0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ILD8150XUMA1

ILD8150XUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    PG-DSO8_150MIL

  • 描述:

    LED DRIVER

  • 数据手册
  • 价格&库存
ILD8150XUMA1 数据手册
ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Features • • • • • • • • • • • DC/DC buck with hysteretic current regulation Output current up to 1.5 A DC Integrated 80 V high-side MOSFET switch with low RON Hybrid dimming to 0.5% of the target current Wide operating voltage range 8 V to 80 V Cycle-by-cycle current limitation Under-voltage lockout Thermal protection Flicker free operation Digital soft-start Pull-down transistor to avoid LED glowing Potential applications • Electronic Control Gear (ECG) for LED luminaries CBOOT IOUT DIM L BOOT VOUT SW D SD COUT ILED ILD8150 VIN CS VCC VVIN GND Figure 1 CVCC RCS DC/DC buck constant current Product validation • Qualified for industrial applications according to the relevant tests of JEDEC47/20/22. Product type Package ILD8150 PG-DSO-8 ILD8150E PG-DSO-8 with exposed pad Datasheet www.infineon.com Please read the Important Notice and Warnings at the end of this document V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Description Description The ILD8150 is a 80 V DC/DC converter IC for LED applications to drive high-power LEDs. For applications operating close to SELV limits it provides a high safety voltage margin. The buck LED driver IC is tailored for LEDs in general lighting applications with average currents up to 1.5 A using a high-side integrated switch. A complete set of features and protections provide a well fit for professional LED lighting solutions. Performance and innovation The hysteretic current control provides an extremely fast regulation and stable LED current combined with good EMI performance. The efficiency of the LED driver is remarkable high due to the low RON of the internal switch. Hybrid dimming is an Infineon unique one-pin dimming method that combines analog dimming and PWM dimming of the LEDs current in one hybrid dimming curve. A PWM input signal between 250 Hz and 20 kHz controls dimming of the LEDs current in analog mode from 100 percent to 12.5 percent and 12.5 percent to 0.5 percent in hybrid mode with flicker-free modulation frequency of 3.4 kHz. The digital PWM dimming detection with high resolution makes it the perfect match for microcontroller and high quality dimming applications. The IC supply is directly driven from the primary stage and the low-power shut down contributes to a very high stand-by system efficiency. High output current accuracy from device to device under all loads and input voltages conditions makes it perfect for tunable white and flat panel designs where current must be identical string to string. Protection A wide range of operating supply voltage from 8 V to 80 V DC enables a wide use in many applications and provides a good margin when bus voltage exceeds shortly the SELV limits. The soft-start function protects the primary stage from abrupt current request. The over temperature protection is triggered when the junction temperature exceeds the temperature threshold turning off the output stage. The output stage turns on again when the junction temperature falls below the temperature threshold. Under voltage lock-out protects the bootstrap voltage and the hysteretic design ensures cycle-by-cycle current limitation. Datasheet 2 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Table of contents Table of contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.2.1 3.2.2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Buck controller features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Output current regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Digital soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Protection features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Over-temperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Under-voltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 4.1 4.2 4.3 4.4 Thermal and electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 Package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Datasheet 3 