0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XC2336A56F80LAAFXUMA1

XC2336A56F80LAAFXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    64-LQFP

  • 描述:

    IC MCU 32BIT 448KB FLASH 64LQFP

  • 数据手册
  • 价格&库存
XC2336A56F80LAAFXUMA1 数据手册
16/32-Bit Architecture XC2336A 16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC2000 Family / Base Line Data Sheet V2.1 2011-07 Microcontrollers Edition 2011-07 Published by Infineon Technologies AG 81726 Munich, Germany © 2011 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 16/32-Bit Architecture XC2336A 16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC2000 Family / Base Line Data Sheet V2.1 2011-07 Microcontrollers XC2336A XC2000 Family / Base Line XC233xA Revision History: V2.1, 2011-07 Previous Version(s): V2.0, 2009-03 Page Subjects (major changes since last revisions) 26 ID registers added 72 ADC capacitances corrected (typ. vs. max.) 76 Conditions relaxed for ΔfINT Range for fWU adapted according to PCN 2010-013-A Added startup time from power-on tSPO 127 Quality declarations added Trademarks C166™, TriCore™, and DAVE™ are trademarks of Infineon Technologies AG. We Listen to Your Comments Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com Data Sheet V2.1, 2011-07 XC2336A XC2000 Family / Base Line Table of Contents Table of Contents 1 1.1 1.2 1.3 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Basic Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Special Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Definition of Feature Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 2.1 2.2 General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Identification Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Subsystem and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . Central Processing Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Protection Unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Checker Module (MCHK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . On-Chip Debug Support (OCDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capture/Compare Unit (CAPCOM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capture/Compare Units CCU6x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Purpose Timer (GPT12E) Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal Serial Interface Channel Modules (USIC) . . . . . . . . . . . . . . . . . MultiCAN Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 28 31 33 33 34 35 36 39 41 45 47 48 50 51 52 52 53 54 4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.2 4.2.1 4.2.2 4.2.3 4.3 4.4 4.5 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolut Maximum Rating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pad Timing Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters for Lower Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog/Digital Converter Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 57 57 58 60 60 61 63 65 67 72 76 79 Data Sheet 5 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Table of Contents 4.6 4.6.1 4.6.2 4.6.2.1 4.6.2.2 4.6.2.3 4.6.3 4.6.4 4.6.5 4.6.6 AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Internal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wakeup Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selecting and Changing the Operating Frequency . . . . . . . . . . . . . . External Clock Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pad Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . Debug Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 81 82 83 86 86 87 89 92 96 5 5.1 5.2 5.3 Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 102 104 105 Data Sheet 6 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Summary of Features 16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC233xA (XC2000 Family) 1 Summary of Features For a quick overview and easy reference, the features of the XC233xA are summarized here. • • • • • • • High-performance CPU with five-stage pipeline and MPU – 12.5 ns instruction cycle at 80 MHz CPU clock (single-cycle execution) – One-cycle 32-bit addition and subtraction with 40-bit result – One-cycle multiplication (16 × 16 bit) – Background division (32 / 16 bit) in 21 cycles – One-cycle multiply-and-accumulate (MAC) instructions – Enhanced Boolean bit manipulation facilities – Zero-cycle jump execution – Additional instructions to support HLL and operating systems – Register-based design with multiple variable register banks – Fast context switching support with two additional local register banks – 16 Mbytes total linear address space for code and data – 1024 Bytes on-chip special function register area (C166 Family compatible) – Integrated Memory Protection Unit (MPU) Interrupt system with 16 priority levels for up to 96 sources – Selectable external inputs for interrupt generation and wake-up – Fastest sample-rate 12.5 ns Eight-channel interrupt-driven single-cycle data transfer with Peripheral Event Controller (PEC), 24-bit pointers cover total address space Clock generation from internal or external clock sources, using on-chip PLL or prescaler Hardware CRC-Checker with Programmable Polynomial to Supervise On-Chip Memory Areas On-chip memory modules – 8 Kbytes on-chip stand-by RAM (SBRAM) – 2 Kbytes on-chip dual-port RAM (DPRAM) – Up to 16 Kbytes on-chip data SRAM (DSRAM) – Up to 32 Kbytes on-chip program/data SRAM (PSRAM) – Up to 576 Kbytes on-chip program memory (Flash memory) – Memory content protection through Error Correction Code (ECC) On-Chip Peripheral Modules – Multi-functional general purpose timer unit with 5 timers – 16-channel general purpose capture/compare unit (CAPCOM2) – Two capture/compare units for flexible PWM signal generation (CCU6x) Data Sheet 7 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Summary of Features • • • • • • • – Two Synchronizable A/D Converters with a total of up to 9 channels, 10-bit resolution, conversion time below 1 μs, optional data preprocessing (data reduction, range check), broken wire detection – Up to 4 serial interface channels to be used as UART, LIN, high-speed synchronous channel (SPI), IIC bus interface (10-bit addressing, 400 kbit/s), IIS interface – On-chip MultiCAN interface (Rev. 2.0B active) with up to 64 message objects (Full CAN/Basic CAN) on up to 2 CAN nodes and gateway functionality – On-chip system timer and on-chip real time clock Single power supply from 3.0 V to 5.5 V Programmable watchdog timer and oscillator watchdog Up to 40 general purpose I/O lines On-chip bootstrap loaders Supported by a full range of development tools including C compilers, macroassembler packages, emulators, evaluation boards, HLL debuggers, simulators, logic analyzer disassemblers, programming boards On-chip debug support via Device Access Port (DAP) or JTAG interface 64-pin Green LQFP package, 0.5 mm (19.7 mil) pitch Data Sheet 8 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Summary of Features Ordering Information The ordering code for an Infineon microcontroller provides an exact reference to a specific product. This ordering code identifies: • • • the function set of the corresponding product type the temperature range: – SAF-…: -40°C to 85°C – SAH-…: -40°C to 110°C the package and the type of delivery. For ordering codes for the XC233xA please contact your sales representative or local distributor. This document describes several derivatives of the XC233xA group: Basic Device Types are readily available and Special Device Types are only available on request. As this document refers to all of these derivatives, some descriptions may not apply to a specific product, in particular to the special device types. For simplicity the term XC233xA is used for all derivatives throughout this document. 1.1 Basic Device Types Basic device types are available and can be ordered through Infineon’s direct and/or distribution channels. Table 1 Synopsis of XC233xA Basic Device Types 1) Derivative Flash Memory2) Capt./Comp. ADC4) Interfaces4) Modules Chan. PSRAM DSRAM3) None 1) xx is a placeholder for the available speed grade (in MHz). 2) Specific information about the on-chip Flash memory in Table 3. 3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM. 4) Specific information about the available channels in Table 5. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1). No basic device types are available for the XC233xA. Data Sheet 9 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Summary of Features 1.2 Special Device Types Special device types are only available for high-volume applications on request. Table 2 Synopsis of XC233xA Special Device Types Derivative1) Flash Memory2) XC2336A72FxxL 576 Kbytes 32 Kbytes 16 Kbytes CC2 CCU60/1 7+2 2 CAN Nodes, 4 Serial Chan. XC2336A56FxxL 448 Kbytes 16 Kbytes 16 Kbytes CC2 CCU60/1 7+2 2 CAN Nodes, 4 Serial Chan. PSRAM DSRAM3) Capt./Comp. ADC4) Interfaces4) Modules Chan. 1) xx is a placeholder for the available speed grade (in MHz). 2) Specific information about the on-chip Flash memory in Table 3. 3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM. 4) Specific information about the available channels in Table 5. