0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
1EDI2010ASXUMA1

1EDI2010ASXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    BSSOP36_300MIL

  • 描述:

    栅极驱动器 磁耦合 3750Vrms 1 通道 PG-DSO-36-63

  • 数据手册
  • 价格&库存
1EDI2010ASXUMA1 数据手册
EiceDRIVER™ S ENSE 1EDI2010AS High voltage IGBT driver for auto moti ve applicatio ns Single channel isolated driver Hardware description A12 Step Features • Single-channel IGBT-driver • On-chip galvanic insulation • Support of existing IGBT technologies up to 1200 V • Low propagation delay and minimal PWM distortion • Support of 5-V logic levels (primary side) • Supports both negative and zero-volt VEE2 supply voltage • 16-bit standard SPI interface (up to 2 MBaud) with daisy chain support (primary side) • Enable input pin (primary side) • Pseudo-differential inputs for critical signals (primary side) • Power-on reset pin (primary side) • Debug mode • Internal pulse suppressor • Fully programmable active clamping inhibit signal (secondary side) • Fully programmable two-level turn-on (TTON) • Fully programmable two-level turn-off (TTOFF) • 8-bit ADC with programmable offset and gain, and a flexible trigger mechanism • Emulated digital channel • Programmable desaturation monitoring • Overcurrent protection with programmable threshold • Automatic emergency turn-off in failure case • Undervoltage supervision of 5 V and 15 V supplies • Programmable UVLO2 and DESAT thresholds for MOSFET usage • Safe internal state machine • Internal lifesign watchdog • Weak turn-on • NFLTA and NFLTB notification pins for fast system response time (primary side) • Individual error and status flags readable via SPI Datasheet www.infineon.com/cms/en/product/power 1 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS • Compatible to EiceBoost family • 36-pin PG-DSO-36 green package • Green Product (RoHS compliant) Potential applications • Inverters for automotive hybrid electric vehicles (HEV) and electric vehicles (EV) • High-voltage DC/DC converter • Industrial drive Product validation Qualified for automotive applications. Product validation according to AEC-Q100. Description The 1EDI2010AS is a high-voltage IGBT gate driver designed for motor drives above 5 kW. The 1EDI2010AS is based on Infineon’s Coreless Transformer (CLT) technology, providing galvanic insulation between lowvoltage and high-voltage domains. The device has been designed to support IGBT technologies up to 1200 V. The 1EDI2010AS can be connected on the low-voltage side (“primary” side) to 5-V logic. A standard SPI interface allows the logic to configure and control the advanced functions implemented in the driver. On the high-voltage side (“secondary” side), the 1EDI2010AS is dimensioned to drive an external booster stage. Short propagation delays and controlled internal tolerances lead to minimal distortion of the PWM signal. The 1EDI2010AS supports advanced functions (such as two-level turn-on, two-level turn-off, etc.), that can be controlled and configured via a standard SPI interface. The internal 8-bit ADC (SAR) with programmable gain and offset enables the sensing of the DC link voltage, the phase voltage, or of the temperature sensor located on the power module (such as NTC, temperature diode, etc.). The digitalized value can be read via the SPI interface on the primary side. The ADC thus enables significant cost savings at the system level, since it removes the need for discrete isolation ICs. The 1EDI2010AS can be used optimally with Infineon’s 1EBN100XAE EiceDRIVER™ Boost booster stage family. Type Package Ordering code 1EDI2010AS PG-DSO-36 SP001299836 Datasheet 2 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Table of Contents 1 1.1 1.2 1.2.1 1.2.2 1.2.2.1 1.2.2.2 1.2.2.3 1.3 1.4 1.4.1 1.4.2 1.4.3 1.4.4 1.4.4.1 1.4.4.2 1.4.4.3 1.4.4.4 1.4.4.5 1.4.5 1.4.5.1 1.4.5.2 1.4.5.3 1.4.5.4 1.4.5.5 1.4.5.6 1.4.6 1.4.6.1 1.4.6.2 1.4.6.3 1.4.7 1.4.8 1.4.9 1.4.9.1 1.4.9.2 1.4.9.3 1.4.9.4 1.4.10 1.4.11 1.4.11.1 1.4.11.2 1.4.11.3 1.4.12 1.4.13 1.4.13.1 1.4.13.2 Datasheet Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin configuration and functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Primary side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Secondary side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pull devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Functional block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Clock domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PWM input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 General operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SPI data integrity support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 General operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Operation modes description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Activating the device