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Functional block diagram 1 Functional block diagram VCC VIN VREG VCC OVER TEMPERATURE 3.3V SD BOOT LOW POWER GD 3.3V DIM SW UVLO DIMMING LOGIC DAC UCL LCL + + UCL LCL CS GND Figure 2 Datasheet Block diagram 4 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Pin configuration 2 Pin configuration SW 1 8 VIN SW 1 8 BOOT 2 7 VCC VIN BOOT 2 7 VCC DIM 3 6 GND 4 5 SD DIM 3 CS GND 4 6 SD 5 CS PG-DSO-8 with exposed pad PG-DSO-8 Figure 3 EP Pin-out Both PG-DSO-8 and PG-DSO-8 with exposed pad have the same pin-out. The exposed pad is internally not connected. Table 1 Pin functions Name No. Function SW 1 Internal switch output. BOOT 2 Internal switch driver bootstrap, connect to bootstrap capacitor. DIM 3 Input for PWM dimming (internally pulled-up). GND 4 Ground. CS 5 Current sense feedback. SD (neg.) 6 Shutdown (internally pulled-up).1) VCC 7 Output of the internal regulator, connect to bypass capacitor. VIN 8 Input voltage. EP2) 9 Exposed pad, connect to GND (internally not connected). 1 2 To use the shutdown functionality 3.3 V must be provided externally at DIM pin. PG-DSO-8 with exposed pad only. Datasheet 5 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Functional description 3 Functional description This chapter provides a summary of the integrated functions and features, and describes the relationships between them. The parameters and equations are based on typical values at TA = 25 °C. 3.1 Buck controller features 3.1.1 Output current regulation The hysteretic control allows fast and always stable output current and guarantees an intrinsic cycle-by-cycle over-current protection. The pin CS feeds back the voltage level on the current sense resistor RCS to the hysteretic controller. The hysteretic controller implements two voltage thresholds VCSH and VCSL. When the CS voltage crosses above the VCSH threshold the internal switch turns-off. When the CS voltage crosses below the VCSL the internal switch turns-on. The thresholds VCSH and VCSL determine the output current peak-to-peak ripple I OUT, RIPPLE = V CSH − V CSL /RCS . The target LEDs current is the undimmed average current determined by the formula I LED, AVG = V CS, AVG /RCS with V CS, AVG = V CSH + V CSL /2 . The continuous-conduction-mode (CCM) timings are tON = I OUT, RIPPLE ∙ L / V V IN − V OUT and tOFF = I OUT, RIPPLE ∙ L /V OUT . Figure 4 show the CCM output current waveform. IOUT [A] ILED,AVG time [s] tON 1/fSW Figure 4 Output current waveform 3.1.2 Dimming tOFF In analog dimming the output current is proportional to the internal CS reference voltage and the output current varies analogically between 100% and 12.5% of the target output current. Hybrid dimming applies below 12.5% of the target output current so that the output current is stable at 12.5% and amplitude modulated. The modulation signal has a frequency of typically 3.4 kHz to satisfy the IEEE1789-2015 recommendation for no observable flicker in light. Figure 5 shows the mapping between the input PWM duty cycle and the output current as a ratio of the target output current. Figure 8 shows the detail of dim-to-off. Datasheet 6 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Functional description 100 x Iout/Iref [%] 100 Analog dimming 12.5 Hybrid dimming 0.5 0.5 Figure 5 100 12.5 DPWM_IN [%] Hybrid dimming curve Figure 6 shows the output current in analog dimming. IOUT [A] ILED,AVG ILED,AVG time [s] tON 1/fSW Figure 6 tOFF Output current waveform in analog dimming at two dimming levels Figure 7 shows the output current in hybrid dimming. IOUT [A] ILED,AVG time [s] tPWM_OUT,ON 1/fOUT Figure 7 Output current waveform in hybrid dimming The ILD8150 turns the output stage respectively off when the PWM dimming input signal duty cycle is less than DPWM_IN,OFF and on when the PWM dimming input signal duty cycle is higher than DPWM_IN,ON. The two dim-to-off levels create a hysteresis that avoids unstable states at the on/off boundary. Datasheet 7 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Functional description 100 x Iout/Iref [%] 0 DPWM_IN [%] DPWM_IN,OFF DPWM_IN,ON Figure 8 Dimming curve dim-to-off detail The ILD8150 evaluates the PWM dimming input signal