0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX9888EVKIT+

MAX9888EVKIT+

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    MAX9888 DirectDrive®, FLEXSOUND™ 3-Channel with Stereo Headphones Output Class D Audio Amplifier Eva...

  • 数据手册
  • 价格&库存
MAX9888EVKIT+ 数据手册
19-5235; Rev 1; 2/11 Stereo Audio CODEC with FlexSound Technology Features S 100dB DR Stereo DAC (8kHz < fS < 96kHz) S 91dB DR Stereo ADC (8kHz < fS < 96kHz) S Stereo Low EMI Class D Amplifiers 950mW/Channel (8I, VSPKVDD_ = 4.2V) S Stereo DirectDrive Headphone Amplifiers S Differential Receiver Amplifier S 2 Stereo Single-Ended/Mono Differential Line Inputs S 3 Differential Microphone Inputs S FlexSound Technology 5-Band Parametric EQ Automatic Level Control (ALC) Excursion Limiter Speaker Power Limiter Speaker Distortion Limiter Microphone Automatic Gain Control and Noise Gate S Dual I2S/PCM/TDM Digital Audio Interfaces S Asynchronous Digital Mixing S Supports Master Clock Frequencies from 10MHz to 60MHz S RF Immune Analog Inputs and Outputs S Extensive Click-and-Pop Reduction Circuitry S I2C Control Interface S 63 WLP Package (3.80mm x 3.30mm, 0.4mm Pitch) The MAX9888 is a full-featured audio CODEC whose high performance and low power consumption make it ideal for portable applications. Class D speaker amplifiers provide efficient amplification for two speakers. Low radiated emissions enable completely filterless operation. Integrated bypass switches optionally connect an external amplifier to the transducer when the Class D amplifiers are disabled. DirectDrive® headphone amplifiers provide a true ground-referenced output, eliminating the need for large DC-blocking capacitors. 1.8V headphone operation ensures low power consumption. The device also includes a differential receiver amplifier. Three differential analog microphone inputs are available as well as support for two PDM digital microphones. Integrated switches allow microphone signals to be routed out to external devices. Two flexible single-ended or differential line inputs may be connected to an FM radio or other sources. Integrated FlexSoundK technology improves loudspeaker performance by optimizing the signal level and frequency response while limiting the maximum distortion and power at the output to prevent speaker damage. Automatic gain control (AGC) and a noise gate optimize the signal level of microphone input signals to make best use of the ADC dynamic range. Ordering Information The device is fully specified over the -40NC to +85NC extended temperature range. PART TEMP RANGE PIN-PACKAGE MAX9888EWY+ 63 WLP -40NC to +85NC +Denotes lead(Pb)-free/RoHS-compliant package. DirectDrive is a registered trademark and FlexSound is a trademark of Maxim Integrated Products, Inc. Simplified Block Diagram I2C I2S/PCM I2S/PCM CONTROL DIGITAL AUDIO INTERFACE DIGITAL AUDIO INTERFACE RECEIVER AMP DIGITAL MICROPHONE INPUT ADC MIX LINEIN A1 ADC LINEIN A2 + LINEIN B1 SPEAKER AMP FlexSound TECHNOLOGY • 5-BAND PARAMETRIC EQ • AUTOMATIC LEVEL CONTROL • LOUDSPEAKER PROCESSING • EXCURSION LIMITER • THD LIMITER • POWER LIMITER • MICROPHONE PROCESSING • AUTOMATIC GAIN CONTROL • NOISE GATE • ASYNCHRONOUS DIGITAL MIXING DAC SPEAKER AMP MIX DAC HEADPHONE AMP MAX9888 HEADPHONE AMP LINEIN B2 + ________________________________________________________________ Maxim Integrated Products   1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX9888 General Description MAX9888 Stereo Audio CODEC with FlexSound Technology TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Digital Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Input Clock Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Audio Interface Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Digital Microphone Timing Characterstics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 I2C Timing Characterstics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Microphone to ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Line to ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Digital Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Analog Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 DAC to Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Line to Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 DAC to Speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Line to Speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 DAC to Headphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Line to Headphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Speaker Bypass Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 I2C Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Microphone Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Line Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 ADC Input Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Record Path Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Microphone AGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Noise Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2 Stereo Audio CODEC with FlexSound Technology ADC Record Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Sidetone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Digital Audio Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Clock Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Passband Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Playback Path Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Automatic Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Parametric Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Playback Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 DAC Input Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Preoutput Signal Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Preoutput Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Preoutput PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Receiver Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Receiver Output Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Receiver Output Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Speaker Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Speaker Output Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Speaker Output Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Speaker Amplifier Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Excursion Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Power Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Distortion Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Headphone Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Headphone Output Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Headphone Output Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Output Bypass Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Click-and-Pop Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Jack Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Jack Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Accessory Button Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Jack Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3 MAX9888 TABLE OF CONTENTS (continued) MAX9888 Stereo Audio CODEC with FlexSound Technology TABLE OF CONTENTS (continued) Battery Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Device Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Device Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 I2C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Early STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Write Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Read Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Typical Operating Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Analog Microphones and Bypass Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Digital Microphones and