0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLS820F1ELV50XUMA1

TLS820F1ELV50XUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    LSSOP14_150MIL_EP

  • 描述:

    LINEARVOLTAGEREGULATOR

  • 数据手册
  • 价格&库存
TLS820F1ELV50XUMA1 数据手册
Low Dropout Linear Voltage Regulator TLS820F1ELV50 TLS820F1ELV50 Linear Voltage Regulator Data Sheet Rev. 1.0, 2016-04-28 Automotive Power TLS820F1ELV50 Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Assignment TLS820F1ELV50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Definitions and Functions TLS820F1ELV50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 Block Description and Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standard Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Standard Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11 13 16 17 18 19 20 24 25 30 6 6.1 6.2 6.2.1 6.2.2 6.3 6.4 6.5 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selection of External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 31 31 31 31 32 33 33 7 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Data Sheet 2 Rev. 1.0, 2016-04-28 Low Dropout Linear Voltage Regulator 1 TLS820F1ELV50 Overview Features • Wide Input Voltage Range from 3.0 V to 40 V • Fixed Output Voltage 5 V • Output Voltage Precision ≤ ±2 % • Output Current Capability up to 200 mA • Ultra Low Current Consumption typ. 40 µA • Very Low Dropout Voltage typ. 70 mV @100 mA • Stable with Ceramic Output Capacitor of 1 µF • Delayed Reset at Power-On with 2 Programmable Delay Times 8.5 ms / 16.5 ms • Adjustable Reset Threshold down to 2.50 V • Watchdog with flexible timings: 16 ms / 32 ms / 48 ms / 96 ms • Enable, Undervoltage Reset, Overtemperature Shutdown • Output Current Limitation • Wide Temperature Range • Green Product (RoHS compliant) • AEC Qualified Data Sheet Figure 1 3 PG-SSOP-14 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Overview Functional Description The TLS820F1ELV50 is a high performance very low dropout linear voltage regulator for 5 V supply in a PGSSOP-14 package. With an input voltage range of 3 V to 40 V and very low quiescent of only 40 µA, these regulators are perfectly suitable for automotive or any other supply systems connected to the battery permanently. The TLS820F1ELV50 provides an output voltage accuracy of 2 % and a maximum output current up to 200 mA. The new loop concept combines fast regulation and very good stability while requiring only one small ceramic capacitor of 1 µF at the output. At currents below 100 mA the device will have a very low typical dropout voltage of only 70 mV. The operating range starts already at input voltages of only 3 V (extended operating range). This makes the TLS820F1ELV50 also suitable to supply automotive systems that need to operate during cranking condition. The device can be switched on and off by the Enable feature as described in Chapter 5.5. The output voltage is supervised by the Reset feature, including Undervoltage Reset, delayed Reset at Power-On and an adjustable lower Reset Threshold, more details can be found in Chapter 5.7. In addition, a Watchdog circuit with flexible timings is integrated to monitor the microcontroller‘s operation. Internal protection features like output current limitation and overtemperature shutdown are implemented to protect the device against immediate damage due to failures like output short circuit to GND, over-current and over-temperatures. Choosing External Components An input capacitor CI is recommended to compensate line influences. The output capacitor CQ is necessary for the stability of the regulating circuit. TLS820F1ELV50 is designed to be also stable with low ESR ceramic capacitors. Type Package Marking TLS820F1ELV50 PG-SSOP-14 820F1V50 Data Sheet 4 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Diagram 2 Block Diagram I Q Current Limitation Reset EN RADJ Enable WI RO Bandgap Reference Temperature Shutdown DT1 DT2 Watchdog WO GND Figure 2 Data Sheet Block Diagram