duty cycle DPWM_IN at the DIM pin. In analog dimming the duty cycle maps to a proportional CS reference voltage. In hybrid dimming the duty cycle maps to a hybrid dimming duty cycle using the hybrid dimming curve. The hybrid dimming frequency is fixed and does not relate to the input PWM frequency. Figure 9 shows the details of the input PWM signal where DPW M _IN = tPW M _IN, ON ∙ fINPUT . VPWM_IN [V] time [s] tPWM_IN,ON 1/fINPUT Figure 9 Input PWM signal 3.1.3 Digital soft-start Soft-start is a feature that smooths output current transients during start-up. Output current smoothing is digitally managed by the IC and applies in case of abrupt dimming changes. When the IC goes to dim-to-off the output current smoothing applies resulting in a soft-stop behavior. Benefits are the avoidance of under shoots or over shoots at primary side reflecting in a stable power regulation and reduction of components stress. Digital soft-start uses of the PWM dimming signal. The PWM duty cycle sets the target dimming level and the PWM frequency sets the speed to reach that level. To lower PWM frequencies correspond a slower soft-start, to higher PWM frequencies correspond a faster soft-start. The output current ramps up to the target value in a determined soft start time tSS. tSS is defined as the time to reach the desired dimming level from a change in the PWM dimming signal. The number of steps of the soft-start ramp may vary depending on the actual and the target dimming level. Datasheet 8 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Functional description IOUT [A] ILED,AVG,TARG ILED,AVG,2 ILED,AVG,1 time [s] 0.025 0.025 tss Figure 10 Digital soft-start Figure 10 shows the output current soft-start in case of 100% dimming or DIM pin open (internally pulled-up). IOUT [A] ILED,AVG,DIM ILED,AVG,2=ILED,AVG,ANA,MIN ILED,AVG,1 time [s] 5/fINPUT 5/fINPUT tss Figure 11 Digital soft-start in dim-mode Figure 11 shows the output current soft-start in case of PWM dimming signal applied at the DIM pin. Note: 3.1.4 Output current smoothing does not affect the output current for small variations of the dimming signal e.g. to create light fading effects. Low power mode If the shut-down signal (SD neg.) is driven low for more than tSD_LO the low power mode is active. If the shut-down signal is held high for more than tSD_HI the IC resumes from low power mode. –ISD,HPU dynamic current is needed to turn the IC into low power mode, then the current changes into static –ISD,LPU. DIM pin needs to be driven externally with at least VDIM,SD voltage during low power mode. Datasheet 9 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Functional description Low power enabled when A is high Low power disabled when A is low Low power enabled when B is low Low power disabled when B is high or Z VDIM,SD VDIM,SD 3.3V DIM 3.3V DIM ISD SD B ISD SD A Figure 12 Shut-down signal interfacing high SD tSD_LO low SW tSD_HI high low Figure 13 Shut-down timings 3.2 Protection features 3.2.1 Over-temperature protection The over-temperature protection turns off the output stage when the junction temperature exceeds the temperature threshold TOT,OFF. When the junction temperature falls below the temperature threshold TOT,ON the output stage turns on again. In case of over-temperature the IC stops switching and waits for the over-temperature condition to disappear. The low power mode is not entered in case of over-temperature. tOT,OFF tOT,ON Junction temperature 0 SW high low Figure 14 Over-temperature protection reaction 3.2.2 Under-voltage protection The gate driver implements an under-voltage lock-out (UVLO) protection at high-side that switches-off the gate driver in case of BOOT under voltage (e.g. due to wrong bootstrap capacitor selection or incorrect system dimensioning). In case of gate driver UVLO, the switch activity is interrupted in order to reload the bootstrap capacitor charge. Datasheet 10 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Thermal and electrical characteristics 4 Thermal and electrical characteristics This chapter describes the thermal and electrical characteristics of the ILD8150. 