0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLE46782ELXUMA1

TLE46782ELXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    LSSOP14

  • 描述:

    IC REG LINEAR 5V 200MA SSOP-14-2

  • 数据手册
  • 价格&库存
TLE46782ELXUMA1 数据手册
TLE4678-2EL Low Drop Out Linear Voltage Regulator 5 V Fixed Output Voltage TLE4678-2EL Data Sheet Rev. 1.0, 2014-05-07 Automotive Power TLE4678-2EL Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Configuration PG-SSOP14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1 5.2 5.3 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Description Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Typical Performance Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6 6.1 6.2 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Electrical Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Typical Performance Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7 7.1 7.2 7.3 Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 16 19 21 8 8.1 8.2 8.3 Watchdog Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Watchdog Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Standard Watchdog Function . . . . . . . . . . . . . . . . . . . . . . . . . 22 22 25 27 9 9.1 9.2 9.3 9.4 9.5 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selection of External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 28 28 29 30 30 10 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Data Sheet 2 7 7 8 8 Rev. 1.0, 2014-05-07 Low Drop Out Linear Voltage Regulator5 V Fixed Output Voltage 1 TLE4678-2EL Overview Features • Output Voltage 5 V ± 2% • Current Capability 200 mA • Ultra Low Current Consumption • Very Low Drop Out Voltage • Watchdog Circuit for Monitoring a Microprocessor with Programmable Load-dependent Activating Threshold • Reset Circuit Sensing the Output Voltage with Programmable Switching Threshold and Delay Time • Reset Output Active Low Down to VQ = 1 V • Separated Reset and Watchdog Output • Excellent Line Transient Robustness • Maximum Input Voltage -14 V ≤ VI ≤ +45 V • Reverse Polarity Protection • Short Circuit Protected • Overtemperature Shutdown • Automotive Temperature Range -40 °C ≤ Tj ≤ 150°C • Available in a small thermally enhanced PG-SSOP14 package • Green Product (RoHS Compliant) • AEC Qualified PG-SSOP14 Description The TLE4678-2EL is a monolithic integrated low drop out fixed output voltage regulator for loads up to 200 mA. An input voltage of up to 45 V is regulated to an output voltage of 5 V. The integrated reset and watchdog function, as well as several protection circuits, combined with a wide operating temperature range offered by the TLE46782EL make it suitable for supplying microprocessor systems in automotive environments. The watchdog circuitry will be disabled in case the output current drops below a programmable threshold, enabling a microcontroller to switch in stand-by mode. Modifying the reset threshold is possible by an optional resistor divider. The TLE4678-2EL is placed inside the PG-SSOP14 package, and is pin to pin compatible with the TLE4678EL. Type Package Marking TLE4678-2EL PG-SSOP14 46782EL Data Sheet 3 Rev. 1.0, 2014-05-07 TLE4678-2EL Block Diagram 2 Block Diagram For details on the circuit blocks see the respective section in this data sheet. TLE4678-2 I Q Regulated Output Voltage CQ RO Protection Circuits Bandgap Reference WO Reset and Watchdog Generator WI RADJ WADJ GND Load e. g. Micro Controller XC22 xx GND BlockDiagr am_AppCir cuit1.vsd Supply D CD Figure 1 Data Sheet Block Diagram and Simplified Application Circuit 4 Rev. 1.0, 2014-05-07 TLE4678-2EL Pin Configuration 3 Pin Configuration 3.1 Pin Configuration PG-SSOP14 3.1.1 Pin Assignment WO n.c. WADJ GND D n.c. RADJ 1 2 3 4 5 6 7 14 13 12 11 10 9 8 RO n.c. I n.c. Q n.c. WI Pinout_SSOP14.vsd Figure 2 Pin Assignment PG-SSOP14 Package 3.1.2 Pin Definitions and Functions PG-SSOP14 Pin Symbol Function 1 WO Watchdog Output Open collector output with an internal pull-up resistor to the output Q. An additional external pull-up resistor to the output Q is optional. Leave open if the watchdog function is not needed. 3 WADJ Watchdog Activating Threshold Adjust An external resistor to GND determines the watchdog activating threshold. Connect directly to GND for disabling the watchdog. Connect directly to GND if the watchdog function is not needed. Connect to output Q via 270 kΩ resistor for permanently activating the watchdog. 