after a reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Activating the device after a Class A or Class B event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Driver functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Switching sequence description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Passive clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Fault notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 EN signal pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Internal supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Lifesign watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Oscillator monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Memory supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Hardware failure behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Reset events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Operation in Configuration mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Static configuration parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Dynamic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Delay calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Low-latency digital channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 General operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS 1.4.13.3 Boundary checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2 2.1 2.2 2.2.1 2.2.2 2.2.3 2.3 2.3.1 2.4 2.4.1 2.4.2 2.5 2.5.1 2.5.2 2.5.3 Protection and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supervision overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection functions: Category A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Desaturation protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection functions: Category B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection functions: Category C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shoot-through protection function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection functions: Category D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation in Verification mode and Weak Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Weak turn-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal clock supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 3.1.1 3.1.2 3.1.3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Primary register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Secondary registers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Read/write address ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4 4.1 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5 5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6 5.4.7 5.4.8 5.4.9 5.4.10 5.4.11 5.4.12 General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Primary I/O electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Secondary I/O electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Desaturation protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low-latency digital channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error-detection timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Insulation characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Datasheet 4 52 52 53 53 56 57 58 58 59 59 60 61 61 61 63 106 106 107 108 109 109 110 111 113 115 118 119 119 120 121 122 123 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description 1 Functional description 1.1 Introduction The 1EDI2010AS is an advanced single-channel IGBT driver that can also be used for driving power MOS devices. The device has been developed in order to optimize the design of high performance automotive inverters. The device is based on Infineon’s coreless transformer technology and consists of two chips separated by galvanic isolation. The low-voltage (primary) side can be connected to standard 5-V logic. The high-voltage (secondary) side is in the DC-link voltage domain. Internally, the data transfers are ensured by two independent communication channels. One channel is dedicated to transferring only the ON and OFF information of the PWM input signal. This channel is unidirectional (from the primary to the secondary side). Because this channel is dedicated to the PWM information, latency time and PWM distortion are minimized. The second channel is bidirectional and is used for all other data transfers (for example, status information). The 1EDI2010AS supports advanced functions, such as two-level turn-on and two-level turn-off, in order to optimize the switching behavior of the IGBT. Furthermore, it supports several protection functions such as DESAT, overcurrent protection, etc. Datasheet 5 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description 1.2 Pin configuration and functionality 1.2.1 Pin configuration 1 VEE2 GND1 36 2 TON IREF1 35 3 VCC2 VCC1 34 