PROFET™ +24V
BTT6030-2ERB
Smart High-Side Power Switch Dual Channel, 32 mΩ
1
Package
PG-TDSO-14
Marking
6030-2ERB
Overview
Application
•
Suitable for resistive, inductive and capacitive loads
•
Replaces electromechanical relays, fuses and discrete circuits
•
Most suitable for loads with high inrush current, such as lamps
•
Suitable for 12 V and 24 V trucks + trailer and transportation systems
VBAT
Voltage Regulator
OUT
CVDD
T1
VS
GND
Z
CVS
ROL
VS
VDD
GPIO
RDEN
DEN
GPIO
RDSEL
DSEL
OUT0
Microcontroller
RIN
IN0
GPIO
RIN
IN1
OUT4
COUT
RPD
GPIO
Valve
OUT1
IS
RSENSE
RPD
ADC IN
GND
COUT
Bulb
GND
RIS
RGND
CSENSE
D
Application Diagram with BTT6030-2ERB
Datasheet
www.infineon.com
1
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Overview
Basic Features
•
Two channel device
•
Very low stand-by current
•
3.3 V and 5 V compatible logic inputs
•
Electrostatic discharge protection (ESD)
•
Optimized electromagnetic compatibility
•
Logic ground independent from load ground
•
Very low power DMOS leakage current in OFF state
•
Green product (RoHS compliant) & AEC qualified
Description
The BTT6030-2ERB is a 32 mΩ dual channel Smart High-Side Power Switch, embedded in a PG-TDSO-14,
Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an
N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is
specially designed to drive lamps up to 2 * P21W 24V, as well as LEDs in the harsh automotive environment.
Table 1
Product Summary
Parameter
Symbol
Value
Operating voltage range
VS(OP)
5 V ... 36 V
Maximum supply voltage
VS(LD)
65 V
Maximum ON state resistance at TJ = 150°C per channel
RDS(ON)
62 mΩ
Nominal load current (one channel active)
IL(NOM)1
6A
Nominal load current (both channels active)
IL(NOM)2
4A
Typical current sense ratio
kILIS
2240
Minimum current limitation
IL5(SC)
40 A
Maximum standby current with load at TJ = 25°C
IS(OFF)
500 nA
Diagnostic Functions
•
Proportional load current sense for both channels multiplexed
•
Open load in ON and OFF
•
Overtemperature. Short circuit to battery and ground
•
Stable diagnostic signal during short circuit
•
Enhanced kILIS dependency with temperature and load current
Protection Functions
•
Stable behavior during undervoltage
•
Reverse polarity protection with external components
•
Secure load turn-off during logic ground disconnect with external components
•
Overtemperature protection with latch
•
Overvoltage protection with external components
•
Voltage dependent current limitation
•
Enhanced short circuit protection for up to 40 m cables
Datasheet
2
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Block Diagram
2
Block Diagram
Channel 0
VS
voltage sen sor
int ern al
power
supply
IN0
DEN
over
temper atu re
driver
logic
ESD
prot ec tion
IS
gat e cont rol
&
charge p ump
T
clamp for
ind uctive load
over cur rent
switch limit
OUT 0
load cu rrent sense and
open load detection
forwar d voltage drop detection
VS
Channel 1
T
IN1
Cont rol and pro tec tion ci rcuit equi valent to channel 0
DSEL
OUT 1
GND
Figure 1
Datasheet
Block diagram D xS.vsd
Block Diagram for the BTT6030-2ERB
3
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
GND
1
14
OUT0
IN0
2
13
OUT0
DEN
3
12
OUT0
IS
4
11
NC
DSEL
5
10
OUT1
IN1
6
9
OUT1
NC
7
8
OUT1
Pinout dual SO14.vsd
Figure 2
Pin Configuration
3.2
Pin Definitions and Functions
Table 2
Pin Definition and Functions
Pin
Symbol
Function
1
GND
GrouND; Ground connection
2
IN0
INput channel 0; Input signal for channel 0 activation
3
DEN
Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device
4
IS
Sense; Sense current of the selected channel
5
DSEL
Diagnostic SELection; Digital signal to select the channel to be diagnosed
6
IN1
INput channel 1; Input signal for channel 1 activation
7, 11
NC
Not Connected; No internal connection to the chip
8, 9, 10
OUT1
OUTput 1; Protected high-side power output channel 11)
12, 13, 14
OUT0
OUTput 0; Protected high-side power output channel 01)
Cooling Tab
VS
Voltage Supply; Battery voltage
1) All output pins of a given channel must be connected together on the PCB. All pins of an output are internally
connected together. PCB traces have to be designed to withstand the maximum current which can flow.
Datasheet
4
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Pin Configuration
3.3
Voltage and Current Definition
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.
IVS
VS
VDS0
VS
IIN0
IN0
VIN0
OUT0
IN1
VIN1
IDEN
VDSEL
VOUT0 VDS1
DEN
VDEN
OUT1
DSEL
IIS
IS
VIS
IOUT0
GND
IOUT1
VOUT1
IGND
voltage and current convention.vsd
Figure 3
Datasheet
Voltage and Current Definition
5
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Table 3
Absolute Maximum Ratings 1)
TJ = -40°C to +150°C; (unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
P_4.1.1
Supply Voltages
Supply voltage
VS
-0.3
–
48
V
–
Reverse polarity voltage
-VS(REV)
0
–
28
V
t < 2 min
P_4.1.2
TA = 25 °C
RL ≥ 12 Ω
ZGND= Diode +27 Ω
Supply voltage for short
circuit protection
VBAT(SC)
0
–
36
V
Rsupply = 10 mΩ
Lsupply = 5 µH
RCable1 = 20 mΩ
LCable1 = 0 µH
RCable2 = 320 mΩ
LCable2 = 40 µH
See Chapter 6
and Figure 53
P_4.1.3
Supply voltage for Load
dump protection
VS(LD)
–
–
65
V
2)
RI = 2 Ω
RL = 12 Ω
P_4.1.12
nRSC1
–
–
100
k cycles
3)
P_4.1.4
Voltage at INPUT pins
VIN
-0.3
–
–
6
7
V
–
t < 2 min
P_4.1.13
Current through INPUT
pins
IIN
-2
–
2
mA
–
P_4.1.14
Voltage at DEN pin
VDEN
-0.3
–
–
6
7
V
–
t < 2 min
P_4.1.15
Current through DEN pin
IDEN
-2
–
2
mA
–
P_4.1.16
Voltage at DSEL pin
VDSEL
-0.3
–
–
6
7
V
–
t < 2 min
P_4.1.17
Current through DSEL pin
IDSEL
-2
–
2
mA
–
P_4.1.18
Voltage at IS pin
VIS
-0.3
–
VS
V
–
P_4.1.19
Current through IS pin
IIS
-25
–
50
mA
–
P_4.1.20
Short Circuit Capability
Permanent short circuit
IN pin toggles
VSupply= 28 V
Input Pins
Sense Pin
Datasheet
6
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
General Product Characteristics
Table 3
Absolute Maximum Ratings (cont’d)1)
TJ = -40°C to +150°C; (unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Power Stage
Load current
| IL |
–
–
IL(LIM)
A
–
P_4.1.21
Power dissipation (DC)
PTOT
–
–
2.0
W
TA = 85°C
TJ < 150°C
P_4.1.22
EAS
Maximum energy
dissipation
Single pulse (one channel)
–
–
85
mJ
IL(0) = 4 A
TJ(0) = 150°C
VS = 28 V
P_4.1.23
Voltage at power transistor VDS
–
–
65
V
–
P_4.1.26
I GND
-20
-200
–
20
20
mA
–
t < 2 min
P_4.1.27
Junction temperature
TJ
-40
–
150
°C
–
P_4.1.28
Storage temperature
TSTG
-55
–
150
°C
–
P_4.1.30
-2
–
2
kV
4)
HBM
P_4.1.31
HBM
P_4.1.32
Currents
Current through ground
pin
Temperatures
ESD Susceptibility
ESD susceptibility (all pins) VESD
ESD susceptibility OUT Pin VESD
vs. GND and VS connected
-4
–
4
kV
4)
ESD susceptibility
-500
–
500
V
5)
CDM
P_4.1.33
V
5)
CDM
P_4.1.34
ESD susceptibility pin
(corner pins)
VESD
VESD
-750
–
750
1) Not subject to production test. Specified by design.
2) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1.
3) Threshold limit for short circuit failures : 100 ppm. Please refer to the legal disclaimer for short circuit capability on
the Back Cover of this document.
4) ESD susceptibility, Human Body Model “HBM” according to AEC Q100-002
5) ESD susceptibility, Charged Device Model “CDM” according to AEC Q100-011
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Datasheet
7
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
General Product Characteristics
4.2
Functional Range
Table 4
Functional Range TJ = -40°C to +150°C; (unless otherwise specified)
Parameter
Nominal operating voltage
Symbol
VNOM
Values
Unit
Min.
Typ.
Max.
8
28
36
Note or
Test Condition
Number
V
–
P_4.2.1
2)
Extended operating voltage
VS(OP)
5
–
48
V
VIN = 4.5 V
RL = 12 Ω
VDS < 0.5 V
See Figure 15
P_4.2.2
Minimum functional supply
voltage
VS(OP)_MIN
3.8
4.3
5
V
1)
VIN = 4.5 V
RL = 12 Ω
From IOUT = 0 A
to VDS < 0.5 V;
See Figure 15
See Figure 29
P_4.2.3
Undervoltage shutdown
VS(UV)
3
3.5
4.1
V
1)
VIN = 4.5 V
VDEN = 0 V
RL = 12 Ω
From VDS < 1 V;
to IOUT = 0 A
See Figure 15
See Figure 30
P_4.2.4
Undervoltage shutdown
hysteresis
VS(UV)_HYS
–
850
–
mV
2)
P_4.2.13
Operating current
One channel active
IGND_1
–
5.5
9
mA
P_4.2.5
VIN = 5.5 V
VDEN = 5.5 V
Device in RDS(ON)
VS = 36 V
See Figure 31
Operating current
All channels active
IGND_2
–
9
12
mA
VIN = 5.5 V
P_4.2.6
VDEN = 5.5 V
Device in RDS(ON)
VS = 36 V
See Figure 32
Standby current for whole
device with load
IS(OFF)
–
0.1
0.5
µA
1)
Datasheet
8
–
VS = 36 V
VOUT = 0 V
VIN floating
VDEN floating
TJ ≤ 85°C
See Figure 33
P_4.2.7
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
General Product Characteristics
Table 4
Functional Range (cont’d)TJ = -40°C to +150°C; (unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Maximum standby current for
whole device with load
IS(OFF)_150
–
6
15
µA
VS = 36 V
VOUT = 0 V
VIN floating
VDEN floating
TJ = 150°C
See Figure 33
P_4.2.10
Standby current for whole
device with load, diagnostic
active
IS(OFF_DEN)
–
0.6
–
mA
2)
P_4.2.8
VS = 36 V
VOUT = 0 V
VIN floating
VDEN = 5.5 V
1) Test at TJ = -40°C only
2) Not subject to production test. Specified by design.
Note:
Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics
table.
4.3
Thermal Resistance
Table 5
Thermal Resistance
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Junction to case
RthJC
–
2
–
K/W
1)
P_4.3.1
Junction to ambient
Both channels active
RthJA
–
25
–
K/W
1) 2)
P_4.3.2
1) Not subject to production test. Specified by design.
2) Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board with 1 W power
dissipation equally dissipated for both channel at TA=105°C ; The product (chip + package) was simulated on a 76.4 x
114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x 35 µm Cu). Where applicable, a thermal via array
under the exposed pad contacts the first inner copper layer. Please refer to Figure 4.
Datasheet
9
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
General Product Characteristics
4.3.1
PCB set up
70µm
1.5mm
35µm
0.3mm
Figure 4
PCB 2 s2p .vsd
2s2p PCB Cross Section
PCB bottom view
PCB top view
1
14
2
13
3
4
12
COOLING
TAB
11
VS
5
10
6
9
7
8
thermique SO14.vsd
Figure 5
Datasheet
PC Board Top and Bottom View for Thermal Simulation with 600 mm2 Cooling Area
10
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
General Product Characteristics
4.3.2
Thermal Impedance
BTT6030-2ERx
100
ZthJA (K/W)
TAMBIENT = 105°C
10
1
2s2p
1s0p - 600 mm²
1s0p - 300 mm²
1s0p - footprint
0,1
0,0001
Figure 6
0,001
0,01
0,1
1
Time (s)
10
100
1000
Typical Thermal Impedance. 2s2p set-up according Figure 4
BTT6030-2ERx
100
1s0p - Tambient = 105°C
90
RthJA (K/W)
80
70
60
50
40
30
0
Figure 7
Datasheet
100
200
300
Cooling area (mm²)
400
500
600
Typical Thermal Resistance. PCB set-up 1s0p
11
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Power Stage
5
Power Stage
The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump.
5.1
Output ON-State Resistance
60
57,5
55
52,5
50
47,5
45
42,5
40
37,5
35
32,5
30
27,5
25
22,5
,
20
17,5
15
12,5
10
7,5
5
2,5
0
70
60
RD
DS(ON)[m:]
RD
DS(ON)[m:]
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 8
shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The
behavior in reverse polarity is described in Chapter 6.4.
50
150°C
40
25°C
40°C
30
20
10
40 30 20 10 0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
5
10
15
JunctionTemperature[°C]
Figure 8
20
25
30
35
40
45
50
VS[V]
Typical ON-State Resistance
A high signal (see Chapter 8) at the input pin causes the power DMOS to switch ON with a dedicated slope,
which is optimized in terms of EMC emission.
5.2
Turn ON/OFF Characteristics with Resistive Load
Figure 9 shows the typical timing when switching a resistive load.