Receiver Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Filterless Class D Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 RF Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Startup/Shutdown Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Optional Ferrite Bead Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Input Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Charge-Pump Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Charge-Pump Flying Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Charge-Pump Holding Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Recommended PCB Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Supply Bypassing, Layout, and Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 WLP Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4 C8 INB2 D8 INB1 D9 INA2/EXTMICN E9 INA1/EXTMICP G9 MIC2N F9 MIC2P MIC2BYP MIC1N/ F8 DIGMICCLK MIC1P/ E8 DIGMICDATA G8 MICBIAS D6 JACKSNS INABYP MBEN JDETEN JACK DETECTION I2C REG EXTMIC EXTMIC + + PA2EN: 0/20/30dB PGAINB: +20dB TO -6dB INBDIFF PGAINB: +20dB TO -6dB PGAINA: +20dB TO -6dB INADIFF PGAINA: +20dB TO -6dB PGAM2: +20dB TO 0dB PA1EN: 0/20/30dB PGAM1: +20dB TO 0dB PSCLK CLOCK CONTROL E2 D1 MIXOUT3 MIX MIXOUT2 MIX MIXOUT1 MIX MIXADR MIX MIXADL MIX MAS1 DAI1 SEL1 ADREN ADCR ADCL ADLEN BCLKS1 D2 E4 LBEN2 MIX MUX AVRG: 0/6/12/18dB AVR: 3dB TO -2dB PREOUT3 PGAOUT3: 0dB TO -23dB PREOUT2 PGAOUT2: 0dB TO -23dB LTEN1 DATA INPUT F2 + + PORT S2 EQ2EN DV1: 0dB TO -15dB G3 HIZOFF2 SDINS2 MODE1 DVFLT AUDIO/ VOICE FILTERS DCB2 AUDIO/ FILTERS FlexSound TECHNOLOGY DATA OUTPUT MAS2 DVEQ2: 0dB TO -15dB LBEN1 DV2: 0dB TO -15dB EXCURSION LIMITER G1 SDOUTS2 FRAME CLOCK LRCLK2 5-BAND PARAMETRIC EQ DVEQ1: 0dB TO -15dB MULTI BAND ALC EQ1EN F3 LRCLKS2 BIT CLOCK BCLK2 DV1G: 0/6/12/18dB MAS2 DAI2 SEL2 5-BAND PARAMETRIC EQ DVST: 0dB TO -60dB MODE1 AVFLT AUDIO/ VOICE FILTERS E1 DVDDS1 BCLKS2 HIZOFF1 DATA OUTPUT AVLG: 0/6/12/18dB AVL: 3dB TO -12dB PREOUT1 D4 SDINS1 NOISE GATE DSTS SIDETONE SDOUT1 MAS1 PORT S1 SDOUTS1 FRAME CLOCK PGAOUT1: 0dB TO -23dB BIT CLOCK LRCLK1 AUTOMATIC GAIN CONTROL LRCLKS1 BCLK1 MCLK SDIN1 E5 SDOUT2 F5 MIXDAR MIX MIXDAL MIX DATA INPUT +9dB +9dB +9dB DAREN DACR DALEN DACL G4 DVDD G2 DVDDS2 SDIN2 F4 G5 MIX SPVOLL: +8dB TO -62dB RECVOL: +8dB TO -62dB AGND G7 DGND F1 MIX MIXHPR MIX MIXHPL RECEN 0dB B8 HPVSS C1N B7 C1P HPVOLR: +3dB TO -67dB HPVOLL: +3dB TO -67dB CHARGE PUMP HPREN HPLEN SPREN +6dB A9 SPKBYP RECBYP BIAS POWER/ DISTORTION LIMITER SPLEN +6dB BATTERY ADC MAX9888 MIXSPR SPVOLR: +8dB TO -62dB MIX MIXSPL MIX MIXREC AVDD F6 HPGND HPVDD HPR HPSNS HPL SPKRGND SPKRN SPKRP SPKRVDD SPKLGND SPKLN SPKLP SPKLVDD RECN/ RXINN A8 A7 C9 C6 B9 A2, B2 A1, B1 C1, C2 C3, D3 C4, C5 A5, B5 A4, B4 A3, B3 B6 A6 G6 REG RECP/ RXINP F7 REF PREG Functional Diagram 5 MAX9888 SDA SCL IRQ Stereo Audio CODEC with FlexSound Technology MAX9888 Stereo Audio CODEC with FlexSound Technology ABSOLUTE MAXIMUM RATINGS REG, INA1, INA2, INB1, INB2, MIC1P/DIGMICDATA, MIC1N/DIGMICCLK, MIC2P, MIC2N................-0.3V to +2.2V HPSNS................................ (HPGND - 0.3V) to (HPGND + 0.3V) HPL, HPR............................. (HPVSS - 0.3V) to (HPVDD + 0.3V) RECP, RECN...............(SPKLGND - 0.3V) to (SPKLVDD + 0.3V) SPKLP, SPKLN............(SPKLGND - 0.3V) to (SPKLVDD + 0.3V) SPKRP, SPKRN..........(SPKRGND - 0.3V) to (SPKRVDD + 0.3V) Continuous Power Dissipation (TA = +70NC) 63-Bump WLP (derate 25.6mW/NC above +70NC).........2.05W Operating Temperature Range........................... -40NC to +85NC Storage Temperature Range............................. -65NC to +150NC Soldering Temperature (reflow).......................................+260NC (Voltages with respect to AGND.) DVDD, AVDD, HPVDD..........................................-0.3V to +2.2V SPKLVDD, SPKRVDD, DVDDS1, DVDDS2...........-0.3V to +6.0V DGND, HPGND, SPKLGND, SPKRGND...............-0.1V to +0.1V HPVSS................................ (HPGND - 2.2V) to (HPGND + 0.3V) C1N..................................... (HPVSS - 0.3V) to (HPGND + 0.3V) C1P......................................(HPGND - 0.3V) to (HPVDD + 0.3V) PREG...................................................... -0.3V to (AVDD + 0.3V) REF, MICBIAS.................................. -0.3V to (SPKLVDD + 0.3V) MCLK, SDINS1, SDINS2, JACKSNS, SDA, SCL, IRQ..................................................-0.3V to +6.0V LRCLKS1, BCLKS1, SDOUTS1.......... -0.3V to (DVDDS1 + 0.3V) LRCLKS2, BCLKS2, SDOUTS2.......... -0.3V to (DVDDS2 + 0.3V) Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = J, RREC = J, ZSPK = J, CREF = 2.2FF, CMICBIAS = CPREG = CREG = 1FF, CC1N-C1P = 1FF, CHPVSS = 1FF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25NC.) (Note 1) PARAMETER POWER SUPPLY SYMBOL Supply Voltage Range CONDITIONS Guaranteed by PSRR Full-duplex 8kHz mono, receiver output (Note 3) VSPKLVDD, VSPKRVDD 2.8 VDVDD, VAVDD, VHPVDD 1.65 VDVDDS1, VDVDDS2 1.65 6 1.8 2.0 V 3.6 10 1.98 3.5 Digital 1.49 3 2.71 4 1.65 2.5 2.93 4.5 1.85 3 8.22 18 2.94 5 12.75 18 1.7 3 3.75 5.5 Analog 5.11 7 Speaker 0.58 1 Digital 0.03 0.06 Analog Full-duplex 48kHz stereo, microphone inputs, Speaker headphone outputs (Note 3) Digital UNITS 5.5 6.37 DAC playback 48kHz stereo, Speaker speaker outputs (Note 3) Digital Stereo line playback, IN_DIF = 0, INA1 to HPL, INA2 to HPR, VMCLK = 0V MAX Analog Analog IVDD TYP Speaker Analog DAC playback 48kHz stereo, Speaker headphone outputs (Note 3) Digital Total Supply Current (Note 2) MIN mA Stereo Audio CODEC with FlexSound Technology (VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = J, RREC = J, ZSPK = J, CREF = 2.2FF, CMICBIAS = CPREG = CREG = 1FF, CC1N-C1P = 1FF, CHPVSS = 1FF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25NC.) (Note 1) PARAMETER SYMBOL Shutdown Supply Current (Note 2) CONDITIONS TA = +25NC MIN TYP MAX Analog 0.2 2 Speaker 0.1 1 1 5 Digital REF Voltage UNITS FA 2.5 V PREG Voltage 1.6 V REG Voltage 0.7 V Shutdown to Full Operation SLEW = 0 30 SLEW = 1 17 ms MICROPHONE TO ADC PATH Dynamic Range (Note 4) Total Harmonic Distortion + Noise Common-Mode Rejection Ratio DR THD+N CMRR fS = 8kHz, MODE = 0 (IIR voice), AVMICPRE_ = 0dB Path Phase Delay PSRR 88 VIN = 0.1VP-P, MCLK = 12.288MHz, fS = 8kHz, f = 1kHz -77 AVMICPRE_ = 0dB, VIN = 1VP-P, f = 1kHz -82 AVMICPRE_ = +30dB, VIN = 32mVP-P, f = 1kHz -71 VIN = 100mVP-P, f = 217Hz 65 VAVDD = 1.65V to 2.0V, input referred, MIC inputs floating Power-Supply Rejection Ratio 75 60 -65 dB dB 100 f = 217Hz, VRIPPLE = 100mVP-P, AVADC = 0dB, input referred 100 f = 1kHz, VRIPPLE = 100mVP-P, AVADC = 0dB, input referred 91 f = 10kHz, VRIPPLE = 100mVP-P, AVADC = 0dB, input referred 70 1kHz, 0dB input, highpass filter disabled measured from analog input to digital output dB dB MODE = 0 (IIR voice) 8kHz 2.2 MODE = 0 (IIR voice) 16kHz 1.1 MODE = 1 (FIR audio) 8kHz 4.5 MODE = 1 (FIR audio) 48kHz 0.76 ms 7 MAX9888 ELECTRICAL CHARACTERISTICS (continued) MAX9888 Stereo Audio CODEC with FlexSound Technology ELECTRICAL CHARACTERISTICS (continued) (VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = J, RREC = J, ZSPK = J, CREF = 2.2FF, CMICBIAS = CPREG = CREG = 1FF, CC1N-C1P = 1FF, CHPVSS = 1FF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25NC.