TLS820F1ELV50 5 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Pin Configuration 3 Pin Configuration 3.1 Pin Assignment TLS820F1ELV50 I n.c. EN n.c. GND n.c. WI 1 2 3 4 5 6 7 SSOP-14 14 13 12 11 10 9 8 Q n.c. WO RO DT2 DT1 RADJ Figure 3 Pin Configuration 3.2 Pin Definitions and Functions TLS820F1ELV50 Pin Symbol Function 1 I Input It is recommended to place a small ceramic capacitor (e.g. 100 nF) to GND, close to the IC terminals, in order to compensate line influences. See also Chapter 6.2.1 2, 4, 6 n.c. not connected Leave open or connect to GND 3 EN Enable (integrated pull-down resistor) Enable the IC with high level input signal; Disable the IC with low level input signal; 5 GND Ground 7 WI Watchdog Input (integrated pull-down resistor) Serve Watchdog with trigger input signal (usable for microcontroller monitoring) 8 RADJ Reset Threshold Adjustment Connect to GND to use standard value; Connect an external voltage divider to adjust reset threshold 9 DT1 Delay Timing 1 (integrated pull-down resistor) Connect to GND or Q to select Reset timing acc. to Table 7 Connect to GND or Q to select Watchdog timing acc. to Table 10 10 DT2 Delay Timing 2 (integrated pull-down resistor) Connect to GND or Q to select Watchdog timing acc. to Table 10 11 RO Reset Output (integrated pull-up resistor to Q) Open collector output; Leave open if the reset function is not needed 12 WO Watchdog Output (integrated pull-up resistor to Q) Open collector output; Leave open if the watchdog function is not needed Data Sheet 6 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Pin Configuration Pin Symbol Function 13 n.c. not connected Leave open or connect to GND 14 Q Output Voltage Connect output capacitor CQ to GND close to the IC’s terminals, respecting the values specified for its capacitance and ESR in “Functional Range” on Page 9 Pad – Exposed Pad Connect to heatsink area; Connect to GND Data Sheet 7 Rev. 1.0, 2016-04-28 TLS820F1ELV50 General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Table 1 Absolute Maximum Ratings1) Tj = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Number Test Condition -0.3 – 45 V – P_4.1.1 -0.3 – 7 V – P_4.1.3 Input I, Enable EN Voltage VI, VEN Output Q, Reset Output RO, Watchdog Output WO Voltage VQ, VRO, VWO Watchdog Input WI, Delay Timing DT1 and DT2, Reset Threshold Adjustment RADJ Voltage VWI,VDT1, -0.3 VDT2, VRADJ – 7 V – P_4.1.5 Tj Tstg -40 – 150 °C – P_4.1.7 -55 – 150 °C – P_4.1.8 -2 – 2 kV 2) HBM P_4.1.9 V 3) CDM P_4.1.10 V 3) CDM P_4.1.11 Temperatures Junction Temperature Storage Temperature ESD Absorption VESD ESD Susceptibility to GND VESD ESD Susceptibility Pin 1, 7, 8, 14 (corner VESD1,7,8,14 ESD Susceptibility to GND -500 -750 – – 500 750 pins) to GND 1) Not subject to production test, specified by design. 2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF) 3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101 Note: 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 8 Rev. 1.0, 2016-04-28 TLS820F1ELV50 General Product Characteristics 4.2 Functional Range Table 2 Functional Range Tj = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified) Parameter Symbol Input Voltage Range VI VI,ext VEN CQ Values Min. Extended Input Voltage Range Enable Voltage Range Output Capacitor’s Requirements for Stability ESR Junction Temperature 1) 2) 3) 4) Typ. VQ,nom + Vdr – Unit Note / Test Condition Number V 1) – P_4.2.1 – P_4.2.3 Max. 40 3.0 – 40 V 2) 0 – 40 V – 1 ESR(CQ) – Tj -40 P_4.2.5 – – µF 3)4) – 100 Ω 3) – 150 °C – – – P_4.2.6 P_4.2.7 P_4.2.9 Output current is limited internaly and depends on the input voltage, see Electrical Characteristics for more details. When VI is between VI,ext,min and VQ,nom + Vdr, VQ = VI - Vdr. When VI is below VI,ext,min, VQ can drop down to 0 V. Not subject to production test, specified by design. The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30% Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table. Data Sheet 9 Rev. 1.0, 2016-04-28 TLS820F1ELV50 