Rising (Note 7) 100.5 100.3 108 Falling (Note 7) 98.5 UNITS % INTERNAL COMPENSATION NETWORK Compensation Network ZeroResistance RZERO 200 kI Compensation Network ZeroCapacitance CZERO 150 pF CURRENT LIMIT Peak Current-Limit Threshold IPEAK-LIMIT ZX Threshold MAX5986A/ MAX5987A MAX5986B/ MAX5986C Runaway Current-Limit Threshold Valley Current-Limit Threshold MAX5986B/ MAX5986C LIMIT 0.75 0.81 CLASS2 = VDRV 0.85 0.94 CLASS2 = GND 1.45 1.64 CLASS2 = VDRV CLASS2 = GND 1.66 1.79 A 0.93 CLASS2 = VDRV CLASS2 = GND 1.07 CLASS2 = VDRV MAX5986A/MAX5987A 2.2 MAX5986B/MAX5986C 0.75 MAX5986A/ MAX5987A IVALLEY- CLASS2 = GND 1.9 1.5 IZX A 25 mA TIMINGS Switching Frequency fSW Frequency Foldback fSW-FOLD MAX5986A/MAX5986B/MAX5987A 190 215 238 MAX5986C 380 430 475 MAX5986A/MAX5986B/MAX5987A 95 107.5 119 MAX5986C 195 215 238 kHz kHz Consecutive ZX Events for Entering Foldback 8 Events Consecutive ZX Events for Exiting Foldback 8 Events VOUT Undervoltage Trip Level to Cause HICCUP VOUT-HICF HICCUP Timeout Minimum On-Time LX Dead Time www.maximintegrated.com tON-MIN After soft-start completed (Note 7) 55 60 MAX5986A/MAX5986B/MAX5987A 154 MAX5986C 77 113 14 65 % ms 140 ns ns Maxim Integrated │  6 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Electrical Characteristics (continued) (VDD = 48V, RSIG = 24.9kω, LED, VCC, SL, ULP, WK, RESET, LDO_OUT unconnected, WAD = LDO_EN = LDO_IN = PGND = GND, C1 = 68nF, C2 = 10µF, C3 = 1µF (see Figure 3), VFB = VAUX = 0V, LX unconnected. VCLASS2 = 0V, VMPS = 0V. All voltages are referenced to GND, unless otherwise noted. TA = TJ = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS RESET (MAX5987A) VFB Threshold for RESET Assertion VFB-OKF VFB falling (Note 7) 87 90 93 % VFB Threshold for RESET Deassertion VFB-OKR VFB rising (Note 7) 91.5 95 98 % VLDO_FB Threshold for RESET Assertion VLDO_FB Threshold for RESET Deassertion VLDO_FB-OKF VLDO_FB falling, LDO_FB = VDRV (Note 8) 90 % VFB rising 95 % 4.8 ms for RESET Deassertion Delay RESET Output Voltage Low RESET Leakage Current ISINK = 1mA 0.1 V ±10 FA Note Note Note Note 3: All devices are 100% production tested at TA = +25°C. Limits over temperature are guaranteed by design. 4: The input offset current is illustrated in Figure 2. 5: Effective differential input resistance is defined as the differential resistance between VDD and GND, see Figure 2. 6: A 20V glitch on input voltage, which takes VDD below VON shorter than or equal to tOFF_DLY does not cause the device to exit power-on mode. Note 7 Referred to feedback regulation voltage. Note 8: Referred to LDO feedback regulation voltage. Note 9: The WAD Detection Rising and Falling Thresholds control the isolation power MOS transistor. To turn the DC-DC on in WAD mode, the WAD must be detected and the VDD must be within the VDD voltage range. www.maximintegrated.com Maxim Integrated │  7 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter IIN RTEST dRi = 1V (VINi + 1 - VINi) = (IINi + 1 - IINi) (IINi + 1 - IINi) IOFFSET = IINi - MAX5986A 1ms/10ms/100ms dRi IINi + 1 EVALUATION BOARD 100V VINi dRi IINi IOFFSET VINi Figure 1. MAX5986A/MAX5987A Internal TVS Test Setup 1V VIN VINi + 1 Figure 2. Effective Differential Resistance and Offset Current Typical Operating Characteristics (TA = +25°C, unless otherwise noted.) QUIESCENT CURRENT vs. SUPPLY VOLTAGE (ULTRA-LOW POWER MODE) DETECTION CURRENT vs. INPUT VOLTAGE 0.40 0.35 0.30 0.25 0.20 0.15 4.00 MAX5986A toc02 DETECTION CURRENT (mA) 0.45 3.75 QUIESCENT CURRENT (mA) MAX5986A toc01 0.50 0.10 3.50 3.25 3.00 2.75 0.05 2.50 0 2.9 4.4 5.9 7.4 8.9 40 45 50 55 INPUT VOLTAGE (V) SUPPLY VOLTAGE (V) SIGNATURE RESISTANCE vs. SUPPLY VOLTAGE INPUT OFFSET CURRENT vs. INPUT VOLTAGE 2 OFFSET CURRENT (µA) 27 26 25 24 23 60 3 MAX5986A toc03 28 DIFFERENTIAL RESISTANCE (kI) 35 10.1 MAX5986A toc04 1.4 1 0 -1 -2 22 -3 1.4 2.9 4.4 5.9 7.4 SUPPLY VOLTAGE (V) www.maximintegrated.com 8.9 10.1 1.4 2.9 4.4 5.9 7.4 8.9 10.1 SUPPLY VOLTAGE (V) Maxim Integrated │  8 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Typical Operating Characteristics (continued) (TA = +25°C, unless otherwise noted.) CLASSIFICATION CURRENT vs. INPUT VOLTAGE CLASSIFICATION SETTLING TIME 10.58 CLASSIFICATION CURRENT (mA) MAX5986A toc06 MAX5986A toc05 10.60 10.56 VDD 10V/div GND 10.54 10.52 10.50 10.48 10.46 IDD 10mA/div 0mA 10.44 10.42 10.40 14.1 12.6 15.6 17.1 18.6 20.0 400µs/div INPUT VOLTAGE (V) LED CURRENT vs. R SL INRUSH CURRENT LIMIT vs. VCC VOLTAGE 52 48 20 18 12 44 8 40 6 12 18 24 30 36 42 10 48 20 30 40 50 60 70 VCC (V) RSL (kI) LED CURRENT vs. LED VOLTAGE EFFICIENCY vs. LOAD CURRENT (MAX5986C, VOUT = 12V) 100 MAX5986A toc09 25 RSL = 30.2kI 20 VIN = 36V 95 EFFICIENCY (%) 90 15 RSL = 60.4kI 10 80 MAX5986A toc10 0 LED CURRENT (mA) MAX5986A toc08 24 LED CURRENT (mA) 56 INRUSH CURRENT (mA) 28 MAX5986A toc07 60 VIN = 48V 85 VIN = 57V 80 75 70 65 5 0 1.75 3.50 LED VOLTAGE (V) www.maximintegrated.com 5.25 7.00 60 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 LOAD CURRENT (A) Maxim Integrated │  9 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Typical Operating Characteristics (continued) (TA = +25°C, unless otherwise noted.) EFFICIENCY vs. LOAD CURRENT (MAX5986A/MAX5987A, VOUT = 5V) EFFICIENCY vs. LOAD CURRENT (MAX5986B, VOUT = 12V) VIN = 48V 90 85 VIN = 57V 80 VIN = 12V 95 EFFICIENCY (%) EFFICIENCY (%) 90 MAX5986A toc12 VIN = 36V 95 100 MAX5986A toc11 100 75 85 80 75 70 70 65 65 VIN = 36V VIN = 48V VIN = 57V 60 60 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 0.7 LOAD CURRENT (mA) LOAD CURRENT (A) 5V LOAD TRANSIENT (0% TO 50%) 5V LOAD TRANSIENT (50% TO 100%) MAX5986A toc13 MAX5986A toc14 VOUT AC-COUPLED 50mV/div VOUT AC-COUPLED 50mV/div IOUT 500mA /div 0A IOUT 500mA/div 0A 100µs/div 100µs/div DC-DC CONVERTER STARTUP IOUT = 0A DC-DC CONVERTER STARTUP ROUT = 6.67I MAX5986A toc16 MAX5986A toc15 2ms/div www.maximintegrated.com VOUT 1V/div VOUT 1V/div VGND VGND 2ms/div Maxim Integrated │  10 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter MPS CLASS2 ULP WAD RESET MPS CLASS2 12 11 10 9 12 11 10 9 *EP 1 2 3 4 LX LED WK + AUX RREF 16 TQFN *EXPOSED PAD, CONNECT TO GND VDD 13 7 VDRV VCC 14 6 GND PGND 15 5 FB RREF 16 MAX5987A *EP + 1 2 3 4 LDO_OUT PGND 15 SL LDO_IN MAX5986A MAX5986B MAX5986C VCC 14 8 LX VDD 13 AUX TOP VIEW WAD Pin Configuration TQFN 8 LDO_FB 7 VDRV 6 GND 5 FB *EXPOSED PAD, CONNECT TO GND Pin Description PIN MAX5986A/MAX5986B/ MAX5986C MAX5987A NAME FUNCTION Auxiliary Voltage Input. Auxiliary input to the internal regulator (VDRV). Connect AUX to the output of the buck converter if the output voltage is greater than 4.75V to back bias the internal circuitry and increase efficiency. Connect to a clean ground when not used. 1 1 AUX 2 2 LX Inductor Connection. Inductor connection for the internal DC-DC converter. 3 — LED LED Driver Output. In sleep mode, LED sources a periodic current (ILED) at 250Hz with 25% duty cycle. — 3 LDO_IN LDO Input Voltage. Connect LDO_IN to output when used, otherwise connect to GND. Connect a minimum 1FF bypass capacitor between LDO_IN and GND. 4 — WK Wake Mode Enable Input. WK has an internal 50kI pullup resistor to the internal 5V bias rail. A falling edge on WK brings the device out of sleep mode and into the normal operating mode (wake mode). — 4 LDO_OUT 5 5 FB www.maximintegrated.com LDO Output Voltage. Connect a minimum 1FF output capacitor between LDO_OUT and GND. Feedback. Feedback input for the DC-DC buck converter. Connect FB to a resistive divider from the output to GND to adjust the output voltage. Maxim Integrated │  11 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Pin Description (continued) PIN MAX5986A/MAX5986B/ MAX5986C MAX5987A 6 6 NAME FUNCTION GND Ground. Reference rail for the device. It is also the “quiet” ground for all voltage reference (e.g., FB is referenced to this GND). 