IN
V IN_H
VIN_L
t
VOUT
90% VS
dV/dt
dV/dt
ON
OFF
tON
tOFF_DELAY
70% VS
30% VS
tON_DELAY
tOFF
10% VS
t
Switching times .vsd
Figure 9
Datasheet
Switching a Resistive Load Timing
12
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Power Stage
5.3
Inductive Load
5.3.1
Output Clamping
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,
because the inductance intends to continue driving the current. To prevent the destruction of the device by
avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative
output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 10 and Figure 11 for details. Nevertheless,
the maximum allowed load inductance is limited.
VS
ZDS(AZ)
IN
VDS
LOGIC
IL
VBAT
GND
VIN
OUT
VOUT
L, RL
ZGND
Output_clamp.vsd
Figure 10
Output Clamp (OUT0 and OUT1)
IN
t
V OUT
VS
t
V S-VDS(AZ)
IL
t
Switching an inductance.vsd
Figure 11
Datasheet
Switching an Inductive Load Timing
13
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Power Stage
5.3.2
Maximum Load Inductance
During demagnetization of inductive loads, energy has to be dissipated in the BTT6030-2ERB. This energy can
be calculated with following equation:
RL ⋅ IL
L V S – V DS ( AZ-)
E = V DS ( AZ ) ⋅ ------ ⋅ -----------------------------⋅ ln ⎛ 1 – -------------------------------⎞ + I L
⎝
V S – V DS ( AZ )⎠
RL
RL
(5.1)
The following equation simplifies under the assumption of RL = 0 Ω.
VS
2
1
-⎞
E = --- ⋅ L ⋅ I ⋅ ⎛⎝ 1 – -----------------------------2
V S – V DS ( AZ )⎠
(5.2)
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 12 for
the maximum allowed energy dissipation as a function of the load current.
250
225
200
Energy[mJ]
175
150
125
100
75
50
25
0
0
2
4
6
8
10
current[A]
Figure 12
Datasheet
Maximum Energy Dissipation Single Pulse, TJ(0) = 150°C; VS = 28 V
14
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Power Stage
5.4
Inverse Current Capability
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current
IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 13). The
output stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that
particular case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV
should not be higher than IL(INV). Otherwise, the second channel can be corrupted and erratic behavior can be
observed. If the affected channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel
is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance
of VINV, a parasitic diagnostic can be observed at the unaffected channel. After, the diagnosis is valid and
reflects the output state. At VINV vanishing, the diagnosis is valid and reflects the output state. During inverse
current, no protection function are available.
VBAT
VS
Gate
driver
Device
logic
INV
Comp.
IL(INV)
VINV
OUT
GND
ZGND
inverse current.vsd
Figure 13
Datasheet
Inverse Current Circuitry
15
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Power Stage
5.5
Electrical Characteristics Power Stage
Table 6
Electrical Characteristics: Power Stage
VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
ON-state resistance per channel
RDS(ON)_150
40
55
62
mΩ
IL = IL4 = 4 A
VIN = 4.5 V
TJ = 150°C
See Figure 8
P_5.5.1
ON-state resistance per channel
RDS(ON)_25
–
32
–
mΩ
1)
P_5.5.21
Nominal load current
One channel active
IL(NOM)1
–
6
–
A
1)
Nominal load current
All channels active
IL(NOM)2
–
4
–
A
Output voltage drop limitation at VDS(NL)
small load currents
–
10
22
mV
IL = IL0 = 50 mA
See Figure 34
P_5.5.4
Drain to source clamping voltage VDS(AZ)
VDS(AZ) = (VS - VOUT)
66
70
75
V
IDS = 20 mA
See Figure 11
See Figure 35
P_5.5.5
Output leakage current per
channel; TJ ≤ 85°C
IL(OFF)
–
0.05
0.5
µA
2)
VIN floating
VOUT = 0 V
TJ ≤ 85°C
P_5.5.6
Output leakage current per
channel; TJ = 150°C
IL(OFF)_150
–
2
10
µA
VIN floating
VOUT = 0 V
TJ = 150°C
P_5.5.8
Slew rate
30% to 70% VS
ΔV/dtON
0.3
0.8
1.4
V/µs
P_5.5.11
Slew rate
70% to 30% VS
-ΔV/dtOFF
0.3
0.8
1.4
V/µs
Slew rate matching
dV/dtON - dV/dtOFF
ΔdV/dt
-0.15
0
0.15
V/µs
Turn-ON time to VOUT = 90% VS
tON
20
50
150
µs
RL = 12 Ω
VS = 28 V
See Figure 9
See Figure 36
See Figure 37
See Figure 38
See Figure 39
See Figure 40
Turn-OFF time to VOUT = 10% VS
tOFF
20
55
150
µs
P_5.5.15
Turn-ON / OFF matching
tOFF - tON
ΔtSW
-50
0
50
µs
P_5.5.16
Turn-ON time to VOUT = 10% VS
tON_delay
–
30
70
µs
P_5.5.17
Turn-OFF time to VOUT = 90% VS
tOFF_delay
–
30
70
µs
P_5.5.18
Datasheet
16
TJ = 25°C
TA = 85°C
TJ < 150°C
P_5.5.2
P_5.5.3
P_5.5.12
P_5.5.13
P_5.5.14
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Power Stage
Table 6
Electrical Characteristics: Power Stage (cont’d)
VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Switch ON energy
EON
–
0.6
–
mJ
1)
RL = 12 Ω
VOUT = 90% VS
VS = 36 V
See Figure 41
P_5.5.19
Switch OFF energy
EOFF
–
0.8
–
mJ
1)
P_5.5.20
RL = 12 Ω
VOUT = 10% VS
VS = 36 V
See Figure 42
1) Not subject to production test, specified by design.
2) Test at TJ = -40°C only
Datasheet
17
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Protection Functions
6
Protection Functions
The device provides integrated protection functions. These functions are designed to prevent the destruction
of the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside”
normal operating range. Protection functions are designed for neither continuous nor repetitive operation.
6.1
Loss of Ground Protection
In case of loss of the module ground and the load remains connected to ground, the device protects itself by
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN
pins.
In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the
BTT6030-2ERB to ensure switching OFF of the channels.
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS illustrated in
Figure 14.
ZGND is recommended to be a resistor in series to a diode.
VS
ZIS(AZ)
ZD(AZ)
IS
RSENSE
DSEL
DEN
IN0
RDSEL
RDEN
RIN
VBAT
ZDS(AZ)
LOGIC
IOUT(GND)
IN1
RIN
OUT
GND
ZDESD
ZGND
RIS
L, RL RIS
Loss of ground protection.vsd
Figure 14
Loss of Ground Protection with External Components
6.2
Undervoltage Protection
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage
where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold
ON. If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as
the supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the
switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in
the VNOM range. Figure 15 illustrates the undervoltage mechanism.
Datasheet
18
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Protection Functions
S
lo
p
e
1
VOU T
undervoltage behavior . vsd
VS(U V)
Figure 15
Undervoltage Behavior
6.3
Overvoltage Protection
VS
VS(OP)
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism
operates properly in the application, the current in the Zener diode has to be limited by a ground resistor.