General Product Characteristics 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 3 Thermal Resistance Parameter Symbol Values Unit Note / Test Condition Number P_4.3.1 Min. Typ. Max. – 9 – K/W 1) – 43 – K/W 1)2) Junction to Ambient RthJC RthJA RthJA – 128 – Junction to Ambient RthJA – 58 Junction to Ambient RthJA – 50 Package Version PG-SSOP-14 Junction to Case Junction to Ambient – 2s2p board P_4.3.2 K/W 1)3) 1s0p board, footprint only P_4.3.3 – K/W 1)3) 1s0p board, 300 mm2 heatsink area on PCB P_4.3.4 – K/W 1)3) P_4.3.5 1s0p board, 600 mm2 heatsink area on PCB 1) Not subject to production test, specified by design 2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. 3) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product (Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu). Data Sheet 10 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics 5 Block Description and Electrical Characteristics 5.1 Voltage Regulation The output voltage VQ is divided by a resistor network. This fractional voltage is compared to an internal voltage reference and the pass transistor is driven accordingly. The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and the internal circuit design. To ensure stable operation, the output capacitor’s capacitance and its equivalent series resistor (ESR) requirements given in “Functional Range” on Page 9 have to be maintained. For details, also see the typical performance graph “Output Capacitor Series Resistor ESR(CQ) versus Output Current IQ” on Page 14. As the output capacitor also has to buffer load steps, it should be sized according to the application’s needs. An input capacitor CI is recommended to compensate line influences. In order to block influences like pulses and HF distortion at input side, an additional reverse polarity protection diode and a combination of several capacitors for filtering should be used. Connect the capacitors close to the component’s terminals. In order to prevent overshoots during start-up, a smooth ramp up function is implemented. This ensures almost no output voltage overshoots during start-up, mostly independent from load and output capacitance. Whenever the load current exceeds the specified limit, e.g. in case of a short circuit, the output current is limited and the output voltage decreases. The overtemperature shutdown circuit prevents the IC from immediate destruction under fault conditions (e.g. output continuously short-circuit) by switching off the power stage. After the chip has cooled down, the regulator restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed. However, junction temperatures above 150 °C are outside the maximum ratings and therefore significantly reduce the IC’s lifetime. Supply II I Q Current Limitation Reset EN CI RO RADJ Enable VI Bandgap Reference Temperature Shutdown WI Regulated Output Voltage IQ C VQ ESR DT1 LOAD CQ DT2 Watchdog WO GND Figure 4 Voltage Regulation V VQ,nom VI,ext,min VI Vdr VQ t Figure 5 Data Sheet Output Voltage vs. Input Voltage 11 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics Table 4 Electrical Characteristics Voltage Regulator 5 V version Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified) Typical values are given at Tj = 25 °C Parameter Symbol Unit Note / Test Condition Number Min. Typ. Max. Output Voltage Precision VQ 4.9 5.0 5.1 V 0.05 mA < IQ < 200 mA 5.44 V < VI < 28 V P_5.1.1 Output Voltage Precision VQ 4.9 5.0 5.1 V 0.05 mA < IQ < 100 mA 5.27 V < VI < 40 V P_5.1.2 Output Voltage Start-up slew rate dVQ/dt 3.0 7.5 18 V/ms VI > 18 V/ms CQ = 1 µF 0.5 V < VQ < 4.5 V Output Current Limitation IQ,max 201 ∆VQ,load -15 350 550 mA 0 V < VQ < 4.8 V P_5.1.8 -1.5 5 mV P_5.1.10 Line Regulation steady-state ∆VQ,line -20 0 20 mV P_5.1.12 Dropout Voltage Vdr = VI - VQ Vdr – 140 340 mV IQ = 0.05 mA to 200 mA VI = 6 V VI = 8 V to 32 V IQ = 1 mA 1) IQ = 200 mA Dropout Voltage Vdr = VI - VQ Vdr – 70 170 mV 1) IQ = 100 mA P_5.1.15 Power Supply Ripple Rejection PSRR – 59 – dB 