4 GND IC Ground Interconnect with the exposed pad and heatsink area on PCB. 5 D Reset Delay and Watchdog Timing Connect a ceramic capacitor D (pin 6) to GND for reset delay and watchdog timing adjustment. Leave only open if both, the reset and the watchdog function are not needed. 7 RADJ Reset Switching Threshold Adjust For reset threshold adjustment connect to a voltage divider from output Q to GND. For triggering the reset at the internally determined threshold, connect this pin directly to GND. Connect directly to GND if the reset function is not needed. Data Sheet 5 Rev. 1.0, 2014-05-07 TLE4678-2EL Pin Configuration Pin Symbol Function 8 WI Watchdog Input Positive edge triggered input, usable for microcontroller monitoring. Connect to GND if the watchdog function is not needed. 10 Q 5 V Regulator Output Block to GND with a capacitor close to the IC pins, respecting capacitance and ESR requirements given in the Chapter 4.2. 12 I Regulator Input and IC Supply For compensating line influences, a capacitor to GND close to the IC pins is recommended. 14 RO Reset Output Open collector output with an internal pull-up resistor to the output Q. An additional external pull-up resistor to the output Q is optional. Leave open if the reset function is not needed. 2, 6, 9, 11, 13, n. c. Internally not connected Connection to GND on PCB recommended. Exposed pad Data Sheet Connect to heat sink area on PCB. Interconnect with GND. 6 Rev. 1.0, 2014-05-07 TLE4678-2EL General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 1. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Table 1 Absolute Maximum Ratings1) Tj = -40°C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Voltage Rating Regulator Input and IC Supply I VI -14 – 45 V – P_4.1.1 VQ VRO VD -1 – 7 V – P_4.1.2 -0.3 – 7 V – P_4.1.3 -0.3 – 7 V – P_4.1.4 Reset Switching Threshold Adjust RADJ VRADJ -0.3 – 7 V – P_4.1.5 Watchdog Input WI VWI VWO VWADJ -0.3 – 7 V – P_4.1.6 -0.3 – 7 V – P_4.1.7 -0.3 – 7 V – P_4.1.8 Tj Tstg -40 – 150 °C – P_4.1.9 -55 – 150 °C – P_4.1.10 -3 – 3 kV HBM2); Pin 12 (Input) only. ESD Susceptibility VESD,12 VESD -2 – 2 kV HBM P_4.1.12 All pins except pin 12 (Input) ESD Susceptibility all pins VESD -1 – 1 kV CDM3) Regulator Output Q Reset Output RO Reset Delay and Watchdog Timing D Watchdog Output WO Watchdog Activating Threshold Adjust WADJ Temperature Junction Temperature Storage Temperature ESD Susceptibility ESD Susceptibility P_4.1.11 2) P_4.1.13 1) Not subject to production test, specified by design. 2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5k Ω, 100 pF) 3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101. Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 7 Rev. 1.0, 2014-05-07 TLE4678-2EL General Product Characteristics 4.2 Functional Range Table 2 Functional Range Parameter Symbol Values Unit Note / Test Condition Number Input Voltage Range for Normal Operation VI(nor) VQ + Vdr – 45 V 1) P_4.2.1 Extended Input Voltage Range VI(ext) 3.3 – 45 V 2) P_4.2.2 Input Voltage Transient Immunity dVI/dt -10 – 20 V/µs dVI ≤ 10 V; VI > 9 V; P_4.2.3 No trigger of WO, RO. 3) Junction Temperature Tj CQ -40 – 150 °C – 10 – – ESRCQ – – 3 Min. Output Capacitor Requirements Output Capacitor Requirements Typ. Max. P_4.2.4 µF 4) – P_4.2.5 Ω –5) P_4.2.6 1) For specification of the output voltage VQ and the drop out voltage Vdr, see Chapter 5. 2) The output voltage VQ will follow the input voltage, but is outside the specified range. For details see Chapter 5. 3) Transient measured directly at the input pin. Not subject to production test, specified by design. 4) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%. 5) Relevant ESR value at f = 10 kHz. Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 3 Thermal Resistance Parameter Symbol Values Min. Typ. Max. 15 – Unit Note / Test Condition Number K/W – P_4.3.1 TLE4678-2EL (Package Versions PG-SSOP14) Junction to Case1) – Junction to Ambient RthJC RthJA RthJA Junction to Ambient Junction to Ambient Junction to Ambient 2) – 153 – K/W footprint only – 70 – K/W 300 mm2 heatsink area P_4.3.3 on PCB 2) P_4.3.2 RthJA – 60 – K/W 600 mm2 heatsink area P_4.3.4 on PCB 2) RthJA – 52 – K/W 2s2p PCB 2) P_4.3.5 1) Not subject to production test, specified by design 2) Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. Data Sheet 8 Rev. 1.0, 2014-05-07 TLE4678-2EL Voltage Regulator 5 Voltage Regulator 5.1 Description Voltage Regulator The output voltage VQ is controlled by comparing a portion of it to an internal reference and driving a PNP pass transistor accordingly. Saturation control as a function of the load current prevents any oversaturation of the pass element. The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and the poles/zeros introduced by the integrated circuit. To ensure stable operation, the output capacitor’s capacitance and its equivalent series resistor ESR requirements given in the chapter Chapter 4.2 have to be maintained. For details see also the typical performance graph “Output Capacitor Series Resistor ESRCQ vs. Output Current IQ”. Also, the output capacitor shall be sized to buffer load transients. An input capacitor CI is not needed for the control loop stability, but recommended to buffer line influences. Connect the capacitors close to the IC terminals. Protection circuitry prevent the IC as well as the application from destruction in case of catastrophic events. These safeguards contain output current limitation, reverse polarity protection as well as thermal shutdown in case of overtemperature. In order to avoid excessive power dissipation that could never be handled by the pass element and the package, the maximum output current is decreased at input voltages above VI = 22 V. The thermal shutdown circuit prevents the IC from immediate destruction under fault conditions (e.g. output continuously short-circuited) by switching off the power stage. After the chip has cooled down, the regulator restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed. However, a junction temperature above 150 °C is outside the maximum rating and therefore reduces the IC lifetime. The TLE4678-2EL allows a negative supply voltage. However, several small currents are flowing into the IC increasing its junction temperature. This has to be considered for the thermal design, respecting that the thermal protection circuit is not operating during reverse polarity condition. II Supply I Q Regulated Output Voltage IQ Saturation Control Current Limitation VI CI Bandgap Reference Temperature Shutdown V VQ,nom VI(ext),min Data Sheet LOAD ESR GND Block Diagram Voltage Regulator Circuit VI Vdr VQ dVQ Iload ≈ CQ dt Diagram_Output-InputVoltage.svg Figure 4 VQ CQ BlockDiagram_VoltageRegulator.vsd Figure 3 C dVQ IQ,max - Iload ≈ CQ dt t Output Voltage vs. Input Voltage 9 Rev. 1.0, 2014-05-07 TLE4678-2EL Voltage Regulator 5.2 Electrical Characteristics Voltage Regulator Table 4 Electrical Characteristics: Voltage Regulator VI = 13.5 V, Tj = -40°C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 3 (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Output Voltage VQ 4.9 5.0 5.1 V 0 mA ≤ IQ ≤ 200 mA; 8 V ≤ VI ≤ 18 V P_5.2.1 Output Voltage VQ 4.9 5.0 5.1 V 0 mA ≤ IQ ≤ 150 mA; 6 V ≤ VI ≤ 18 V P_5.2.2 Output Voltage VQ 4.9 5.0 5.1 V 0 mA ≤ IQ ≤ 100 mA; 18 V ≤ VI ≤ 32 V Tj ≤ 105 °C 1) 2) P_5.2.3 Output Voltage VQ 4.9 5.0 5.1 V 0 mA ≤ IQ ≤ 10 mA; 32 V ≤ VI ≤ 45 V Tj ≤ 105 °C 1) 2) P_5.2.4 Output Voltage VQ 4.9 5.0 5.1 V 0.3 mA ≤ IQ ≤ 100 mA; P_5.2.5 18 V ≤ VI ≤ 32 V 1) Output Voltage VQ 4.9 5.0 5.1 V 0.3 mA ≤ IQ ≤ 10 mA; 32 V ≤ VI ≤ 45 V 1) P_5.2.6 Load Regulation steady-state |dVQ,load| – 5 30 mV P_5.2.7 Line Regulation steady-state |dVQ,line| – 5 20 mV Power Supply Ripple Rejection PSRR 60 65 – dB Drop out VoltageVdr = VI - VQ Vdr Vdr IQ,max IQ II – 80 170 mV – 120 300 mV 201 350 500 mA -1.5 -0.7 – mA -2 -1 – mA IQ = 1 mA to 150 mA; VI = 6 V VI = 6 V to 32 V; IQ = 5 mA fripple = 100 Hz; Vripple = 1 Vpp 2) IQ = 50 mA 3) IQ = 150 mA 3) 0 V ≤ VQ ≤ 4.8 V VI = 0 V; VQ = 5 V VI = -14 V; VQ = 0 V Overtemperature Shutdown Threshold Tj,sd 151 – 200 °C Tj increasing 2) P_5.2.15 Overtemperature Shutdown Threshold Hysteresis Tj,hy – 20 – K Tj decreasing 2) P_5.2.16 Drop out VoltageVdr = VI - VQ Output Current Limitation Reverse Current Reverse Current at Negative Input Voltage P_5.2.8 P_5.2.9 P_5.2.10 P_5.2.11 P_5.2.12 P_5.2.13 P_5.2.14 1) See typical performance graph for details. 