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1). Data Sheet 10 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Summary of Features 1.3 Definition of Feature Variants The XC233xA types are offered with several Flash memory sizes. Table 3 describes the location of the available memory areas for each Flash memory size. Table 3 Flash Memory Allocation Total Flash Size Flash Area A1) Flash Area B Flash Area C 576 Kbytes C0’0000H … C0’EFFFH C1’0000H … C7’FFFFH CC’0000H … CC’FFFFH 448 Kbytes C0’0000H … C0’EFFFH C1’0000H … C5’FFFFH CC’0000H … CC’FFFFH 1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0’F000H to C0’FFFFH). Table 4 Flash Memory Module Allocation (in Kbytes) Total Flash Size Flash 01) Flash 1 Flash 2 Flash 3 576 Kbytes 256 256 --- 64 448 Kbytes 256 128 --- 64 1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0’F000H to C0’FFFFH). The XC233xA types are offered with different interface options. Table 5 lists the available channels for each option. Table 5 Interface Channel Association Total Number Available Channels 7 ADC0 channels CH0, CH2, CH4, CH8, CH10, CH13, CH15 2 ADC1 channels CH0, CH4 2 CAN nodes CAN0, CAN1 64 message objects 4 serial channels U0C0, U0C1, U1C0, U1C1 Data Sheet 11 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Summary of Features The XC233xA types are offered with several SRAM memory sizes. Figure 1 shows the allocation rules for PSRAM and DSRAM. Note that the rules differ: • • PSRAM allocation starts from the lower address DSRAM allocation starts from the higher address For example 8 Kbytes of PSRAM will be allocated at E0’0000h-E0’1FFFh and 8 Kbytes of DSRAM will be at 00’C000h-00’DFFFh. E7'FFFFh (EF'FFFFh) 00'DFFFh Reserved for PSRAM Available DSRAM Available PSRAM Reserved for DSRAM E0'0000h (E8'0000h) 00'8000h MC_XC_SRAM_ALLOCATION Figure 1 Data Sheet SRAM Allocation 12 V2.1, 2011-07 XC2336A XC2000 Family / Base Line General Device Information 2 General Device Information The XC233xA series (16/32-Bit Single-Chip Microcontroller with 32-Bit Performance) is a part of the Infineon XC2000 Family of full-feature single-chip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 80 million instructions per second) with extended peripheral functionality and enhanced IO capabilities. Optimized peripherals can be adapted flexibly to meet the application requirements. These derivatives utilize clock generation via PLL and internal or external clock sources. On-chip memory modules include program Flash, program RAM, and data RAM. VAREFVAGND VDDIM VDDI1 VDDP VSS (1) (1) (1) (3) (9) (4) XTAL1 XTAL2 ESR0 Port 2 11 bit Port 10 16 bit Port 6 2 bit Port 15 2 bit Port 7 1 bit Port 5 7 bit PORST TRST DAP/JTAG Debug 2 / 4 bit 2 bit via Port Pins TESTM MC_XY _LOGSYMB 64 Figure 2 Data Sheet XC233xA Logic Symbol 13 V2.1, 2011-07 XC2336A XC2000 Family / Base Line General Device Information 2.1 Pin Configuration and Definition 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 VDDPB ESR0 PORST XTAL1 XTAL2 P10.15 P10.14 VDDI1 P10.13 P10.12 P10.11 P10.10 P10.9 P10.8 VDDPB VS S The pins of the XC233xA are described in detail in Table 6, which includes all alternate functions. For further explanations please refer to the footnotes at the end of the table. The following figure summarizes all pins, showing their locations on the four sides of the package. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 LQFP64 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 VDDPB P10.7 P10.6 P10.5 P10.4 P10.3 P2.10 VDDI1 P10.2 P10.1 P10.0 P2.9 P2.8 P2.7 VDDPB VSS VSS VDDPB P5.4 P5.8 P5.10 P5.13 P5.15 VDDI 1 P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 V DDPB 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VSS VDDPB TESTM TRST P7.0 V DDIM P6.0 P6.1 VDDPA P15.0 P15.4 VAREF VAGND P5.0 P5.2 VDDPB MC_XY_PIN64 Figure 3 Data Sheet XC233xA Pin Configuration (top view) 14 V2.1, 2011-07 XC2336A XC2000 Family / Base Line General Device Information Key to Pin Definitions • • Ctrl.: The output signal for a port pin is selected by bit field PC in the associated register Px_IOCRy. Output O0 is selected by setting the respective bit field PC to 1x00B, output O1 is selected by 1x01B, etc. Output signal OH is controlled by hardware. Type: Indicates the pad type and its power supply domain (A, B, M, 1). – St: Standard pad – Sp: Special pad e.g. XTALx – DP: Double pad - can be used as standard or high speed pad – In: Input only pad – PS: Power supply pad Table 6 Pin Definitions and Functions Pin Symbol Ctrl. Type Function 3 TESTM I In/B Testmode Enable Enables factory test modes, must be held HIGH for normal operation (connect to VDDPB). An internal pull-up device will hold this pin high when nothing is driving it. 4 TRST I In/B Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XC233xA’s debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pull-down device will hold this pin low when nothing is driving it. 5 P7.0 O0 / I St/B Bit 0 of Port 7, General Purpose Input/Output T3OUT O1 St/B GPT12E Timer T3 Toggle Latch Output T6OUT O2 St/B GPT12E Timer T6 Toggle Latch Output TDO_A OH / IH St/B JTAG Test Data Output / DAP1 Input/Output If DAP pos. 0 or 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it. ESR2_1 I St/B ESR2 Trigger Input 1 Data Sheet 15 V2.1, 2011-07 XC2336A XC2000 Family / Base Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 7 P6.0 O0 / I DA/A Bit 0 of Port 6, General Purpose Input/Output 8 Type Function EMUX0 O1 DA/A External Analog MUX Control Output 0 (ADC0) BRKOUT O3 DA/A OCDS Break Signal Output ADCx_REQG I TyG DA/A External Request Gate Input for ADC0/1 U1C1_DX0E I DA/A USIC1 Channel 1 Shift Data Input P6.1 O0 / I DA/A Bit 1 of Port 6, General Purpose Input/Output EMUX1 O1 DA/A External Analog MUX Control Output 1 (ADC0) T3OUT O2 DA/A GPT12E Timer T3 Toggle Latch Output U1C1_DOUT O3 DA/A USIC1 Channel 1 Shift Data Output ADCx_REQT I RyE DA/A External Request Trigger Input for ADC0/1 ESR1_6 I DA/A ESR1 Trigger Input 6 P15.0 I In/A Bit 0 of Port 15, General Purpose Input ADC1_CH0 I In/A Analog Input Channel 0 for ADC1 P15.4 I In/A Bit 4 of Port 15, General Purpose Input ADC1_CH4 I In/A Analog Input Channel 4 for ADC1 T6INA I In/A GPT12E Timer T6 Count/Gate Input VAREF VAGND - PS/A Reference Voltage for A/D Converters ADC0/1 13 - PS/A Reference Ground for A/D Converters ADC0/1 14 P5.0 I In/A Bit 0 of Port 5, General Purpose Input ADC0_CH0 I In/A Analog Input Channel 0 for ADC0 P5.2 I In/A Bit 2 of Port 5, General Purpose Input ADC0_CH2 I In/A Analog Input Channel 2 for ADC0 TDI_A I In/A JTAG Test Data Input P5.4 I In/A Bit 4 of Port 5, General Purpose Input 10 11 12 15 19 ADC0_CH4 I In/A Analog Input Channel 4 for ADC0 T3EUDA I In/A GPT12E Timer T3 External Up/Down Control Input TMS_A I In/A JTAG Test Mode Selection Input Data Sheet 16 V2.1, 2011-07 XC2336A XC2000 Family / Base Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. Type Function 20 P5.8 I In/A Bit 8 of Port 5, General Purpose Input ADC0_CH8 I In/A Analog Input Channel 8 for ADC0 ADC1_CH8 I In/A Analog Input Channel 8 for ADC1 CCU6x_T12H I RC In/A External Run Control Input for T12 of CCU60/1 CCU6x_T13H I RC In/A External Run Control Input for T13 of CCU60/1 21 22 23 25 26 27 P5.10 I In/A Bit 10 of Port 5, General Purpose Input ADC0_CH10 I In/A Analog Input Channel 10 for ADC0 ADC1_CH10 I In/A Analog Input Channel 10 for ADC1 BRKIN_A I In/A OCDS Break Signal Input CCU61_T13 HRA I In/A External Run Control Input for T13 of CCU61 P5.13 I In/A Bit 13 of Port 5, General Purpose Input ADC0_CH13 I In/A Analog Input Channel 13 for ADC0 P5.15 I In/A Bit 15 of Port 5, General Purpose Input ADC0_CH15 I In/A Analog Input Channel 15 for ADC0 P2.0 O0 / I St/B Bit 0 of Port 2, General Purpose Input/Output RxDC0C I St/B CAN Node 0 Receive Data Input T5INB I St/B GPT12E Timer T5 Count/Gate Input P2.1 O0 / I St/B Bit 1 of Port 2, General Purpose Input/Output TxDC0 O1 St/B CAN Node 0 Transmit Data Output T5EUDB I St/B GPT12E Timer T5 External Up/Down Control Input ESR1_5 I St/B ESR1 Trigger Input 5 P2.2 O0 / I St/B Bit 2 of Port 2, General Purpose Input/Output TxDC1 O1 St/B CAN Node 1 Transmit Data Output ESR2_5 I St/B ESR2 Trigger Input 5 Data Sheet 17 V2.1, 2011-07 XC2336A XC2000 Family / Base Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 28 P2.3 O0 / I St/B U0C0_DOUT O1 29 30 31 Type Function St/B Bit 3 of Port 2, General Purpose Input/Output USIC0 Channel 0 Shift Data Output CC2_CC16 O3 / I St/B CAPCOM2 CC16IO Capture Inp./ Compare Out. ESR2_0 I St/B ESR2 Trigger Input 0 U0C0_DX0E I St/B USIC0 Channel 0 Shift Data Input U0C1_DX0D I St/B USIC0 Channel 1 Shift Data Input RxDC0A I St/B CAN Node 0 Receive Data Input P2.4 O0 / I St/B Bit 4 of Port 2, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output TxDC0 O2 St/B CAN Node 0 Transmit Data Output CC2_CC17 O3 / I St/B CAPCOM2 CC17IO Capture Inp./ Compare Out. ESR1_0 I St/B ESR1 Trigger Input 0 U0C0_DX0F I St/B USIC0 Channel 0 Shift Data Input RxDC1A I St/B CAN Node 1 Receive Data Input P2.5 O0 / I St/B Bit 5 of Port 2, General Purpose Input/Output U0C0_SCLK OUT O1 St/B USIC0 Channel 0 Shift Clock Output TxDC0 O2 St/B CAN Node 0 Transmit Data Output CC2_CC18 O3 / I St/B CAPCOM2 CC18IO Capture Inp./ Compare Out. U0C0_DX1D I St/B USIC0 Channel 0 Shift Clock Input ESR1_10 I St/B ESR1 Trigger Input 10 P2.6 O0 / I St/B Bit 6 of Port 2, General Purpose Input/Output U0C0_SELO 0 O1 St/B USIC0 Channel 0 Select/Control 0 Output U0C1_SELO 1 O2 St/B USIC0 Channel 1 Select/Control 1 Output CC2_CC19 O3 / I St/B CAPCOM2 CC19IO Capture Inp./ Compare Out. U0C0_DX2D I St/B USIC0 Channel 0 Shift Control Input RxDC0D I St/B CAN Node 0 Receive Data Input ESR2_6 I St/B ESR2 Trigger Input 6 Data Sheet 18 V2.1, 2011-07 XC2336A XC2000 Family / Base Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 35 P2.7 O0 / I St/B Bit 7 of Port 2, General Purpose Input/Output U0C1_SELO 0 O1 St/B USIC0 Channel 1 Select/Control 0 Output U0C0_SELO 1 O2 St/B USIC0 Channel 0 Select/Control 1 Output CC2_CC20 O3 / I St/B CAPCOM2 CC20IO Capture Inp./ Compare Out. U0C1_DX2C I St/B USIC0 Channel 1 Shift Control Input 36 37 Type Function RxDC1C I St/B CAN Node 1 Receive Data Input ESR2_7 I St/B ESR2 Trigger Input 7 P2.8 O0 / I DP/B Bit 8 of Port 2, General Purpose Input/Output U0C1_SCLK OUT O1 DP/B USIC0 Channel 1 Shift Clock Output EXTCLK O2 DP/B Programmable Clock Signal Output CC2_CC21 O3 / I DP/B CAPCOM2 CC21IO Capture Inp./ Compare Out. U0C1_DX1D I P2.9 O0 / I St/B DP/B USIC0 Channel 1 Shift Clock Input Bit 9 of Port 2, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output TxDC1 O2 St/B CAN Node 1 Transmit Data Output CC2_CC22 O3 / I St/B CAPCOM2 CC22IO Capture Inp./ Compare Out. CLKIN1 I St/B Clock Signal Input 1 TCK_A IH St/B DAP0/JTAG Clock Input If JTAG pos. A is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 0 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it. Data Sheet 19 V2.1, 2011-07 XC2336A XC2000 Family / Base Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 