2) fripple = 100 Hz P_5.1.18 Load Regulation steady-state Values Overtemperature Shutdown Threshold Tj,sd 151 – 200 °C Overtemperature Shutdown Threshold Hysteresis Tj,sdh – 15 – K Vripple = 0.5 Vpp 2) Tj increasing 2) P_5.1.7 P_5.1.14 P_5.1.19 Tj decreasing P_5.1.20 1) Measured when the output voltage VQ has dropped 100 mV from the nominal value obtained at VI = 13.5V 2) Not subject to production test, specified by design Data Sheet 12 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics 5.2 Typical Performance Characteristics Voltage Regulator Typical Performance Characteristics Output Voltage VQ versus Junction Temperature Tj Dropout Voltage Vdr versus Junction Temperature Tj 300 IQ = 100 mA IQ = 100mA IQ = 200 mA 5.15 250 VQ = 5 V 5.1 200 Vdr [mV] VQ [V] 5.05 5 150 4.95 100 4.9 50 4.85 4.8 0 50 Tj [°C] 100 0 150 Load Regulation ∆VQ,load versus Output Current Change IQ 0 50 Tj [°C] 100 150 Line Regulation ∆VQ,line versus Input Voltage VI 0 8 −0.5 6 −1 4 2 −2 ΔVQ,line [mV] ΔVQ,load [mV] −1.5 −2.5 −3 0 −2 −3.5 VI = 6 V −4 IQ = 1 mA Tj = −40 °C −4 Tj = −40 °C Tj = 25 °C −4.5 −6 Tj = 25 °C Tj = 150 °C −5 0 Data Sheet 50 100 IQ [mA] 150 Tj = 150 °C −8 200 13 10 15 20 VI [V] 25 30 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics Output Voltage VQ versus Input Voltage VI Power Supply Ripple Rejection PSRR versus ripple frequency f 80 6 Tj = −40 °C Tj = 25 oC Tj = 25 °C 70 Tj = 150 °C 5 IQ = 100 mA 60 4 PSRR [dB] VQ [V] 50 3 40 30 2 20 1 IQ = 10 mA CQ = 1 μF Vripple = 0.5 Vpp 10 0 0 1 2 3 VI [V] 4 5 0 −2 10 6 −1 10 0 1 10 10 2 10 3 10 f [kHz] Output Capacitor Series Resistor ESR(CQ) versus Output Current IQ Maximum Output Current IQ versus Input Voltage VI 3 10 800 Tj = −40 °C Tj = 25 °C 700 Unstable Region Tj = 150 °C 2 10 600 500 Stable Region IQ,max [mA] ESR(CQ) [Ω] 1 10 VQ = 0 V 0 10 400 300 200 −1 10 CQ = 1 μF 100 o −2 10 0.05 Data Sheet Tj = 25 C 1 10 IQ [mA] 100 0 500 14 0 10 20 VI [V] 30 40 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics Dropout Voltage Vdr versus Output Current IQ 300 Tj = 25 oC 250 Vdr [mV] 200 150 100 50 0 0 Data Sheet 50 100 IQ [mA] 150 200 15 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics 5.3 Current Consumption Table 5 Electrical Characteristics Current Consumption Tj = -40 °C to +150 °C, VI = 13.5 V (unless otherwise specified) Typical values are given at Tj = 25 °C Conditions of other pins: DT1 = DT2 = WI = GND Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Current Consumption Iq = II Iq,off – 1.3 5 µA VEN = 0 V; Tj < 105 °C P_5.3.1 Current Consumption Iq,off – – 8 µA VEN = 0.4 V; Tj < 125 °C P_5.3.3 Iq – 40 52 µA IQ = 0.05 mA Tj = 25 °C P_5.3.4 Iq = II Current Consumption Iq = II - IQ Watchdog enabled Current Consumption Iq = II - IQ Iq – 62 77 µA IQ = 0.05 mA Tj < 125 °C P_5.3.7 Watchdog enabled Current Consumption Iq = II - IQ Iq – 62 80 µA 1) IQ = 200 mA Tj < 125 °C P_5.3.9 Watchdog enabled 1) Not subject to production test, specified by design Data Sheet 16 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics 5.4 Typical Performance Characteristics Current Consumption Typical Performance Characteristics Current Consumption Iq versus Output Current IQ Current Consumption Iq versus Input Voltage VI 100 200 Tj = −40 °C 90 180 80 160 70 140 60 120 Iq [uA] Iq [uA] Tj = 25 °C 50 80 30 60 20 40 10 20 0 Data Sheet 50 100 IQ [mA] 150 0 200 17 Tj = 150 °C VEN = 5 V IQ = 50 uA 100 40 0 Tj = 25 °C 5 10 15 20 25 VI [V] 30 35 40 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics 5.5 Enable The TLS820F1ELV50 can be switched on and off by the Enable feature: Connect a HIGH level as specified below (e.g. the battery voltage) to pin EN to enable the device; connect a LOW level as specified below (e.g. GND) to shut it down. The enable has a built in hysteresis to avoid toggling between ON/OFF state, if signals with slow slopes are applied to the EN input. Table 6 Electrical Characteristics Enable Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified) Typical values