2) Parameter not subject to production test; specified by design. 3) Measured when the output voltage VQ has dropped 100 mV from its nominal value. Data Sheet 10 Rev. 1.0, 2014-05-07 TLE4678-2EL Voltage Regulator 5.3 Typical Performance Characteristics Voltage Regulator Output Voltage VQ versus Junction Temperature Tj Output Current Limitation IQmax versus Input Voltage VI 5.08 VI = 13.5 V IQ = 100 mA 5.06 500 5.04 400 Tj = -40 °C IQ,max [mA] VQ [V] 5.02 5.00 4.98 T j = 25 °C 300 Tj = 150 °C 200 4.96 100 4.94 4.92 0 -40 0 40 80 120 160 Tj [°C] 0 10 20 30 40 VI [V] Dropout Voltage Vdr versus Output Current IQ Dropout Voltage Vdr versus Junction Temperature Tj 300 300 250 250 200 200 Tj = 150 °C Tj = 25 °C VDR [mV] VDR [mV] IQ = 150 mA 150 IQ = 50 mA 100 50 150 Tj = - 40 °C 100 50 IQ = 0.2 mA 0 0 -40 0 40 80 120 160 0 Tj [°C] Data Sheet 50 100 150 200 IQ [mA] 11 Rev. 1.0, 2014-05-07 TLE4678-2EL Voltage Regulator Reverse Output Current IQ versus Output Voltage VQ Output Capacitor Series Resistor ESRCQ versus Output Current IQ 0 100 CQ = 10 µF Tj = 25° C VI = 6..28 V VI = 0V -0.25 Unstable Region -0.5 10 Tj = -40 °C -0.75 ESR(CQ) [Ω ] -1.25 T j = 25 °C ΙQ [mA] -1 -1.5 Tj = 150 °C 1 Stable Region -1.75 0.1 -2 -2.25 -2.5 0.01 0 1 2 3 4 5 6 V Q [V] Reverse Current II versus Input Voltage VI 0 50 100 150 200 IQ [mA] Power Supply Ripple Rejection PSRR versus Frequency f 0 90 IQ = 10 mA CQ = 10 µF VI = 13.5 V Vripple = 1 Vpp Tj = 25 °C 80 VQ = 0V -0.2 70 60 -0.4 PSRR [dB] ΙI [mA] Tj = -40 °C Tj = 150 °C -0.6 50 40 30 ‐ ‐ ‐ Tj = 25 °C 20 -0.8 10 -1 -14 -10.5 -7 -3.5 0 0.01 0 V I [V] Data Sheet 0.1 1 10 100 1000 f [kHz] 12 Rev. 1.0, 2014-05-07 TLE4678-2EL Voltage Regulator Output Voltage ΔVQ versus Output Current IQ Output Voltage ∆VQ versus Input Voltage VI 10 16 VI = 6 V IQ = 5 mA 14 7.5 12 5 10 Δ VQ [mV] Δ VQ [mV] Tj = 150 °C 8 6 Tj = 150 °C 2.5 Tj = 25 °C 0 4 Tj = -40 °C Tj = 25 °C -2.5 2 Tj = -40 °C 0 0 50 100 150 IQ [mA] 0 8 16 24 32 40 VI [V] Line Transient Response Load Transient Response 200 100 VI = 6 V CQ = 10 µF Tj = 25° C IQ = 5 mA CQ = 10 µF Tj = 25° C 50 Δ VQ [mV] 100 Δ VQ [mV] -5 200 0 -100 -200 0 -50 -100 35 200 VI = 6 .. 32 V IQ = 1 .. 150 mA 150 25 VI [V] IQ [mA] 100 50 15 5 0 0 200 400 600 800 1000 1200 -50 1400 150 250 350 450 t [us] t [us] Data Sheet 50 13 Rev. 1.0, 2014-05-07 TLE4678-2EL Current Consumption 6 Current Consumption 6.1 Electrical Characteristics Current Consumption Table 5 Electrical Characteristics: Current Consumption VI = 13.5 V, Tj = -40°C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 5 (unless otherwise specified). Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Current Consumption Watchdog Deactivated Iq = II - IQ Iq1 – 60 80 µA IQ ≤ 200 µA; Tj ≤ 25 °C Watchdog deactivated P_6.1.1 Current Consumption Watchdog Deactivated Iq = II - IQ Iq1 – 70 85 µA IQ ≤ 200 µA; Tj ≤ 85 °C Watchdog deactivated P_6.1.2 Current Consumption Iq = II - IQ Iq2 – 110 140 µA IQ ≤ 2 mA; Tj ≤ 25 °C Watchdog activated P_6.1.3 Current Consumption Iq = II - IQ Iq2 – 120 155 µA IQ ≤ 2 mA; Tj ≤ 85 °C Watchdog activated P_6.1.4 Current Consumption Iq = II - IQ Iq2 – 0.6 1.6 mA IQ = 50 mA P_6.1.5 Current Consumption Iq = II - IQ Iq2 – 2 6 mA IQ = 150 mA P_6.1.6 II Supply I Q IQ Voltage Regulator + + VI CQ CI CurrentConsumption _ ParameterDefinition .vsd Regulated Output Voltage VQ LOAD GND Iq Figure 5 Data Sheet Parameter Definition 14 Rev. 1.0, 2014-05-07 TLE4678-2EL Current Consumption 6.2 Typical Performance Characteristics Current Consumption Current Consumption Iq versus Junction Temperature Tj Current Consumption Iq versus Output Current IQ 10 5 WD activated IQ = 150 mA 4 1 Tj = -40 °C 3 Iq [mA] Iq [mA] IQ = 50 mA 0.1 - - - Tj = 125°C 2 Tj = 25°C IQ = 2 mA 1 0 0.01 -40 0 40 80 0 120 50 100 150 200 IQ [mA] Tj [°C] Current Consumption Iq versus Junction Temperature Tj Current Consumption Iq versus Input Voltage VI 100 100 Tj=25°C I Q = 100 uA WD deactived 80 10 60 Iq [mA] Iq [µA] IQ = 100 mA 40 1 IQ = 10 mA 0.1 20 0.01 0 -40 0 40 80 0 120 20 30 40 VI [V] Tj [°C] Data Sheet 10 15 Rev. 1.0, 2014-05-07 TLE4678-2EL Reset Function 7 Reset Function 7.1 Description Reset Function The reset function provides several features: Output Undervoltage Reset: An