0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF1010ZL

IRF1010ZL

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT226

  • 描述:

    MOSFET N-CH 55V 75A TO-262

  • 数据手册
  • 价格&库存
IRF1010ZL 数据手册
PD - 94652A IRF1010Z IRF1010ZS IRF1010ZL AUTOMOTIVE MOSFET Features ● ● ● ● ● HEXFET® Power MOSFET Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax D VDSS = 55V RDS(on) = 7.5mΩ G Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. ID = 75A S D2Pak IRF1010ZS TO-220AB IRF1010Z TO-262 IRF1010ZL Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 94 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current IDM 75 360 PD @TC = 25°C Power Dissipation 140 W Linear Derating Factor VGS Gate-to-Source Voltage EAS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value EAS (Tested ) 0.90 ± 20 W/°C V 130 mJ c d c IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range °C i Parameter RθJC Junction-to-Case RθCS Case-to-Sink, Flat Greased Surface RθJA Junction-to-Ambient www.irf.com A -55 to + 175 Mounting Torque, 6-32 or M3 screw Junction-to-Ambient (PCB Mount) 180 mJ Thermal Resistance i h See Fig.12a, 12b, 15, 16 g Soldering Temperature, for 10 seconds RθJA A 66 j i 300 (1.6mm from case ) y y 10 lbf in (1.1N m) Typ. Max. Units ––– 1.11 °C/W 0.50 ––– ––– 62 ––– 40 1 9/8/03 IRF1010ZS/L Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.049 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 5.8 7.5 VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 gfs IDSS Forward Transconductance 33 ––– Drain-to-Source Leakage Current ––– ––– ––– ––– 250 IGSS V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 75A e V VDS = VGS, ID = 250µA ––– S VDS = 25V, ID = 75A 20 µA VDS = 55V, VGS = 0V VDS = 55V, VGS = 0V, TJ = 125°C Gate-to-Source Forward Leakage ––– ––– 200 Gate-to-Source Reverse Leakage ––– ––– -200 nA VGS = 20V Qg Total Gate Charge ––– 63 95 Qgs Gate-to-Source Charge ––– 19 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 24 ––– VGS = 10V td(on) Turn-On Delay Time ––– 18 ––– VDD = 28V tr Rise Time ––– 150 ––– td(off) Turn-Off Delay Time ––– 36 ––– tf Fall Time ––– 92 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package Ciss Input Capacitance ––– 2840 ––– and center of die contact VGS = 0V Coss Output Capacitance ––– 420 ––– Crss Reverse Transfer Capacitance ––– 250 ––– Coss Output Capacitance ––– 1630 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 360 ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 560 ––– VGS = 0V, VDS = 0V to 44V VGS = -20V ID = 75A nC VDS = 44V e ID = 75A ns nH RG = 6.8 Ω e VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 75 ISM (Body Diode) Pulsed Source Current ––– ––– 360 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V trr Reverse Recovery Time ––– 22 33 ns Qrr Reverse Recovery Charge ––– 15 23 nC ton Forward Turn-On Time 2 c Conditions MOSFET symbol A showing the integral reverse p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V e TJ = 25°C, IF = 75A, VDD = 25V di/dt = 100A/µs e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRF1010ZS/L 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 4.5V 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 4.5V 20µs PULSE WIDTH Tj = 25°C 1 20µs PULSE WIDTH Tj = 175°C 10 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 100 T J = 25°C Gfs, Forward Transconductance (S) ID, Drain-to-Source Current ( A) VGS T J = 175°C 100 10 VDS = 25V 20µs PULSE WIDTH 1 T J = 175°C 80 60 T J = 25°C 40 20 VDS = 10V 20µs PULSE WIDTH 0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 11.0 0 20 40 60 80 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRF1010ZS/L 5000 VGS, Gate-to-Source Voltage (V) C rss = C gd 4000 C, Capacitance (pF) 20 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C oss = C ds + C gd 3000 Ciss 2000 1000 Coss Crss VDS= 44V VDS= 28V 16 12 8 4 0 0 1 ID= 75A 10 0 100 20 40 60 80 100 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000.0 10000 100.0 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) T J = 175°C 10.0 T J = 25°C 1.0 VGS = 0V 0.1 0.2 0.6 1.0 1.4 1.8 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 1000 100 100µsec 10 1msec 1 0.1 Tc = 25°C Tj = 175°C Single Pulse 1 10msec 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF1010ZS/L 100 ID , Drain Current (A) 80 60 40 20 0 25 50 75 100 125 150 175 ID = 75A VGS = 10V 2.0 (Normalized) RDS(on) , Drain-to-Source On Resistance 2.5 LIMITED BY PACKAGE 1.5 1.0 0.5 -60 -40 -20 T C , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF1010ZS/L 250 DRIVER L VDS D.U.T RG + V - DD IAS VGS 20V tp EAS, Single Pulse Avalanche Energy (mJ) 15V A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp ID TOP 200 BOTTOM 31A 53A 75A 150 100 50 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 VCC VGS(th) Gate threshold Voltage (V) QGS ID = 250µA 3.0 2.0 1.0 1K -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRF1010ZS/L 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 100 0.01 0.05 10 0.10 1 0.1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 140 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 75A EAR , Avalanche Energy (mJ) 120 100 80 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRF1010ZS/L D.U.T Driver Gate Drive + ƒ + ‚ „ * D.U.T. ISD Waveform Reverse Recovery Current +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - D= Period P.W. VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs VDS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF1010ZS/L TO-220AB Package Outline Dimensions are shown in millimeters (inches) 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 3 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INTERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C For GB Production EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INTERNATIONAL RECT IFIER LOGO LOT CODE www.irf.com PART NUMBER DAT E CODE 9 IRF1010ZS/L D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L AS S EMBLY LOT CODE For GB Production T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO LOT CODE 10 PART NUMBER F530S DAT E CODE www.irf.com IRF1010ZS/L TO-262 Package Outline Dimensions are shown in millimeters (inches) IGBT 1- GATE 2- COLLECTOR TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 AS SEMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INT ERNAT IONAL RECTIFIER LOGO AS SEMBLY LOT CODE www.irf.com PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C 11 IRF1010ZS/L D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 60.00 (2.362) MIN. 30.40 (1.197) MAX. 26.40 (1.039) 24.40 (.961) 3 4 Notes: … Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive max. junction temperature. (See fig. 11). avalanche performance. ‚ Limited by TJmax, starting TJ = 25°C, L = 0.05mH † This value determined from sample failure population. 100% RG = 25Ω, IAS = 75A, VGS =10V. Part not tested to this value in production. recommended for use above this value. ‡ This is only applied to TO-220AB pakcage. ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%. ˆ This is applied to D2Pak, when mounted on 1" square PCB (FR„ Coss eff. is a fixed capacitance that gives the 4 or G-10 Material). For recommended footprint and soldering same charging time as Coss while VDS is rising techniques refer to application note #AN-994. from 0 to 80% VDSS .  Repetitive rating; pulse width limited by TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101]market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/03 12 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/
IRF1010ZL 价格&库存

很抱歉,暂时无法提供与“IRF1010ZL”相匹配的价格&库存,您可以联系我们找货

免费人工找货