are given at Tj = 25 °C Parameter Symbol VEN,H Low Level Input Voltage VEN,L Enable Threshold Hysteresis VEN,Hy High Level Input Current IEN,H High Level Input Current IEN,H Enable internal pull-down resistor REN High Level Input Voltage Data Sheet Values Unit Note / Test Condition Number P_5.5.1 Min. Typ. Max. 2 – – V – – 0.8 V VQ settled VQ ≤ 0.1 V 100 – – mV – P_5.5.3 – – 3.5 µA P_5.5.4 – – 22 µA VEN = 3.3 V VEN ≤ 18 V 0.95 1.5 2.6 MΩ – P_5.5.7 18 P_5.5.2 P_5.5.6 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics 5.6 Typical Performance Characteristics Enable Typical Performance Characteristics Input Current IIN versus Input Voltage VIN (condition: VEN = 0 V) Enabled Input Current IEN versus Enabled Input Voltage VEN 50 30 Tj = −40 °C Tj = 25 °C 25 Tj = −40 °C 45 Tj = 150 °C Tj = 25 °C Tj = 150 °C 40 VEN = 0V 35 20 IEN [uA] IIN [uA] 30 15 25 20 10 15 10 5 5 0 0 10 20 VIN [V] 30 0 40 0 10 20 VEN [V] 30 40 Output Voltage VQ versus time (EN switched ON) 6 5 VQ, VEN [V] 4 3 2 IQ = 100 mA Tj = −40 °C Tj = 25 °C 1 Tj = 150 °C VEN 0 0 Data Sheet 500 1000 t [us] 1500 2000 19 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics 5.7 Reset The TLS820F1ELV50’s output voltage is supervised by the Reset feature, including Undervoltage Reset, delayed Reset at Power-On and an adjustable Reset Threshold. The Undervoltage Reset function sets the pin RO to LOW, in case VQ is falling for any reason below the Reset Threshold VRT,low. When the regulator is powered on, the pin RO is held at LOW for the duration of the Power-On Reset Delay Time trd. I Q VDD CQ RRO,int Control RO S Reference OR R optional Supply Reset IRO Q RADJ ,1 OR MicroController RADJ IRADJ GND opti onal Timer DT1 RADJ ,2 Figure 6 GND Block Diagram Reset Circuit Reset Delay Time The pin DT1 is used to set the desired Reset Delay Time trd. Connect this pin either to GND or Q to select the timing according to Table 7. Table 7 Reset DelayTime Selection DT1 connected to trd GND 16.5 ms Q 8.5 ms Power-On Reset Delay Time The power-on reset delay time is defined by the parameter trd and allows a microcontroller and oscillator to start up. This delay time is the time period from exceeding the upper reset switching threshold VRT,high until the reset is released by switching the reset output “RO” from “LOW” to “HIGH”. Undervoltage Reset Delay Time Unlike the power-on reset delay time, the undervoltage reset delay time is defined by the parameter trd and considers an output undervoltage event where the output voltage VQ trigger the VRT,low threshold. Reset Blanking Time The reset blanking time trr,blank avoids that short undervoltage spikes trigger an unwanted reset “low” signal. Data Sheet 20 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics Reset Reaction Time In case the output voltage of the regulator drops below the output undervoltage lower reset threshold VRT,low, the reset output “RO” is set to low, after the delay of the internal reset reaction time trr,int. The reset blanking time trr,blank is part of the reset reaction time trr,int. Reset Output “RO” The reset output “RO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic “RO” signal is desired, an external pull-up resistor can be connected to the output “Q”. Since the maximum “RO” sink current is limited, the minimum value of the optional external resistor “RRO,ext” is given in Table “Reset Output RO” on Page 23. Reset Output “RO” Low for VQ ≥ 1 V In case of an undervoltage reset condition reset output “RO” is held “low” for VQ ≥ 1 V, even if the input “I” is not supplied and the voltage VI drops below 1 V. This is achieved by supplying the reset circuit from the output capacitor. Reset Adjust Function The undervoltage reset switching threshold can be adjusted according to the application’s needs by connecting an external voltage divider (RADJ1, RADJ2) at pin “RADJ”. For selecting the default threshold connect pin “RADJ” to GND. The reset adjustment range for the TLS820F1ELV50 is given in Reset