38 P10.0 O0 / I St/B 39 40 42 Type Function Bit 0 of Port 10, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output CCU60_CC6 0 O2 St/B CCU60 Channel 0 Output CCU60_CC6 0INA I St/B CCU60 Channel 0 Input ESR1_2 I St/B ESR1 Trigger Input 2 U0C0_DX0A I St/B USIC0 Channel 0 Shift Data Input U0C1_DX0A I St/B USIC0 Channel 1 Shift Data Input P10.1 O0 / I St/B Bit 1 of Port 10, General Purpose Input/Output U0C0_DOUT O1 St/B USIC0 Channel 0 Shift Data Output CCU60_CC6 1 O2 St/B CCU60 Channel 1 Output CCU60_CC6 1INA I St/B CCU60 Channel 1 Input U0C0_DX1A I St/B USIC0 Channel 0 Shift Clock Input U0C0_DX0B I St/B USIC0 Channel 0 Shift Data Input P10.2 O0 / I St/B Bit 2 of Port 10, General Purpose Input/Output U0C0_SCLK OUT O1 St/B USIC0 Channel 0 Shift Clock Output CCU60_CC6 2 O2 St/B CCU60 Channel 2 Output CCU60_CC6 2INA I St/B CCU60 Channel 2 Input U0C0_DX1B I St/B USIC0 Channel 0 Shift Clock Input P2.10 O0 / I St/B Bit 10 of Port 2, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output U0C0_SELO 3 O2 St/B USIC0 Channel 0 Select/Control 3 Output CC2_CC23 O3 / I St/B CAPCOM2 CC23IO Capture Inp./ Compare Out. U0C1_DX0E I St/B USIC0 Channel 1 Shift Data Input CAPINA I St/B GPT12E Register CAPREL Capture Input Data Sheet 20 V2.1, 2011-07 XC2336A XC2000 Family / Base Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 43 P10.3 O0 / I St/B 44 45 46 Type Function Bit 3 of Port 10, General Purpose Input/Output CCU60_COU O2 T60 St/B CCU60 Channel 0 Output U0C0_DX2A I St/B USIC0 Channel 0 Shift Control Input U0C1_DX2A I St/B USIC0 Channel 1 Shift Control Input P10.4 O0 / I St/B Bit 4 of Port 10, General Purpose Input/Output U0C0_SELO 3 O1 St/B USIC0 Channel 0 Select/Control 3 Output CCU60_COU O2 T61 St/B CCU60 Channel 1 Output U0C0_DX2B I St/B USIC0 Channel 0 Shift Control Input U0C1_DX2B I St/B USIC0 Channel 1 Shift Control Input ESR1_9 I St/B ESR1 Trigger Input 9 P10.5 O0 / I St/B Bit 5 of Port 10, General Purpose Input/Output U0C1_SCLK OUT O1 St/B USIC0 Channel 1 Shift Clock Output CCU60_COU O2 T62 St/B CCU60 Channel 2 Output U0C1_DX1B I St/B USIC0 Channel 1 Shift Clock Input P10.6 O0 / I St/B Bit 6 of Port 10, General Purpose Input/Output U0C0_DOUT O1 St/B USIC0 Channel 0 Shift Data Output U1C0_SELO 0 O3 St/B USIC1 Channel 0 Select/Control 0 Output U0C0_DX0C I St/B USIC0 Channel 0 Shift Data Input U1C0_DX2D I St/B USIC1 Channel 0 Shift Control Input CCU60_CTR APA I St/B CCU60 Emergency Trap Input Data Sheet 21 V2.1, 2011-07 XC2336A XC2000 Family / Base Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 47 P10.7 O0 / I St/B 52 Bit 7 of Port 10, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output CCU60_COU O2 T63 St/B CCU60 Channel 3 Output U0C1_DX0B 51 Type Function I St/B USIC0 Channel 1 Shift Data Input CCU60_CCP I OS0A St/B CCU60 Position Input 0 T4INB I St/B GPT12E Timer T4 Count/Gate Input P10.8 O0 / I St/B Bit 8 of Port 10, General Purpose Input/Output U0C0_MCLK OUT O1 St/B USIC0 Channel 0 Master Clock Output U0C1_SELO 0 O2 St/B USIC0 Channel 1 Select/Control 0 Output CCU60_CCP I OS1A St/B CCU60 Position Input 1 U0C0_DX1C St/B USIC0 Channel 0 Shift Clock Input I BRKIN_B I St/B OCDS Break Signal Input T3EUDB I St/B GPT12E Timer T3 External Up/Down Control Input P10.9 O0 / I St/B Bit 9 of Port 10, General Purpose Input/Output U0C0_SELO 4 O1 St/B USIC0 Channel 0 Select/Control 4 Output U0C1_MCLK OUT O2 St/B USIC0 Channel 1 Master Clock Output CCU60_CCP I OS2A St/B CCU60 Position Input 2 TCK_B IH St/B DAP0/JTAG Clock Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it. T3INB I St/B GPT12E Timer T3 Count/Gate Input Data Sheet 22 V2.1, 2011-07 XC2336A XC2000 Family / Base Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 53 P10.10 O0 / I St/B Bit 10 of Port 10, General Purpose Input/Output U0C0_SELO 0 O1 St/B USIC0 Channel 0 Select/Control 0 Output CCU60_COU O2 T63 St/B CCU60 Channel 3 Output U0C0_DX2C I St/B USIC0 Channel 0 Shift Control Input U0C1_DX1A I St/B USIC0 Channel 1 Shift Clock Input TDI_B IH St/B JTAG Test Data Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. 54 55 56 Type Function P10.11 O0 / I St/B Bit 11 of Port 10, General Purpose Input/Output U1C0_SCLK OUT O1 St/B USIC1 Channel 0 Shift Clock Output BRKOUT O2 St/B OCDS Break Signal Output U1C0_DX1D I St/B USIC1 Channel 0 Shift Clock Input TMS_B IH St/B JTAG Test Mode Selection Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. P10.12 O0 / I St/B Bit 12 of Port 10, General Purpose Input/Output U1C0_DOUT O1 St/B USIC1 Channel 0 Shift Data Output TDO_B OH / IH St/B JTAG Test Data Output / DAP1 Input/Output If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it. U1C0_DX0C I St/B USIC1 Channel 0 Shift Data Input U1C0_DX1E I St/B USIC1 Channel 0 Shift Clock Input P10.13 O0 / I St/B Bit 13 of Port 10, General Purpose Input/Output U1C0_DOUT O1 St/B USIC1 Channel 0 Shift Data Output U1C0_SELO 3 O3 St/B USIC1 Channel 0 Select/Control 3 Output U1C0_DX0D I St/B USIC1 Channel 0 Shift Data Input Data Sheet 23 V2.1, 2011-07 XC2336A XC2000 Family / Base Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 58 P10.14 O0 / I St/B Bit 14 of Port 10, General Purpose Input/Output U1C0_SELO 1 O1 St/B USIC1 Channel 0 Select/Control 1 Output U0C1_DOUT O2 St/B USIC0 Channel 1 Shift Data Output ESR2_2 I St/B ESR2 Trigger Input 2 U0C1_DX0C I St/B USIC0 Channel 1 Shift Data Input P10.15 O0 / I St/B Bit 15 of Port 10, General Purpose Input/Output U1C0_SELO 2 O1 St/B USIC1 Channel 0 Select/Control 2 Output U0C1_DOUT O2 St/B USIC0 Channel 1 Shift Data Output U1C0_DOUT O3 St/B USIC1 Channel 0 Shift Data Output U0C1_DX1C I St/B USIC0 Channel 1 Shift Clock Input 60 XTAL2 O Sp/M Crystal Oscillator Amplifier Output 61 XTAL1 I Sp/M Crystal Oscillator Amplifier Input To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Voltages on XTAL1 must comply to the core supply voltage VDDIM. ESR2_9 I St/B ESR2 Trigger Input 9 62 PORST I In/B Power On Reset Input A low level at this pin resets the XC233xA completely. A spike filter suppresses input pulses 100 ns safely pass the filter. The minimum duration for a safe recognition should be 120 ns. An internal pull-up device will hold this pin high when nothing is driving it. 63 ESR0 O0 / I St/B External Service Request 0 After power-up, ESR0 operates as open-drain bidirectional reset with a weak pull-up. U1C0_DX0E I St/B USIC1 Channel 0 Shift Data Input U1C0_DX2B I St/B USIC1 Channel 0 Shift Control Input 59 Data Sheet Type Function 24 V2.1, 2011-07 XC2336A XC2000 Family / Base Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. Type Function 6 VDDIM - PS/M Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Data Sheet for details. 24, 41, 57 VDDI1 - PS/1 Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Data Sheet for details. All VDDI1 pins must be connected to each other. 9 VDDPA - PS/A Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent VDDP/VSS pin pairs as close as possible to the pins. Note: The A/D_Converters and ports P5, P6 and P15 are fed from supply voltage VDDPA. 2, 16, 18, 32, 34, 48, 50, 64 VDDPB 1, 17, 33, 49 VSS - PS/B Digital Pad Supply Voltage for Domain B Connect decoupling capacitors to adjacent VDDP/VSS pin pairs as close as possible to the pins. Note: The on-chip voltage regulators and all ports except P5, P6 and P15 are fed from supply voltage VDDPB. Data Sheet - PS/-- Digital Ground All VSS pins must be connected to the ground-line or ground-plane. Note: Also the exposed pad is connected internally to VSS. To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note. 25 V2.1, 2011-07 XC2336A XC2000 Family / Base Line General Device Information 2.2 Identification Registers The identification registers describe the current version of the XC233xA and of its modules. Table 7 XC233xA Identification Registers Short Name Value Address SCU_IDMANUF 1820H 00’F07EH SCU_IDCHIP 3801H 00’F07CH SCU_IDMEM 30D0H 00’F07AH SCU_IDPROG 1313H 00’F078H JTAG_ID 0017’E083H --- Data Sheet Notes marking EES-AA, ES-AA or AA 26 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Functional Description 3 Functional Description The architecture of the XC233xA combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a well-balanced design. On-chip memory blocks allow the design of compact systems-on-silicon with maximum performance suited for computing, control, and communication. The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data SRAM) and the generic peripherals are connected to the CPU by separate high-speed buses. Another bus, the LXBus, connects additional on-chip resources and external resources (see Figure 4). This bus structure enhances overall system performance by enabling the concurrent operation of several subsystems of the XC233xA. The block diagram gives an overview of the on-chip components and the advanced internal bus structure of the XC233xA. DPRAM OCDS Debug Support DSRAM DMU CPU PMU Flash Memory IMB PSRAM MAC Unit EBC LXBus Control External Bus Control System Functions Clock, Reset, Power Control, StandBy RAM WDT MPU Interrupt & PEC RTC LXB us MCHK ADC0 ADC1 Module Module 10 -Bit 8-Bit GPT CC2 Modules CCU6 x Modules 10 -Bit 8-Bit 5 Timers 16 Chan. 3+1 Chan. each Periph eral Data Bu s Interrupt Bus USICx Modules 2 Chan. each Multi CAN Shared MOs for Nodes Analog and Digital General Purpose IO (GPIO) Ports MC_BL_BLOCKDIAGRAM Figure 4 Data Sheet Block Diagram 27 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Functional Description 3.1 Memory Subsystem and Organization The memory space of the XC233xA is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space. Table 8 XC233xA Memory Map 1) Address Area Start Loc. End Loc. Area Size2) Notes IMB register space FF’FF00H FF’FFFFH 256 Bytes – Reserved (Access trap) F0’0000H FF’FEFFH 0 mA; not subject to production test not subject to production test not subject to production test V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Table 13 Operating Conditions (cont’d) Parameter Symbol Values Unit Note / Test Condition mA not subject to production test Min. Typ. Max. Σ|IOV| SR − − 50 Digital core supply voltage VDDIM for domain M8) CC − 1.5 − Digital core supply voltage VDDI1 for domain 18) CC − 1.5 − − 5.5 V 0 − V Absolute sum of overload currents Digital supply voltage for IO pads and voltage regulators VDDP SR 4.5 Digital ground voltage VSS SR − 1) To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate buffer capacitors with the recomended values shall be connected as close as possible to each VDDIM and VDDI1 pin to keep the resistance of the board tracks below 2 Ohm. Connect all VDDI1 pins together. The minimum capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values slightly increase the startup time. 2) Use one Capacitor for each pin. 3) This is the reference load. For bigger capacitive loads, use the derating factors listed in the PAD properties section. 4) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (CL). 5) The operating frequency range may be reduced for specific device types. This is indicated in the device designation (...FxxL). 80 MHz devices are marked ...F80L. 6) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: VOV > VIHmax (IOV > 0) or VOV < VILmin ((IOV < 0). The absolute sum of input overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified limits. Proper operation under overload conditions depends on the application. Overload conditions must not occur on pin XTAL1 (powered by VDDIM). 7) An overload current (IOV) through a pin injects a certain error current (IINJ) into the adjacent pins. This error current adds to the respective pins leakage current (IOZ). The amount of error current depends on the overload current and is defined by the overload coupling factor KOV. The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it.The total current through a pin is |ITOT| = |IOZ| + (|IOV| KOV). The additional error current may distort the input voltage on analog inputs. 8) Value is controlled by on-chip regulator Data Sheet 59 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 4.1.3 Pad Timing Definition If not otherwise noted, all timing parameters are tested and are valid for the corresponding output pins operating in strong driver, fast edge mode. See also “Pad Properties” on Page 89. 4.1.4 Parameter Interpretation The parameters listed in the following include both the characteristics of the XC233xA and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column “Symbol”: CC (Controller Characteristics): The logic of the XC233xA provides signals with the specified characteristics. SR (System Requirement): The external system must provide signals with the specified characteristics to the XC233xA. Data Sheet 60 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 4.2 DC Parameters These parameters are static or average values that may be exceeded during switching transitions (e.g. output current). Leakage current is strongly dependent on the operating temperature and the voltage level at the respective pin. The maximum values in the following tables apply under worst case conditions, i.e. maximum temperature and an input level equal to the supply voltage. The value for the leakage current in an application can be determined by using the respective leakage derating formula (see tables) with values from that application. The pads of the XC233xA are designed to operate in various driver modes. The DC parameter specifications refer to the pad current limits specified in Section 4.6.4. Supply Voltage Restrictions The XC233xA can operate within a wide supply voltage range from 3.0 V to 5.5 V. However, during operation this supply voltage must remain within 10 percent of the selected nominal supply voltage. It cannot vary across the full operating voltage range. Because of the supply voltage restriction and because electrical behavior depends on the supply voltage, the parameters are specified separately for the upper and the lower voltage range. During operation, the supply voltages may only change with a maximum speed of dV/dt < 1 V/ms. During power-on sequences, the supply voltages may only change with a maximum speed of dV/dt < 5 V/μs, i.e. the target supply voltage may be reached earliest after approx. 1 μs. Note: To limit the speed of supply voltage changes, the employment of external buffer capacitors at pins VDDPA/VDDPB is recommended. Data Sheet 61 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Pullup/Pulldown Device Behavior Most pins of the XC233xA feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application. The specified current values indicate how to load the respective pin depending on the intended signal level. Figure 13 shows the current paths. The shaded resistors shown in the figure may be required to compensate system pull currents that do not match the given limit values. VDDP Pullup Pulldown VSS MC_XC2X_PULL Figure 13 Data Sheet Pullup/Pulldown Current Definition 62 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 4.2.1 DC Parameters Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current IOV. Note: Operating Conditions apply. Table 14 is valid under the following conditions: VDDP ≥ 4.5 V; VDDPtyp = 5 V; VDDP ≤ 5.5 V Table 14 DC Characteristics for Upper Voltage Range Parameter Symbol Values Pin capacitance (digital inputs/outputs). To be doubled for double bond pins.1) CIO CC Input Hysteresis2) HYS CC 0.11 x Unit Note / Test Condition Min. Typ. Max. − − 10 pF not subject to production test − − V RS = 0 Ohm VDDP Absolute input leakage current on pins of analog ports3) |IOZ1| CC − 10 200 nA VIN > 0 V; VIN < VDDP Absolute input leakage current for all other pins. To be doubled for double bond pins.3)1)4) |IOZ2| CC − 0.2 5 μA − 0.2 15 μA TJ ≤ 110 °C; VIN < VDDP; VIN > VSS TJ≤ 150 °C; VIN < VDDP; VIN > VSS − − μA 6) − − 30 μA 6) 0.7 x − VDDP V Pull Level Force Current5) |IPLF| SR 250 Pull Level Keep Current7) |IPLK| SR Input high voltage (all except XTAL1) VIH SR Input low voltage (all except XTAL1) VIL SR Output High voltage8) VOH CC VDDP VDDP + 0.3 − -0.3 0.3 x V VDDP − − V IOH ≥ IOHmax − − V IOH ≥ IOHnom9) - 1.0 VDDP - 0.4 Data Sheet 63 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Table 14 DC Characteristics for Upper Voltage Range (cont’d) Parameter Symbol Values Min. Output Low Voltage8) VOL CC Typ. Unit Note / Test Condition IOL ≤ IOLmax IOL ≤ IOLnom9) Max. − − 1.0 V − − 0.4 V 1) Because each double bond pin is connected to two pads (standard pad and high-speed pad), it has twice the normal value. For a list of affected pins refer to the pin definitions table in chapter 2. 2) Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions. 3) If the input voltage exceeds the respective supply voltage due to ground bouncing (VIN < VSS) or supply ripple (VIN > VDDP), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor KOV. 4) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (TJ = junction temperature [°C]): IOZ = 0.05 x e(1.5 + 0.028 x TJ>) [μA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 μA. Leakage derating depending on voltage level (DV = VDDP - VPIN [V]): IOZ = IOZtempmax - (1.6 x DV) (μA]. This voltage derating formula is an approximation which applies for maximum temperature. 5) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device: VPIN ≤ VILmax for a pullup; VPIN ≥ VIHmin for a pulldown. 6) These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose IO pins. 7) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: VPIN ≥ VIHmin for a pullup; VPIN ≤ VILmax for a pulldown. 8) The maximum deliverable output current of a port driver depends on the selected output driver mode. This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit. 9) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS, VOH->VDDP). However, only the levels for nominal output currents are verified. Data Sheet 64 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 4.2.2 DC Parameters for Lower Voltage Area Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current IOV. Note: Operating Conditions apply. Table 15 is valid under the following conditions: VDDP ≥ 3.0 V; VDDPtyp = 3.3 V; VDDP ≤ 4.5 V Table 15 DC Characteristics for Lower Voltage Range Parameter Symbol Values Pin capacitance (digital inputs/outputs). To be doubled for double bond pins.1) CIO CC Input Hysteresis2) HYS CC 0.07 x Unit Note / Test Condition Min. Typ. Max. − − 10 pF not subject to production test − − V RS = 0 Ohm VDDP Absolute input leakage current on pins of analog ports3) |IOZ1| CC − 10 200 nA VIN > VSS; VIN < VDDP Absolute input leakage current for all other pins. To be doubled for double bond pins.3)1)4) |IOZ2| CC − 0.2 2.5 μA − 0.2 8 μA TJ ≤ 110 °C; VIN < VDDP; VIN > VSS TJ ≤ 150 °C; VIN < VDDP; VIN > VSS − − − − 10 μA 0.7 x − VDDP V Pull Level Force Current5) |IPLF| SR 150 Pull Level Keep Current7) |IPLK| SR Input high voltage (all except XTAL1) VIH SR Input low voltage (all except XTAL1) VIL SR Output High voltage8) VOH CC VDDP VDDP 6) + 0.3 − -0.3 6) 0.3 x V VDDP − − V IOH ≥ IOHmax − − V IOH ≥ IOHnom9) - 1.0 VDDP - 0.4 Data Sheet 65 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Table 15 DC Characteristics for Lower Voltage Range (cont’d) Parameter Symbol Values Min. Output Low Voltage8) VOL CC Typ. Unit Note / Test Condition IOL ≤ IOLmax IOL ≤ IOLnom10) Max. − − 1.0 V − − 0.4 V 1) Because each double bond pin is connected to two pads (standard pad and high-speed pad), it has twice the normal value. For a list of affected pins refer to the pin definitions table in chapter 2. 2) Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions. 3) If the input voltage exceeds the respective supply voltage due to ground bouncing (VIN < VSS) or supply ripple (VIN > VDDP), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor KOV. 4) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (TJ = junction temperature [°C]): IOZ = 0.05 x e(1.5 + 0.028 x TJ>) [μA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 μA. Leakage derating depending on voltage level (DV = VDDP - VPIN [V]): IOZ = IOZtempmax - (1.6 x DV) (μA]. This voltage derating formula is an approximation which applies for maximum temperature. 5) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device: VPIN = VIH for a pulldown. 6) These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose IO pins. 7) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: VPIN >= VIH for a pullup; VPIN VSS, VOH->VDDP). However, only the levels for nominal output currents are verified. 10) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS, VOH->VDDP). However, only the levels for nominal output currents are verified. Data Sheet 66 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 4.2.3 Power Consumption The power consumed by the XC233xA depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components: • • The switching current IS depends on the device activity The leakage current ILK depends on the device temperature To determine the actual power consumption, always both components, switching current IS and leakage current ILK must be added: IDDP = IS + ILK. Note: The power consumption values are not subject to production test. They are verified by design/characterization. To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered. The given power consumption parameters and their values refer to specific operating conditions: • • Active mode: Regular operation, i.e. peripherals are active, code execution out of Flash. Stopover mode: Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped. Note: The maximum values cover the complete specified operating range of all manufactured devices. The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity. After a power reset, the decoupling capacitors for VDDIM and VDDI1 are charged with the maximum possible current. For additional information, please refer to Section 5.2, Thermal Considerations. Note: Operating Conditions apply. Table 16 Parameter Switching Power Consumption Symbol ISACT Power supply current (active) with all peripherals CC active and EVVRs on Values Min. Typ. Max. − 10 + 0.6 x 10 + 1.0 x fSYS1) fSYS1) 0.7 2.0 Power supply current in ISSO CC − stopover mode, EVVRs on Unit Note / Test Condition mA 2)3) mA 1) fSYS in MHz. Data Sheet 67 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 2) The pad supply voltage pins (VDDPB) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched. In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to 3 + 0.6 x fSYS. 3) Please consider the additional conditions described in section "Active Mode Power Supply Current". Active Mode Power Supply Current The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XC233xA’s subsystem. Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers. A small current is consumed because the drivers’ input stages are switched. The IO power domains can be supplied separately. Power domain A (VDDPA) supplies the A/D converters and Port 6. Power domain B (VDDPB) supplies the on-chip EVVRs and all other ports. During operation domain A draws a maximum current of 1.5 mA for each active A/D converter module from VDDPA. In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to (3 + 0.6×fSYS) mA. Data Sheet 68 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters IS [mA] 100 ISACTmax 90 80 70 ISACTtyp 60 50 40 30 20 10 20 40 60 80 fSYS [MHz] MC_XC2XM_IS Figure 14 Supply Current in Active Mode as a Function of Frequency Note: Operating Conditions apply. Data Sheet 69 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Table 17 Leakage Power Consumption Parameter Leakage supply current (DMP_1 powered)1) Symbol ILK1 CC Values Unit Note / Test Condition 0.05 mA 0.5 1.3 mA − 2.1 6.2 mA − 4.4 13.7 mA TJ= 25 °C1) TJ= 85 °C1) TJ= 125 °C1) TJ= 150 °C1) Min. Typ. Max. − 0.03 − 1) All inputs (including pins configured as inputs) are set at 0 V to 0.1 V or at VDDP - 0.1 V to VDDP and all outputs (including pins configured as outputs) are disconnected. Note: A fraction of the leakage current flows through domain DMP_A (pin VDDPA). This current can be calculated as 7 000 × e-α, with α = 5 000 / (273 + 1.3×TJ). For TJ = 150°C, this results in a current of 160 μA. The leakage power consumption can be calculated according to the following formulas: ILK0 = 500 000 × e-α, with α = 3 000 / (273 + B×TJ) Parameter B must be replaced by • • 1.0 for typical values 1.6 for maximum values ILK1 = 600 000 × e-α, with α = 5 000 / (273 + B×TJ) Parameter B must be replaced by • • 1.0 for typical values 1.3 for maximum values Data Sheet 70 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters ILK [mA] 14 ILK1max 12 10 8 6 ILK1typ 4 2 -50 0 100 50 125 150 TJ [°C] MC_XY_ILKN Figure 15 Leakage Supply Current as a Function of Temperature Data Sheet 71 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 4.3 Analog/Digital Converter Parameters These parameters describe the conditions for optimum ADC performance. Note: Operating Conditions apply. Table 18 ADC Parameters Parameter Symbol Switched capacitance at an analog input CAINSW Values Unit Note / Test Condition Min. Typ. Max. − 4 5 pF not subject to production test1) − 10 12 pF not subject to production test1) 7 9 pF not subject to production test1) − 13 15 pF not subject to production test1) CC CAINT Total capacitance at an analog input CC Switched capacitance at the reference input CC CAREFSW − Total capacitance at the reference input CAREFT Differential Non-Linearity Error |EADNL| CC − 0.8 1.0 LSB not subject to production test Gain Error |EAGAIN| − CC 0.4 0.8 LSB not subject to production test Integral Non-Linearity |EAINL| CC − 0.8 1.2 LSB not subject to production test Offset Error |EAOFF| CC − 0.5 0.8 LSB not subject to production test Analog clock frequency fADCI SR 0.5 − 20 MHz Upper voltage range 0.5 − 16.5 MHz Lower voltage range CC Input resistance of the selected analog channel RAIN CC − − 2 kOh m not subject to production test1) Input resistance of the reference input RAREF − − 2 kOh m not subject to production test1) Data Sheet CC 72 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Table 18 ADC Parameters (cont’d) Parameter Symbol Values Min. Unit Typ. Max. Broken wire detection delay against VAGND2) tBWG CC − − 50 3) Broken wire detection delay against VAREF2) tBWR CC − − 50 4) Conversion time for 8-bit result2) tc8 CC (11 + STC) x tADCI + 2 x tSYS Conversion time for 10-bit tc10 CC result2) (13 + STC) x tADCI + 2 x tSYS Total Unadjusted Error − 1 2 LSB Wakeup time from analog tWAF CC − powerdown, fast mode2) − 4 μs Wakeup time from analog tWAS CC − powerdown, slow mode2) − 15 μs − 1.5 V Analog reference ground |TUE| CC Note / Test Condition VAGND VSS SR - 0.05 5) Analog input voltage range VAIN SR VAGND − VAREF V 6) Analog reference voltage VAREF VAGND − VDDPA V 5) SR + 1.0 + 0.05 1) These parameter values cover the complete operating range. Under relaxed operating conditions (room temperature, nominal supply voltage) the typical values can be used for calculation. 2) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock tADCI depend on programming. 3) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 500 µs. Result below 10% (66H). 4) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 10 µs. This function is influenced by leakage current, in particular at high temperature. Result above 80% (332H). 5) TUE is tested at VAREF = VDDPA = 5.0 V, VAGND = 0 V. It is verified by design for all other voltages within the defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog port pins (see IOV specification) does not exceed 10 mA, and if VAREF and VAGND remain stable during the measurement time. 6) VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in these cases will be X000H or X3FFH, respectively. Data Sheet 73 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters RSource V AIN R AIN, On C AINT - C AINS C Ext A/D Converter CAINS MCS05570 Figure 16 Data Sheet Equivalent Circuitry for Analog Inputs 74 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Sample time and conversion time of the XC233xA’s A/D converters are programmable. The timing above can be calculated using Table 19. The limit values for fADCI must not be exceeded when selecting the prescaler value. Table 19 A/D Converter Computation Table GLOBCTR.5-0 (DIVA) A/D Converter Analog Clock fADCI INPCRx.7-0 (STC) 000000B fSYS fSYS / 2 fSYS / 3 fSYS / (DIVA+1) fSYS / 63 fSYS / 64 00H 000001B 000010B : 111110B 111111B 01H 02H : FEH FFH Sample Time1) tS tADCI × 2 tADCI × 3 tADCI × 4 tADCI × (STC+2) tADCI × 256 tADCI × 257 1) The selected sample time is doubled if broken wire detection is active (due to the presampling phase). Converter Timing Example A: Assumptions: Analog clock Sample time fSYS fADCI tS = 80 MHz (i.e. tSYS = 12.5 ns), DIVA = 03H, STC = 00H = fSYS / 4 = 20 MHz, i.e. tADCI = 50 ns = tADCI × 2 = 100 ns Conversion 10-bit: tC10 = 13 × tADCI + 2 × tSYS = 13 × 50 ns + 2 × 12.5 ns = 0.675 μs Conversion 8-bit: tC8 = 11 × tADCI + 2 × tSYS = 11 × 50 ns + 2 × 12.5 ns = 0.575 μs Converter Timing Example B: Assumptions: Analog clock Sample time fSYS fADCI tS = 40 MHz (i.e. tSYS = 25 ns), DIVA = 02H, STC = 03H = fSYS / 3 = 13.3 MHz, i.e. tADCI = 75 ns = tADCI × 5 = 375 ns Conversion 10-bit: tC10 = 16 × tADCI + 2 × tSYS = 16 × 75 ns + 2 × 25 ns = 1.25 μs Conversion 8-bit: tC8 Data Sheet = 14 × tADCI + 2 × tSYS = 14 × 75 ns + 2 × 25 ns = 1.10 μs 75 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 4.4 System Parameters The following parameters specify several aspects which are important when integrating the XC233xA into an application system. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Table 20 Various System Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition ΔTJ ≤ 10 °C Short-term deviation of internal clock source frequency1) ΔfINT CC -1 − 1 % Internal clock source frequency fINT CC 4.8 5.0 5.2 MHz Wakeup clock source frequency2) fWU CC 400 − 700 kHz FREQSEL= 00 210 − 390 kHz FREQSEL= 01 140 − 260 kHz FREQSEL= 10 110 − 200 kHz FREQSEL= 11 2.2 2.7 ms fWU = 500 kHz − 12 / μs Startup time from poweron with code execution from Flash tSPO CC 1.8 Startup time from stopover tSSO CC 11 / fWU3) mode with code execution from PSRAM Core voltage (PVC) supervision level VPVC CC VLV fWU3) VLV - 0.03 VLV V 5) V Lower voltage range5) V Upper voltage range5) + 0.07 4) Supply watchdog (SWD) supervision level VSWD CC VLV - 0.106) VLV VLV + 0.15 VLV - 0.15 VLV VLV + 0.15 1) The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for re-triggering a LIN synchronization. 