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS MICROPHONE PREAMP AVMICPRE_ = 0dB Full-Scale Input 1.05 PA1EN/PA2EN = 01 Preamplifier Gain PGA Gain MIC Input Resistance AVMICPRE_ (Note 5) AVMICPGA_ (Note 5) RIN_MIC VP-P 0 PA1EN/PA2EN = 10 19.5 20 20.5 PA1EN/PA2EN = 11 29.4 30 30.5 PGAM1/PGAM2 = 0x00 19.5 20 20.5 PGAM1/PGAM2 = 0x14 All gain settings, measured at MIC1P/MIC1N/ MIC2P/MIC2N 0 30 50 2.14 dB dB kI MICROPHONE BIAS 2.2 2.25 V Load Regulation ILOAD = 1mA to 2mA 0.5 11 mV Line Regulation VSPKLVDD = 2.8V to 5.5V 100 f = 217Hz, VRIPPLE (SPKLVDD) = 100mVP-P 92 f = 10kHz, VRIPPLE (SPKLVDD) = 100mVP-P 83 A-weighted, f = 20Hz to 20kHz 3.8 P-weighted, f = 20Hz to 4kHz 2.1 f = 1kHz 33 IMIC1_ = 100mA, INABYP = MIC2BYP = 1, VMIC2_ = VINA_ = (0V, VAVDD) 3.5 VIN = 2VP-P, VCM = 0.9V, RL = 10kI, f = 1kHz, INABYP = MIC2BYP = 1 -80 dB Off-Isolation VIN = 2VP-P, VCM = 0.9V, RL = 10kI, f = 1kHz 60 dB Off-Leakage Current VMIC1_ = (0V, VAVDD), VMIC2_/VINA_ = (VAVDD, 0V) MICBIAS Output Voltage VMICBIAS Ripple Rejection Noise Voltage ILOAD = 1mA FV dB FVRMS nV/√Hz MICROPHONE BYPASS SWITCH On-Resistance Total Harmonic Distortion + Noise RON THD+N -2.5 20 +2.5 I FA LINE INPUT TO ADC PATH Dynamic Range (Note 4) Total Harmonic Distortion + Noise Gain Error 8 DR THD+N fS = 48kHz, MCLK = 12.288MHz, MODE = 1 (FIR audio) 91 dB VIN = 1VP-P, f = 1kHz -77 dB DC accuracy 1 5 % Stereo Audio CODEC with FlexSound Technology (VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = J, RREC = J, ZSPK = J, CREF = 2.2FF, CMICBIAS = CPREG = CREG = 1FF, CC1N-C1P = 1FF, CHPVSS = 1FF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25NC.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS LINE INPUT PREAMP Full-Scale Input Level Adjust Gain VIN AVPGAIN_ AVPGAIN_ = 0dB 1 AVPGAIN_ = -6dB 1.4 PGAINA/PGAINB = 0x0 19 20 21 PGAINA/PGAINB = 0x1 13 14 15 2 3 4 PGAINA/PGAINB = 0x2 (Note 5) PGAINA/PGAINB = 0x3 TA = +25NC PGAINA/PGAINB = 0x4 AVPGAIN_ = +20dB -6 -5 21 27.4 20 AVPGAIN_ = +3dB 20 AVPGAIN_ = 0dB 7.3 INAEXT/INBEXT = 1 10 13.7 kI 20 AVPGAIN_ = -6dB RIN_FB -2 -7 AVPGAIN_ = -3dB Feedback Resistance -3 14.6 AVPGAIN_ = +14dB RIN dB 0 -4 PGAINA/PGAINB = 0x5, 0x6, 0x7 Input Resistance VP-P 20 TA = +25NC 18.5 TA = TMIN to TMAX 17.5 20 21.5 23 kI ADC LEVEL CONTROL ADC Level Adjust Range AVADCLVL AVL/AVR = 0xF to 0x0 (Note 5) -12 ADC Level Adjust Step Size ADC Gain Adjust Range +3 1 AVADCGAIN AVLG/AVRG = 00 to 11 (Note 5) 0 ADC Gain Adjust Step Size dB dB 18 6 dB dB ADC DIGITAL FILTERS VOICE MODE IIR LOWPASS FILTER (MODE1 = 0)  Passband Cutoff Stopband Attenuation (Note 6) 0.441 x fs -3dB cutoff 0.449 x fs fPLP Passband Ripple Stopband Cutoff Ripple limit cutoff f < fPLP -0.1 fSLP f > fSLP 74 Hz +0.1 dB 0.47 x fs Hz dB 9 MAX9888 ELECTRICAL CHARACTERISTICS (continued) MAX9888 Stereo Audio CODEC with FlexSound Technology ELECTRICAL CHARACTERISTICS (continued) (VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = J, RREC = J, ZSPK = J, CREF = 2.2FF, CMICBIAS = CPREG = CREG = 1FF, CC1N-C1P = 1FF, CHPVSS = 1FF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25NC.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS VOICE MODE IIR HIGHPASS FILTER (MODE1 = 0) Passband Cutoff (-3dB from Peak) Stopband Cutoff (-30dB from Peak) DC Attenuation fAHPPB fAHPSB DCATTEN AVFLT = 0x1 (elliptical tuned for fs = 16kHz + 217Hz notch) 0.0161 x fs AVFLT = 0x2 (500Hz Butterworth tuned for fs = 16kHz) 0.0319 x fs AVFLT = 0x3 (elliptical tuned for fs = 8kHz + 217Hz notch) 0.0321 x fs AVFLT = 0x4 (500Hz Butterworth tuned for fs = 8kHz) 0.0632 x fs AVFLT = 0x5 (fs/240 Butterworth) 0.0043 x fs AVFLT = 0x1 (elliptical tuned for fs = 16kHz + 217Hz notch) 0.0139 x fs AVFLT = 0x2 (500Hz Butterworth tuned for fs = 16kHz) 0.0156 x fs AVFLT = 0x3 (elliptical tuned for fs = 8kHz + 217Hz notch) 0.0279 x fs AVFLT = 0x4 (500Hz Butterworth tuned for fs = 8kHz) 0.0312 x fs AVFLT = 0x5 (fs/240 Butterworth) 0.002 x fs Hz 90 AVFLT ≠ 000 Hz dB STEREO AUDIO MODE FIR LOWPASS FILTER (MODE1 = 1, DHF1 = 0, LRCLK < 50kHz) Passband Cutoff fPLP Passband Ripple Stopband Cutoff Ripple limit cutoff 0.43 x fs -3dB cutoff 0.48 x fs -6.02dB cutoff 0.5 x fs f < fPLP -0.1 fSLP Stopband Attenuation (Note 6) f < fSLP 60 Hz +0.1 dB 0.58 x fs Hz dB ADC STEREO AUDIO MODE FIR LOWPASS FILTER (MODE1 = 1, DHF1 = 1, LRCLK > 50kHz) Passband Cutoff 10 Ripple limit cutoff 0.208 x fs -3dB cutoff 0.28 x fs fPLP Hz Stereo Audio CODEC with FlexSound Technology (VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = J, RREC = J, ZSPK = J, CREF = 2.2FF, CMICBIAS = CPREG = CREG = 1FF, CC1N-C1P = 1FF, CHPVSS = 1FF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25NC.) (Note 1) PARAMETER SYMBOL Passband Ripple Stopband Cutoff CONDITIONS f < fPLP MIN TYP -0.1 fSLP Stopband Attenuation f < fSLP MAX UNITS +0.1 dB 0.417 x fs Hz 60 dB ADC STEREO AUDIO MODE DC-BLOCKING HIGHPASS FILTER (MODE1 = 1) Passband Cutoff (-3dB from Peak) fAHPPB AVFLT ≠ 000 DC Attenuation DCAtten AVFLT ≠ 000 0.000125 x fs 90 Hz dB MICROPHONE AUTOMATIC GAIN CONTROL AGC Hold Duration AGC Attack Time AGC Release Time AGC Threshold Level AGCHLD = 01 50 AGCHLD = 11 400 AGCATK = 00 2 AGCATK = 11 123 AGCRLS = 000 0.078 AGCRLS = 111 10 AGCTH = 0x0 to 0xF -3 AGC Threshold Step Size ms ms s +18 1 AGC Gain (Note 5) dB dB 0 20 dB -64 -16 dB 0 12 dB ADC NOISE GATE NG Threshold Level ANTH = 0x3 to 0xF, referred to 0dBFS NG Attenuation (Note 5) ADC-TO-DAC DIGITAL SIDETONE (MODE = 0) Sidetone Gain Adjust Range AVSTGA DVST = 0x01 -0.5 DVST = 0x1F -60.5 Sidetone Gain Adjust Step Size dB 2 1kHz, 0dB input, highpass 8kHz filter disabled 16kHz Sidetone Path Phase Delay dB 2.2 ms 1.1 ADC-TO-DAC DIGITAL LOOP-THROUGH PATH Dynamic Range (Note 4) DR Total Harmonic Distortion THD fS = 48kHz, MCLK = 12.288MHz, MODE = 1 (FIR audio) 89 f = 1kHz, fS = 48kHz, MCLK = 12.288MHz, MODE = 1 (FIR audio) -71 dB -66 dB 0 dB DAC LEVEL CONTROL DAC Attenuation Range AVDACATTN DV1DV2 = 0xF to 0x0 (Note 5) -15 1 DAC Attenuation Step Size DAC Gain Adjust Range DAC Gain Adjust Step Size AVDACGAIN DV1G = 00 to 11 (Note 5) 0 dB 18 6 dB dB 11 MAX9888 ELECTRICAL CHARACTERISTICS (continued) MAX9888 Stereo Audio CODEC with FlexSound Technology ELECTRICAL CHARACTERISTICS (continued) (VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = J, RREC = J, ZSPK = J, CREF = 2.2FF, CMICBIAS = CPREG = CREG = 1FF, CC1N-C1P = 1FF, CHPVSS = 1FF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25NC.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DAC DIGITAL FILTERS VOICE MODE IIR LOWPASS FILTER (MODE1 = 0) Passband Cutoff 0.448 x fs -3dB cutoff 0.451 x fs fPLP Passband Ripple Stopband Cutoff Ripple limit cutoff f < fPLP Hz -0.1 fSLP Stopband Attenuation (Note 6) f > fSLP +0.1 dB 0.476 x fs Hz 75 dB VOICE MODE IIR HIGHPASS FILTER (MODE1 = 0) Passband Cutoff (-3dB from Peak) Stopband Cutoff (-30dB from Peak) DC Attenuation 12 fDHPPB fDHPSB DCATTEN DVFLT = 0x1 (elliptical tuned for fs = 16kHz + 217Hz notch) 0.0161 x fs DVFLT = 0x2 (500Hz Butterworth tuned for fs = 16kHz) 0.0312 x fs DVFLT = 0x3 (elliptical tuned for fs = 8kHz + 217Hz notch) 0.0321 x fs DVFLT = 0x4 (500Hz Butterworth tuned for fs = 8kHz) 0.0625 x fs DVFLT = 0x5 (fs/240 Butterworth) 0.0042 x fs DVFLT = 0x1 (elliptical tuned for fs = 16kHz + 217Hz notch) 0.0139 x fs DVFLT = 0x2 (500Hz Butterworth tuned for fs = 16kHz) 0.0156 x fs DVFLT = 0x3 (elliptical tuned for fs = 8kHz + 217Hz notch) 0.0279 x fs DVFLT = 0x4 (500Hz Butterworth tuned for fs = 8kHz) 0.0312 x fs DVFLT = 0x5 (fs/240 Butterworth) 0.002 x fs DVFLT ≠ 000 Hz Hz 85 dB Stereo Audio CODEC with FlexSound Technology (VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = J, RREC = J, ZSPK = J, CREF = 2.2FF, CMICBIAS = CPREG = CREG = 1FF, CC1N-C1P = 1FF, CHPVSS = 1FF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25NC.