4 TOFF INSTP 33 5 DESAT 6 INP 32 GATE REF0 31 7 GND2 EN 30 8 IREF2 NRST/RDY 29 9 VEE2 GND1 28 10 OCP NFLTA 27 11 OCPG NFLTB 26 12 VREG ADCT 25 13 DEBUG SDO 24 14 DACLP NCS 23 15 AIP SDI 22 16 AIN SCLK 21 17 DIO2 DIO1 20 18 VEE2 GND1 19 Figure 1 EiceSENSE pin configuration Table 1 Pin configuration Pin number Symbol I/O Voltage class Function 1,9,18 VEE2 Supply Supply Negative power supply1) 2 TON Output 15 V secondary Turn-on output 3 VCC2 Supply Supply 4 TOFF Output 15 V secondary Turn-off output 5 DESAT Input 15 V secondary Desaturation protection input 6 GATE Input 15 V secondary Gate monitoring input 7 GND2 Ground Ground Ground 8 IREF2 Input 5 V secondary External reference input 10 OCP Input 5 V secondary Overcurrent protection 11 OCPG Ground Ground Ground for the OCP function 12 VREG Output 5 V secondary Reference output voltage 13 DEBUG Input 5 V secondary Debug input 14 DACLP Output 5 V secondary Active clamping disable output Datasheet Positive power supply 6 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description Table 1 Pin configuration (cont’d) Pin number Symbol I/O Voltage class Function 15 AIP Input 5 V analog secondary ADC positive analog input 16 AIN Input 5 V analog secondary ADC negative analog input 17 DIO2 Input/output 5 V secondary Digital I/O 19, 28, 36 GND1 Ground Ground2) 20 DIO1 Input/output 5 V primary Digital I/O 21 SCLK Input 5 V primary SPI serial clock input 22 SDI Input 5 V primary SPI serial data input 23 NCS Input 5 V primary SPI chip select input (low-active) 24 SDO Output 5 V primary SPI serial data output 25 ADCT Input 5 V primary ADC trigger input 26 NFLTB Output 5 V primary Fault B output (low-active, open drain) 27 NFLTA Output 5 V primary Fault A output (low-active, open drain) 29 NRST/RDY Input/output 5 V primary Reset input (low-active, open drain). This signal notifies that the device is “ready”. 30 EN Input 5 V primary Enable input 31 REF0 Ref. ground Ground Reference ground for signals INP, INSTP, EN 32 INP Input 5 V primary Positive PWM input 33 INSTP Input 5 V primary Monitoring PWM input 34 VCC1 Supply input Supply Positive power supply 35 IREF1 Input External reference input Ground 5 V primary 1) All VEE2 pins must be connected together. 2) All GND1 pins must be connected together. Datasheet 7 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description 1.2.2 Pin functionality 1.2.2.1 Primary side GND1 Ground connection for the primary side. VCC1 5-V power supply for the primary side (referring to GND1). INP Non-inverting PWM input of the driver. The internal structure of the pad makes the IC robust against glitches. An internal weak pull-down resistor to VREF0 drives this input to low-state in case the pin is floating. INSTP Monitoring PWM input for shoot-through protection. The internal structure of the pad makes the IC robust against glitches. An internal weak pull-down resistor to VREF0 drives this input to the low state in case the pin is floating. REF0 Reference ground signal for the signals INP, INSTP, and EN. This pin must be connected to the ground signal of the logic issuing those signals. EN Enable input signal. This signal allows the logic on the primary side to turn off and deactivate the device. An internal weak pull-down resistor to VREF0 drives this input to the low state in case the pin is floating. NFLTA Open-drain output signal used to report major failure events (Class A event). In case of an error event, NFLTA is driven to the low state. This pin must be connected externally to VCC1 with a pull-up resistance. NFLTB Open-drain output signal used to report major failure events (Class B event). In case of an error event, NFLTB is driven to the low state. This pin must be connected externally to VCC1 with a pull-up resistance. SCLK Serial clock input for the SPI interface. An internal weak pull-up device to VCC1 drives this input to high state in case the pin is floating. SDO Serial data output (push-pull) or the SPI interface. SDI Serial data input for the SPI interface. An internal weak pull-up device to VCC1 drives this input to high state in case the pin is floating. Datasheet 8 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description NCS Chip select input for the SPI interface. This signal is low-active. An internal weak pull-up device to VCC1 drives this input to the high state in case the pin is floating. IREF1 Reference input of the primary chip. This pin must be connected to VGND1 via an external resistor. NRST/RDY Open-drain reset input. This signal is low-active. When a valid signal is received on this pin, the device is put into its default state. This signal is also used as a “ready” notification. A high level on this pin indicates that the primary chip is functional. DIO1 I/O for the digital channel. Depending of the chosen configuration of the device, this pin can be an input or an output (push-pull). An internal weak pull-down resistor to VGND1 drives this input to the low state in case the pin is floating. ADCT ADC trigger input. An internal weak pull-down device to VGND1 drives this input to the low state in case the pin is floating. 