2) This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to production test - verified by design/characterization Data Sheet 76 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 3) fWU in MHz 4) This value includes a hysteresis of approximately 50 mV for rising voltage. 5) VLV = selected SWD voltage level 6) The limit VLV - 0.10 V is valid for the OK1 level. The limit for the OK2 level is VLV - 0.15 V. Conditions for tSPO Timing Measurement The time required for the transition from Power-On to Base mode is called tSPO. It is measured under the following conditions: Precondition: The pad supply is valid, i.e. VDDPB is above 3.0 V and remains above 3.0 V even though the XC233xA is starting up. No debugger is attached. Start condition: Power-on reset is removed (PORST = 1). End condition: External pin toggle caused by first user instruction executed from FLASH after startup. Conditions for tSSO Timing Measurement The time required for the transition from Stopover to Stopover Waked-Up mode is called tSSO. It is measured under the following conditions: Precondition: The Stopover mode has been entered using the procedure defined in the Programmer’s Guide. Start condition: Pin toggle on ESR pin triggering the startup sequence. End condition: External pin toggle caused by first user instruction executed from PSRAM after startup. Coding of bit fields LEVxV in SWD and PVC Configuration Registers Table 21 Coding of bit fields LEVxV in Register SWDCON0 Code Default Voltage Level 0000B 2.9 V 0001B 3.0 V 0010B 3.1 V 0011B 3.2 V 0100B 3.3 V 0101B 3.4 V 0110B 3.6 V 0111B 4.0 V 1000B 4.2 V Data Sheet Notes1) LEV1V: reset request 77 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Table 21 Coding of bit fields LEVxV in Register SWDCON0 (cont’d) Code Default Voltage Level Notes1) 1001B 4.5 V LEV2V: no request 1010B 4.6 V 1011B 4.7 V 1100B 4.8 V 1101B 4.9 V 1110B 5.0 V 1111B 5.5 V 1) The indicated default levels are selected automatically after a power reset. Table 22 Coding of Bitfields LEVxV in Registers PVCyCONz Notes1) Code Default Voltage Level 000B 0.95 V 001B 1.05 V 010B 1.15 V 011B 1.25 V 100B 1.35 V LEV1V: reset request 101B 1.45 V LEV2V: interrupt request2) 110B 1.55 V 111B 1.65 V 1) The indicated default levels are selected automatically after a power reset. 2) Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and the PVC levels, this interrupt can be triggered inadvertently, even though the core voltage is within the normal range. It is, therefore, recommended not to use the this warning level. Data Sheet 78 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 4.5 Flash Memory Parameters The XC233xA is delivered with all Flash sectors erased and with no protection installed. The data retention time of the XC233xA’s Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Table 23 Flash Parameters Parameter Symbol Values Min. Unit Typ. Max. NPP SR − − 41) − − 12) Flash erase endurance for NSEC SR 10 security pages − − Flash wait states3) NWSFLAS 1 − − H SR 2 − − 3 − − 4 − Parallel Flash module program/erase limit depending on Flash read activity NFL_RD ≤ 1, fSYS ≤ 80 MHz NFL_RD > 1 cycle tRET ≥ 20 years s fSYS ≤ 8 MHz fSYS ≤ 13 MHz fSYS ≤ 17 MHz fSYS > 17 MHz − Erase time per sector/page tER CC − 7 8.0 ms Programming time per page tPR CC − 34) 3.5 ms Data retention time tRET CC 20 − − year s Drain disturb limit NDD SR 32 − − cycle s Data Sheet 79 4) Note / Test Condition NEr ≤ 1 000 cycles V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Table 23 Flash Parameters (cont’d) Parameter Number of erase cycles Symbol NEr SR Values Unit Note / Test Condition Min. Typ. Max. − − 15 000 cycle tRET ≥ 5 years; s Valid for up to 64 userselected sectors (data storage) − − 1 000 cycle tRET ≥ 20 years s 1) All Flash module(s) can be erased/programmed while code is executed and/or data is read from only one Flash module or from PSRAM. The Flash module that delivers code/data can, of course, not be erased/programmed. 2) Flash module 3 can be erased/programmed while code is executed and/or data is read from any other Flash module. 3) Value of IMB_IMBCTRL.WSFLASH. 4) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. This increases the stated durations noticably only at extremely low system clock frequencies. Access to the XC233xA Flash modules is controlled by the IMB. Built-in prefetch mechanisms optimize the performance for sequential access. Flash access waitstates only affect non-sequential access. Due to prefetch mechanisms, the performance for sequential access (depending on the software structure) is only partially influenced by waitstates. Data Sheet 80 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 4.6 AC Parameters These parameters describe the dynamic behavior of the XC233xA. 4.6.1 Testing Waveforms These values are used for characterization and production testing (except pin XTAL1). Output delay Output delay Hold time Hold time 0.8 V DDP 0.7 V DDP Input Signal (driven by tester) 0.3 V DDP 0.2 V DDP Output Signal (measured) Output timings refer to the rising edge of CLKOUT. Input timings are calculated from the time, when the input signal reaches V IH or V IL, respectively. MCD05556C Figure 17 Input Output Waveforms VLoad + 0.1 V V OH - 0.1 V Timing Reference Points V Load - 0.1 V V OL + 0.1 V For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, but begins to float when a 100 mV change from the loaded V OH /V OL level occurs (IOH / IOL = 20 mA). MCA05565 Figure 18 Data Sheet Floating Waveforms 81 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 4.6.2 Definition of Internal Timing The internal operation of the XC233xA is controlled by the internal system clock fSYS. Because the system clock signal fSYS can be generated from a number of internal and external sources using different mechanisms, the duration of the system clock periods (TCSs) and their variation (as well as the derived external timing) depend on the mechanism used to generate fSYS. This must be considered when calculating the timing for the XC233xA. Phase Locked Loop Operation (1:N) fI N f SYS TCS Direct Clock Drive (1:1) fI N f SYS TCS Prescaler Operation (N:1) fI N f SYS TCS M C_XC2X_CLOCKGEN Figure 19 Generation Mechanisms for the System Clock Note: The example of PLL operation shown in Figure 19 uses a PLL factor of 1:4; the example of prescaler operation uses a divider factor of 2:1. The specification of the external timing (AC Characteristics) depends on the period of the system clock (TCS). Data Sheet 82 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Direct Drive When direct drive operation is selected (SYSCON0.CLKSEL = 11B), the system clock is derived directly from the input clock signal CLKIN1: fSYS = fIN. The frequency of fSYS is the same as the frequency of fIN. In this case the high and low times of fSYS are determined by the duty cycle of the input clock fIN. Selecting Bypass Operation from the XTAL11) input and using a divider factor of 1 results in a similar configuration. Prescaler Operation When prescaler operation is selected (SYSCON0.CLKSEL = 10B, PLLCON0.VCOBY = 1B), the system clock is derived either from the crystal oscillator (input clock signal XTAL1) or from the internal clock source through the output prescaler K1 (= K1DIV+1): fSYS = fOSC / K1. If a divider factor of 1 is selected, the frequency of fSYS equals the frequency of fOSC. In this case the high and low times of fSYS are determined by the duty cycle of the input clock fOSC (external or internal). The lowest system clock frequency results from selecting the maximum value for the divider factor K1: fSYS = fOSC / 1024. 4.6.2.1 Phase Locked Loop (PLL) When PLL operation is selected (SYSCON0.CLKSEL = 10B, PLLCON0.VCOBY = 0B), the on-chip phase locked loop is enabled and provides the system clock. The PLL multiplies the input frequency by the factor F (fSYS = fIN × F). F is calculated from the input divider P (= PDIV+1), the multiplication factor N (= NDIV+1), and the output divider K2 (= K2DIV+1): (F = N / (P × K2)). The input clock can be derived either from an external source at XTAL1 or from the onchip clock source. The PLL circuit synchronizes the system clock to the input clock. This synchronization is performed smoothly so that the system clock frequency does not change abruptly. Adjustment to the input clock continuously changes the frequency of fSYS so that it is locked to fIN. The slight variation causes a jitter of fSYS which in turn affects the duration of individual TCSs. 1) Voltages on XTAL1 must comply to the core supply voltage VDDIM. Data Sheet 83 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances. The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or oscillator), the accumulated jitter is limited. This means that the relative deviation for periods of more than one TCS is lower than for a single TCS (see formulas and Figure 20). This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible. The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler K2 to generate the system clock signal fSYS. The number of VCO cycles is K2 × T, where T is the number of consecutive fSYS cycles (TCS). The maximum accumulated jitter (long-term jitter) DTmax is defined by: DTmax [ns] = ±(220 / (K2 × fSYS) + 4.3) This maximum value is applicable, if either the number of clock cycles T > (fSYS / 1.2) or the prescaler value K2 > 17. In all other cases for a timeframe of T × TCS the accumulated jitter DT is determined by: DT [ns] = DTmax × [(1 - 0.058 × K2) × (T - 1) / (0.83 × fSYS - 1) + 0.058 × K2] fSYS in [MHz] in all formulas. Example, for a period of 3 TCSs @ 33 MHz and K2 = 4: Dmax = ±(220 / (4 × 33) + 4.3) = 5.97 ns (Not applicable directly in this case!) D3 = 5.97 × [(1 - 0.058 × 4) × (3 - 1) / (0.83 × 33 - 1) + 0.058 × 4] = 5.97 × [0.768 × 2 / 26.39 + 0.232] = 1.7 ns Example, for