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS STEREO AUDIO MODE FIR LOWPASS FILTER (MODE1 = 1, DHF1/DHF2 = 0, LRCLK < 50kHz) Passband Cutoff fPLP Passband Ripple Stopband Cutoff Ripple limit cutoff 0.43 x fs -3dB cutoff 0.47 x fs -6.02dB cutoff 0.5 x fs f < fPLP -0.1 Hz fSLP Stopband Attenuation (Note 6) f > fSLP +0.1 dB 0.58 x fs Hz 60 dB STEREO AUDIO MODE FIR LOWPASS FILTER (MODE1 = 1, DHF1/DHF2 = 1 for LRCLK > 50kHz) Passband Cutoff 0.24 x fs -3dB cutoff 0.31 x fs f < fPLP -0.1 fPLP Passband Ripple Stopband Cutoff Ripple limit cutoff Hz fSLP Stopband Attenuation (Note 6) f < fSLP +0.1 dB 0.477 x fs Hz 60 dB STEREO AUDIO MODE DC-BLOCKING HIGHPASS FILTER Passband Cutoff (-3dB from Peak) 0.000104 x fs Hz fDHPPB DVFLT ≠ 000 (DAI1), DCB2 = 1 (DAI2) DCATTEN DVFLT ≠ 000 (DAI1), DCB2 = 1 (DAI2) 90 dB Dual Band Lowpass Corner Frequency ALCMB = 1 5 kHz Dual Band Highpass Corner Frequency ALCMB = 1 5 kHz DC Attenuation AUTOMATIC LEVEL CONTROL Gain Range Low Signal Threshold Release Time ALCTH = 111 to 001 0 12 dB -48 -12 dBFS ALCRLS = 101 0.25 ALCRLS = 000 8 s PARAMETRIC EQUALIZER Number of Bands 5 Per Band Gain Range Preattenuator Gain Range Preattenuator Step Size -12 (Note 5) -15 1 Bands +12 dB 0 dB dB 13 MAX9888 ELECTRICAL CHARACTERISTICS (continued) MAX9888 Stereo Audio CODEC with FlexSound Technology ELECTRICAL CHARACTERISTICS (continued) (VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = J, RREC = J, ZSPK = J, CREF = 2.2FF, CMICBIAS = CPREG = CREG = 1FF, CC1N-C1P = 1FF, CHPVSS = 1FF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25NC.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DAC-TO-RECEIVER AMPLIFIER PATH Dynamic Range (Note 4) Total Harmonic Distortion + Noise Click and Pop Level DR THD+N KCP fS = 48kHz, MCLK = 12.288MHz, f = 1kHz 96 f = 1kHz, POUT = 25mW, RREC = 32I -70 Peak voltage, A-weighted, 32 samples per second, AVREC = 0dB Into shutdown -70 Out of shutdown -73 dB -63 dB dBV PREOUTPUT MIXERS Level Adjust Gain AVPGAOUT_ (Note 5) PGAOUTA/PGAOUTB/ PGAOUTC = 0x0 PGAOUTA/PGAOUTB/ PGAOUTC = 0xC 0 dB -25 Level Adjust Step Size Mute Attenuation f = 1kHz -23.4 -22 2 dB 85 dB 92 dB -70 dB LINE INPUT-TO-RECEIVER AMPLIFIER PATH Dynamic Range (Note 4) Total Harmonic Distortion + Noise DR Referenced to full-scale output level THD+N VSPKLVDD = 2.8V to 5.5V Power-Supply Rejection Ratio Click-and-Pop Level PSRR KCP 54 89 f = 217Hz, VRIPPLE = 100mVP-P -63 f = 1kHz, VRIPPLE = 100mVP-P -63 f = 10kHz, VRIPPLE = 100mVP-P -65 Peak voltage, A-weighted, 32 samples per second, AVREC = 0dB Into shutdown -57 Out of shutdown -55 dB dBV RECEIVER AMPLIFIER Output Power POUT Full-Scale Output Volume Control AVREC Volume Control Step Size Mute Attenuation Output Offset Voltage Capacitive Drive Capability 14 RREC = 32I, f = 1kHz, THD = 1% (Note 7) VOS (Note 5) 100 mW 1 VRMS RECVOL = 0x00 -65 -62 -58 RECVOL = 0x1F +7.5 +8 +8.5 +8dB to +6dB 0.5 +6dB to +0dB 1 0dB to -14dB 2 -14dB to -38dB 3 -38dB to -62dB 4 f = 1kHz 95 AVREC = -62dB No sustained oscillations TA = +25NC RREC = 32I RREC = J ±0.13 500 100 dB dB dB ±1 mV pF Stereo Audio CODEC with FlexSound Technology (VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = J, RREC = J, ZSPK = J, CREF = 2.2FF, CMICBIAS = CPREG = CREG = 1FF, CC1N-C1P = 1FF, CHPVSS = 1FF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25NC.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DAC-TO-SPEAKER AMPLIFIER PATH Total Harmonic Distortion + Noise THD+N f = 1kHz, POUT = 250mW, ZSPK = 8I + 68FH -71 dB Crosstalk SPKL to SPKR and SPKR to SPKL, POUT = 640mW, f = 1kHz -75 dB  Output Noise A-weighted 43 FVRMS Click-and-Pop Level Peak voltage, A-weighted, 32 samples per second, AVSPK_ = 0dB KCP Into shutdown -65 Out of shutdown -65 dBV LINE INPUT-TO-SPEAKER AMPLIFIER PATH Total Harmonic Distortion + Noise THD+N Output Noise f = 1kHz, POUT = 200mW, ZSPK = 8I + 68FH -66 dB A-weighted 56 FVRMS VSPKLVDD = VRIPPLE = 2.8V to 5.5V Power-Supply Rejection Ratio PSRR 43 75 f = 1kHz, VRIPPLE = 100mV 73 f = 10kHz, VRIPPLE = 100mV Click-and-Pop Level KCP 60 f = 217Hz, VRIPPLE = 100mV Peak voltage, A-weighted, 32 samples per second, AVSPK_ = 0dB dB 50 Into shutdown -48 Out of shutdown -50 dBV SPEAKER AMPLIFIER Output Power POUT Full-Scale Output Volume Control (Note 5) Volume Control Step Size f = 1kHz, THD = 1%, ZSPK = 8I + 68FH VSPKLVDD = VSPKRVDD = 5.0V 1370 VSPKLVDD = VSPKRVDD = 4.2V 954 VSPKLVDD = VSPKRVDD = 3.7V 733 VSPKLVDD = VSPKRVDD = 3.2V 544 mW (Note 7) AVSPK_ 2 VRMS SPVOLL/SPVOLR = 0x00 -69 -64 -59 SPVOLL/SPVOLR = 0x1F +7.5 +8 +8.5 +8dB to +6dB 0.5 +6dB to +0dB 1 0dB to -14dB 2 -14dB to -38dB 3 -38dB to -64dB 4 dB dB 15 MAX9888 ELECTRICAL CHARACTERISTICS (continued) MAX9888 Stereo Audio CODEC with FlexSound Technology ELECTRICAL CHARACTERISTICS (continued) (VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = J, RREC = J, ZSPK = J, CREF = 2.2FF, CMICBIAS = CPREG = CREG = 1FF, CC1N-C1P = 1FF, CHPVSS = 1FF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25NC.) (Note 1) PARAMETER SYMBOL Mute Attenuation Output Offset Voltage CONDITIONS MIN f = 1kHz VOS TYP MAX UNITS ±1.25 mV 1000 Hz 86 AVSPK_ = -64dB, TA = +25NC ±0.25 dB EXCURSION LIMITER Upper-Corner Frequency Range DHPUCF = 001 to 100 Lower-Corner Frequency DHPLCF = 01 to 10 400 DHPUCF = 000 (fixed mode) 100 DHPUCF = 001 200 DHPUCF = 010 300 DHPUCF = 011 400 DHPUCF = 100 500 Biquad Minimum Corner Frequency ZSPK = 8I + 68FH, VSPKLVDD = VSPKRVDD = 5.5V, AVSPK_ = +8dB Threshold Voltage Release Time 400 DHPTH = 000 0.34 DHPTH = 111 4.95 ALCRLS = 101 0.25 ALCRLS = 000 4 Hz Hz VP s POWER LIMITER Attenuation -64 ZSPK = 8I + 68FH, VSPKLVDD = VSPKRVDD = 5.5V, AVSPK_ = +8dB Threshold Time Constant 1 tPWR1 Time Constant 2 tPWR2 Weighting Factor kPWR PWRTH = 0x1 0.05 PWRTH = 0xF 1.80 PWRT1 = 0x1 0.5 PWRT1 = 0xF 8.7 PWRT2 = 0x1 to 0xF 0.5 PWRT2 = 0xF 8.7 PWRK = 000 to 111 12.5 dB W s min 100 % DISTORTION LIMITER Distortion Limit Release Time Constant THDCLP = 0x1 24kHz) DAI1 DAC Highpass Filter Mode 0 3 DESCRIPTION DAI1 ADC Highpass Filter Mode 4 3 MAX9888 Table 13. Passband Filtering Registers 79 Table 14. Voice Highpass Filters AVFTL/DVFLT VALUE INTENDED SAMPLE RATE FILTER RESPONSE 000 N/A Disabled 0 001/011 16kHz/8kHz AMPLITUDE (dB) -10 -20 -30 -40 -50 -60 0 200 400 600 800 1000 800 1000 FREQUENCY (Hz) 0 010/100 16kHz/8kHz AMPLITUDE (dB) -10 -20 -30 -40 -50 -60 0 200 400 600 FREQUENCY (Hz) 0 -10 101 8kHz to 48kHz AMPLITUDE (dB) MAX9888 Stereo Audio CODEC with FlexSound Technology -20 -30 -40 -50 LRCLK = 48kHz -60 0 200 400 600 FREQUENCY (Hz) 110/111 80 N/A Reserved 800 1000 Stereo Audio CODEC with FlexSound Technology Automatic Level Control The automatic level control (ALC) circuit ensures maximum signal amplitude without producing audible clipping. This is accomplished by a variable gain stage that works on a sample by sample basis to increase the gain up to 12dB. A look-ahead circuit determines if the next sample exceeds full scale and reduces the gain so that the sample is exactly full scale. A programmable low signal threshold determines the minimum signal amplitude that is amplified. Select a threshold that prevents the amplification of background noise. When the signal level drops below the low signal threshold, the ALC reduces the gain to 0dB until the signal increases above the threshold. Figure 20 shows an example of ALC input vs. output curves. The ALC can optionally be configured in dual-band mode. In this mode, the input signal is filtered into two bands with a 5kHz center frequency. Each band is routed through independent ALCs and then summed together. In multiband mode, both bands use the same parameters. OUTPUT SIGNAL (dBFS) 0 LOW-LEVEL -12 0 THRESHOLD ALC WITH ALCTH ≠ 000 INPUT SIGNAL (dBFS) OUTPUT SIGNAL (dBFS) 0 DV1G: 0/6/12/18dB + 0 INPUT SIGNAL (dBFS) 0 INPUT SIGNAL (dBFS) MULTIBAND ALC DVEQ1: 0dB TO -15dB 5-BAND PARAMETRIC EQ LOW-LEVEL THRESHOLD DVEQ2: 0dB TO -15dB ALC WITH ALCTH = 000 OUTPUT SIGNAL (dBFS) 5-BAND PARAMETRIC EQ EQ1EN EQ2EN DV1: 0dB TO -15dB 0 MIXDAL EXCURSION LIMITER DV2: 0dB TO -15dB -12 MIX DACL DALEN AUDIO/ FILTERS DCB2 AUDIO/ VOICE FILTERS MODE1 DVFLT MIXDAR MIX DACR DAREN LOW-LEVEL THRESHOLD -12 ALC DISABLED Figure 19. Playback Path Signal Processing Block Diagram Figure 20. ALC Input vs. Output Examples 81 MAX9888 Playback Path Signal Processing The IC playback signal path includes automatic level control (ALC) and a 5-band parametric equalizer (EQ) (Figure 19). The DAI1 and DAI2 playback paths include separate ALCs controlled by a single set of registers. Two completely separate parametric EQs are included for the DAI1 and DAI2 playback paths. Table 15. Automatic Level Control Registers REGISTER BIT 7 NAME ALCEN ALC and Excursion Limiter Release Time Sets the release time for both the ALC and Excursion Limiter. See the Excursion Limiter section for Excursion Limiter release times. ALC release time is defined as the time required to adjust the gain from 12dB to 0dB. 6 5 0x41 ALCRLS 4 3 0 VALUE 000 001 010 011 100 101 110 111 ALC RELEASE TIME (s) 8 4 2 1 0.5 0.25 Reserved Reserved ALCMB Multiband Enable Enables dual-band processing with a 5kHz center frequency. SR1 and SR2 must be configured properly to achieve the correct center frequency for each playback path. 0 = Single-band ALC 1 = Dual-band ALC ALCTH Low Signal Threshold Selects the minimum signal level to be boosted by the ALC. 000 = -JdB (low-signal threshold disabled) 001 = -12dB 010 = -18dB 011 = -24dB 100 = -30dB 101 = -36dB 110 = -42dB 111 = -48dB 2 1 DESCRIPTION ALC Enable Enables ALC on both the DAI1 and DAI2 playback paths. 