Figure 16 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than
VS(AZ), the power transistor switches ON and the voltage across the logic section is clamped. As a result, the
internal ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin IN and DEN rises
almost to that potential, depending on the impedance of the connected circuitry. In the case the device was
ON, prior to overvoltage, the BTT6030-2ERB remains ON. In the case the BTT6030-2ERB was OFF, prior to
overvoltage, the power transistor can be activated. In the case the supply voltage is in above VBAT(SC) and below
VDS(AZ), the output transistor is still operational and follows the input. If at least one channel is in the ON state,
parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply voltage range.
This especially impacts the short circuit robustness, as well as the maximum energy EAS capability.
ISOV
ZIS(AZ)
VS
IS
RSENSE
DSEL
DEN
RDSEL
RDEN
RIN
IN0
ZD(AZ)
VBAT
ZDS(AZ)
LOGIC
IN1
RIN
OUT
ZDESD
GND
RIS
L, RL
ZGND
Overvoltage protection.vsd
Figure 16
Datasheet
Overvoltage Protection with External Components
19
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Protection Functions
6.4
Reverse Polarity Protection
In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current
in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the
logic pins has to be limited to the maximum current described in Chapter 4.1 with an external resistor.
Figure 17 shows a typical application. RGND resistor is used to limit the current in the Zener protection of the
device. Resistors RDSEL, RDEN, and RIN are used to limit the current in the logic of the device and in the ESD
protection stage. RSENSE is used to limit the current in the sense transistor which behaves as a diode. The
recommended value for RDEN = RDSEL = RIN = RSENSE = 10 kΩ. ZGND is recommended to be a resistor in series to a
diode.
During reverse polarity, no protection functions are available.
Microcontroller
protection diodes
VS
ZIS(AZ)
IS
RSENSE
DSEL
DEN
RDSEL
RDEN
RIN
IN0
ZD(AZ)
ZDS(AZ)
VDS(REV)
LOGIC
-VS(REV)
IN1
RIN
OUT
ZDESD
GND
RIS
ZGND
L, RL
Reverse Polarity.vsd
Figure 17
Datasheet
Reverse Polarity Protection with External Components
20
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Protection Functions
6.5
Overload Protection
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTT6030-2ERB
offers several protection mechanisms.
6.5.1
Current Limitation
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the
maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which
affects the current flowing in the DMOS. The current limitation value is VDS dependent. Figure 18 shows the
behavior of the current limitation as a function of the drain to source voltage.
60
50
Current Limit IL(SC) (A)
40
30
20
10
0
2
7
12
17
22
27
32
Drain Source Voltage VDS (V)
Figure 18
Datasheet
Current Limitation (typical behavior)
21
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Protection Functions
6.5.2
Temperature Limitation in the Power DMOS
Each channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of
either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch
OFF latches the output until the temperature has reached an acceptable value illustrated in Figure 19.
No retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch
is switched ON again. Only the IN pin signal toggling can re-activate the power stage. (latch behavior).
IN
t
IL
LOAD CURRENT LIMITATION PHASE
IL(x)SC
LOAD CURRENT BELOW
LIMITATION PHASE
IL(NOM)
t
TDMOS
TJ(SC)
Temperature
protection phase
ΔTJ(SW)
TA
tsIS(FAULT)
t
tsIS(OC_blank)
IIS
IIS(FAULT)
IL(NOM) / kILIS
0A
VDEN
t
tsIS(OFF)
0V
t
Hard start.vsd
Figure 19
Overload Protection
Note:
For better understanding, the time scale is not linear. The real timing of this drawing is application
dependant and cannot be described.
Datasheet
22
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Protection Functions
6.6
Electrical Characteristics for the Protection Functions
Table 7
Electrical Characteristics: Protection
VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25°C
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
Min.
Typ.
Max.
IOUT(GND)
–
0.1
–
mA
1) 2)
VS = 48 V
See Figure 14
P_6.6.1
VDS(REV)
200
610
700
mV
IL = - 2 A
TJ = 150°C
See Figure 17
P_6.6.2
VS(AZ)
65
70
75
V
ISOV = 5 mA
See Figure 16
P_6.6.3
Load current limitation
IL5(SC)
40
50
60
A
3)
VDS = 5 V
See Figure 43
P_6.6.4
Load current limitation
IL28(SC)
–
25
–
A
2)
VDS = 42 V
See Figure 44
P_6.6.7
Dynamic temperature increase ∆TJ(SW)
while switching
–
80
–
K
4)
See Figure 19
P_6.6.8
Thermal shutdown
temperature
TJ(SC)
150
170 4)
200 4)
°C
5)
See Figure 19
P_6.6.10
Thermal shutdown hysteresis
∆TJ(SC)
–
30
–
K
5) 4)
Loss of Ground
Output leakage current while
GND disconnected
Reverse Polarity
Drain source diode voltage
during reverse polarity
Overvoltage
Overvoltage protection
Overload Condition
1)
2)
3)
4)
5)
See Figure 19
P_6.6.11
All pins are disconnected except VS and OUT.
Not Subject to production test, specified by design
Test at TJ = -40°C only
Functional test only
Test at TJ = +150°C only
Datasheet
23
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Diagnostic Functions
7
Diagnostic Functions
For diagnosis purposes, the BTT6030-2ERB provides a combination of digital and analog signals at pin IS.
These signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In
case DEN is activated, the sense current of the channel X is enabled/disabled via associated pin DSEL. Table 8
gives the truth table.
Table 8
Diagnostic Truth Table
DEN
DSEL
IS
0
don’t care
Z
1
0
Sense output 0 IIS(0)
1
1
Sense output 1 IIS(1)
7.1
IS Pin
The BTT6030-2ERB provides a SENSE current written IIS at pin IS. As long as no “hard” failure mode occurs
(short circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open
load at OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and
diagnostic mechanism is described in Figure 20. The accuracy of the SENSE depends on temperature and load
current. The IS pin multiplexes the current IIS(0) and IIS(1), via the pin DSEL. Thanks to this multiplexing, the
matching between kILISCHANNEL0 and kILISCHANNEL1 is optimized. Due to the ESD protection, in connection to VS, it
is not recommended to share the IS pin with other devices if these devices are using another battery feed. The
consequence is that the unsupplied device would be fed via the IS pin of the supplied device.
VS
IIS0 =
IL0 / kILIS
IIS1 =
IL1 / kILIS
IIS(FAULT)
ZIS(AZ)
0
1
IS
FAULT
0
1
DEN
DSEL
Figure 20
Datasheet
Sense schematic.vsd
Diagnostic Block Diagram
24
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Diagnostic Functions
7.2
SENSE Signal in Different Operating Modes
Table 9 gives a quick reference for the state of the IS pin during device operation.
Table 9
Sense Signal, Function of Operation Mode
Operation Mode
Input level Channel X
DEN1)
Output
Level
Diagnostic Output
Normal operation
OFF
H
Z
Z
Short circuit to GND
~ GND
Z
Overtemperature
Z
Z
Short circuit to VS
VS
IIS(FAULT)
Open Load
< VOL(OFF)
> VOL(OFF)2)
Z
IIS(FAULT)
Inverse current
~ VINV
IIS(FAULT)
~ VS
IIS = IL / kILIS
Current limitation
< VS
IIS(FAULT)
Short circuit to GND
~ GND
IIS(FAULT)
Overtemperature TJ(SW)
event
Z
IIS(FAULT)
Short circuit to VS
VS
IIS < IL / kILIS
Open Load
~ VS3)
IIS < IIS(OL)
Inverse current
~ VINV
IIS < IIS(OL)4)
Underload
~ VS5)
IIS(OL) < IIS < IL / kILIS
Don’t care
Z
Normal operation
Don’t care
1)
2)
3)
4)
5)
ON
Don’t care
L
The table doesn’t indicate but it is assumed that the appropriate channel is selected via the DSEL pin.