output undervoltage condition is indicated by setting the Reset Output “RO” to “low”. This signal might be used to reset a microcontroller during low supply voltage. Power-On Reset Delay Time The power-on reset delay time td,PWR-ON allows a microcontroller and oscillator to start up. This delay time is the time period from exceeding the upper reset switching threshold VRT,hi until the reset is released by switching the reset output “RO” from “low” to “high”. The power-on reset delay time td,PWR-ON is defined by an external delay capacitor CD connected to pin “D” which is charged up by the delay capacitor charge current ID,ch starting from VD = 0 V. In case a power-on reset delay time td,PWR-ON different from the value for CD = 100nF is required, the delay capacitor’s value can be derived from the specified value given in Table “Power-on Reset Delay Time” on Page 20: CD = 100nF × td,PWR-ON / td,PWR-ON,100nF (1) with td,PWR-ON: Desired power-on reset delay time • td,PWR-ON,100nF: Power-on reset delay time specified in Table “Power-on Reset Delay Time” on Page 20 • CD: Delay capacitor required. The formula is valid for CD ≥ 10nF. For precise timing calculations consider also the delay capacitor’s tolerance. • Undervoltage Reset Delay Time Unlike the power-on reset delay time, the undervoltage reset delay time td considers a short output undervoltage event where the delay capacitor CD is assumed to be discharged to VD = VDST,lo only before the charging sequence starts. Therefore, the undervoltage reset delay time td is defined by the delay capacitor charge current ID,ch starting from VD = VDST,lo and the external delay capacitor CD. A delay capacitor CD for a different undervoltage reset delay time as specified in Table “Undervoltage Reset Delay Time” on Page 19 can be calculated similar as above: CD = 100nF × td / td,100nF (2) with: td: Desired undervoltage reset delay time • td,100nF: Power-on reset delay time specified in Table “Undervoltage Reset Delay Time” on Page 19 • CD: Delay capacitor required The formula is valid for CD ≥ 10nF. For precise timing calculations consider also the delay capacitor’s tolerance. • Data Sheet 16 Rev. 1.0, 2014-05-07 TLE4678-2EL Reset Function Reset Reaction Time In case the output voltage of the regulator drops below the output undervoltage lower reset threshold VRT,lo, the delay capacitor CD is discharged rapidly. Once the delay capacitor’s voltage has reached the lower delay switching threshold VDST,lo, the reset output “RO” will be set to “low”. In case of a very short drop of output voltage, may the delay capacitor voltage doesn‘t reach the lower delay switching threshold and therefore no “RO” = “low will be set. This prevents a microcontroller reset because of a very short distortion on output voltage. Typically the time of this fiter effect is about 550 ns (trr,blank). See also timing diagram on Page 18 Additionally to the delay capacitor discharge time trr,d, an internal reaction time trr,int applies. Hence, the total reset reaction rime trr,total becomes: trr,total = trr,int + trr,d (3) with • • • trr,total: Total reset reaction time trr,int: Internal reset reaction time; see Table “Internal Reset Reaction Time” on Page 20. trr,d: Delay capacitor discharge time. For a capacitor CD different from the value specified in Table “Delay Capacitor Discharge Time” on Page 20, see typical performance graphs. Reset Ouput “RO” The reset output “RO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic “RO” signal is desired, an external pull-up resistor to the output “Q” can be connected. Since the maximum “RO” sink current is limited, the optional external resistor RRO,ext must not below as specified in Table “Reset Output” on Page 19. Reset Output “RO” Low for VQ ≥ 1 V In case of an undervoltage reset condition reset output “RO” is held “low” for VQ ≥ 1 V, even if the input voltage VI is 0 V. This is achieved by supplying the reset circuit from the output capacitor. Reset Adjust Function The undervoltage reset switching threshold can be adjusted according to the application’s needs by connecting an external voltage divider (RADJ1, RADJ2) at pin “RADJ”. For selecting the default threshold connect pin “RADJ” to GND. The reset adjustment range is given in Table “Reset