0 = Disabled 1 = Enabled Parametric Equalizer The parametric EQ contains five independent biquad filters with programmable gain, center frequency, and bandwidth. Each biquad filter has a gain range of Q12dB and a center frequency range from 20Hz to 20kHz. Use a filter Q less than that shown in Figure 21 to achieve ideal frequency responses. Setting a higher Q results in nonideal frequency response. The biquad filters are series connected, allowing a total gain of Q60dB. 1000 MAXIMUM RECOMMENDED FILTER Q MAX9888 Stereo Audio CODEC with FlexSound Technology fs = 8kHz 100 fs = 48kHz 10 fs = 96kHz 1 0.1 100 1000 10,000 100,000 CENTER FREQUENCY (Hz) Figure 21. Maximum Recommended Filter Q vs. Frequency 82 Stereo Audio CODEC with FlexSound Technology The MAX9888 EV kit software includes a graphic interface for generating the EQ coefficients. The coefficients are sample rate dependent and stored in registers 0x50 through 0xB3. Table 16. EQ Registers REGISTER BIT NAME 4 EQCLP1/ EQCLP2 2 DVEQ1/DVEQ2 1 0 0x47 DAI1/DAI2 EQ Clip Detection Automatically controls the EQ attenuator to prevent clipping in the EQ. 0 = Enabled 1 = Disabled DAI1/DAI2 EQ Attenuator Provides attenuation to prevent clipping in the EQ when full-scale signals are boosted. DVEQ1/DVEQ2 operates only when EQ1EN/EQ2EN = 1 and EQCLP1/EQCLP2 = 1. 3 0x2C/0x2E DESCRIPTION VALUE GAIN (dB) VALUE GAIN (dB) 0x0 0 0x8 -8 0x1 -1 0x9 -9 0x2 -2 0xA -10 0x3 -3 0xB -11 0x4 -4 0xC -12 0x5 -5 0xD -13 0x6 -6 0xE -14 0x7 -7 0xF -15 7 VS2EN 6 VSEN 5 ZDEN 1 EQ2EN DAI2 EQ Enable 0 = Disabled 1 = Enabled 0 EQ1EN DAI1 EQ Enable 0 = Disabled 1 = Enabled See the Click-and-Pop Reduction section. 83 MAX9888 Use the attenuator at the EQ’s input to avoid clipping the signal. The attenuator can be programmed for fixed attenuation or dynamic attenuation based on signal level. If the dynamic EQ clip detection is enabled, the signal level from the EQ is fed back to the attenuator circuit to determine the amount of gain reduction necessary to avoid clipping. MAX9888 Stereo Audio CODEC with FlexSound Technology Playback Level Control allows boost when MODE1 = 0 and attenuation in any mode. The DAI2 signal path allows attenuation only. The IC includes separate digital level control for the DAI1 and DAI2 playback audio paths. The DAI1 signal path DV1G: 0/6/12/18dB + MULTIBAND ALC DVEQ1: 0dB TO -15dB 5-BAND PARAMETRIC EQ EQ1EN DVEQ2: 0dB TO -15dB 5-BAND PARAMETRIC EQ EQ2EN MIXDAL EXCURSION LIMITER DACL MIX DV2: 0dB TO -15dB DV1: 0dB TO -15dB DALEN AUDIO/ FILTERS DCB2 AUDIO/ VOICE FILTERS MIXDAR MIX MODE1 DVFLT DACR DAREN Figure 22. Playback Level Control Block Diagram Table 17. DAC Playback Level Control Register REGISTER BIT 7 NAME DV1M/DV2M 5 DV1G 4 0x2B/0x2D VALUE 2 DV1/DV2 0 84 DAI1 Voice Mode Gain DV1G only applies when MODE1 = 0. 00 = 0dB 01 = 6dB 10 = 12dB 11 = 18dB DAI1/DAI2 Attenuation 3 1 DESCRIPTION DAI1/DAI2 Mute 0 = Disabled 1 = Enabled GAIN (dB) VALUE GAIN (dB) 0x0 0 0x8 -8 0x1 -1 0x9 -9 0x2 -2 0xA -10 0x3 -3 0xB -11 0x4 -4 0xC -12 0x5 -5 0xD -13 0x6 -6 0xE -14 0x7 -7 0xF -15 Stereo Audio CODEC with FlexSound Technology DV1G: 0/6/12/18dB + MULTIBAND ALC DVEQ1: 0dB TO -15dB 5-BAND PARAMETRIC EQ DVEQ2: 0dB TO -15dB 5-BAND PARAMETRIC EQ EQ1EN EQ2EN MIXDAL EXCURSION LIMITER DV2: 0dB TO -15dB DV1: 0dB TO -15dB MIX DACL DALEN AUDIO/ FILTERS DCB2 AUDIO/ VOICE FILTERS MODE1 DVFLT MIXDAR MIX DACR DAREN Figure 23. DAC Input Mixer Block Diagram Table 18. DAC Input Mixer Register REGISTER BIT NAME 7 6 5 0x21 MIXDAL Left DAC Input Mixer 1xxx = DAI1 left channel x1xx = DAI1 right channel xx1x = DAI2 left channel xxx1 = DAI2 right channel MIXDAR Right DAC Input Mixer 1xxx = DAI1 left channel x1xx = DAI1 right channel xx1x = DAI2 left channel xxx1 = DAI2 right channel 4 3 2 1 0 DESCRIPTION 85 MAX9888 DAC Input Mixers The IC’s stereo DAC accepts input from two digital audio paths. The DAC mixer routes any audio path to the left and right DACs (Figure 23). MAX9888 Stereo Audio CODEC with FlexSound Technology Preoutput Signal Path The IC’s preoutput mixer stage provides mixing and level adjustment for line input signals routed to the output amplifiers. Figure 24 shows a block diagram of the preoutput signal path. 9dB is added between the line input amplifiers and the output amplifiers to boost the 1VP-P maximum line input signal level to the 1VRMS maximum DAC signal level. RECP/ RXINP RECVOL: +8dB TO -62dB 0dB MIX MIXREC RECEN RECN/ RXINN RECBYP SPKBYP BATTERY ADC SPVOLL: +8dB TO -62dB SPKLVDD SPKLP +6dB MIX SPKLN MIXSPL SPLEN POWER/ DISTORTION LIMITER SPKLGND SPKRVDD SPKRP +6dB MIX MIXSPR SPVOLR: +8dB TO -62dB PGAINA: +20dB TO -6dB PGAOUT1: 0dB TO -23dB INADIFF + PGAINA: +20dB TO -6dB PREOUT1 MIX MIXOUT1 PGAINB: +20dB TO -6dB PREOUT2 MIXHPL SPKRPGND HPL HPLEN HPSNS HPVOLR: +3dB TO -67dB MIX +9dB HPR HPREN PGAOUT3: 0dB TO -23dB MIX + +9dB MIXHPR MIXOUT2 INBDIFF PGAINB: +20dB TO -6dB MIX PGAOUT2: 0dB TO -23dB MIX SPKRN SPREN HPVOLL: +3dB TO -67dB PREOUT3 +9dB MIXOUT3 Figure 24. Preoutput Signal Path Block Diagram Preoutput Mixer The IC’s output amplifiers each accept input from one of the three preoutput mixers. Configure each preoutput mixer to mix any combination of the four line input signals. Table 19. Preoutput Mixer Registers REGISTER BIT NAME 3 0x24/0x25/ 0x26 2 1 0 86 MIXOUT1/ MIXOUT2/ MIXOUT3 DESCRIPTION Preoutput Mixer 1 1xxx = INA1 x1xx = INA2 (INADIFF = 0) or INA2 - INA1 (INADIFF = 1) xx1x = INB1 xxx1 = INB2 (INBDIFF = 0) or INB2 - INB1 (INBDIFF = 1) Stereo Audio CODEC with FlexSound Technology Table 20. Preoutput PGA Registers REGISTER BIT NAME DESCRIPTION Preoutput PGA Level 3 2 0x35/0x36/ 0x37 1 PGAOUT1/ PGAOUT2/ PGAOUT3 0 VALUE GAIN (dB) VALUE GAIN (dB) 0x0 0 0x8 -15 0x1 -1 0x9 -17 0x2 -3 0xA -19 0x3 -5 0xB -21 0x4 -7 0xC -23 Mute 0x5 -9 0xD 0x6 -11 0xE Mute 0x7 -13 0xF Mute Receiver Amplifier The IC includes a single differential receiver amplifier. The receiver amplifier is designed to drive 32I receivers. In cases where a single transducer is used for the loudspeaker and receiver, use the SPKBYP switch to route the receiver amplifier output to the left speaker outputs. RECP/ RXINP RECVOL: +8dB TO -62dB MIX MIXREC DACL 0dB RECEN RECN/ RXINN RECBYP SPKBYP DALEN DACR DAREN PGAOUT1: 0dB TO -23dB PREOUT1 +9dB PGAOUT2: 0dB TO -23dB PREOUT2 +9dB Figure 25. Receiver Amplifier Block Diagram 87 MAX9888 Preoutput PGA The IC’s preoutput PGAs allow line input signals to be attenuated to match DAC output signal levels. Use the 0dB setting for maximum performance. MAX9888 Stereo Audio CODEC with FlexSound Technology Receiver Output Mixer The IC’s receiver amplifier accepts input from the stereo DAC and the line inputs. Configure the mixer to mix any combination of the available sources. When more than one signal is selected, the mixed signal is attenuated by 6dB for 2 signals, 9.5dB for 3 signals, or 12dB for 4 signals. Table 21. Receiver Output Mixer Register REGISTER BIT NAME 3 0x28 2 1 MIXREC 0 DESCRIPTION Receiver Output Mixer 1xxx = Left DAC x1xx = Right DAC xx1x = Preoutput mixer 1 xxx1 = Preoutput mixer 2 Receiver Output Volume Table 22. Receiver Output Level Register REGISTER BIT 7 NAME RECM Receiver Output Volume Level 4 3 0x3A 2 RECVOL 1 0 88 DESCRIPTION Receiver Output Mute 0 = Disabled 1 = Enabled VALUE VOLUME (dB) VALUE VOLUME (dB) 0x00 -62 0x10 -10 0x01 -58 0x11 -8 0x02 -54 0x12 -6 0x03 -50 0x13 -4 0x04 -46 0x14 -2 0x05 -42 0x15 0 0x06 -38 0x16 +1 0x07 -35 0x17 +2 0x08 -32 0x18 +3 0x09 -29 0x19 +4 0x0A -26 0x1A +5 0x0B -23 0x1B +6 0x0C -20 0x1C +6.5 0x0D -17 0x1D +7 0x0E -14 0x1E +7.5 0x0F -12 0x1F +8 Stereo Audio CODEC with FlexSound Technology Traditional Class D amplifiers require the use of external LC filters or shielding to meet EN55022B and FCC electromagnetic-interference (EMI) regulation standards. Maxim’s patented active emissions limiting edge-rate control circuitry reduces EMI emissions (Figure 26). 