0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF1405ZSTRL-7P

IRF1405ZSTRL-7P

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TO263-7

  • 描述:

    MOSFET N-CH 55V 120A D2PAK7

  • 数据手册
  • 价格&库存
IRF1405ZSTRL-7P 数据手册
PD - 96905B AUTOMOTIVE MOSFET IRF1405ZS-7P IRF1405ZL-7P HEXFET® Power MOSFET Features l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax D VDSS = 55V RDS(on) = 4.9mΩ‰ G ID = 120A S S (Pin 2, 3, 5, 6, 7) G (Pin 1) Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D2Pak 7 Pin TO-263CA 7 Pin Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 150 A ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig. 9) 100 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) 120 IDM Pulsed Drain Current PD @TC = 25°C Maximum Power Dissipation 230 W Linear Derating Factor 1.5 ± 20 W/°C V 250 mJ VGS EAS c 590 Gate-to-Source Voltage Single Pulse Avalanche Energy (Thermally Limited) EAS (tested) Single Pulse Avalanche Energy Tested Value IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range c h d g See Fig.12a,12b,15,16 A mJ °C -55 to + 175 Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torque, 6-32 or M3 screw 10 lbf•in (1.1N•m) Thermal Resistance Typ. Max. Units ––– 0.65 °C/W Case-to-Sink, Flat, Greased Surface 0.50 ––– Junction-to-Ambient ––– 62 ––– 40 RθJC Junction-to-Case RθCS RθJA RθJA 810 j Parameter j Junction-to-Ambient (PCB Mount, steady state) ij HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 12/6/06 IRF1405ZS/L-7P Static @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆ΒVDSS/∆TJ RDS(on) SMD VGS(th) Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage gfs IDSS Forward Transconductance Drain-to-Source Leakage Current IGSS Min. Typ. Max. Units ––– 0.054 ––– ––– Qg Qgs Qgd td(on) tr td(off) tf LD Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance 55 ––– ––– 2.0 150 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 3.7 ––– ––– ––– ––– ––– ––– 150 37 64 16 140 170 130 4.5 4.9 4.0 ––– 20 250 200 -200 230 ––– ––– ––– ––– ––– ––– ––– LS Internal Source Inductance ––– 7.5 ––– Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 5360 1310 340 6080 920 1700 ––– ––– ––– ––– ––– ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 88A V VDS = VGS, ID = 150µA S VDS = 25V, ID = 88A µA VDS = 55V, VGS = 0V VDS = 55V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V nC ID = 88A VDS = 44V VGS = 10V ns VDD = 28V ID = 88A RG = 5.0Ω VGS = 10V D nH Between lead, e e d 6mm (0.25in.) from package pF G S and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 44V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 44V Diode Characteristics Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD trr Qrr (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge c Min. Typ. Max. Units ––– 150 ––– ––– ––– ––– ––– ––– 63 160 Conditions MOSFET symbol A Notes:  Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). ‚ Limited by TJmax, starting TJ = 25°C, L=0.064mH, RG = 25Ω, IAS = 88A, VGS =10V. Part not recommended for use above this value. ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%. „ Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. 2 ––– D 590 showing the integral reverse 1.3 95 240 S p-n junction diode. TJ = 25°C, IS = 88A, VGS = 0V TJ = 25°C, IF = 88A, VDD = 28V di/dt = 100A/µs V ns nC G e e … Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. † This value determined from sample failure population. 100% tested to this value in production. ‡ This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. ˆ Rθ is measured at TJ of approximately 90°C. ‰ Solder mounted on IMS substrate. www.irf.com IRF1405ZS/L-7P 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 4.5V 10 BOTTOM 4.5V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 175°C Tj = 25°C 1 0.1 1 10 1 100 1000 0.1 V DS, Drain-to-Source Voltage (V) 1 10 100 1000 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 150 100 T J = 175°C 10 T J = 25°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 0 2 4 6 8 10 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 12 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current (Α) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 125 T J = 25°C 100 T J = 175°C 75 50 25 V DS = 10V 300µs PULSE WIDTH 0 0 25 50 75 100 125 150 175 200 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRF1405ZS/L-7P 100000 12.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 88A C, Capacitance(pF) C oss = C ds + C gd 10000 Ciss Coss Crss 1000 100 VDS= 44V VDS= 28V 10.0 8.0 6.0 4.0 2.0 0.0 1 10 100 0 VDS, Drain-to-Source Voltage (V) 150 200 10000 ID, Drain-to-Source Current (A) 1000 ISD, Reverse Drain Current (A) 100 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage T J = 175°C 100 T J = 25°C 10 VGS = 0V 1 0.0 0.5 1.0 1.5 2.0 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 50 QG Total Gate Charge (nC) 2.5 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100µsec 100 1msec 10 DC 1 10msec Tc = 25°C Tj = 175°C Single Pulse 0.1 0.01 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF1405ZS/L-7P 150 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.5 ID, Drain Current (A) 125 100 75 50 25 0 25 50 75 100 125 150 ID = 88A VGS = 10V 2.0 1.5 1.0 0.5 175 -60 -40 -20 0 T C , Case Temperature (°C) 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 τJ SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τ3 τ2 Ci= τi/Ri Ci i/Ri τC τ τ3 Ri (°C/W) 0.1707 τi (sec) 0.000235 0.1923 0.000791 0.2885 0.008193 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF1405ZS/L-7P 15V D.U.T RG VGS 20V + V - DD IAS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) DRIVER L VDS 1000 ID 14A 23A BOTTOM 88A TOP 800 600 400 200 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGS QGD Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) 4.5 VG 4.0 3.5 3.0 2.5 2.0 ID = 150µA ID = 250µA ID = 1.0mA ID = 1.0A 1.5 1.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRF1405ZS/L-7P 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 100 0.01 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 300 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 88A 250 200 150 100 50 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asT jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRF1405ZS/L-7P D.U.T Driver Gate Drive ƒ + ‚ - P.W. + „ D.U.T. ISD Waveform Reverse Recovery Current + V DD • dv/dt controlled by RG • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test P.W. Period *  RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS V GS RG RD D.U.T. + -V DD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF1405ZS/L-7P D2Pak - 7 Pin Package Outline Dimensions are shown in millimeters (inches) www.irf.com 9 IRF1405ZS/L-7P D2Pak - 7 Pin Part Marking Information 14 D2Pak - 7 Pin Tape and Reel 10 www.irf.com IRF1405ZS/L-7P TO-263CA 7 Pin Long Leads Package Outline Dimensions are shown in millimeters (inches) Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 12/06 www.irf.com 11 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/
IRF1405ZSTRL-7P 价格&库存

很抱歉,暂时无法提供与“IRF1405ZSTRL-7P”相匹配的价格&库存,您可以联系我们找货

免费人工找货