Adjustment Range” on Page 19. When dimensioning the voltage divider, take into consideration that there will be an additional current constantly flowing through the resistors. With a voltage divider connected, the reset switching threshold VRT,new is calculated as follows (neglecting the Reset Adjust Pin Current IRADJ): VRT,new = VRADJ,th × (RADJ,1 + RADJ,2) / RADJ,2 (4) with • • • VRT,new: Desired reset switching threshold. RADJ,1, RADJ,2: Resistors of the external voltage divider, see Figure 6. VRADJ,th: Reset adjust switching threshold given in Table “Reset Adjust” on Page 19. Data Sheet 17 Rev. 1.0, 2014-05-07 TLE4678-2EL Reset Function I Q R RO Int. Supply Control VDD CQ RO ID ,ch Reset IRO VDST VRADJ ,th optional Supply OR MicroController RADJ ,1 RADJ IRADJ GND opti onal IDR ,dsch D BlockDiagram _ResetAdjust .vsd GND RADJ ,2 CD Figure 6 Block Diagram Reset Circuit VI t VQ t < trr,blank V RH V RT,hi V RT,lo 1V t td VD VDS T,hi VDS T,lo t VRO V RO,low td trr,total td t rr,total td t rr,total 1V t Thermal Shutdown Figure 7 Data Sheet Input Voltage Dip Undervoltage Spike at output Overload T i mi n g Di a g ra m_ Re se t. vs Timing Diagram Reset 18 Rev. 1.0, 2014-05-07 TLE4678-2EL Reset Function 7.2 Electrical Characteristics Reset Function Table 6 Electrical Characteristics: Reset Function VI = 13.5 V, Tj = -40°C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 6 (unless otherwise specified). Parameter Symbol Values Min. Typ. Unit Note / Test Condition Number Max. Output Undervoltage Reset Comparator Default Values (Pin RADJ = GND) Output Undervoltage Reset Lower Switching Threshold VRT,lo 4.6 4.7 4.8 V VI = 0 VVQ decreasing RADJ = GND P_7.2.1 Output Undervoltage Reset Upper Switching Threshold VRT,hi 4.7 4.8 4.9 V VI within operating rangeVQ increasing P_7.2.2 RADJ = GND Output Undervoltage Reset Switching Hysteresis VRT,hy Output Undervoltage Reset Headroom VRH 60 120 – mV VI within operating range P_7.2.3 RADJ = GND. 250 300 – mV P_7.2.4 Calculated Value:VQ VRT,lo VI within operating rangeIQ = 50 mA RADJ = GND Reset Threshold Adjustment Reset Adjust Lower Switching Threshold VRADJ,th 1.176 1.20 1.224 V VI = 0 V 3.2 V ≤VQ < 4.6 V P_7.2.5 Reset Adjustment Range 1) VRT,range 3.20 – 4.60 V – P_7.2.6 Reset Output Low Voltage VRO,low – 0.2 0.4 V P_7.2.8 Reset Output External Pull-up Resistor to Q RRO,ext 3 – – kΩ VI = 0 V; 1 V ≤ VQ ≤ VRT,low RRO,ext = 3.3 kΩ VI = 0 V; 1 V ≤ VQ ≤ VRT,low VRO = 0.4 V Reset Output Internal Pull-up Resistor RRO 20 30 45 kΩ internally connected to Q P_7.2.10 Upper Delay Switching Threshold VDST,hi – 1.21 – V – P_7.2.11 Lower Delay Switching Threshold VDST,lo – 0.30 – V – P_7.2.12 Delay Capacitor Charge Current ID,ch – 2.8 – µA VD = 1 V P_7.2.13 Delay Capacitor Reset Discharge Current IDR,dsch – 80 – mA VD = 1 V P_7.2.14 Undervoltage Reset Delay Time td,100nF 20 31 45 ms Calculated value; P_7.2.15 CD = 100 nF 2); CD discharged to VDST,lo Reset Output RO P_7.2.9 Reset Delay Timing Data Sheet 19 Rev. 1.0, 2014-05-07 TLE4678-2EL Reset Function Table 6 Electrical Characteristics: Reset Function (cont’d) VI = 13.5 V, Tj = -40°C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 6 (unless otherwise specified). Parameter Power-on Reset Delay Time Symbol td,PWR- Values Unit Note / Test Condition Number P_7.2.16 Min. Typ. Max. 28 43 64 ms Calculated value; CD = 100 nF 2); CD discharged to 0 V; CD = 0 nF CD = 100 nF 2) P_7.2.18 Calculated Value: P_7.2.19 ON,100nF Internal Reset Reaction Time Delay Capacitor Discharge Time Total Reset Reaction Time trr,int trr,d,100nF – 9 15 µs – 1.5 3 µs 10.5 18 µs trr,total,100nF – P_7.2.17 trr,d,100nF + trr,int ; CD = 100 nF 2) 1) Related Parameters (VRT,hi, VRT,hy) are scaled linear when the Reset Switching Threshold is modified. 