Threshold Adjustment Range. When dimensioning the voltage divider, take into consideration that there will be an additional current constantly flowing through the resistors. With a voltage divider connected, the reset switching threshold VRT,new is calculated as follows (neglecting the Reset Adjust Pin Current IRADJ): VRT,lo,new = VRADJ,th × (RADJ,1 + RADJ,2) / RADJ,2 (1) with • • • VRT,lo,new: Desired undervoltage reset switching threshold. RADJ,1, RADJ,2: Resistors of the external voltage divider, see Figure 6. VRADJ,th: Reset adjust switching threshold given in Reset Adjustment Switching Threshold. Data Sheet 21 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics VI t VQ t < trr,blank VRH VRT,hi gh VRT,low 1V t trd trr,int trd trr,int trd trr,int VRO trd VRO,low 1V t Thermal Shutdown Figure 7 Data Sheet Input Voltage Dip Undervoltage Spike at output Over load Typical Timing Diagram Reset 22 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics Table 8 Electrical Characteristics Reset Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified) Typical values are given at Tj = 25 °C Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Number Output Undervoltage Reset 5V Version only Output Undervoltage Reset Upper Switching Threshold VRT,high 4.6 4.7 4.8 V VQ increasing P_5.7.1 Output Undervoltage Reset Lower Switching Threshold - Default VRT,low 4.5 4.6 4.7 V VQ decreasing P_5.7.2 Output Undervoltage Reset Switching Hysteresis VRT,hy 60 100 – mV RADJ connected to GND P_5.7.3 Output Undervoltage Reset Headroom VQ - VRT VRH 200 400 – mV RADJ = GND P_5.7.4 VRADJ,th 1.15 1.20 1.25 V – P_5.7.9 2.5 – 4.4 V for VQ,nom = 5 V P_5.7.10 P_5.7.12 RADJ = GND Reset Threshold Adjustment Reset Adjustment Switching Threshold Reset Threshold Adjustment Range VRT,range Reset Output RO Reset Output Low Voltage VRO,low – 0.2 0.4 V 1 V ≤ VQ ≤ VRT; RRO ≥ 5.1 kΩ Reset Output Internal Pull-Up Resistor RRO,int 13 20 36 kΩ internally connected to Q P_5.7.13 Reset Output External Pull-up Resistor to VQ RRO,ext 5.1 – – kΩ 1 V ≤ VQ ≤ VRT ; VRO ≤ 0.4 V P_5.7.14 trd,slow trd,fast 13.2 16.5 19.8 ms DT1 connected to GND P_5.7.20 6.8 8.5 10.2 ms DT1 connected to Q P_5.7.21 P_5.7.46 Reset Delay Timing Reset Delay Time Reset Delay Time Reset blanking time trr,blank – 7 – µs 1) Internal Reset Reaction Time trr,int – 10 33 µs for VQ,nom = 5 V P_5.7.36 Delay Input DT1 High Signal Valid VDT1,H 2.0 – – V – P_5.7.24 Delay Input DT1 Low Signal Valid VDT1,L – – 0.80 V – P_5.7.25 Delay Input DT1 Signal Slew Rate dVDT1/dt 1 – – V/µs VDT1,L < VDT1 < VDT1,H High Level Input Current IDT1,H RDT1 – – 3.5 µA VDT1 = 3.3 V P_5.7.27 0.9 1.5 2.6 MΩ – P_5.7.28 for VQ,nom = 5 V Reset Delay Input DT1 Delay Input DT1 internal pull-down resistor P_5.7.34 1) Not subject to production test, specified by design. Data Sheet 23 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics 5.8 Typical Performance Characteristics Reset Typical Performance Characteristics Undervoltage Reset Threshold VRT versus Junction Temperature Tj Power On Reset Delay Time trd versus Junction Temperature Tj 25 5 fast slow IQ = 1 mA 4.9 4.8 20 4.7 trd [ms] VRT [V] 4.6 4.5 15 4.4 4.3 IQ = 1 mA VQ = 5 V RADJ set to GND 4.2 10 VRT, high 4.1 VRT, low 4 0 50 Tj [°C] 100 5 150 0 50 Tj [°C] 100 150 Internal Reset Reaction Time trr,int versus Junction Temperature Tj 20 18 16 14 trr,int [μs] 12 10 8 6 4 2 0 −40 Data Sheet 0 50 Tj [°C] 100 150 24 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics 5.9 Standard Watchdog The TLS820F1ELV50 features a load dependent watchdog function with a prgrammable watchdog timing. The watchdog function monitors a microcontroller, including time base failures. In case of a missing falling edge within a certain pulse repetition time, the watchdog output “WO” is set to “low”. The watchdog uses an internal oscillator as timebase. The effective trigger window is derived from the watchdog timebase and can be adjusted by using the pins DT1 and DT2. The watchdog output “WO” is separated