With additional pull-up resistor.
The output current has to be smaller than IL(OL).
After maximum tINV.
The output current has to be higher than IL(OL).
Datasheet
25
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Diagnostic Functions
7.3
SENSE Signal in the Nominal Current Range
Figure 21 show the current sense as a function of the load current in the power DMOS. Usually, a pull-down
resistor RIS is connected to the IS pin. This resistor has to be higher than 560 Ω to limit the power losses in the
sense circuitry. A typical value is 1.2 kΩ. The blue curve represents the ideal SENSE, assuming an ideal kILIS
factor value. The red curves show the accuracy the device provides across full temperature range, at a defined
current.
5
4.5
4
3.5
IIS [mA]
3
2.5
2
1.5
1
0.5
0
min/max Sense Current
typical Sense Current
0
1
2
3
4
5
IL [A]
6
7
8
9
10
BTT6030-2EKB
BTT6030-2ERB
Figure 21
Current Sense for Nominal Load
7.3.1
SENSE Signal Variation as a Function of Temperature and Load Current
In some applications a better accuracy is required around half the nominal current IL(NOM). To achieve this
accuracy requirement, a calibration on the application is possible. To avoid multiple calibration points at
different load and temperature conditions, the BTT6030-2ERB allows limited derating of the kILIS value, at
nominal load current (IL3; TJ = +25°C). This derating is described by the parameter ΔkILIS. Figure 22 shows the
behavior of the SENSE current, assuming one calibration point at nominal load at +25°C.
The blue line indicates the ideal kILIS ratio.
The green lines indicate the derating on the parameter across temperature and voltage, assuming one
calibration point at nominal temperature and nominal battery voltage.
The red lines indicate the kILIS accuracy without calibration.
Datasheet
26
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Diagnostic Functions
4000
calibrated k ILIS
min/max k ILIS
typical k ILIS
3500
k ILIS
3000
2500
2000
1500
1000
0
1
2
3
4
5
IL [A]
6
7
8
9
10
BTT6030-2EKB
BTT6030-2ERB
Figure 22
Improved SENSE Accuracy with One Calibration Point
7.3.2
SENSE Signal Timing
Figure 23 shows the timing during settling and disabling of the SENSE.
VINx
t
IL
tONx
tOFFx
t ONx
90% of
IL static
t
VDEN
IIS
tsIS(LC)
t sIS(ON)
t sIS(OFF)
90% of
IIS static
t
tsIS(chC)
t sIS(ON_DEN)
t
VDSEL
t
VINy
t
ILy
t ONy
t
current sense settling disabling time.vsd
Figure 23
Datasheet
SENSE Settling / Disabling Timing
27
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Diagnostic Functions
7.3.3
SENSE Signal in Open Load
7.3.3.1
Open Load in ON Diagnostic
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the
power DMOS is below this value, the device recognizes a failure, if the DEN (and DSEL) is selected. In that case,
the SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL).
Figure 24 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The
blue curve shows the ideal kILIS ratio.
I IS
IIS(OL)
IL
IL(OL)
Sense for OL .vsd
Figure 24
Current Sense Ratio for Low Currents
7.3.3.2
Open Load in OFF Diagnostic
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to
be taken into account. Figure 25 gives a sketch of the situation. Ileakage defines the leakage current in the
complete system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion,
etc.... in the application.
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel
x is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized
by the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is
switched to the IIS(FAULT).
An additional RPD resistor can be used to pull VOUT to 0 V. Otherwise, the OUT pin is floating. This resistor can
be used as well for short circuit to battery detection, see Chapter 7.3.4.
Datasheet
28
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Diagnostic Functions
Vbat
SOL
VS
IIS(FAULT)
ROL
OL
comp.
OUT
IS
ILOFF
Ileakage
GND
VOL(OFF)
ZGND
RIS
RPD
Rleakage
Open Load in OFF.vsd
Figure 25
Open Load Detection in OFF Electrical Equivalent Circuit
7.3.3.3
Open Load Diagnostic Timing
Figure 26 shows the timing during either Open Load in ON or OFF condition. Please note that a delay
tsIS(FAULT_OL_OFF) has to be respected after the rising edge of the DEN, when applying an open load in OFF
diagnosis request, otherwise the diagnosis can be wrong.
Load is present
Open load
VIN
t
VOUT
VOL(OFF)
RDSON x IL
t
IOUT
VDEN
t
IIS
tsIS(LC)
tsIS(FAULT_OL_OFF)
90% of IIIS(FAULT) static
t
Error Settling Disabling Time.vsd
Figure 26
Datasheet
SENSE Signal in Open Load Timing
29
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Diagnostic Functions
7.3.4
SENSE Signal with OUT in Short Circuit to VS
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the
normal operation will flow through the DMOS of the BTT6030-2ERB, which can be recognized at the SENSE
signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case,
an external resistor to ground RSC_VS is required illustrated in Figure 27.
Vbat
VS
IIS(FAULT)
VBAT
OL
Comp.
IS
OUT
VOL(OFF)
GND
RIS
RSC_VS
ZGND
Short circuit to Vs.vsd
Figure 27
Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit
7.3.5
SENSE Signal in Case of Overload
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or
the absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the
thermal shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.
The device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic
temperature condition has disappeared, the DMOS is reactivated only when the IN is toggled LOW to HIGH. If
the DEN pin is activated, and DSEL pin is selected to the correct channel, the SENSE follows the output stage.
If no reset of the latch occurs, the device remains in the latching phase and IIS(FAULT) at the IS pin, even though
the DMOS is OFF.
7.3.6
SENSE Signal in Case of Inverse Current
In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state
during OFF state and indicate open load in ON during ON state. The unaffected channel indicates normal
behavior as long as the IINV current is not exceeding the maximum value specified in Chapter 5.4.
Datasheet
30
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Diagnostic Functions
7.4
Electrical Characteristics Diagnostic Function
Table 10
Electrical Characteristics: Diagnostics
VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Unit Note or Test Condition Number
Typ.
Max.