a period of 3 TCSs @ 33 MHz and K2 = 2: Dmax = ±(220 / (2 × 33) + 4.3) = 7.63 ns (Not applicable directly in this case!) D3 = 7.63 × [(1 - 0.058 × 2) × (3 - 1) / (0.83 × 33 - 1) + 0.058 × 2] = 7.63 × [0.884 × 2 / 26.39 + 0.116] = 1.4 ns Data Sheet 84 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Acc. jitter DT ns ±9 fSYS = 33 MHz fSYS = 66 MHz fVCO = 66 MHz ±8 ±7 f VCO = 132 MHz ±6 ±5 ±4 ±3 ±2 ±1 Cycles T 0 1 20 40 60 80 100 MC_XC2X_JITTER Figure 20 Approximated Accumulated PLL Jitter Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF. The maximum peak-to-peak noise on the pad supply voltage (measured between VDDPB pin 100 and VSS pin 1) is limited to a peak-to-peak voltage of VPP = 50 mV. This can be achieved by appropriate blocking of the supply voltage as close as possible to the supply pins and using PCB supply and ground planes. Data Sheet 85 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters PLL frequency band selection Different frequency bands can be selected for the VCO so that the operation of the PLL can be adjusted to a wide range of input and output frequencies: Table 24 System PLL Parameters Parameter Symbol Values Min. Unit Typ. Max. − 110 Note / Test Condition VCO output frequency (VCO controlled) fVCO CC 50 − 160 MHz VCOSEL = 01B VCO output frequency (VCO free-running) fVCO CC 10 − 40 MHz VCOSEL = 00B 20 − 80 MHz VCOSEL = 01B 4.6.2.2 100 MHz VCOSEL = 00B Wakeup Clock When wakeup operation is selected (SYSCON0.CLKSEL = 00B), the system clock is derived from the low-frequency wakeup clock source: fSYS = fWU. In this mode, a basic functionality can be maintained without requiring an external clock source and while minimizing the power consumption. 4.6.2.3 Selecting and Changing the Operating Frequency When selecting a clock source and the clock generation method, the required parameters must be carefully written to the respective bit fields, to avoid unintended intermediate states. Many applications change the frequency of the system clock (fSYS) during operation in order to optimize system performance and power consumption. Changing the operating frequency also changes the switching currents, which influences the power supply. To ensure proper operation of the on-chip EVRs while they generate the core voltage, the operating frequency shall only be changed in certain steps. This prevents overshoots and undershoots of the supply voltage. To avoid the indicated problems, recommended sequences are provided which ensure the intended operation of the clock system interacting with the power system. Please refer to the Programmer’s Guide. Data Sheet 86 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 4.6.3 External Clock Input Parameters These parameters specify the external clock generation for the XC233xA. The clock can be generated in two ways: • • By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2 By supplying an external clock signal – This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain) If connected to CLKIN1, the input signal must reach the defined input levels VIL and VIH. If connected to XTAL1, a minimum amplitude VAX1 (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator. Note: The given clock timing parameters (t1 … t4) are only valid for an external clock input signal. Note: Operating Conditions apply. Table 25 External Clock Input Characteristics Parameter Symbol Values Min. Oscillator frequency XTAL1 input current absolute value XTAL11) Note / Test Condition Typ. Max. fOSC SR 4 − 40 MHz Input = clock signal 4 − 16 MHz Input = crystal or ceramic resonator − − 20 μA 6 − − ns 6 − − ns − − 8 ns − − 8 ns 0.3 x − − V 4 to 16 MHz − − V 16 to 25 MHz − − V 25 to 40 MHz − 1.7 V 2) |IIL| CC t1 SR Input clock low time t2 SR t3 SR Input clock rise time Input clock fall time t4 SR Input voltage amplitude on VAX1 SR Input clock high time Unit VDDIM 0.4 x VDDIM 0.5 x VDDIM Input voltage range limits for signal on XTAL1 Data Sheet VIX1 SR -1.7 + VDDIM 87 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 1) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the operation and the resulting voltage peaks must remain within the limits defined by VIX1. 2) Overload conditions must not occur on pin XTAL1. Note: For crystal or ceramic resonator operation, it is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimum parameters for oscillator operation. The manufacturers of crystals and ceramic resonators offer an oscillator evaluation service. This evaluation checks the crystal/resonator specification limits to ensure a reliable oscillator operation. t1 VOFF t3 0.9 V AX1 0.1 V AX1 VAX1 t2 t4 tOSC = 1/fOSC MC_ EXTCLOCK Figure 21 External Clock Drive XTAL1 Data Sheet 88 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 4.6.4 Pad Properties The output pad drivers of the XC233xA can operate in several user-selectable modes. Strong driver mode allows controlling external components requiring higher currents such as power bridges or LEDs. Reducing the driving power of an output pad reduces electromagnetic emissions (EME). In strong driver mode, selecting a slower edge reduces EME. The dynamic behavior, i.e. the rise time and fall time, depends on the applied external capacitance that must be charged and discharged. Timing values are given for a capacitance of 20 pF, unless otherwise noted. In general, the performance of a pad driver depends on the available supply voltage VDDP. The following table lists the pad parameters. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Data Sheet 89 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Table 26 is valid under the following conditions: VDDP ≥ 4.5 V; VDDPtyp = 5 V; VDDP ≤ 5.5 V; CL ≥ 20 pF; CL ≤ 100 pF; Table 26 Standard Pad Parameters for Upper Voltage Range Parameter Symbol Min. Typ. Max. Maximum output driver current (absolute value)1) IOmax − − CC − Nominal output driver current (absolute value) IOnom CC Rise and Fall times (10% - tRF CC 90%) Values Unit Note / Test Condition 10 mA Strong driver − 4.0 mA Medium driver − − 0.5 mA Weak driver − − 2.5 mA Strong driver − − 1.0 mA Medium driver − − 0.1 mA Weak driver − − 4.2 + 0.14 x ns Strong driver; Sharp edge − − 11.6 + ns 0.22 x Strong driver; Medium edge − − − − CL CL 20.6 + ns 0.22 x Strong driver; Slow edge CL 23 + 0.6 x ns Medium driver ns Weak driver CL − − 212 + 1.9 x CL 1) The total output current that may be drawn at a given time must be limited to protect the supply rails from damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣIOL and ΣIOH) must remain below 50 mA. Data Sheet 90 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Table 27 is valid under the following conditions: VDDP ≥ 3.0 V; VDDPtyp = 3.3 V; VDDP ≤ 4.5 V; CL ≥ 20 pF; CL ≤ 100 pF; Table 27 Standard Pad Parameters for Lower Voltage Range Parameter Symbol Min. Typ. Max. Maximum output driver current (absolute value)1) IOmax − − CC − Nominal output driver current (absolute value) IOnom CC Rise and Fall times (10% - tRF CC 90%) Values Unit Note / Test Condition 10 mA Strong driver − 2.5 mA Medium driver − − 0.5 mA Weak driver − − 2.5 mA Strong driver − − 1.0 mA Medium driver − − 0.1 mA Weak driver − − 6.2 + 0.24 x ns Strong driver; Sharp edge − − ns Strong driver; Medium edge − − ns Strong driver; Slow edge − − ns Medium driver ns Weak driver CL 24 + 0.3 x CL 34 + 0.3 x CL 37 + 0.65 x CL − − 500 + 2.5 x CL 1) The total output current that may be drawn at a given time must be limited to protect the supply rails from damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣIOL and ΣIOH) must remain below 50 mA. Data Sheet 91 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 4.6.5 Synchronous Serial Interface Timing The following parameters are applicable for a USIC channel operated in SSC mode. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply; CL = 20 pF. Table 28 USIC SSC Master Mode Timing for Upper Voltage Range Parameter Symbol Values Unit Min. Typ. Max. Slave select output SELO t1 CC active to first SCLKOUT transmit edge tSYS − − ns Slave select output SELO t2 CC inactive after last SCLKOUT receive edge tSYS − − ns t3 CC -6 − 9 ns Receive data input setup t4 SR time to SCLKOUT receive edge 31 − − ns t5 SR -4 − − ns Data output DOUT valid time Data input DX0 hold time from SCLKOUT receive edge Note / Test Condition - 8 1) - 6 1) 1) tSYS = 1 / fSYS Table 29 USIC SSC Master Mode Timing for Lower Voltage Range Parameter Symbol Values Unit Min. Typ. Max. Slave select output SELO t1 CC active to first SCLKOUT transmit edge tSYS − − ns Slave select output SELO t2 CC inactive after last SCLKOUT receive edge tSYS − − ns -7 − 11 ns Data output DOUT valid time Data Sheet t3 CC Note / Test Condition - 10 1) - 9 1) 92 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Table 29 USIC SSC Master Mode Timing for Lower Voltage Range (cont’d) Parameter Symbol Values Unit Min. Typ. Max. Receive data input setup t4 SR time to SCLKOUT receive edge 40 − − ns t5 SR -5 − − ns Data input DX0 hold time from SCLKOUT receive edge Note / Test Condition 1) tSYS = 1 / fSYS Table 30 USIC SSC Slave Mode Timing for Upper Voltage Range Parameter Symbol Values Unit Min. Typ. Max. t10 SR 7 − − ns Select input DX2 hold after t11 SR last clock input DX1 receive edge1) 7 − − ns Receive data input setup time to shift clock receive edge1) t12 SR 7 − − ns Data input DX0 hold time from clock input DX1 receive edge1) t13 SR 5 − − ns Data output DOUT valid time t14 CC 7 − 33 ns Select input DX2 setup to first clock input DX1 transmit edge1) Note / Test Condition 1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0). Data Sheet 93 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Table 31 USIC SSC Slave Mode Timing for Lower Voltage Range Parameter Symbol Values Unit Min. Typ. Max. t10 SR 7 − − ns Select input DX2 hold after t11 SR last clock input DX1 receive edge1) 7 − − ns Receive data input setup time to shift clock receive edge1) t12 SR 7 − − ns Data input DX0 hold time from clock input DX1 receive edge1) t13 SR 5 − − ns Data output DOUT valid time t14 CC 8 − 41 ns Select input DX2 setup to first clock input DX1 transmit edge1) Note / Test Condition 1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0). Data Sheet 94 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Master Mode Timing t1 Select Output SELOx t2 Inactive Inactive Active Clock Output SCLKOUT Receive Edge First Transmit Edge Last Receive Edge Transmit Edge t3 t3 Data Output DOUT t4 Data Input DX0 t4 t5 Data valid t5 Data valid Slave Mode Timing t10 Select Input DX2 Clock Input DX1 t11 Inactive Inactive Active Receive Edge First Transmit Edge t12 Data Input DX0 t12 t13 Data valid t 14 Last Receive Edge Transmit Edge t 13 Data valid t14 Data Output DOUT Transmit Edge: with this clock edge, transmit data is shifted to transmit data output. Receive Edge: with this clock edge, receive data at receive data input is latched . Drawn for BRGH.SCLKCFG = 00B. Also valid for for SCLKCFG = 01B with inverted SCLKOUT signal. USIC_SSC_TMGX.VSD Figure 22 USIC - SSC Master/Slave Mode Timing Note: This timing diagram shows a standard configuration where the slave select signal is low-active and the serial clock signal is not shifted and not inverted. Data Sheet 95 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters 4.6.6 Debug Interface Timing The debugger can communicate with the XC233xA either via the 2-pin DAP interface or via the standard JTAG interface. Debug via DAP The following parameters are applicable for communication through the DAP debug interface. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply; CL= 20 pF. Table 32 DAP Interface Timing for Upper Voltage Range Parameter DAP0 clock period DAP0 high time DAP0 low time DAP0 clock rise time DAP0 clock fall time DAP1 setup to DAP0 rising edge Symbol t11 SR t12 SR t13 SR t14 SR t15 SR t16 SR Values Unit Note / Test Condition Min. Typ. Max. 251) − − ns 8 − − ns 8 − − ns − − 4 ns − − 4 ns 6 − − ns pad_type= stan dard DAP1 hold after DAP0 rising edge t17 SR 6 − − ns pad_type= stan dard DAP1 valid per DAP0 clock period2) t19 CC 17 20 − ns pad_type= stan dard 1) The debug interface cannot operate faster than the overall system, therefore t11 ≥ tSYS. 2) The Host has to find a suitable sampling point by analyzing the sync telegram response. Data Sheet 96 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Table 33 DAP Interface Timing for Lower Voltage Range Parameter Symbol t11 SR t12 SR t13 SR t14 SR t15 SR t16 SR DAP0 clock period DAP0 high time DAP0 low time DAP0 clock rise time DAP0 clock fall time DAP1 setup to DAP0 rising edge Values Unit Note / Test Condition Min. Typ. Max. 251) − − ns 8 − − ns 8 − − ns − − 4 ns − − 4 ns 6 − − ns pad_type= stan dard DAP1 hold after DAP0 rising edge t17 SR 6 − − ns pad_type= stan dard DAP1 valid per DAP0 clock period2) t19 CC 12 17 − ns pad_type= stan dard 1) The debug interface cannot operate faster than the overall system, therefore t11 ≥ tSYS. 2) The Host has to find a suitable sampling point by analyzing the sync telegram response. t 11 0.9 VDDP 0.5 VDDP t15 t12 t 14 0.1 VDDP t13 MC_DAP0 Figure 23 Data Sheet Test Clock Timing (DAP0) 97 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters DAP0 t1 6 t1 7 DAP1 MC_ DAP1_RX Figure 24 DAP Timing Host to Device t1 1 DAP1 t1 9 MC_ DAP1_TX Figure 25 DAP Timing Device to Host Note: The transmission timing is determined by the receiving debugger by evaluating the sync-request synchronization pattern telegram. Data Sheet 98 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Debug via JTAG The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply; CL= 20 pF. Table 34 JTAG Interface Timing for Upper Voltage Range Parameter Symbol Values Min. TCK clock period TCK high time t1 SR t2 SR t3 SR t4 SR t5 SR t6 SR Unit Typ. Max. 50 − − ns 16 − − ns 1) 16 − − ns − − 8 ns − − 8 ns 6 − − ns t7 SR 6 − − ns TDO valid from TCK falling t8 CC edge (propagation delay)3) − 25 29 ns TDO high impedance to valid output from TCK falling edge4)3) t9 CC − 25 29 ns TDO valid output to high impedance from TCK falling edge3) t10 CC − 25 29 ns TDO hold after TCK falling t18 CC edge3) 5 − − ns TCK low time TCK clock rise time TCK clock fall time TDI/TMS setup to TCK rising edge TDI/TMS hold after TCK rising edge Note / Test Condition 2) 1) The debug interface cannot operate faster than the overall system, therefore t1 ≥ tSYS. 2) Under typical conditions, the interface can operate at transfer rates up to 20 MHz. 3) The falling edge on TCK is used to generate the TDO timing. 4) The setup time for TDO is given implicitly by the TCK cycle time. Data Sheet 99 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters Table 35 JTAG Interface Timing for Lower Voltage Range Parameter Symbol Values Unit Min. Typ. Max. 501) − − ns 16 − − ns 16 − − ns − t1 SR t2 SR t3 SR t4 SR t5 SR t6 SR − 8 ns − − 8 ns 6 − − ns t7 SR 6 − − ns TDO valid from TCK falling t8 CC edge (propagation delay)3) − 32 36 ns TDO high impedance to valid output from TCK falling edge4)3) t9 CC − 32 36 ns TDO valid output to high impedance from TCK falling edge3) t10 CC − 32 36 ns TDO hold after TCK falling t18 CC edge3) 5 − − ns TCK clock period TCK high time TCK low time TCK clock rise time TCK clock fall time TDI/TMS setup to TCK rising edge TDI/TMS hold after TCK rising edge Note / Test Condition 2) 1) The debug interface cannot operate faster than the overall system, therefore t1 ≥ tSYS. 2) Under typical conditions, the interface can operate at transfer rates up to 20 MHz. 3) The falling edge on TCK is used to generate the TDO timing. 4) The setup time for TDO is given implicitly by the TCK cycle time. Data Sheet 100 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Electrical Parameters t1 0.9 VDDP 0.5 VDDP t5 t2 0.1 VDDP t4 t3 MC_JTAG_TCK Figure 26 Test Clock Timing (TCK) TCK t6 t7 t6 t7 TMS TDI t9 t8 t10 TDO MC_JTAG Figure 27 Data Sheet JTAG Timing 101 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Package and Reliability 5 Package and Reliability The XC2000 Family devices use the package type PG-LQFP (Plastic Green - Low Profile Quad Flat Package). The following specifications must be regarded to ensure proper integration of the XC233xA in its target environment. 5.1 Packaging These parameters specify the packaging rather than the silicon. Table 36 Package Parameters (PG-LQFP-64-13) Parameter Power Dissipation Thermal resistance Junction-Ambient Symbol PDISS RΘJA Limit Values Unit Notes Min. Max. – 1.0 W – 58 K/W No thermal via1) 46 K/W 4-layer, no pad2) – 1) Device mounted on a 2-layer JEDEC board (according to JESD 51-3) or a 4-layer board without thermal vias; exposed pad not soldered. 2) Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias. Package Compatibility Considerations The XC233xA is a member of the XC2000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies. Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Pad (if present) may vary. If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration. Data Sheet 102 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Package and Reliability 0.5 H 7˚ MAX. 0.15 -0.06 +0.05 1.6 MAX. 0.1 ±0.05 1.4 ±0.05 Package Outlines 0.6 ±0.15 0.08 C 64x C 7.5 +0.07 0.2 -0.03 0.08 M A-B D C 64x 12 10 0.2 A-B D 64x 1) 0.2 A-B D H 4x 10 B 12 A 1) D 64 1 Index Marking 1) Does not include plastic or metal protrusion of 0.25 max. per side PG-LQFP-64-13-PO V07 Figure 28 PG-LQFP-64-13 (Plastic Green Thin Quad Flat Package) All dimensions in mm. You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page “Packages”: http://www.infineon.com/packages Data Sheet 103 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Package and Reliability 5.2 Thermal Considerations When operating the XC233xA in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage. The maximum heat that can be dissipated depends on the package and its integration into the target board. The “Thermal resistance RΘJA” quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 125 °C. The difference between junction temperature and ambient temperature is determined by ΔT = (PINT + PIOSTAT + PIODYN) × RΘJA The internal power consumption is defined as PINT = VDDP × IDDP (switching current and leakage current). The static external power consumption caused by the output drivers is defined as PIOSTAT = Σ((VDDP-VOH) × IOH) + Σ(VOL × IOL) The dynamic external power consumption caused by the output drivers (PIODYN) depends on the capacitive load connected to the respective pins and their switching frequencies. If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation: • • • • Reduce VDDP, if possible in the system Reduce the system frequency Reduce the number of output pins Reduce the load on active output drivers Data Sheet 104 V2.1, 2011-07 XC2336A XC2000 Family / Base Line Package and Reliability 5.3 Quality Declarations The operation lifetime of the XC233xA depends on the applied temperature profile in the application. For a typical example, please refer to Table 38; for other profiles, please contact your Infineon counterpart to calculate the specific lifetime within your application. Table 37 Quality Parameters Parameter Symbol Operation lifetime Table 38 Unit Note / Test Condition 20 a See Table 38 and Table 39 − 2 000 V EIA/JESD22A114-B − 3 − JEDEC J-STD-020C Typ. Max. − − − MSL CC − tOP CC ESD susceptibility VHBM according to Human Body SR Model (HBM) Moisture sensitivity level Values Min. Typical Usage Temperature Profile Operating Time (Sum = 20 years) Operating Temperat. Notes 1 200 h TJ = 150°C TJ = 125°C TJ = 110°C TJ = 100°C TJ = 0…10°C, …, Normal operation 3 600 h 7 200 h 12 000 h 7 × 21 600 h Table 39 Normal operation Normal operation Normal operation Power reduction 60…70°C Long Time Storage Temperature Profile Operating Time (Sum = 20 years) Operating Temperat. Notes 2 000 h Normal operation 151 200 h TJ = 150°C TJ = 125°C TJ = 110°C TJ ≤ 150°C Data Sheet 105 16 000 h 6 000 h Normal operation Normal operation No operation V2.1, 2011-07 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG
XC2336A56F80LAAFXUMA1 价格&库存

很抱歉,暂时无法提供与“XC2336A56F80LAAFXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货