40 40 30 30 AMPLITUDE (dBµV/m) AMPLITUDE (dBµV/m) The high efficiency of a Class D amplifier is due to the switching operation of the output stage transistors. In a Class D amplifier, the output transistors act as current steering switches and consume negligible additional power. Any power loss associated with the Class D output stage is mostly due to the I2R loss of the MOSFET on-resistance, and quiescent current overhead. 20 10 20 10 0 0 -10 -10 30 60 80 100 120 140 160 180 200 220 240 260 280 300 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 FREQUENCY (MHz) FREQUENCY (MHz) Figure 26. EMI with 15cm of Speaker Cable BATTERY ADC SPVOLL: +8dB TO -62dB MIX MIXSPL DACL MIX DACR DAREN SPKLP +6dB SPKLN SPLEN POWER/DISTORTION LIMITER DALEN MIXSPR SPVOLR: +8dB TO -62dB SPKLVDD SPKLGND SPKRVDD SPKRP +6dB SPKRN SPREN SPKRPGND PGAOUT2: 0dB TO -23dB PREOUT2 +9dB PGAOUT3: 0dB TO -23dB PREOUT3 +9dB Figure 27. Speaker Amplifier Path Block Diagram 89 MAX9888 The theoretical best efficiency of a linear amplifier is 78%, however, that efficiency is only exhibited at peak output power. Under normal operating levels (typical music reproduction levels), efficiency falls below 30%, whereas the IC’s Class D amplifier still exhibits 80% efficiency under the same conditions. Speaker Amplifiers The IC integrates a stereo filterless Class D amplifier that offers much higher efficiency than Class AB without the typical disadvantages. MAX9888 Stereo Audio CODEC with FlexSound Technology Speaker Output Mixers The IC’s speaker amplifiers accept input from the stereo DAC and the line inputs. Configure the mixer to mix any combination of the available sources. When more than one signal is selected, the mixed signal is attenuated by 6dB for 2 signals, 9.5dB for 3 signals, or 12dB for four signals. Table 23. Speaker Output Mixer Register REGISTER BIT NAME 7 6 5 0x29 MIXSPL Left Speaker Output Mixer 1xxx = Left DAC x1xx = Right DAC xx1x = Reserved xxx1 = Preoutput mixer 3 MIXSPR Right Speaker Output Mixer 1xxx = Left DAC x1xx = Right DAC xx1x = Reserved xxx1 = Preoutput mixer 2 4 3 2 1 DESCRIPTION 0 Speaker Output Volume Table 24. Speaker Output Mixer Register REGISTER BIT 7 NAME SPLM/SPRM DESCRIPTION Left/Right Speaker Output Mute 0 = Disabled 1 = Enabled Left/Right Speaker Output Volume Level 4 3 0x3B/0x3C 2 1 0 90 SPVOLL/SPVOLR VALUE VOLUME (dB) VALUE VOLUME (dB) 0x00 -64 0x10 -10 0x01 -59 0x11 -8 0x02 -55 0x12 -6 0x03 -50 0x13 -4 0x04 -46 0x14 -2 0x05 -42 0x15 0 0x06 -38 0x16 +1 0x07 -35 0x17 +2 0x08 -32 0x18 +3 0x09 -29 0x19 +4 0x0A -26 0x1A +5 0x0B -23 0x1B +6 0x0C -20 0x1C +6.5 0x0D -17 0x1D +7 0x0E -14 0x1E +7.5 0x0F -12 0x1F +8 Stereo Audio CODEC with FlexSound Technology Excursion Limiter The excursion limiter is a dynamic highpass filter that monitors the speaker outputs and increases the highpass corner frequency when the speaker amplifier’s output exceeds a predefined threshold. The filter smoothly transitions between the high and low corner frequency to prevent unwanted artifacts. The filter can operate in four different modes: U Fixed Frequency Preset Mode. The highpass corner frequency is fixed at the upper corner frequency and does not change with signal level. U Preset Dynamic Mode. The highpass filter automatically slides between a preset upper and lower corner frequency based on output signal level. U User Programmable Dynamic Mode. The highpass filter slides between a user-programmed biquad filter on the low side to a predefined corner frequency on the high side. The transfer function for the user-programmable biquad is: b + b1z -1 + b 2z -2 H(z) = 0 1 + a 1z -1 + a 2z -2 The coefficients b0, b1, b2, a1, and a2 are sample rate dependent and stored in registers 0xB4 through 0xC7. Store b0, b1, and b2 as positive numbers. Store a1 and a2 as negated two’s complement numbers. Separate filters can be stored for the DAI1 and DAI2 playback paths. The MAX9888 EV kit software includes a graphic interface for generating the user-programmable biquad coefficients. Note: Only change the excursion limiter settings when the signal path is disabled to prevent undesired artifacts. U Fixed Frequency Programmable Mode. The highpass corner frequency is fixed to that specified by the programmable biquad filter. DV1G: 0/6/12/18dB + MULTIBAND ALC DVEQ1: 0dB TO -15dB 5-BAND PARAMETRIC EQ BATTERY ADC DVEQ2: 0dB TO -15dB SPVOLL: +8dB TO -62dB 5-BAND PARAMETRIC EQ EQ1EN MIX MIXSPL EQ2EN EXCURSION LIMITER DV2: 0dB TO -15dB DV1: 0dB TO -15dB MIX AUDIO/ FILTERS MIXDAL DACL SPKLP +6dB SPKLN SPLEN POWER/ DISTORTION LIMITER DALEN SPKLVDD SPKLGND SPKRVDD SPKRP DCB2 MIX AUDIO/ VOICE FILTERS MODE1 DVFLT MIX MIXDAR DACR MIXSPR SPVOLR: +8dB TO -62dB +6dB SPKRN SPREN SPKRPGND DAREN Figure 28. Speaker Amplifier Signal Processing Block Diagram 91 MAX9888 Speaker Amplifier Signal Processing The IC includes signal processing to improve the sound quality of the speaker output and protect transducers from damage. An excursion limiter dynamically adjusts the highpass corner frequency, while a power limiter and distortion limiter prevent the amplifier from outputting too much distortion or power. The excursion limiter is located in the DSP while the distortion limiter and power limiter control the analog volume control (Figure 28). All three limiters analyze the speaker amplifier’s output signal to determine when to take action. MAX9888 Stereo Audio CODEC with FlexSound Technology Table 25. Excursion Limiter Registers REGISTER BIT NAME Excursion Limiter Corner Frequency The excursion limiter has limited sliding range and minimum corner frequencies. Listed below are all the valid filter combinations. 6 5 DESCRIPTION DHPUCF LOWER CORNER FREQUENCY — 000 00 400Hz — 001 00 600Hz — 010 00 800Hz — 011 00 1kHz — 100 00 Programmable using biquad 0x3F 1 DHPLCF 0 ALCRLS 4 3 2 0x40 DHPTH 1 0 92 100Hz 000 11 200Hz 400Hz — 001 01 400Hz 600Hz — 010 10 400Hz Programmable using biquad Programmable using biquad Programmable using biquad Programmable using biquad 800Hz — 011 10 400Hz 200Hz 001 11 600Hz 300Hz 010 11 800Hz 400Hz 011 11 1kHz 500Hz 100 11 ALC and Excursion Limiter Release Time Sets the release time for both the ALC and Excursion Limiter. See the Automatic Level Control section for ALC release times. Excursion limiter release time is defined as the time required to slide from the high corner frequency to the low corner frequency. 6 5 MINIMUM BIQUAD DHPUCF DHPLCF CORNER FREQUENCY Excursion limiter disabled 4 0x41 UPPER CORNER FREQUENCY VALUE EXCURSION LIMITER RELEASE TIME (s) 000 4 001 2 010 1 011 0.5 100 0.25 101 0.25 110 Reserved 111 Reserved Excursion Limiter Threshold Measured at the Class D speaker amplifier outputs. Signals above the threshold use the upper corner frequency. Signals below the threshold use the lower corner frequency. VBAT must correctly reflect the voltage of SPKLVDD to achieve accurate thresholds. 