Load Condition Threshold for Diagnostic
Open load detection
threshold in OFF state
VS - VOL(OFF) 4
–
6
V
1)
VIN = 0 V
VDEN = 4.5 V
See Figure 26
P_7.5.1
Open load detection
threshold in ON state
IL(OL)
4
–
25
mA
VIN = VDEN = 4.5 V
IIS(OL) = 5 µA
See Figure 24
See Figure 46
P_7.5.2
IS pin leakage current when IIS_(DIS)
sense is disabled
–
0.02
1
µA
1)
VIN = 4.5 V
VDEN = 0 V
IL = IL4 = 4 A
P_7.5.4
VS- VIS
1
–
3.5
V
2)
VIN = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
IIS = 6 mA
See Figure 47
P_7.5.6
Sense Pin
Sense signal saturation
voltage
(RANGE)
Sense signal maximum
current in fault condition
IIS(FAULT)
6
15
40
mA
VIS = VIN = VDSEL = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
See Figure 20
See Figure 48
P_7.5.7
Sense pin maximum
voltage
VIS(AZ)
65
70
75
V
IIS = 5 mA
See Figure 20
P_7.5.3
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition
Current sense ratio
IL0 = 50 mA
kILIS0
-50%
2450
+50%
Current sense ratio
IL1 = 0.5 A
kILIS1
-25%
2360
+25%
Current sense ratio
IL2 = 1 A
kILIS2
-12%
2240
+12%
P_7.5.10
Current sense ratio
IL3 = 2 A
kILIS3
-9%
2240
+9%
P_7.5.11
Current sense ratio
IL4 = 4 A
kILIS4
-8%
2240
+8%
P_7.5.12
kILIS derating with current
and temperature
ΔkILIS
-5
0
+5
Datasheet
31
VIN = 4.5 V
VDEN = 4.5 V
See Figure 21
TJ = -40 °C; 150 °C
%
2)
kILIS3 versus kILIS2
See Figure 22
P_7.5.8
P_7.5.9
P_7.5.17
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Diagnostic Functions
Table 10
Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25°C
Parameter
Symbol
Values
Unit Note or Test Condition Number
Min.
Typ.
Max.
Current sense settling time tsIS(ON)
to kILIS function stable after
positive input slope on both
INput and DEN
–
–
150
µs
2)
VDEN = VIN = 0 to 4.5 V
VS = 28 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 = 2 A
See Figure 23
P_7.5.18
Current sense settling time tsIS(ON_DEN)
with load current stable
and transition of the DEN
–
–
10
µs
1)
VIN = 4.5 V
VDEN = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 = 2 A
See Figure 23
P_7.5.19
Current sense settling time tsIS(LC)
to IIS stable after positive
input slope on current load
–
–
20
µs
1)
VIN = 4.5 V
P_7.5.20
VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL2 = 1 A to IL = IL3 = 2 A
See Figure 23
Current sense settling time tsIS(FAULT_OL_ –
to IIS stable for open load
OFF)
detection in OFF state
–
100
µs
1)
VIN = 0V
VDEN = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VOUT = VS = 28 V
See Figure 26
P_7.5.22
Current sense settling time tsIS(FAULT_OL_ for open load detection in ON_OFF)
ON-OFF transition
200
–
µs
2)
VIN = 4.5 to 0V
VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VOUT = VS = 28 V
See Figure 26
P_7.5.23
–
150
µs
2)
P_7.5.24
Diagnostic Timing in Normal Condition
Diagnostic Timing in Open Load Condition
Diagnostic Timing in Overload Condition
Current sense settling time tsIS(FAULT)
to IIS stable for overload
detection
Datasheet
–
32
VIN = VDEN = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VDS = 24 V
See Figure 19
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Diagnostic Functions
Table 10
Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Unit Note or Test Condition Number
Typ.
Max.
Current sense over current tsIS(OC_blank) –
blanking time
350
–
µs
2)
VIN = VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VDS = 5 V to 0 V
See Figure 19
P_7.5.32
Diagnostic disable time
DEN transition to
IIS < 50% IL /kILIS
tsIS(OFF)
–
–
20
µs
1)
VIN = 4.5 V
VDEN = 4.5 V to 0 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 = 2 A
See Figure 23
P_7.5.25
Current sense settling time tsIS(ChC)
from one channel to
another
–
–
20
µs
VIN0 = VIN1 = 4.5 V
VDEN = 4.5 V
VDSEL = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL(OUT0) = IL3 = 2 A
IL(OUT1) = IL3 = 1 A
See Figure 23
P_7.5.26
1) DSEL pin select channel 0 only.
2) Not subject to production test, specified by design
Datasheet
33
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Input Pins
8
Input Pins
8.1
Input Circuitry
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to
voltage thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin
is slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state.
The input circuitry is compatible with PWM applications. Figure 28 shows the electrical equivalent input
circuitry. In case the pin is not needed, it must be left opened, or must be connected to device ground (and not
module ground) via a 4.7 kΩ input resistor.
IN
GND
Figure 28
Input Pin Circuitry
8.2
DEN / DSEL Pin
Input circuitry.vsd
The DEN / DSEL pins enable and disable the diagnostic functionality of the device. The pins have the same
structure to INput pins, please refer to Figure 28.
8.3
Input Pin Voltage
The IN, DSEL and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined
region, set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are
unknown and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON
and OFF, a hysteresis is implemented. This ensures a certain immunity to noise.
Datasheet
34
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Input Pins
8.4
Electrical Characteristics
Table 11
Electrical Characteristics: Input Pins
VS = 8 V to 36 V, TJ = -40°C to +150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25°C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note or
Test Condition
Number
See Figure 49
P_8.4.1
P_8.4.2
INput Pins Characteristics
Low level input voltage range
VIN(L)
-0.3
–
0.8
V
High level input voltage range
VIN(H)
2
–
6
V
See Figure 50
Input voltage hysteresis
VIN(HYS)
–
250
–
mV
1)
Low level input current
IIN(L)
1
10
25
µA
VIN = 0.8 V
P_8.4.4
High level input current
IIN(H)
2
10
25
µA
VIN = 5.5 V
See Figure 52
P_8.4.5
Low level input voltage range
VDEN(L)
-0.3
–
0.8
V
–
P_8.4.6
High level input voltage range
VDEN(H)
2
–
6
V
–
P_8.4.7
P_8.4.8
See Figure 51 P_8.4.3
DEN Pin
Input voltage hysteresis
VDEN(HYS)
–
250
–
mV
1)
Low level input current
IDEN(L)
1
10
25
µA
VDEN = 0.8 V
P_8.4.9
High level input current
IDEN(H)
2
10
25
µA
VDEN = 5.5 V
P_8.4.10
Low level input voltage range
VDSEL(L)
-0.3
–
0.8
V
–
P_8.4.11
High level input voltage range
VDSEL(H)
2
–
6
V
–
P_8.4.12
P_8.4.13
DSEL Pin
Input voltage hysteresis
VDSEL(HYS)
–
250
–
mV
1)
Low level input current
IDSEL(L)
1
10
25
µA
VDSEL = 0.8 V
P_8.4.14
High level input current
IDSEL(H)
2
10
25
µA
VDSEL = 5.5 V
P_8.4.15
1) Not subject to production test, specified by design
Datasheet
35
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Characterization Results
9
Characterization Results
The characterization has been performed on 3 lots, with 3 devices each. Characterization has been performed
at 8 V, 28 V and 36 V, from -40°C to 150°C. When no dependency to voltage is seen, only one curve (28 V) is
sketched.