7 7 VDRV Internal 5V Regulator Voltage Output. The internal voltage regulator provides 5V to the MOSFET driver and other internal circuits. VDRV is referenced to GND. Do not use VDRV to drive external circuits. Connect a 1FF bypass capacitor between VDRV and GND. 8 — SL Sleep Mode Enable Input. A falling edge on SL brings the device into sleep mode. An external resistor (RSL) connected between SL and GND sets the LED current (ILED). — 8 LDO_ FB LDO Regulator Feedback Input. Connect to VDRV to get the preset LDO output voltage of 3.3V, or connect to a resistive divider from the LDO_OUT to GND for an adjustable LDO output voltage. Ultra-Low-Power Mode Enable Input. ULP has an internal 50kI pullup resistor to the internal 5V bias rail. A falling edge on SL while ULP is asserted low enables ultra-low power mode. When ultra-low power mode is enabled, the power consumption of the device is reduced even lower than sleep mode to comply with ultra-low power sleep power requirements while still supporting MPS. 9 — ULP 10 9 CLASS2 Class 2 Selection Input. Connect to VDRV for Class 2 operation. Connect to GND for Class 1 operation. 11 10 MPS MPS Enable Input. Connect to VDRV to turn the MPS function on. Connect to GND to turn MPS off. — 11 RESET Open-Drain RESET Output. The RESET output is driven low if either LDO_OUT or FB drops below 90% of its set value. RESET goes high 100Fs after both LDO_OUT and FB rise above 95% of their set values. Leave unconnected when not used. 12 12 WAD Wall Power Adapter Detector Input. Wall adapter detection is enabled when the voltage from WAD to GND is greater than 8.8V. When a wall power adapter is present, the isolation p-channel power MOSFET turns off. Connect WAD directly to GND when the wall power adapter or other auxiliary power source is not used. 13 13 VDD Positive Supply Input. Connect a 68nF (min) bypass capacitor between VDD and PGND. 14 14 VCC DC-DC Converter Power Input. VDD is connected to VCC by an isolation p-channel MOSFET. Connect a 10FF capacitor in parallel with a 1FF ceramic capacitor between VCC and PGND. 15 15 PGND Power Ground. Power ground of the DC-DC converter power stage. Connect PGND to GND with a star connection. Do not use PGND as reference for sensitive feedback circuit. 16 16 RREF Signature Resistor Connection. Connect a 24.9kI resistor (RSIG) to GND. — — EP www.maximintegrated.com Exposed Pad. Connect the exposed pad to ground. Maxim Integrated │  12 MAX5986A–MAX5986C/ MAX5987A Detailed Description PD Interface The devices include complete interface functions for a PD to comply with the IEEE 802.3af standard as a Class 1/Class 2 PD. The devices provide the detection and classification signatures using a single external signature resistor. An integrated MOSFET provides isolation from the buck converter when the PSE has not applied power. The devices guarantee a leakage current offset of less than 10µA during the detection phase. The devices feature power-mode undervoltagelockout (UVLO) with wide hysteresis and long deglitch time to compensate for twisted-pair-cable resistive drop and to ensure glitch-free transitions between detection, classification, and power-on/-off modes. Operating Modes The devices operate in three different modes depending on VDD. The three modes are detection mode, classification mode, and power mode. The device is in detection mode when VDD is between 1.4V and 10.1V, classification mode when VDD is between 12.6V and 20V, and power mode when the input voltage exceeds VON. Detection Mode (1.4V < VDD < 10.1V) In detection mode, the devices provide a signature differential resistance to VDD. During detection, the power-sourcing equipment (PSE) applies two voltages to VDD, both between 1.4V and 10.1V with a minimum 1V increment. The PSE computes the differential resistance to ensure the presence of the 24.9kω signature resistor. Connect the 24.9kω signature resistor (RSIG) from RREF to GND for proper signature detection. The device applies VDD to RREF when in detection mode, and