000 = 0.34VP 001 = 0.71VP 010 = 1.30VP 011 = 1.77VP 100 = 2.33VP 101 = 3.25VP 110 = 4.25VP 111 = 4.95VP Stereo Audio CODEC with FlexSound Technology Loudspeakers are typically damaged when the voice coil overheats due to extended operation above the rated power. During normal operation, heat generated in the voice coil is transferred to the speaker’s magnet, which transfers heat to the surrounding air. For the voice coil to overheat, both the voice coil and the magnet must overheat. The result is that a loudspeaker can operate above its rated power for a significant time before it heats sufficiently to cause damage. The IC’s power limiter includes user-programmable time constants and power thresholds to match a wide range of loudspeakers. Program the power limiter’s threshold to match the loudspeaker’s rated power handling. This can be determined through measurement or the loudspeaker’s specification. Program time constant 1 to match the voice coil’s thermal time constant. Program time constant 2 to match the magnet’s thermal time constant. The time constants can be determined by plotting the voice coil’s resistance vs. time as power is applied to the speaker. Table 26. Power Limiter Registers REGISTER BIT NAME DESCRIPTION Power Limiter Threshold If the RMS output power from the speaker amplifiers exceeds this threshold, the output is briefly muted to protect the speaker. The threshold is measured in watts assuming an 8I load. VBAT must correctly reflect the voltage of SPKLVDD/SPKRVDD to achieve accurate thresholds. 7 VALUE THRESHOLD (W) VALUE THRESHOLD (W) 0x0 Power limiter disabled 0x8 0.27 0x1 0.05 0x9 0.35 0x2 0.06 0xA 0.48 0x3 0.09 0xB 0.72 0x4 0.11 0xC 1.00 0x5 0.13 0xD 1.43 0x6 0.18 0xE 1.57 0x7 0.22 0xF 1.80 6 PWRTH 5 0x42 4 Power Limiter Weighting Factor Determines the balance between time constant 1 and 2 to match the dominance of each time constant in the loudspeaker. 2 1 PWRK 0 VALUE T1 (%) 000 50 50 001 62.5 37.5 010 75 25 011 87.5 12.5 100 100 0 101 12.5 87.5 110 25 75 37.5 62.5 111 REGISTER BIT NAME T2 (%) DESCRIPTION 93 MAX9888 Power Limiter The IC’s power limiter tracks the RMS power delivered to the loudspeaker and briefly mutes the speaker amplifier output if the speaker is at risk of sustaining permanent damage. MAX9888 Stereo Audio CODEC with FlexSound Technology Table 26. Power Limiter Registers (continued) Power Limiter Time Constant 2 Select a value that matches the thermal time constant of the loudspeaker’s magnet. 7 6 PWRT2 5 4 0x43 2 PWRT1 0 TIME CONSTANT (min) VALUE TIME CONSTANT (min) 0x0 Disabled 0x8 3.75 0x1 0.50 0x9 5.00 0x2 0.67 0xA 6.66 0x3 0.89 0xB 8.88 0x4 1.19 0xC Reserved 0x5 1.58 0xD Reserved 0x6 2.11 0xE Reserved 0x7 2.81 0xF Reserved Power Limiter Time Constant 1 Select a value that matches the thermal time constant of the loudspeaker’s voice coil. 3 1 VALUE VALUE TIME CONSTANT (s) VALUE TIME CONSTANT (s) 0x0 Disabled 0x8 3.75 0x1 0.50 0x9 5.00 0x2 0.67 0xA 6.66 0x3 0.89 0xB 8.88 0x4 1.19 0xC Reserved 0x5 1.58 0xD Reserved 0x6 2.11 0xE Reserved 0x7 2.81 0xF Reserved Distortion Limiter The IC’s distortion limiter ensures that the speaker amplifier’s output does not exceed the programmed THD+N limit. The distortion limiter analyzes the Class D output duty cycle to determine the percentage of the waveform that is clipped. If the distortion exceeds the programmed threshold, the output gain is reduced. 94 Stereo Audio CODEC with FlexSound Technology REGISTER BIT NAME 7 6 5 THDCLP 4 0x44 2 1 0 DESCRIPTION Distortion Limit Measured in % THD+N. THDT1 VALUE THD+N LIMIT (%) VALUE THD+N LIMIT (%) 0x0 Limiter disabled 0x8 12 0x1 10FH. Typical 8I speakers exhibit series inductances in the 20FH to 100FH range. RF Susceptibility GSM radios transmit using time-division multiple access (TDMA) with 217Hz intervals. The result is an RF signal with strong amplitude modulation at 217Hz and its harmonics that is easily demodulated by audio amplifiers. The IC is designed specifically to reject RF signals; however, PCB layout has a large impact on the susceptibility of the end product. In RF applications, improvements to both layout and component selection decrease the IC’s susceptibility to RF noise and prevent RF signals from being demodulated into audible noise. Trace lengths should be kept below 1/4 of the wavelength of the RF frequency of interest. Minimizing the trace lengths prevents them from functioning as antennas and coupling RF signals into the IC. The wavelength (l) in meters is given by: l = c/f where c = 3 x 108 m/s, and f = the RF frequency of interest. Route audio signals on middle layers of the PCB to allow ground planes above and below to shield them from RF interference. Ideally, the top and bottom layers of the PCB should primarily be ground planes to create effective shielding. Additional RF immunity can also be obtained by relying on the self-resonant frequency of capacitors as it exhibits a frequency response similar to a notch filter. Depending on the manufacturer, 10pF to 20pF capacitors typically exhibit self resonance at the RF frequencies of interest. These capacitors, when placed at the input pins, can effectively shunt the RF noise to ground. For these capacitors to be effective, they must have a lowimpedance, low-inductance path to the ground plane. Avoid using microvias to connect to the ground plane whenever possible as these vias do not conduct well at RF frequencies. Startup/Shutdown Sequencing To ensure proper device initialization and minimal clickand-pop, program the IC’s SHDN = 1 after configuring all registers. Table 39 lists an example startup sequence for the device. To shut down the IC, simply set SHDN = 0. Table 39. Example Startup Sequence SEQUENCE 1 DESCRIPTION Ensure SHDN = 0 REGISTERS 0x4C 2 Configure clocks 0x10 to 0x13, 0x19 to 0x1B 3 Configure digital audio interface 0x14 to 0x17, 0x1C to 0x1F 4 Configure digital signal processing 0x18, 0x20, 0x3D to 0x44 5 Load coefficients 0x50 to 0xC7 6 Configure mixers 0x21 to 0x29 7 Configure gain and volume controls 0x2A to 0x3C 8 Configure miscellaneous functions 0x45 to 0x49 9 Enable desired functions 0x4A, 0x4B 10 Set SHDN = 1 0x4C 109 MAX9888 Filterless Class D Operation Traditional Class D amplifiers require an output filter to recover the audio signal from the amplifier’s output. The filters add cost, increase the solution size of the amplifier, and can decrease efficiency and THD+N performance. The traditional PWM scheme uses large differential output swings (2 x VDD peak to peak) and causes large ripple currents. Any parasitic resistance in the filter components results in a loss of power, lowering the efficiency. MAX9888 Stereo Audio CODEC with FlexSound Technology While many configuration options in the IC can be made while the device is operating, some registers should only be adjusted when the corresponding audio path is disabled. Table 40 lists the registers that are sensitive during operation. Either disable the corresponding audio path or set SHDN = 0 while changing these registers. Component Selection Optional Ferrite Bead Filter In applications where speaker leads exceed 20mm, additional EMI suppression can be achieved by using a filter constructed from a ferrite bead and a capacitor to ground (Figure 41). Use a ferrite bead with low DC resistance, high-frequency (> 600MHz) impedance between 100I and 600I, and rated for at least 1A. The capacitor value varies based on the ferrite bead chosen and the actual speaker lead length. Select a capacitor less than 1nF based on EMI performance. Input Capacitor An input capacitor, CIN, in conjunction with the input impedance