4.1 Package characteristics Table 2 Package characteristics Parameter Symbol Limit values Unit Remarks min max RthJA — 170 K/W JEDEC 1s0p no cooling area, for 345 mW power dissipation, TA = 90 °C RthJA — 135 K/W JEDEC 1s0p 100 mm² cooling area, for 440 mW power dissipation, TA = 90 °C Thermal resistance for PGDSO-8 junction-to-case top RthJCtop — 42 K/W for 440 mW power dissipation, TA = 90 °C Thermal resistance for PGDSO-8 with exposed pad junction-to-ambient RthJA — 160 K/W JEDEC 1s0p no cooling area, for 372 mW power dissipation, TA = 90 °C RthJA — 90 K/W JEDEC 1s0p 100 mm² cooling area, for 635 mW power dissipation, TA = 90 °C RthJCtop — 60 K/W for 635 mW power dissipation, TA = 90 °C Thermal resistance for PGDSO-8 junction-to-ambient Thermal resistance for PGDSO-8 with exposed pad junction-to-case top 4.2 Absolute maximum ratings Attention: Stresses above the values listed below may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. These values are not tested during production test. Table 3 Absolute maximum ratings Parameter Symbol Limit values Unit min max Junction temperature TJ — 165 °C Storage temperature TS –65 150 °C Soldering temperature TSOLD — 260 °C Datasheet 11 Remarks V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Thermal and electrical characteristics Table 3 Absolute maximum ratings (continued) Parameter Symbol Limit values min max Unit Remarks Latch-up ILU — 100 mA 3) Pin voltages acc. to abs. ESD HBM 4) VHBM — 2000 V 5) ESD CDM VCDM — 500 V 6) Voltage at pin SW VSW –0.7 90 V V Voltage at pin BOOT VBOOT VSW 907) Voltage at pin DIM VDIM –0.3 3.6 V Voltage at pin CS VCS –0.3 1.5 V Voltage at pin SD VSD –0.3 3.6 V Voltage at pin VCC VVCC –0.3 9 V Voltage at pin VIN VVIN –0.3 90 V 4.3 max. ratings Voltage internally supplied to BOOT pin Voltage internally supplied to VCC pin Operating conditions The recommended operating conditions are shown for which the DC electrical characteristics are valid. Table 4 Operating conditions Parameter Symbol Limit values Unit min max Junction temperature TJ –40 150 °C VIN pin voltage VVIN 8 80 V 3 4 5 6 7 Remarks Latch-up according to JEDEC JESD78D, TA= 85°C. Two different classes of ESD protection elements are implemented within ILD8150/ILD8150E: 1. ESD protection at pin VS will be triggered if the voltage at pin VS rises by more than 5 V with a slew rate of more than 5 V/µs. This condition is met during an ESD event, but might also occur if the LED driver gets hotplugged into a power supply and the VS blocking capacitor has a too small capacitance. ESD protection will remain triggered as long as the slewrate condition is met. If the ESD protection gets triggered while VS is supplied the IC might be damaged. 2. ESD protection at all other pins is triggered once the connected voltage signal exceeds a threshold higher than the maximum voltage rating specified for each pin. No preventions regarding slew rate control need to be taken for these pins.. ESD-HBM according to JEDEC JS-001. ESD-CDM according to JEDEC JS-002. The voltage difference between BOOT and SW pins must never exceed 9 V. Datasheet 12 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Thermal and electrical characteristics 4.4 Electrical characteristics The DC electrical characteristics provide the spread of values applicable within operating conditions (see chapter 4.3 ). Typical values represent the median values related to TA = 25 °C. Table 5 DC electrical characteristics Parameter Symbol Values Min. Typ. Unit Note or test condition Max. Integrated switch and driver RON — 290 — mΩ ISW=200 mA8) RON — — 545 mΩ ISW=200 mA and TJ=150 °C8) RON — 330 — mΩ ISW=200 mA 9) RON — — 585 mΩ ISW=200 mA and TJ=150 °C 9) Gate-driver under-voltage lock-out (turn-off) VGD_UVLO,OFF — 3.6 — V VGD=VBOOT-VSW Gate-driver under-voltage lock-out (turn-on) VGD_UVLO,ON — 3.7 — V VGD=VBOOT-VSW Voltage internally supplied to VVCC VCC pin — — 7.3 V VIN pin operating current in dim-to-off IVIN_DO — — 2.3 mA VDIM=0 V VIN pin operating current in shutdown IVIN_SD — — 100 μA VSD=0 V and VDIM=3.3V provided externally10) IVIN_SD — — 140 μA VSD=0 V and VDIM=3.3V provided externally11) VIN under-voltage lock-out (turn-off) VVIN_UVLO,OFF — 7.1 — V VIN under-voltage lock-out (turn-on) VVIN_UVLO,ON — 7.5 — V SD pin input high voltage VSD,IH 2.1 — — V SD pin input low voltage VSD,IL — — 1.0 V SD pin, reduced pull-up current during shutdown –ISD,LPU — — 3.0 µA VSD=0 V VDIM>VDIM,SD provided externally SD pin, initial pull-up current to start shutdown –ISD,HPU — 48 71 µA VSD>VSD,IH VDIM>VDIM,SD provided externally VIN pin to SW pin ON resistance Supply Shutdown 8 9 10 11 PG-DSO-8 PG-DSO-8 with exposed pad Tested at VVIN=8 V. Tested at VVIN=80 V. Datasheet 13 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Thermal and electrical characteristics Table 5 DC electrical characteristics (continued) Parameter Symbol Values Min. Typ. Unit Note or test condition Max. DIM pin low power mode current IDIM,SD — 52 105 µA VSD=0 V DIM pin low power mode voltage VDIM,SD 3.1 — — V VSD=0 V CS reference voltage high VCSH 379 390 401 mV undimmed CS reference voltage low VCSL 320 330 340 mV undimmed CS reference voltage hysteresis HYSTCS 7 — — % peak-to-average Regulation HY STCS = 100x Dimming DIM pin input high voltage VDIM,IH 2.1 — — V DIM pin input low voltage VDIM,IL — — 1.0 V Input low current (internal pull-up) –IDIM,LPU — — 65 µA V CSH − V CSL V CSH + V CSL VDIM=0 V The values in switching characteristics are verified by design and not tested in production test. Table 6 Switching characteristics Parameter Symbol Values Min. Typ. Unit Note or test condition selectable using CS shunt resistor Max. Integrated switch and driver Undimmed average switch current ISW,AVG — — 1.512) A Switching frequency fSW — — 2 MHz SD pin stable high tSD_HI 20 — — ms time to begin of SW turn-on (low power mode exit) SD pin stable low tSD_LO 5 — — µs time to begin of SW turn-off (low power mode entry) tCSSW — — 120 ns Shutdown Regulation Delay from VCS crossing to begin of SW turn-off or turnon 12 The system must be capable of dissipating the power. Datasheet 14 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Thermal and electrical characteristics Table 6 Switching characteristics (continued) Parameter Symbol Values Min. Typ. Unit Note or test condition Max. Dimming Output current hybrid dimming frequency fOUT 3060 3400 3740 Hz Input PWM frequency fINPUT 250 — 20000 Hz Input PWM recognizable duty cycle DPWM_IN 0 — 100 % Input PWM duty cycle dim-to- DPWM_IN,OFF off (turn-off) — 0.45 — % Input PWM duty cycle dim-to- DPWM_IN,ON off (turn-on) — 0.5 — % Input PWM recognizable duty cycle accuracy APWM_IN — ±2-14 — LSB-1 Thermal shutdown threshold (turn-off) TOT,OFF 153 — 161 °C Thermal shutdown threshold (turn-on) TOT,ON 138 — 146 °C 15 — — °C fINPUT=1 kHz Over-temperature protection Thermal shutdown hysteresis TOT,HYST Soft-start Soft-start time in dimming tSS — — 10/ fINPUT s Soft-start time undimmed tSS,100% — — 50 ms Datasheet 15 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Package dimensions 5 Package dimensions The package dimensions of PG-DSO-8 and PG-DSO-8 with exposed pad are provided. Figure 15 Datasheet Package dimensions for PG-DSO-8 16 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Package dimensions DIMENSIONS A A1 A2 b c D D1 E E1 E2 e h L THETA aaa bbb ccc ddd Figure 16 Datasheet MILLIMETERS MIN. MAX. 1.70 0.00 0.10 1.45 0.32 0.50 0.19 0.25 4.80 5.10 2.80 3.20 5.80 6.20 3.80 4.00 2.45 2.85 1.27 0.35 0.39 0.99 0° 8° 0.10 0.10 0.08 0.20 DOCUMENT NO. Z8B00189603 REVISION 01 SCALE 5:1 0 1 2 3 4mm EUROPEAN PROJECTION ISSUE DATE 18.07.2018 Package dimensions for PG-DSO-8 with exposed pad 17 V1.4 2021-01-19 ILD8150/ILD8150E LED driver IC for high power LEDs with hybrid dimming down to 0.5% Revision history Revision history Major changes since previous revision Revision history Reference Description V1.0 First release V1.1 Absolute maximum ratings changed (VSW min) V1.2 RON split for TA = 25 °C and TJ = 150 °C V1.3 –ISD,HPU, IDIM,LPI and VDIM,SD added, SD pin behavior described V1.4 ESD protection described Datasheet 18 V1.4 2021-01-19 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2021-01-19 Published by Infineon Technologies AG 81726 Munich, Germany © 2021 Infineon Technologies AG All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference IFX-vxc1510921414939 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.