the VDD offset current due to the device is less than 10µA. The DC offset due to protection diodes does not significantly affect the signature resistance measurement. Classification Mode (12.6V < VDD < 20V) In classification mode, the devices sink Class 1/Class 2 classification currents. The PSE applies a classification voltage between 12.6V and 20V, and measures the classification currents. The devices use the external 24.9kω resistor (RSIG) and the CLASS2 pin to set the classification current at 10.5mA (Class 1) or 18.5mA (Class 2). The devices provide either Class 1 (CLASS2 = GND) or Class 2 (CLASS2 = VDRV). The PSE uses this to determine www.maximintegrated.com IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter the maximum power to deliver. The classification current includes current drawn by the supply current of the device so the total current drawn by the PD is within the IEEE 802.3af standard. The classification current is turned off when the device leaves classification mode. Power Mode (VDD > VON) In power mode, the devices have the isolation MOSFET between VDD and VCC fully on. The MAX5987A has the buck regulator enabled and the LDO enabled. The MAX5986A–MAX5986C can be in either wake mode, sleep mode, or ultra-low power mode. The buck regulator is enabled when the MAX5986A–MAX5986C is in wake mode. The devices enter power mode when VDD rises above the undervoltage lockout threshold (VON). When VDD rises above VON, the device turns on the internal p-channel isolation MOSFET to connect VCC to VDD with inrush current limit internally set to 49mA (typ). The isolation MOSFET is fully turned on when VCC is near VDD and the inrush current is below the inrush limit. Once the isolation MOSFET is fully turned on, the device changes the current limit to 323mA. The buck converter turns on 123ms after the isolation MOSFET turns on fully. Undervoltage Lockout The devices operate with up to a 60V supply voltage with a turn-on UVLO threshold (VON) at 35.4V/38.7V (typ), and a turn-off UVLO threshold (VOFF) at 31.4V (typ). When the input voltage is above VON, the device enters power mode and the internal isolation MOSFET is turned on. When the input voltage is below VOFF for more than tOFF_DLY, the MOSFET and the buck converter are off. LED Driver (MAX5986A–MAX5986C) The MAX5986A–MAX5986C drive an LED, or multiple LEDs in series, with a maximum LED voltage of 6.5V. In sleep mode and ultra-low power mode, the LED current is pulse width modulated with a duty cycle of 25% and the amplitude is set by R SL. The LED driver current amplitude is programmable from 10mA to 20mA using R SL according to the formula: ILED = 646/R SL (mA) where R SL is in kω. Maxim Integrated │  13 MAX5986A–MAX5986C/ MAX5987A Sleep and Ultra-Low Power Modes (MAX5986A–MAX5986C) The MAX5986A–MAX5986C feature a sleep mode and an ultra-low power mode in which the internal p-channel isolation MOSFET is kept on and the buck regulator is off. In sleep mode, the LED driver output (LED) pulse width of the MAX5986B/MAX5986C modulates the LED current with a 25% duty cycle, while the MAX5986A does 100% only. The peak LED current (ILED) is set by an external resistor R SL. To enable sleep mode, apply a falling edge to SL with ULP disconnected or high impedance. Sleep mode can only be entered from wake mode. Ultra-low power mode allows the devices to reduce power consumption lower than sleep mode, while maintaining the power signature of the IEEE standard. The ultra-low power-mode enable input ULP is internally held high with a 50kω pullup resistor to the internal 5V bias of the device. To enable ultra-low power mode, apply a falling edge to SL with ULP = LOW. Ultra-low power mode can only be entered from wake mode. To exit from sleep mode or ultra-low power mode and resume normal operation, apply a falling edge on the wake-mode enable input (WK). Thermal-Shutdown Protection If the devices’ die temperature reaches 