of the IC line inputs forms a highpass filter that removes the DC bias from an incoming analog signal. The AC coupling capacitor allows the amplifier to automatically bias the signal to an optimum DC level. Assuming zero-source impedance, the -3dB point of the highpass filter is given by: 1 f-3dB = 2πRINCIN Choose CIN so that f-3dB is well below the lowest frequency of interest. For best audio quality use capacitors whose dielectrics have low-voltage coefficients, such as tantalum or aluminum electrolytic. Capacitors with highvoltage coefficients, such as ceramics, may result in increased distortion at low frequencies. Charge-Pump Capacitor Selection Use capacitors with an ESR less than 100mI for optimum performance. Low-ESR ceramic capacitors minimize the output resistance of the charge pump. Most surfacemount ceramic capacitors satisfy the ESR requirement. For best performance over the extended temperature range, select capacitors with an X7R dielectric. Table 40. Registers That Are Sensitive to Changes During Operation REGISTER DESCRIPTION 0x10 to 0x13, 0x19 to 0x1B Clock Control Registers 0x14 to 0x17, 0x1C to 0x1F Digital Audio Interface Configuration 0x18, 0x20 Digital Passband Filters 0x24 to 0x29 Analog Mixers 0x50 to 0xC7 Digital Signal Processing Coefficients SPK_P MAX9888 Figure 41. Optional Class D Ferrite Bead Filter 110 SPK_N Stereo Audio CODEC with FlexSound Technology Charge-Pump Holding Capacitor The holding capacitor (bypassing HPVSS) value and ESR directly affect the ripple at HPVSS. Increasing the capacitor’s value reduces output ripple. Likewise, decreasing the ESR reduces both ripple and output resistance. Lower capacitance values can be used in systems with low maximum output power levels. See the Output Power vs. Load Resistance graph in the Typical Operating Characteristics section for more information Unused Pins Table 41 shows how to connect the IC’s pins when unused. Table 41. Unused Pins NAME CONNECTION NAME CONNECTION SPKRP Unconnected INB1 Unconnected SPKRVDD Always connected INA2/MICEXTN Unconnected SPKLVDD Always connect LRCLKS2 Unconnected SPKLP Unconnected MCLK Always connect RECN/RXINN Unconnected SDINS2 AGND HPVDD Always connect Unconnected C1P Unconnected IRQ MIC1P/DIGMICDATA HPGND AGND INA1/MICEXTP Unconnected SPKRN Unconnected DGND Always connect SPKRGND Always connect BCLKS2 Unconnected SPKLGND Always connect SDA Always connect Unconnected SPKLN Unconnected SCL Always connect RECP/RXINP Unconnected REG Always connect C1N Unconnected REF Always connect HPL Unconnected MIC1N/DIGMICCLK Unconnected HPVSS Unconnected MIC2P Unconnected SDINS1 AGND SDOUTS2 Unconnected LRCLKS1 Unconnected DVDDS2 DVDD HPSNS AGND DVDD Always connect INB2 Unconnected AVDD Always connect HPR Unconnected PREG Always connect DVDDS1 DVDD AGND Always connect SDOUTS1 Unconnected MICBIAS Unconnected BCLKS1 Unconnected MIC2N Unconnected JACKSNS Unconnected 111 MAX9888 Charge-Pump Flying Capacitor The value of the flying capacitor (connected between C1N and C1P) affects the output resistance of the charge pump. A value that is too small degrades the device’s ability to provide sufficient current drive, which leads to a loss of output voltage. Increasing the value of the flying capacitor reduces the charge-pump output resistance to an extent. Above 1FF, the on-resistance of the internal switches and the ESR of external chargepump capacitors dominate. MAX9888 Stereo Audio CODEC with FlexSound Technology Recommended PCB Routing The IC uses a 63-bump WLP package. Figure 42 provides an example of how to connect to all active bumps using 3 layers of the PCB. To ensure uninterrupted ground returns, use layer 2 as a connecting layer between layer 1 and layer 2 and flood the remaining area with ground. Supply Bypassing, Layout, and Grounding Proper layout and grounding are essential for optimum performance. When designing a PCB for the IC, partition the circuitry so that the analog sections of the IC are separated from the digital sections. This ensures that the analog audio traces are not routed near digital traces. Use a large continuous ground plane on a dedicated layer of the PCB to minimize loop areas. Connect AGND, DGND, HPGND, SPKLGND, and SPKRGND directly to the ground plane using the shortest trace length possible. Proper grounding improves audio performance, minimizes crosstalk between channels, and prevents any digital noise from coupling into the analog audio signals. Ground the bypass capacitors on MICBIAS, REG, PREG, and REF directly to the ground plane with minimum trace length. Also be sure to minimize the path length to AGND. Bypass AVDD directly to AGND. LAYER 1 Connect all digital I/O termination to the ground plane with minimum path length to DGND. Bypass DVDD, DVDDS1, and DVDDS2 directly to DGND. Place the capacitor between C1P and C1N as close as possible to the IC to minimize trace length from C1P to C1N. Inductance and resistance added between C1P and C1N reduce the output power of the headphone amplifier. Bypass HPVSS with a capacitor located close to HPVSS with a short trace length to HPGND. Close decoupling of HPVSS minimizes supply ripple and maximizes output power from the headphone amplifier. LAYER 2 LAYER 3 Figure 42. Suggested Routing 112 HPSNS senses ground noise on the headphone jack and adds the same noise to the output audio signal, thereby making the output (headphone output minus ground) noise free. Connect HPSNS to the headphone jack shield to ensure accurate pickup of headphone ground noise. Bypass SPKLVDD and SPKRVDD to SPKLGND and SPKRGND, respectively, with as little trace length as possible. Connect SPKLP, SPKLN, SPKRP, and SPKRN to the stereo speakers using the shortest traces possible. Reducing trace length minimizes radiated EMI. Route SPKLP/SPKLN and SPKRP/SPKRN as differential pairs on the PCB to minimize loop area, thereby the inductance of the circuit. If filter components are used on the speaker outputs, be sure to locate them as close as possible to the IC to ensure maximum effectiveness. Minimize the trace length from any ground-connected passive components to SPKLGND and SPKRGND to further minimize radiated EMI. Stereo Audio CODEC with FlexSound Technology MAX9888 Route microphone signals from the microphone to the IC as a differential pair, ensuring that the positive and negative signals follow the same path as closely as possible with equal trace length. When using single-ended microphones or other single-ended audio sources, ground the negative microphone input as close as possible to the audio source and then treat the positive and negative traces as differential pairs. 0.24mm An evaluation kit (EV kit) is available to provide an example layout for the IC. The EV kit allows quick setup of the IC and includes easy-to-use software allowing all internal registers to be controlled. WLP Applications Information For the latest application details on WLP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note 1891: WaferLevel Packaging (WLP) and Its Applications. Figure 43 shows the dimensions of the WLP balls used on the IC. 0.21mm Figure 43. WLP Ball Dimensions 113 MAX9888 Stereo Audio CODEC with FlexSound Technology Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. 114 PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 63 WLP W633A3+1 21-0462 Refer to Application Note 1891 Stereo Audio CODEC with FlexSound Technology REVISION NUMBER REVISION DATE 0 6/10 Initial release — 1 2/11 Updated DAC playback 48kHz stereo, speaker outputs, speaker maximum value 6 DESCRIPTION PAGES CHANGED Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ©  2011 Maxim Integrated Products 115 Maxim is a registered trademark of Maxim Integrated Products, Inc. MAX9888 Revision History
MAX9888EVKIT+ 价格&库存

很抱歉,暂时无法提供与“MAX9888EVKIT+”相匹配的价格&库存,您可以联系我们找货

免费人工找货