2) For programming a different delay and reset reaction time, see Chapter 7.1. Data Sheet 20 Rev. 1.0, 2014-05-07 TLE4678-2EL Reset Function 7.3 Typical Performance Characteristics Reset Function Undervoltage Reset Switching Thresholds VRT,LOW , VRT,HIGH versus Junction Temperature Tj Reset Delay Time td , td,PWR-ON versus Delay Capacitor CD 5.2 1000 IQ = 1 mA Pin RADJ = GND Tj = 25° C 5.1 VQ 5 100 t d,PWR-ON (typ.) td, td,PWR-ON [ms] 4.9 VQ [V], VRT [V] VRT,hi 4.8 td (typ.) 10 VRT,lo 4.7 1 4.6 -40 -20 0 20 40 60 80 10 100 120 140 Tj [°C] Data Sheet 100 1000 CD [nF] 21 Rev. 1.0, 2014-05-07 TLE4678-2EL Watchdog Function 8 Watchdog Function 8.1 Description The TLE4678-2EL features a load dependent watchdog function with a programmable activating threshold as well as a programmable watchdog timing. The watchdog function monitors a microcontroller, including time base failures. In case of a missing rising edge within a certain pulse repetition time, the watchdog output is set to ‘low’. The programming of the expected watchdog pulse repetition time can be easily done by an external reset delay capacitor. The watchdog output “WO” is separated from the reset output “RO”. Hence, the watchdog output might be used as an interrupt signal for the microcontroller independent from the reset signal. It is possible to interconnect pin “WO” and pin “RO” in order to establish a wire-or function with a dominant low signal. Programmable Watchdog Activation Threshold and Hysteresis In case a microcontroller is set to sleep mode or to low power mode, its current consumption is very low and the controller might not be able to send any watchdog pulses to the regulators watchdog input “WI”. In order to avoid unwanted wake-up signals due to missing edges at pin “WI”, the TLE4678-2EL watchdog function can be activated dependent on the regulator’s output current. The TLE4678-2EL comprises a default watchdog activating threshold IQ,WDact,th with a small hysteresis IQ,WDact,hy which is modifiable by an external resistor RWADJ,ext connected to the pin “WADJ”. For using the default watchdog activating threshold, leave pin “WADJ” open. The following tabel shows the external resisistor RWADJ,ext that is needed at pin “WADJ” for activating/deactivating the watchdog at a desired output current IQ,WDact,th, IQ,WDdeact,th. Table 7 RWADJ,ext [kOhm)] IQ,WDact,th [mA] IQ,WDdeact,th [mA] IQ,WDact,hy [µA] 4000 1.015 0.987 28 470 1.339 1.310 29 220 1.761 1.700 61 100 2.728 2.612 116 50 4.435 4.217 219 33 6.333 6.016 318 20 9.792 9.310 482 10 18.523 17.838 685 7.5 24.198 23.472 725 Data Sheet 22 Rev. 1.0, 2014-05-07 TLE4678-2EL Watchdog Function Supply I IQ Q IWADJ Control VDD CQ RWO VWADJ,th RWADJ ,ext optional WADJ MicroController RWADJ ,int (optional) Int. Supply WI Edge Detect OR S WO I D,ch Reset IWO VDW & 1 R IDW ,dsch WI I/O VDW,hi GND D BlockDiagram _WatchdogAdjust .vsd GND CD Figure 8 Block Diagram Watchdog Circuit Watchdog Output “WO” The watchdog output “WO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic “WO” signal is desired, an external pull-up resistor to the output “Q” can be connected. Since the maximum “WO” sink current is limited, the optional external resistor RWO,ext needs to be sized to comply with the watchdog output sink current (see Table “Watchdog Output Low Voltage” on Page 25 and Table “Watchdog Output Maximum Sink Current” on Page 25). Watchdog Input “WI” The watchdog is triggered by an positive edge at the watchdog input “WI”. The signal is filtered by a bandpass filter and therefore its amplitude and slope has to comply with the specification Table “Watchdog Input” on Page 25 to Table “Watchdog Input Signal Slew Rate” on Page 25. For details on the test pulse applied, see Figure 9. Data Sheet 23 Rev. 1.0, 2014-05-07 TLE4678-2EL Watchdog Function V WI V WI tWI,p VWI,hi VWI,lo 1 / fWI VWI,hi VWI,lo d VWI / d t t Figure 9 t Test Pulses Watchdog Input WI Watchdog Timing Positive edges at the watchdog input pin “WI” are expected within the watchdog trigger time frame tWI,tr, otherwise a low signal at pin “WO” is generated. If a watchdog low signal at pin “WO” is generated, it remains low for tWD,lo. All watchdog timings are defined by charging and discharging the capacitor CD at pin “D”. Thus, the watchdog timing can be programmed by selecting CD. For timing details see also Figure 10. In case a watchdog trigger time period tWI,tr different from the value for CD = 100nF is required, the delay capacitor’s value can be derived from the specified value given in Table “Watchdog Trigger Time” on Page 26: CD = 100nF × tWI,tr / tWI,tr,100nF (5) The watchdog output low time tWD,lo and the watchdog period tWD,p then becomes: tWD,lo = tWD,lo,100nF × CD / 100nF (6) tWD,p = tWI,tr + tWD,lo (7) The formula is valid for CD ≥ 10nF. For