9.1
General Product Characteristics
9.1.1
Minimum Functional Supply Voltage
P_4.2.3
5
4,9
4,8
VSS(OP)_MIN[V]
4,7
4,6
4,5
4,4
4,3
4,2
4,1
4
3,9
3,8
40 30 20 10 0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
JunctionTemperature[°C]
Figure 29
Minimum Functional Supply Voltage VS(OP)_MIN = f(TJ)
9.1.2
Undervoltage Shutdown
P_4.2.4
4,1
4
3,9
VS(UV)[V]
3,8
3,7
3,6
3,5
34
3,4
3,3
3,2
3,1
3
40 30 20 10 0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
JunctionTemperature[°C]
Figure 30
Datasheet
Undervoltage Threshold VS(UV) = f(TJ)
36
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Characterization Results
9.1.3
Current Consumption One Channel Active
P_4.2.5
12
11
10
IG
GND_1[mA]
9
8
7
36V
28V
8V
6
5
4
3
2
1
0
40 30 20 10 0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
JunctionTemperature[°C]
Figure 31
Current Consumption for Whole Device with Load. One Channel Active IGND_1 = f(TJ;VS)
9.1.4
Current Consumption Two Channels Active
P_4.2.6
12
11
10
IG
GND_2[mA]
9
8
7
36V
28V
8V
6
5
4
3
2
1
0
40 30 20 10 0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
JunctionTemperature[°C]
Figure 32
Datasheet
Current Consumption for Whole Device with Load. Two Channels Active IGND_2 = f(TJ;VS)
37
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Characterization Results
9.1.5
Standby Current for Whole Device with Load
P_4.2.7, P_4.2.10
0,50
0,45
0,40
IS(OFF) [μA]
0,35
0,30
36V
28V
8V
0,25
0,20
0,15
0,10
0,05
0,00
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100110120130140150
Junction Temperature [°C]
Figure 33
Datasheet
Standby Current for Whole Device with Load. IS(OFF) = f(TJ;VS)
38
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Characterization Results
9.2
Power Stage
9.2.1
Output Voltage Drop Limitation at Low Load Current
P_5.5.4
25
22,5
V
VDS(NL)[mV]
20
17,5
15
36V
28V
8V
12,5
10
7,5
5
2,5
0
40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150
JunctionTemperature[°C]
Figure 34
Output Voltage Drop Limitation at Low Load Current VDS(NL) = f(TJ;VS) ; IL = IL(0) = 50 mA
9.2.2
Drain to Source Clamp Voltage
P_5.5.5
75
74
73
V
VDS(AZ)[V]
72
71
70
69
68
67
66
65
40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
JunctionTemperature[°C]
Figure 35
Datasheet
Drain to Source Clamp Voltage VDS(AZ) = f(TJ)
39
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Characterization Results
9.2.3
Slew Rate at Turn ON
P_5.5.11
1,4
1,3
dV
V/dtON[v/μs]
1,2
1,1
1
0,9
36V
28V
8V
0,8
07
0,7
0,6
0,5
0,4
0,3
40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150
JunctionTemperature[°C]
Figure 36
Slew Rate at Turn ON dV/dtON = f(TJ;VS), RL = 12 Ω
9.2.4
Slew Rate at Turn OFF
P_5.5.12
1,4
1,3
dV//dtOFF[v/μs]
1,2
1,1
1
0,9
36V
28V
8V
0,8
07
0,7
0,6
0,5
0,4
0,3
40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150
JunctionTemperature[°C]
Figure 37
Datasheet
Slew Rate at Turn OFF - dV/dtOFF = f(TJ;VS), RL = 12 Ω
40
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Characterization Results
9.2.5
Turn ON
P_5.5.14
150
140
130
120
tON[μs]
110
100
36V
28V
8V
90
80
70
60
50
40
30
40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150
JunctionTemperature[°C]
Figure 38
Datasheet
Turn ON tON = f(TJ;VS), RL = 12 Ω
41
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Characterization Results
9.2.6
Turn OFF
P_5.5.15
150
140
130
120
tOFF[μs]
110
100
36V
28V
8V
90
80
70
60
50
40
30
40 30 20 10 0
10 20 30 40 50 60 70 80 90 100110120130140150
JunctionTemperature[°C]
Figure 39
Turn OFF tOFF = f(TJ;VS), RL = 12 Ω
9.2.7
Turn ON / OFF matching
tO
ONtOFF[μs]
P_5.5.16
20
17,5
15
12,5
10
7,5
5
2,5
0
2,5
5
7,5
10
12,5
15
17,5
20
36V
28V
8V
40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150
JunctionTemperature[°C]
Figure 40
Datasheet
Turn ON / OFF matching ΔtSW = f(TJ;VS), RL = 12 Ω
42
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Characterization Results
9.2.8
Switch ON Energy
P_5.5.19
1400
1200
1000
EON[uJ]
800
40
150
600
25
400
200
0
6
12
18
24
30
36
42
SupplyVoltage[V]
Figure 41
Switch ON Energy EON = f(TJ;VS), RL = 12 Ω
9.2.9
Switch OFF Energy
P_5.5.20
1600
1400
1200
EOFF[uJ]
1000
40
800
150
25
600
400
200
0
6
12
18
24
30
36
42
SupplyVoltage[V]
Figure 42
Datasheet
Switch OFF Energy EOFF = f(TJ;VS), RL = 12 Ω
43
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Characterization Results
9.3
Protection Functions
9.3.1
Overload Condition in the Low Voltage Area
P_6.6.4
60
55
IL5(SC)[A]
50
45
40
35
30
40
30
20
10
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
120
130
150
JunctionTemperature[C]
Figure 43
Overload Condition in the Low Voltage Area IL5(SC) = f(TJ;VS)
9.3.2
Overload Condition in the High Voltage Area
P_6.6.7
24
23
IL28(SC) [A]
22
21
20
19
18
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
140
150
Junction Temperature [˚C]
Figure 44
Datasheet
Overload Condition in the High Voltage Area IL28(SC) = f(TJ;VS)
44
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Characterization Results
9.4
Diagnostic Mechanism
9.4.1
Current Sense at no Load
2,5
IISaatnoload[μA]
2
1,5
8V
28V
36V
1
0,5
0
40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150
JunctionTemperature[°C]
Figure 45
Current Sense at no Load IL(OL) = f(TJ;VS), IL = 0
9.4.2
Open Load Detection Threshold in ON State
P_7.5.2
30
27
24
IL(OL)[mA]
21
18
36V
28V
8V
15
12
9
6
3
0
40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130 140150
JunctionTemperature[°C]
Figure 46
Datasheet
Open Load Detection ON State Threshold IL(OL) = f(TJ;VS)
45
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Characterization Results
9.4.3
Sense Signal Maximum Voltage
VSSVIS(RANGE)
P_7.5.6
3
2,8
2,6
2,4
2,2
2
1,8
1,6
1,4
1,2
1
0,8
0,6
0,4
0,2
0
36V
28V
8V
40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150
JunctionTemperature[°C]
Figure 47
Sense Signal Maximum Voltage VS - VIS(RANGE) =f(TJ;VS)
9.4.4
Sense Signal maximum Current
P_7.5.7
30
27
IISSFAULT[mA]
24
21
18
36V
28V
8V
15
12
9
6
3
0
40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130 140150
JunctionTemperature[°C]
Figure 48
Datasheet
Sense Signal Maximum Current in Fault Condition IIS(FAULT) = f(TJ;VS)
46
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Characterization Results
9.5
Input Pins
9.5.1
Input Voltage Threshold ON to OFF
P_8.4.1
2
1,9
1,8
1,7
VIN(L)[V]
1,6
1,5
36V
28V
8V
1,4
1,3
1,2
1,1
1
0,9
0,8
40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150
JunctionTemperature[°C]
Figure 49
Input Voltage Threshold VIN(L) = f(TJ;VS)
9.5.2
Input Voltage Threshold OFF to ON
P_8.4.2
2
1,9
1,8
1,7
VIN(H)[V]
1,6
1,5
36V
28V
8V
1,4
1,3
1,2
1,1
1
0,9
0,8
40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150
JunctionTemperature[°C]
Figure 50
Datasheet
Input Voltage Threshold VIN(H) = f(TJ;VS)
47
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Characterization Results
9.5.3
Input Voltage Hysteresis
P_8.4.3
0,5
0,45
0,4
V
VIN(HYS)[V]
0,35
0,3
36V
28V
8V
0,25
0,2
0,15
0,1
0,05
0
40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150
JunctionTemperature[°C]
Figure 51
Input Voltage Hysteresis VIN(HYS) = f(TJ;VS)
9.5.4
Input Current High Level
P_8.4.5
25
22,5
20
IIN(H)[μA]
17,5
15
36V
28V
8V
12,5
10
7,5
5
2,5
0
40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150
JunctionTemperature[°C]
Figure 52
Datasheet
Input Current High Level IIN(H) = f(TJ;VS)
48
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Application Information
10
Application Information
Note:
The following information is given as a hint for the implementation of the device only and shall not
be regarded as a description or warranty of a certain functionality, condition or quality of the device.