from the reset output “RO”. Hence, the watchdog output might be used as an interrupt signal for the microcontroller independent from the reset signal. It is possible to interconnect pin “WO” and pin “RO” in order to establish a wire-or function with a dominant low signal. I Q VDD CQ RWO,int WO Control optional Supply Reset I WO Reference MicroController WD core WI Control IWI GND Figure 8 DT1 DT2 GND Block Diagram Watchdog Circuit Watchdog Timing By changing the condition on the “DT” pins, the new timing is valid from the beginning of next period. From this time on, the frequency of the WI signal must be adapted (see also “Typical Watchdog Timing Diagram, Watchdog and Reset Modes” on Page 26). Figure 9 shows the state diagram of the watchdog (WD) and the mode selection. After power-on, the reset output signal at the “RO” pin (microcontroller reset) is kept LOW for the reset delay time trd. With the LOW to HIGH transition of the signal at “WO” the device starts the watchdog ignore time tWI.i. Next, the WD starts the watchdog trigger time (time frame within a trigger at WI must occur). From now on, the timing of the signal on WI from the microcontroller must fit to the WD-trigger time tWI,tr, based on the setting of the “DT” pins. A Re-Trigger of the WD-trigger time is done with a HIGH-to-LOW transient at the WIpin within the active tWI,tr. Watchdog Output “WO” The watchdog output “WO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic “WO” signal is desired, an external pull-up resistor can be connected to the output “Q”. Since the maximum “WO” sink current is limited, the minimum value of the optional external resistor “RWO,ext” is given in Table “Watchdog Output WO” on Page 28. A HIGH to LOW transition of the watchdog trigger signal on pin WI is taken as a trigger. A watchdog signal is generated (“WO” goes LOW), if there is no trigger pulse during the Watchdog trigger time. Data Sheet 25 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics VI t VQ VRT,high VRT,low t DT1 Capture DT1 Capture DT1 Capture DT1 Capture DT1 Capture DT1 Capture DT1 Capture DT1 Capture DT2 DT2 Capture DT2 Setup trd (slow) Capture DT2 trd 16.5ms typ. Ignore Time tWI,i (WD-trigger time tWI,tr) 48ms *) VWO NO WD Trigger t WD Trigger WD Trigger 16ms *) 48ms *) WD Trigger 96ms *) WD Trigger Don’t care WI during t WO,low and ignore time Don’t care WI during t rd and ignore time trd 32ms *) Capture DT2 t WD Trigger VWI 96ms *) 32ms t Capture DT2 Capture DT2 Capture DT2 Trigger Capture DT1 t tWO,low Normal operation Normal operation t VRO Power Fail trd trr,int t *) watchdog trigger time interrupted by correct WI signal serving the watchdog Figure 9 Typical Watchdog Timing Diagram, Watchdog and Reset Modes Watchdog Input “WI” The watchdog is triggered by a falling edge at the watchdog input pin “WI”. The amplitude and slope of this signal has to comply with the specification (Table “Watchdog Input WI” on Page 27). For details regarding test pulses, see Figure 10 “Test Pulses Watchdog Input WI” on Page 26. VWI tWI,ph VWI,high tWI,pl VWI,low Figure 10 Data Sheet dVWI / dt t Test Pulses Watchdog Input WI 26 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics Table 9 Electrical Characteristics Watchdog Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified) Typical values are given at Tj = 25 °C Parameter Symbol Values Unit Note / Test Condition Number ms – P_5.9.1 Min. Typ. Max. 12.8 16 19.2 Watchdog Trigger Time tWI,i tWI,tr,1 76.8 96 115.2 ms DT1 connected to GND; DT2 connected to GND P_5.9.2 Watchdog Trigger Time tWI,tr,2 38.4 48 57.6 ms DT1 connected to Q; DT2 connected to GND P_5.9.3 Watchdog Trigger Time tWI,tr,3 25.6 32 38.4 ms DT1 connected to GND; DT2 connected to Q P_5.9.4 Watchdog Trigger Time tWI,tr,4 12.8 16 19.2 ms DT1 connected to Q; DT2 connected to Q P_5.9.5 Watchdog Output Low Time tWO,low 6.4 8 9.6 ms – P_5.9.6 Watchdog Input Low Signal Valid VWI,low – – 0.8 V 1) – P_5.9.16 Watchdog Input High Signal Valid VWI,high 2.0 – – V 1) – P_5.9.17 Watchdog Input High Signal Pulse Length tWI,ph 1 – – µs 1) VWI ≥ VWI,high P_5.9.19 Watchdog Input Low Signal Pulse Length tWI,pl 1 – – µs 1) VWI ≤ VWI,low P_5.9.20 Watchdog Input Signal Slew Rate dVWI/dt 1 – – V/µs 1) VWI,low < VWI < VWI,high P_5.9.21 – – 3.5 µA VWI = 3.3 V P_5.9.22 0.9 1.5 2.6 MΩ – P_5.9.23 1.15 – 1.40 V for VQ,nom = 5 V: VI > 5.44 V; P_5.9.31 Watchdog Timing Watchdog Ignore Time Watchdog Input WI IWI,H Watchdog Input internal pull-down RWI High Level Input Current resistor Watchdog Disable Threshold WI Signal Value VWI,dis signal must be applied for > tW,filter,max to deactivate and activate the watchdog Watchdog Minimum Filter Time state transition by WI tWI,filter,min 100 – – µs 2) – see Page 28 P_5.9.25 Watchdog Maximum Filter Time state transition by WI tWI,filter,max – – 500 µs 2) – see Page 28 P_5.9.26 Watchdog Delay Input DT2 (DT1 is defined in chapter Reset Delay Input DT1) Delay Input DT2 Low Signal Valid VDT2,L – – 0.8 V – P_5.9.27 Delay Input DT2 High Signal Valid VDT2,H 2.0 – – V – P_5.9.28 Data Sheet 27 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics Table 9 Electrical Characteristics Watchdog (cont’d) Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified) Typical values are given at Tj = 25 °C Parameter Symbol Delay Input DT2 Signal Slew Rate Values Unit Note / Test Condition Number P_5.9.38 Min. Typ. Max. 1 – – V/µs VDTx,L < VDTx < VDTx,H – – 3.5 µA VDTx = 3.3 V P_5.9.30 0.9 1.5 2.6 MΩ – P_5.9.32 150 – – µs 2) VWO,low RWO,int – 0.2 0.4 V RWO > 5.1 kΩ 13 20 36 kΩ internally connected to pin P_5.9.35 Q RWO,ext 5.1 – – kΩ VWO ≤ 0.4 V; dVDT2/dt IDT2,H Delay Input DT2 internal pull-down RDT2 High Level Input Current DT2 resistor Watchdog setup and hold time (DT1, DT2) tsetup,hold, DT Within the setup and hold P_5.9.33 time phase, a DTx transition will not be recognized Watchdog Output WO Watchdog Output Low Voltage Watchdog Output Internal Pull-Up Resistor Watchdog Output External Pull-up Resistor to VQ P_5.9.34 P_5.9.36 1) For details on applied test pulse, see Figure 10 2) Not subject to production test, specified by design. Watchdog Trigger Time Two pins, DT1 and DT2, are used to set the desired Watchdog Trigger Time tWI,tr. Connect these pins either to GND or to high level (e.g. Q) to select the timing according to Table 10. Table 10 Watchdog Trigger Time Selection DT1 connected to DT2 connected to tWI,tr,typ GND GND 96 ms Q GND 48 ms GND Q 32 ms Q Q 16 ms Watchdog deactivation by external signal (pin “WI”) Note: Disabling the watchdog should only considered when the application is not running in the normal operating conditions as the safe operation is not ensured any more. Example would be the flashing process of the microcontroller. The Watchdog can be disabled by connecting a voltage level between the range of 1.15 V to 1.40 V to WI. By entering the Watchdog deactivation, the “WO” signal behaves like it is described in . The transition from active to an inactive state will be performed after a dead time of tWI,filter,max, when correct level to WI pin is applied. This protects against the unintended entering of watchdog deactivation state. After leaving the deactivation voltage range 1.15 V to 1.40 V, the Watchdog is again active and starts with an ignore window. This scenario is also valid for the transition from deactivation to activation state. Data Sheet 28 Rev. 1.0, 2016-04-28 TLS820F1ELV50 Block Description and Electrical Characteristics VWI VWI Scenario „D“ >tWO,low VWI,dis.high
TLS820F1ELV50XUMA1 价格&库存

很抱歉,暂时无法提供与“TLS820F1ELV50XUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLS820F1ELV50XUMA1
  •  国内价格
  • 2+14.31903
  • 10+12.88192
  • 100+11.37191
  • 250+9.72653
  • 500+9.10690

库存:2500

TLS820F1ELV50XUMA1
  •  国内价格 香港价格
  • 1+12.488971+1.51172
  • 10+12.2960910+1.48837
  • 25+12.1032125+1.46502
  • 100+11.91153100+1.44182
  • 250+8.83406250+1.06931
  • 500+8.68866500+1.05171
  • 1000+8.543261000+1.03411

库存:2500

TLS820F1ELV50XUMA1

库存:2500