1.2.2.2 Secondary side VEE2 Negative power supply for the secondary side, referring to VGND2. VCC2 Positive power supply for the secondary side, referring to VGND2. GND2 Reference ground for the secondary side. DESAT Desaturation protection input pin. The function associated with this pin monitors the VCE voltage of the IGBT. The detection threshold is programmable. An internal pull-up resistor to VCC2 drives this signal to the high level in case it is floating. OCP Overcurrent protection input pin. The function associated with this pin monitors the voltage across a sensing resistance located on the auxiliary path of a current-sense IGBT. An internal weak pull-up resistor to the internal 5-V reference drives this input to the high state in case the pin is floating. OCPG Overcurrent protection ground. Datasheet 9 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description TON Output pin for turning on the IGBT. TOFF Output pin for turning off the IGBT. GATE Input pin used to monitor the IGBT gate voltage. DEBUG Debug input pin. This pin is latched at power-up. When a high level is detected on this pin, the device enters a special mode where it can be operated without SPI interface. This feature is provided for development purpose only. This pin should normally be tied to VGND2. An internal weak pull-down resistor to VGND2 drives this input to the low state in case the pin is floating. IREF2 Reference input of the secondary chip. This pin must be connected to VGND2 via an external resistor. VREG Reference output voltage. This pin must be connected to an external capacitance to VGND2. DACLP Output pin used to disable the active clamping function of the booster. DIO2 I/O for the digital channel. Depending of the chosen configuration of the device, this pin can be an input or an output (push-pull). An internal weak pull-down resistor to VGND2 drives this input to the low state in case the pin is floating. AIP ADC positive analog input. AIN ADC negative analog input. 1.2.2.3 Pull devices Some of the pins are connected internally to pull-up or pull-down devices. This is summarized in Table 2. Table 2 Internal pull devices Signal Device INP Weak pull-down to VREF0 INSTP Weak pull-down to VREF0 EN Weak pull-down to VREF0 SCLK Weak pull-up to VCC1 SDI Weak pull-up to VCC1 Datasheet 10 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description Table 2 Internal pull devices (cont’d) Signal Device NCS Weak pull-up to VCC1 ADCT Weak pull-down to VGND1 DIO1 Weak pull-down to VGND1 DESAT Weak pull-up to VCC2 DIO2 Weak pull-down to VGND2 OCP Weak pull-up to 5-V internal reference DEBUG Weak pull-down to VGND2 Datasheet 11 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description 1.3 Block diagram IREF1 OSC1 WDG WDG OSC2 IREF2 VCC1 GND2 Power supply VEE2 GND1 Power Supply INP EN/FEN INSTP VCC2 VREG PWM input stage DEBUG Start-stop osc REF0 NCS Primary SPI interface Output stage switching control Secondary SDI logic TON logic SDO TOFF GATE DACLP SCLK OCP OCP NFLTA OCPG NFLTB DESAT ADCT DESAT AIP ADC NRST/RDY AIN DIO1 Figure 2 Datasheet DIO2 Block diagram 12 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description 1.4 Functional block description 1.4.1 Power supplies On the primary side, the 1EDI2010AS needs a single 5-V supply source VCC1 for proper operation. This makes the device compatible with most of the microcontrollers available for automotive applications. On the secondary side, the 1EDI2010AS needs two power supplies for proper operation: • The positive power supply VCC2 is typically set to 15 V (referring to VGND2). • Optionally, a negative supply VEE2 (typically set to -8 V referring to VGND2) can be used. If no negative supply is needed, VEE2 must be connected to VGND2. Undervoltage monitoring on VCC1 and VCC2 is performed continuously during operation of the device (see Chapter 2.3.1). A 5-V supply for the digital domain on the secondary side is generated internally (present at the VREG pin). 