151°C, an overtemperature fault is generated and the device shuts down. The die temperature must cool down below +135°C to remove the overtemperature fault condition. After a thermal shutdown condition clears, the device is reset. WAD Description For applications where an auxiliary power source such as a wall power adapter is used to power the PD, the devices feature wall power adapter detection. The wall power adapter is connected from WAD to PGND. The devices detect the wall power adapter when the voltage from WAD to PGND is greater than 8.8V. When a wall power adapter is detected, the internal isolation MOSFET is turned off, classification current is disabled. Connect the auxiliar power source to WAD, connect a diode from WAD to VDD, and connect a diode from WAD to VCC. See the typical application circuit in Figure 2. www.maximintegrated.com IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter The application circuit must ensure that the auxiliary power source can provide power to VDD and VCC by means of external diodes. The voltage on VDD must be within the VDD voltage range to allow the DC-DC to operate. To allow operation of the DC-DC converter, the VDD and VCC voltage must be greater than 8V on the rising edge, while on the falling edge the VDD and VCC may fall down to 7.3V, keeping the DC-DC converter on. Note: When operating solely with a wall power adapter, the WAD voltage must be able to meet the condition VDD > 8V, that likely results in WAD > 8.8V. Internal Linear Regulator and Back Bias An internal voltage regulator provides VDRV to internal circuitry. The VDRV output is filtered by a 1µF capacitor connected from VDRV to GND. The regulator is for internal use only and cannot be used to provide power to external circuits. VDRV can be powered by either VDD or VAUX, depending on VAUX. The internal regulator is used for both PD and buck converter operations. VOUT can be used to back bias the VDRV voltage regulator if VOUT is greater than 4.75V. Back biasing VDRV increases device efficiency by drawing current from VOUT instead of VDD. If VOUT is used as back bias, connect AUX directly to VOUT. In this configuration, the VDRV source switches from VDD to VAUX after the buck converter’s output has reached its regulation voltage. Cable Discharge Event Protection (CDE) A 70V voltage clamp is integrated to protect the internal circuits from a cable discharge event. DC-DC Buck Converter The DC-DC buck converter uses a PWM, peak current-mode, fixed-frequency control scheme providing an easy-to-implement architecture without sacrificing a fast transient response. The buck converter operates in a wide input voltage range from 8V to 60V and supports up to 6.49W of input power. The devices provide a wide array of protection features including UVLO, overtemperature shutdown, short-circuit protection with hiccup runaway current limit, cycle-bycycle peak current protection, and cycle-by-cycle output overvoltage protection, for enhanced performance and reliability. A frequency foldback scheme is implemented to reduce the switching frequency to half at light loads to increase the efficiency. Maxim Integrated │  14 MAX5986A–MAX5986C/ MAX5987A Frequency Foldback Protection for High-Efficiency Light-Load Operation The devices enter frequency foldback mode when eight consecutive inductor current zero-crossings occur. The switching frequency is 215kHz or 430kHz under loads large enough that the inductor current does not cross zero. In frequency foldback mode, the switching frequency is reduced to 107.5kHz or 215kHz to increase power conversion efficiency. The device returns to normal mode when the inductor current does not cross zero for eight consecutive switching periods. Frequency foldback mode is forced during startup until 50% of the soft-start is completed. Hiccup Mode The devices include a hiccup protection feature. When hiccup protection is triggered, the devices turn off the high-side