precise timing calculations consider also the delay capacitor’s tolerance. VWI V WI,hi V WI,lo dV WI / d t outside spec No positive VWI edge VD tWI,tr 1/ fWI t WI,p t TWI,p VDW,hi VDW,lo t t WD,lo t WD,lo VWO V WO,low Figure 10 Data Sheet T i mi n g Di a g ra m_ W a t ch d o g .vsd t Timing Diagram Watchdog 24 Rev. 1.0, 2014-05-07 TLE4678-2EL Watchdog Function 8.2 Electrical Characteristics Watchdog Function Table 8 Electrical Characteristics: Watchdog Function VI = 13.5 V, Tj = -40°C to +150 °C, all voltages with respect to ground, direction of currents as shown in Table 8 (unless otherwise specified). Parameter Symbol Values Min. Typ. Unit Note / Test Condition Number Max. Default Watchdog Activating Threshold (pin WADJ left open) Watchdog Activating Threshold IQ,WDact,th Watchdog Deactivating Threshold 0.65 1.1 1.65 mA IQ,WDdeact,t 0.55 0.9 – mA IQ increasing IQ decreasing P_8.2.2 26 – µA – P_8.2.3 P_8.2.1 h Watchdog Activating Threshold IQ,WDact,hy – Hysteresis Adjustable Watchdog Activating Threshold (external resistor connected to pin WADJ) Watchdog Activating Threshold IQ,WDact,th Watchdog Deactivating Threshold P_8.2.4 µA IQ increasing RWADJ,ext = 220 kΩ1) 2) IQ decreasing RWADJ,ext = 220 kΩ1) 2) RWADJ,ext = 220 kΩ1) 2) – 1.76 – mA IQ,WDdeact,t – 1.70 – mA 60 – h Watchdog Activating Threshold IQ,WDact,hy – Hysteresis P_8.2.5 P_8.2.6 Watchdog Input WI Watchdog Input Low Signal Valid VWI,lo – – 0.8 V – 3) P_8.2.7 Watchdog Input High Signal Valid VWI,hi 2.6 – – V – 3) P_8.2.8 Watchdog Input High Signal Pulse Length tWI,p 0.5 – – µs VWI ≥ VWI,high 3) P_8.2.9 Watchdog Input Signal Slew Rate dVWI/dt 1 – – V/µs VWI,low ≤ VWI ≤ VWI,high 3) P_8.2.10 Watchdog Input Signal Frequency Capture Range fWI – – 1 MHz Square Wave, 50% Duty Cycle 3) P_8.2.11 Watchdog Output Low Voltage VWO,low – 0.2 0.4 V IWO = 1 mA; P_8.2.12 Watchdog Output Maximum Sink Current IWO,max 1.5 13 30 mA VWO = 0.8 V; Watchdog active; VWI = 0 V P_8.2.13 Watchdog Output Internal Pull-up Resistor RWO 20 30 45 kΩ – P_8.2.14 Delay Capacitor Charge Current ID – 2.78 – µA VD = 1 V P_8.2.15 Delay capacitor watchdog discharge current IDW,disch – 1.39 – µA VD = 1 V P_8.2.16 Watchdog Output WO Watchdog active; VWI = 0 V Watchdog Timing Data Sheet 25 Rev. 1.0, 2014-05-07 TLE4678-2EL Watchdog Function Table 8 Electrical Characteristics: Watchdog Function (cont’d) VI = 13.5 V, Tj = -40°C to +150 °C, all voltages with respect to ground, direction of currents as shown in Table 8 (unless otherwise specified). Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Upper watchdog timing threshold VDW,hi – 1.2 – V – P_8.2.17 Lower watchdog timing threshold VDW,lo – 0.7 – V – P_8.2.18 Watchdog Trigger Time tWI,tr,100nF 24 36 54 ms Calculated value; CD = 100 nF 4) P_8.2.19 Watchdog Output Low Time tWD,lo,100nF 12 18 27 ms Calculated value; P_8.2.20 tWD,p,100nF 36 54 Watchdog Period 1) 2) 3) 4) CD = 100 nF 4) VQ > VRT,lo 81 ms Calculated value; P_8.2.21 tWI,tr,100nF + tWD,lo,100nF CD = 100 nF 4) For details see Table 7. Not subject to production test, specified by design. For details on the test pulse applied, see Figure 9. For programming a different watchdog timing, see Chapter 8.1.. Data Sheet 26 Rev. 1.0, 2014-05-07 TLE4678-2EL Watchdog Function 8.3 Typical Performance Characteristics Standard Watchdog Function Watchdog Activating Threshold IQ,WDact,th versus External Resistor RWADJ,ext 24 Watchdog Deactivating Threshold IQ,WDdeact,th versus External Resistor RWADJ,ext 24 Tj = 25° C Tj = 25° C 22 22 20 20 18 18 16 16 14 14 12 12 IQ,WDact,th [mA] 10 IQ,WDdeact,th [mA] 10 8 8 6 6 4 4 2 2 0 0 1 10 100 1000 10000 1 RWADJ ,ext [kΩ] 100 1000 10000 RWADJ ,ext [kΩ] Watchdog Trigger Time tWI,tr versus Delay Capacitor CD 1000 10 Watchdod Activation Threshold Hysteresis IQ,WDact,hy versus External Resistor RWADJ,ext 800 Tj = 25° C Tj = 25° C 700 600 100 500 400 tWI,tr [ms] IQ,WDact,hy [µA] 300 10 200 100 0 1 10 100 1 1000 100 1000 10000 RWADJ ,ext [kΩ] CD [nF] Data Sheet 10 27 Rev. 1.0, 2014-05-07 TLE4678-2EL Application Information 9 Application Information The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. Application Diagram Supply TLE4678-2 I Q RO DI C I2 C I1
TLE46782ELXUMA1 价格&库存

很抱歉,暂时无法提供与“TLE46782ELXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货