1.4.2 Clock domains The clock system of the 1EDI2010AS is based on three oscillators defining each a clock domain: • One RC oscillator (OSC1) for the primary chip. • One RC oscillator (OSC2) for the secondary chip excepting the output stage. • One start-stop oscillator (SSOSC2) for the output stage on the secondary side. The two RC oscillators are running constantly. They are also monitored constantly, and large deviations from the nominal frequency are identified as a system failure (Class B event, see Chapter 1.4.9.2). The start-stop oscillator is controlled by the PWM command. Datasheet 13 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description 1.4.3 PWM input stage The PWM input stage generates the turn-on and turn-off commands for the secondary side from the external signals INP, INSTP, and EN. The general structure of the PWM input block is shown Figure 3. VCC1 EN inhibit_act. en_valid Logic Inhibit time generation INSTP Validity ch eck INP pwm_cmd REF0 Figure 3 PWM input stage The signals INP, INSTP, and EN are pseudo-differential, in the sense that they are not referenced to the common ground GND1 but to the REF0 signal. This is intended to make the device more robust against ground-bouncing effects. Note: Glitches shorter than tINPR1 occurring on signal INP are filtered internally. Note: Pulses on INP shorter than tINPPD might be distorted or suppressed. The 1EDI2010AS supports only non-inverted PWM signals. When a high level on the INP pin is detected while signals INSTP and EN are valid, a turn-on command is issued to the secondary chip. A low level on INP issues a turn-off command to the secondary chip. The EN signal can inhibit turn-on commands received on INP. A valid EN signal is required in order to have turn-on commands issued to the secondary chip. If an invalid signal is provided, the PWM input stage constantly issues turn-off commands to the secondary chip. The functionality of the EN signal is detailed in Chapter 1.4.8. Note: After an invalid-to valid transition of the EN signal, a minimum delay of tINPEN should be inserted before turning INP on. As shown in Figure 4, the INSTP signal provides shoot-through protection (STP) to the system. When the signal on the INSTP pin is at the high level, the internal signal inhibit_act is activated. The inhibition time is defined as the pulse duration of inhibit_act. It corresponds to the pulse duration of the INSTP signal to which a minimum dead time is added. During the inhibition time, rising edges of the INP signal are inhibited. The PSTAT2.STP bit is set for the duration of the inhibition time. The deadtime is programmable through the PCFG2.STPDEL bit field. Datasheet 14 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description INSTP Dead time inhibit_act INP Inhibition time pwm_cmd Figure 4 STP: Inhibition time definition During the inhibition time, the pwm_cmd signal is not forced to low. It means that if the device is already turned on when INSTP is high, it stays on until the signal on the INP pin goes low. This is shown in Figure 5. INSTP Dead time inhibit_act Inhibited edge INP pwm_cmd Inhibition time Figure 5 STP: Example of operation When a condition occurs that inhibits a rising edge of the INP signal, an error notification is issued. See Chapter 2.4.1 for details. Note: Datasheet The failure notification via the PER.STPER bit is filtered internally for times shorter than one OSC1 clock cycle. No notification is raised but the INP signal may be delayed. 15 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description 1.4.4 SPI interface This chapter describes the functionality of the SPI block. 1.4.4.1 Overview The standard SPI interface implemented on the 1EDI2010AS is compatible with most of the microcontrollers available for automotive and industrial applications. The following features are supported by the SPI interface: • Full-duplex bidirectional communication link • SPI slave mode (only) • 16-bit frame format • Daisy-chain capability • MSB first • Parity check (optional) and parity-bit generation (LSB) The SPI interface of the 1EDI2010AS provides a standardized bidirectional communication interface to the main microcontroller. From the architectural point of view, it fulfills the following functions: • Initialization of the device • Configuration of the device (static and runtime) • Reading of the status of the device (static and runtime) • Operation of the verification modes of the device The purpose of the SPI interface is to exchange data which have relaxed timing constraints compared to the PWM signals (from the point of view of the motor-control algorithm). The IGBT switching behavior is, for example, controlled directly by the PWM input. Similarly, critical application failures requiring fast reaction are notified on the primary side via the feedback signals NFLTA, NFLTB, and NRST/RDY. In order to minimize the complexity of the application and to optimize the microcontroller’s resources, the implemented interface supports daisy-chaining. Several (typically six) 1EDI2010AS devices can be combined into a single SPI bus. Datasheet 16 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description 1.4.4.2 General operation The SPI interface of the 1EDI2010AS supports full-duplex operation. The interface relies on four communication signals: • NCS: (Not) chip select • SCLK: Serial clock • SDI: Serial data in • SDO: Serial data out The SPI interface of the 1EDI2010AS supports slave