and turn on the low-side MOSFET until the inductor current reaches the valley current limit. The control logic waits 154ms (77ms for the MAX5986C) until attempting a new soft-start sequence. Hiccup mode is triggered if the current in the high-side MOSFET exceeds the runaway current-limit threshold, both during soft-start and during normal operating mode. Hiccup mode can also be triggered in normal operating mode in the case of an output undervoltage event. This happens if the regulated feedback voltage drops below 60% (typ). RESET Output (MAX5987A) The MAX5987A features an open-drain RESET output that indicates if either the LDO or the switching regulator drop out of regulation. The RESET output goes low if either regulator drops below 92% of its regulated feedback value. RESET goes high impedance 100µs after both regulators are above 95% of their value. Maintain Power Signature (MPS) The devices feature the MPS to comply to the IEEE 802.3af standard. They are able to maintain a minimum current (10mA) of the port to avoid the power disconnection from the PSE. The devices enter the MPS when the port current is lower than 14mA and also exit the MPS mode when the port current is geater than 40mA. The feature is enabled by connecting the MPS pin to VDRV, or disagbled by connecting the MPS pin to GND. IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Applications Information Operation with Wall Adapter For applications where an auxiliary power source, such as a wall power adapter, is used to power the PD, the devices feature wall power adapter detection. The device gives priority to the WAD supply over VDD supply, and smoothly switches the power supply to WAD when it is detected. The wall power adapter is connected from WAD to PGND. The devices detect the wall power adapter when the voltage from WAD to PGND is greater than 8.8V. When a wall power adapter is detected, the internal isolation MOSFET is turned off, classification current is disabled and the device draws power from the auxiliary power source through VCC. Connect the auxiliary power source to WAD, connect a diode from WAD to VCC. See the typical application circuit in Figure 2. Adjusting LDO Output Voltage (MAX5987A) An uncommitted LDO regulator is available to provide a supply voltage to external circuits. A preset voltage of 3.3V is set by connecting LDO_FB directly to VDRV. For different output voltages connect a resistor divider from LDO_OUT and LDO_FB to GND. The total feedback resistance should be in the range of 100kω. The maximum output current is 85mA and thermal considerations must be taken to prevent triggering thermal shutdown. The LDO regulator can be powered by VOUT, a different power supply, or grounded when not used. The LDO is enabled once the buck converter has reached the regulation voltage. The LDO is disabled when the buck converter is turned off or not regulating. Adjusting Buck Converter Output Voltage The buck converter output voltage is set by changing the feedback resistor-divider ratio. The output voltage can be set from 3.0V to 5.6V (MAX5986A/MAX5987A) or 5.4V to 14V (MAX5986B/MAX5986C). The FB voltage is regulated to 1.225V. Keep the trace from the FB pin to the center of the resistive divider short, and keep the total feedback resistance around 100kω. RSL is required in MPS mode www.maximintegrated.com Maxim Integrated │  15 MAX5986A–MAX5986C/ MAX5987A Inductor Selection Choose an inductor with the following equation: where LIR is the ratio of the inductor ripple current to full load current at the minimum duty cycle. Choose LIR between 20% to 40% for best performance and stability. Use an inductor with the lowest possible DC resistance that fits in the allotted dimensions. Powdered iron ferrite core types are often the best choice for performance. With any core material, the core must be large enough not to saturate at the current limit of the devices. IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter These affect the overall stability, output ripple voltage, and transient response of the DC-DC converter. The output ripple occurs due to variations in the charge stored in the output capacitor, the voltage drop due to the capacitor’s ESR, and the voltage drop due to the capacitor’s ESL. Estimate the output-voltage ripple due to the output capacitance, ESR, and ESL: VRIPPLE = VRIPPLE(C) + VRIPPLE(ESR) +VRIPPLE(ESL) where the output ripple due to output capacitance, ESR, and ESL is: VCC Input Capacitor Selection The input capacitor reduces the current peaks drawn from the input power supply and reduces switching noise in the IC. The total input capacitance must be equal or greater than the value given by the following equation to keep the input-ripple voltage within specification and minimize the high-frequency ripple current being fed back to the input source: where VIN-RIPPLE is the maximum allowed input ripple voltage across the input capacitors and is recommended to be less than 2% of the minimum input voltage. D is the duty cycle (VOUT/VIN) and TS is the switching period (1/ fS). The impedance of the input capacitor at the switching frequency should be less than that of the input source so high-frequency switching currents do not pass through the input source, but are instead shunted through the input capacitor. The input capacitor must meet the ripple current requirement imposed by the switching currents. The RMS input ripple current is given by: where IRIPPLE is the input RMS ripple current. Output Capacitor Selection The key selection parameters for the output capacitor are capacitance, ESR, ESL, and voltage-rating requirements. www.maximintegrated.com or whichever is larger. The peak-to-peak inductor current (IP-P) Use these equations for initial output capacitor selection. Determine final values by testing a prototype or an evaluation circuit. A smaller ripple current results in less output-voltage ripple. Since the inductor ripple current is a factor of the inductor value, the output-voltage ripple decreases with larger inductance. Use ceramic capacitors for low ESR and low ESL at the switching frequency of the converter. The ripple voltage due to ESL is negligible when using ceramic capacitors. Load-transient response depends on the selected output capacitance. During a load transient, the output instantly changes by ESR x ILOAD. Before the controller can respond, the output deviates further, depending on the inductor and output capacitor values. After a short time, the controller responds by regulating the output voltage back to its predetermined value. The controller response time depends on the closed-loop bandwidth. A higher bandwidth yields a faster response time, preventing the output from deviating further from its regulating value. Maxim Integrated │  16 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Table 1. Design Selection Table OUTPUT CIN COUT L CLASS 33FH/1.4A 1 3x22FF/6.3V 47FH/1.6A 1 or 2 2x10FF/16V 220F/0.8A* 1 or 2 CERAMIC ELECTROLYTIC CERAMIC 2.2FF/100V 10FF/63V 3x22FF/6.3V 5V 2.2FF/100V 10FF/63V 12V 2.2FF/100V 10FF/63V 3.3V *100μH/0.8A is recommendedfor with the MAX5986C. PCB Layout Careful PCB layout is critical to achieve clean and stable operation. It is highly recommended to duplicate the MAX5986A EV kit layout for optimum performance. If deviation is necessary, follow these guidelines for good PCB layout: 1) Connect input and output capacitors to the power ground plane; connect all other capacitors to the signal ground plane. 2) Place capacitors on VDD, VCC, AUX, VDRV as close as possible to the IC and its corresponding pin using direct traces. Keep power ground plane (connected to PGND) and signal ground plane (connected to GND) separate. 3) Keep the high-current paths as short and wide as possible. Keep the path of switching current short and minimize the loop area formed by LX, the output capacitors, and the input capacitors. www.maximintegrated.com 4) Connect VDD, VCC, and PGND separately to a large copper area to help cool the IC to further improve efficiency and long-term reliability. 