VBAT
Voltage Regulator
OUT
T1
VS
GND
CVDD
Z
CVS
ROL
VS
VDD
GPIO
RDEN
DEN
GPIO
RDSEL
DSEL
OUT0
Microcontroller
RIN
IN0
GPIO
RIN
IN1
OUT4
COUT
RPD
GPIO
Valve
OUT1
RPD
IS
RSENSE
ADC IN
GND
COUT
Bulb
GND
RIS
RGND
CSENSE
D
Figure 53
Application Diagram with BTT6030-2ERB
Note:
This is a very simplified example of an application circuit. The function must be verified in the real
application.
Table 12
Bill of Material
Reference Value
Purpose
RIN
10 kΩ
Protection of the microcontroller during overvoltage, reverse polarity
Guarantee BTT6030-2ERB channels OFF during loss of ground
RDEN
10 kΩ
Protection of the microcontroller during overvoltage, reverse polarity
RDSEL
10 kΩ
Protection of the microcontroller during overvoltage, reverse polarity
RPD
47 kΩ
Polarization of the output for short circuit to VS detection
Improve BTT6030-2ERB immunity to electromagnetic noise
Datasheet
49
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Application Information
Table 12
Bill of Material (cont’d)
Reference Value
Purpose
ROL
1.5 kΩ
Ensures polarization of the BTT6030-2ERB output during open load in OFF
diagnostic
RIS
1.2 kΩ
Sense resistor
RSENSE
4.7 kΩ
Overvoltage, reverse polarity, loss of ground. Value to be tuned with
microcontroller specification.
CSENSE
100 pF
Sense signal filtering.
COUT
10 nF
Protection of the device during ESD and BCI
T1
Dual NPN/PNP
Switch the battery voltage for open load in OFF diagnostic
RGND
27 Ω
Protection of the BTT6030-2ERB during overvoltage
D
BAS21
Protection of the BTT6030-2ERB during reverse polarity
Z
58 V Zener diode Protection of the device during overvoltage
CVS
100 nF
10.1
Further Application Information
Filtering of voltage spikes at the battery line
•
Please contact us to get the pin FMEA
•
Existing App. Notes
•
For further information you may visit www.infineon.com
Datasheet
50
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Package Outlines
Package Outlines
0.25
GAUGE
PLANE
1.15 MAX.
1)
8.65±0.1
14x
COPLANARITY
0°
SEATING
PLANE
...
8
°
0.05±0.05
STANDOFF
1)
3.9±0.1
(0.2)
(0.95)
11
0.67±0.25
6±0.2
2)
14x
14
INDEX
MARKING
1
BOTTOM VIEW
8
7
8
14
7
1
2.65±0.1
0.4±0.05
6.4±0.1
1.27
All dimensions are in units mm
The drawing is in compliance with ISO 128-30, Projection Method 1[
]
1)
Does not Include plastic or metal protrusion of 0.15 max. per side
2)
Dambar protrusion shall be maximum 0.1mm total in excess of width lead width
Figure 54
PG-TDSO-141) (Plastic Dual Small Outline Package) (RoHS-Compliant)
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations the device is available as a green product. Green products are RoHS-Compliant
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Legal Disclaimer for Short-Circuit Capability
Infineon disclaims any warranties and liablilities, whether expressed or implied, for any short-circuit failures
below the threshold limit.
Further information on packages
https://www.infineon.com/packages
1) Dimensions in mm
Datasheet
51
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Revision History
12
Revision History
Version
Date
Changes
1.00
2019-03-09
Creation of the datasheet
Datasheet
52
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3
3.1
3.2
3.3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4.1
4.2
4.3
4.3.1
4.3.2
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5
5.1
5.2
5.3
5.3.1
5.3.2
5.4
5.5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
12
12
13
13
14
15
16
6
6.1
6.2
6.3
6.4
6.5
6.5.1
6.5.2
6.6
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
18
18
19
20
21
21
22
23
7
7.1
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.4
7.3.5
7.3.6
7.4
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . . .
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal with OUT in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
24
25
26
26
27
28
28
28
29
30
30
30
31
8
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Datasheet
53
4
4
4
5
Rev.1.00
2019-03-09
PROFET™ +24V
BTT6030-2ERB
8.1
8.2
8.3
8.4
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DEN / DSEL Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
34
34
35
9
9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
9.3
9.3.1
9.3.2
9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.5
9.5.1
9.5.2
9.5.3
9.5.4
Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Minimum Functional Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Undervoltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Consumption One Channel Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Consumption Two Channels Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Standby Current for Whole Device with Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Voltage Drop Limitation at Low Load Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Drain to Source Clamp Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Slew Rate at Turn ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Slew Rate at Turn OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn ON / OFF matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switch ON Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switch OFF Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overload Condition in the Low Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overload Condition in the High Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Sense at no Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load Detection Threshold in ON State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sense Signal Maximum Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sense Signal maximum Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Voltage Threshold ON to OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Voltage Threshold OFF to ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Voltage Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Current High Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36
36
36
36
37
37
38
39
39
39
40
40
41
42
42
43
43
44
44
44
45
45
45
46
46
47
47
47
48
48
10
10.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
11
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
12
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Datasheet
54
Rev.1.00
2019-03-09
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2019-03-09
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2019 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
BTT6030-2ERB
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.