operation only. An SPI master (typically, the main microcontroller) is connected to one or several 1EDI2010AS devices, forming an SPI bus. Several bus topologies are supported. A regular SPI bus topology can be used where each of the slaves is controlled by an individual chip-select signal (Figure 6). In this case, the number of slaves on the bus is limited only by the application’s constraints. SCLK Master SCLK SDO SDI SDI SDO NCS1 NCS Slave 1 NCS2 SCLK ... SDI NCSn Slave 2 ... SDO NCS ... ... ... SCLK SDI Slave n SDO NCS Figure 6 SPI regular bus topology In order to simplify the layout of the PCB and to reduce the number of pins used on the microcontroller’s side, a daisy-chain topology can also be used. The chain’s length is not limited by the 1EDI2010AS itself. A possible topology is shown Figure 7. Datasheet 17 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description SCLK Master SCLK SDO SDI SDI SDO NCS NCS Slave 1 SCLK SDI Slave 2 ... SDO NCS ... ... SCLK ... SDI Slave n SDO NCS Figure 7 SPI daisy-chain bus topology Physical layer The SPI interface relies on two shift registers: • An output shift register, reacting on the rising edges of SCLK. • An input shift register, reacting on the falling edges of SCLK. When the NCS is inactive, the signals on the SCLK and SDI pins are ignored. The SDO output is in tristate. When NCS is activated, the output shift register is updated internally with the value requested by the previous SPI access. On each rising edge of the SCLK signal (while NCS is active), one bit of the output shift register is serially shifted out on the SDO pin (MSB first). On each falling edge of the clock pulse, the data bit available at the SDI input is latched and serially shifted into the input shift register. When NCS is deactivated, the SPI logic checks how many rising and falling edges of the SCLK signal have been received. In case both counts differ and / or are not a multiple of 16, an SPI error is generated. If no error was generated, the SPI block checks the validity of the received 16-bit word. In case of invalid data, an SPI error is generated. If no error is detected, the data is decoded by the internal logic. The NCS signal is active low. Input debouncing filters The input stages of the SDI, SCLK, and NCS signals include each a debouncing filter which filters glitches and noise out of the input signals. The SDI and SCLK input signals are analyzed at each edge of the internal clock derived from OSC1. If the same external signal value is sampled three times consecutively, the signal is considered valid and is processed by the SPI logic. Otherwise, the transition is considered as glitch and is discarded. Datasheet 18 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description The NCS input signal is sampled at a rate corresponding to the period of the internal clock derived from OSC1. If the same external signal value is sampled two times consecutively, the signal is considered valid and is processed by the SPI logic. Otherwise, the transition is considered a glitch and is discarded. 1.4.4.3 Definitions Command A command is a high-level instruction issued by the SPI master which aims at generating a specific reaction in the addressed slave. The command is physically translated into a request message by the SPI master. The correct reception of the request message by the SPI slave leads to a specific action inside the slave and to the emission of an answer message by the slave. Example: The READ command leads to the transfer of the value of the specified register from the device to the SPI master. Word A word is a 16-bit sequence of data bits. Transfer A transfer is defined as the SPI data transmissions (in both directions) occurring between a falling edge of NCS and the next consecutive rising edge of NCS. Request message A request message is a word issued by the SPI master that is addressing a single slave. A request message relates to a specific command. Answer message An answer message is a well-defined word issued by a single SPI slave as a response to a request message. Transmit frame A transmit frame is a sequence of one or several words sent by the SPI master within one SPI transfer. In regular SPI topologies, a transmit frame is in practice identical to a data word. In daisy-chain topologies, a transmit frame is a sequence of data words belonging to different request messages. Receive frame A receive frame is a sequence of one or several words received by the SPI master within one SPI transfer. In regular SPI topologies, a receive frame is in practice identical to a data word. In daisy-chain topologies, a receive frame is a sequence of data words belonging to different answer messages. The SPI protocol supported by the 1EDI2010AS is based on the request-answer principle. The master sends a defined request message to which the