5) Ensure all feedback connections are short and direct. Place the feedback resistors and compensation components as close as possible to the IC. 6) Route high-speed switching nodes, such as LX, away from sensitive analog areas (FB). 7) Place enough vias in the pad for the EP of the MAX5986A–MAX5986C/MAX5987A so that heat generated inside can be effectively dissipated by the PCB copper. The recommended spacing for the vias is 1mm to 1.2mm pitch. The thermal vias should be plated (1oz copper) and have a small barrel diameter (0.3mm to 0.33mm). Maxim Integrated │  17 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Typical Application Circuits RJ-45 AND BRIDGE RECTIFIER C1 68nF C2 10µF 1µF VDD VCC C3 1µF AUX VDRV L0 47µH CLASS2 MPS LX WK TO µP OPEN-DRAIN OUTPUTS OR PULLDOWN SWITCHES WAD R1 75kI MAX5986A ULP 5V OUTPUT C4 47µF FB SL R2 24.9kI RSL 60.4kI LED RREF RSIG 24.9kI GND PGND 0I Figure 3. MAX5986A 5V Output with Back Bias www.maximintegrated.com Maxim Integrated │  18 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Typical Application Circuits (continued) RJ-45 AND BRIDGE RECTIFIER C1 68nF C2 10µF 1µF VDD VCC WAD AUX VDRV C3 1µF L0 220µH* CLASS2 LX MPS WK TO µP OPEN-DRAIN OUTPUTS OR PULLDOWN SWITCHES MAX5986B MAX5986C ULP R1 215kI 12V OUTPUT C4 10µF FB SL R2 24.9kI RSL 60.4kI LED RREF RSIG 24.9kI GND PGND 0I *USE 110µH FOR MAX5986C Figure 4. MAX5986B/MAX5986C 12V Output with Back Bias www.maximintegrated.com Maxim Integrated │  19 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Typical Application Circuits (continued) RJ-45 AND BRIDGE RECTIFIER C1 68nF C2 10µF 1µF LDO_FB VDD VCC WAD AUX VDRV C3 1µF L0 47µH CLASS2 LX 5V OUTPUT MPS C5 1µF R1 75kI MAX5987A LDO_IN TO 5V OUTPUT LDO_OUT C4 47µF FB C6 1µF R2 24.9kI LED RREF RSIG 24.9kI GND PGND 0 Figure 5. MAX5987A 5V Buck Regulator Output and 3.3V LDO Output www.maximintegrated.com Maxim Integrated │  20 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Functional Diagram MAX5986A MAX5986B MAX5986C MAX5987A VDD VCC 5V TVS HOT-SWAP CONTROLLER DETECTION CLASSIFICATION GND 5V RREF WAD PD VOLTAGE MONITOR AUX 5V 5V 1.5V 5V REGULATOR VDRV 1 5V 0 CLK BANDGAP CONTROL LX DRIVER VREF LDO_IN VREF LDO_OUT LDO (MAX5987A ONLY) PGND FB LDO_FB (MAX5987A ONLY) OPEN-DRAIN VDD CLASS2 RESET 5V VDD 50kI CLASS 50kI WK MPS MPS LOGIC SL ULP LED (MAX5986A/B/C ONLY) www.maximintegrated.com Maxim Integrated │  21 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Ordering Information PART PIN-PACKAGE SLEEP/ULP MODE LED CURRENT DUTY CYCLE LDO UVLO (V) RESET fSW (kHz) MAX5986AETE+ 16 TQFN-EP* Yes 100% No 35.7 No 215 MAX5986BETE+ 16 TQFN-EP* Yes 25% No 35.7 No 215 MAX5986CETE+ 16 TQFN-EP* Yes 25% No 35.7 No 430 MAX5987AETE+ 16 TQFN-EP* No n/a Yes 38.7 Yes 215 +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. Chip Information PROCESS: BiCMOS www.maximintegrated.com Package Information For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 16 TQFN-EP T1655-4 21-0140 90-0121 Maxim Integrated │  22 MAX5986A–MAX5986C/ MAX5987A IEEE 802.3af-Compliant, High-Efficiency, Class 1/Class 2, PDs with Integrated DC-DC Converter Revision History REVISION NUMBER REVISION DATE PAGES CHANGED 0 4/12 Initial release 1 12/12 Added MAX5986B and MPS and CLASS2 features 2 4/13 Corrected error in Pin Configurations and replaced TOC12 3 1/14 Added MAX5986C 1–23 4 12/14 Changed fSW of MAX5986A to 215kHz and changed LED current of MAX5986A 1–23 5 1/15 Updated Benefits and Features section 6 11/16 Updated Electrical Characteristics table 5 7 11/18 Updated Maintain Power Signature (MPS) 15 DESCRIPTION — 1–20 10, 11 1 For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. ©  2018 Maxim Integrated Products, Inc. │  23
MAX5986EVKIT# 价格&库存

很抱歉,暂时无法提供与“MAX5986EVKIT#”相匹配的价格&库存,您可以联系我们找货

免费人工找货