slave replies with the corresponding answer message (Figure 8, Figure 9). Due to the nature of the SPI interface, the answer message is shifted, compared to the request message, by one SPI transfer. It means, for example, that the last word of the answer message n is being transmitted by the slave while the master is sending the first word of request message n+1. Datasheet 19 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description Transfer ... Inactive Chip select NCS Active Word i Transmit frame Master serial output (seen at SDI) ... RM1 ... ... RM2 ... ... ... RMn Wn ... ... AM2 ... ... ... ... ... AMn ... Request message for slave i Receive frame Master serial input (seen at SDO) ... ... ... ... AM1 ... ... Answer message of slave i Figure 8 Request-answer principle – daisy-chain topology Transfer ... Inactive Chip select NCS for slave i Master serial output (seen at SDI) Active Transmit frame Request message RM1 RM2 ... ... RMn Word Master serial input (seen at SDO) ... AM1 AM2 AMn Answer message Receive frame Figure 9 ... Request-answer principle – regular topology The first word transmitted by the device after power-up is the content of the PSTAT register. Datasheet 20 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description 1.4.4.4 1.4.4.4.1 SPI data integrity support Parity bit By default, the SPI link relies on an odd-parity protection scheme for each transmitted or received 16-bit word in SPI messages. The parity bit corresponds to the LSB of the 16-bit word. Therefore, the effective payload of a 16-bit word is 15 data bits (plus one parity bit). The parity-bit check (on the received data) can be disabled by clearing the PCFG.PAREN bit. In that case, the parity bit is considered as “don’t care”. The generation of the parity bit by the driver for transmitted words cannot be disabled (but can be considered as “don’t care” by the SPI master). Note: 1.4.4.4.2 For fixed-value commands (ENTER_CMODE, ENTER_VMODE, EXIT_CMODE, NOP), the value of the parity bit must be correct even if parity checking is disabled. Otherwise, an SPI error is generated. SPI error When the device is unable to process an incoming request message, an SPI error is generated: The received message is discarded by the driver, the PER.SPIER bit is set, and the erroneous message is answered with an error notification (LMI bit set). Several failures generate an SPI error: • A parity error is detected on the received word. • An invalid data word format is received (for example, not a 16-bit word). • A word is received which does not corresponding to a valid request message. • A command is received which cannot be processed. For example, the driver receives in Active mode a command which is only valid in other operating modes. Another typical example is a read access to the secondary side while the previous read access is not yet completed (device “busy”). • An SPI access to an invalid address. Datasheet 21 Rev 2.1 2021-12-09 EiceDRIVER™ SENSE 1EDI2010AS Functional description 1.4.4.5 Protocol description 1.4.4.5.1 Command catalog Table 3 gives an overview of the command catalog supported by the device. The full description of the commands and of the corresponding request and answer messages is provided in the following sections. Table 3 SPI command catalog Acronym Short description Valid in mode ENTER_CMODE Enters Configuration mode. OPM0, OPM1 ENTER_VMODE Enters Verification mode. OPM2 EXIT_CMODE Leaves Configuration mode to enter Configured mode. OPM2 READ Reads the register value at the specified address. All NOP Triggers no action in the device (equivalent to a “nop”). All WRITEH Updates the most significant byte of the internal write buffer. All WRITEL Updates the least significant byte of the internal write buffer All (with restrictions) and copies the complete contents of the buffer into the addressed register. The write buffer is cleared afterwards. An overview of the commands is given Figure 10. Message ENTER_CMODE ENTER_VMODE EXIT_CMODE NOP READ WRITEH WRITEL Figure 10 0 0 0 0 0 0 1 Command 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 A4 0 A4 0 0 0 1 A3 1 A3 0 0 1 0 A2 0 A2 0 1 0 0 A1 D15 A1 1 0 0 0 A0 D14 A0 Data 0 1 0 0 0 D13 D7 0 0 1 0 1 D12 D6 0 0 0 1 0 D11 D5 0 0 0 0 1 D10 D4 0 0 0 0 0 D9 D3 P 0 0 0 0 X X X 0 0 0 0 1 D8 D2 SPI commands overview 1.4.4.5.2 Word convention In order to simplify the description of the SPI commands, the following conventions are used (Table 4). Table 4 Word convention Symbol Value Va(REGISTER) Value of register REGISTER PB Parity bit
1EDI2010ASXUMA1 价格&库存

很抱歉,暂时无法提供与“1EDI2010ASXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
1EDI2010ASXUMA1
  •  国内价格
  • 10+71.06406
  • 100+69.28330
  • 250+67.54418
  • 500+65.85714

库存:0

1EDI2010ASXUMA1
  •  国内价格
  • 1+72.88648
  • 10+71.06406
  • 100+69.28330
  • 250+67.54418
  • 500+65.85714

库存:0