0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FGPF4633TU

FGPF4633TU

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TO-220-3

  • 描述:

    IGBT, 330V, N-CHANNEL, TO-220AB

  • 数据手册
  • 价格&库存
FGPF4633TU 数据手册
FGPF4633 330 V PDP Trench IGBT Features General Description • High Current Capability Using novel trench IGBT technology, Fairchild's new series of trench IGBTs offer the optimum performance for consumer appliances, PDP TV and lighting applications where low conduction and switching losses are essential. • Low Saturation Voltage: VCE(sat) = 1.55 V @ IC = 70 A • High Input Impedance • Fast Switching • RoHS Compliant Applications • PDP TV, Consumer Appliances, Lighting GC E TO-220F (Retractable) Absolute Maximum Ratings Symbol Description Ratings Unit 330 V VCES Collector to Emitter Voltage VGES Gate to Emitter Voltage IC pulse(1)* Collector Current @ TC = 25oC Maximum Power Dissipation @ TC = 25oC 30.5 W Maximum Power Dissipation @ TC = 100oC 12.2 W PD  30 V 300 A TJ Operating Junction Temperature -55 to +150 o C Tstg Storage Temperature Range -55 to +150 o C TL Maximum Lead Temp. for soldering Purposes, 1/8” from case for 5 seconds 300 o C Thermal Characteristics Symbol RJC(IGBT) RJA Parameter Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient Typ. Max. - 4.1 o C/W 62.5 o C/W - Units Notes: (1) Half Sine Wave, D < 0.01, pluse width < 5 sec * Ic_pluse limited by max Tj ©2010 Fairchild Semiconductor Corporation FGPF4633 Rev. C1 1 www.fairchildsemi.com FGPF4633 — 330 V PDP Trench IGBT November 2013 Part Number Top Mark FGPF4633 FGPF4633 Package Packing Method TO-220F Parameter Tape Width Quantity N/A N/A 50 Tube Electrical Characteristics of the IGBT Symbol Reel Size TC = 25°C unless otherwise noted Test Conditions Min. Typ. Max. Unit 330 - - V Off Characteristics BVCES Collector to Emitter Breakdown Voltage VGE = 0 V, IC = 250 A BVCES TJ Temperature Coefficient of Breakdown Voltage VGE = 0 V, IC = 250 A - 0.3 - V/oC ICES Collector Cut-Off Current VCE = VCES, VGE = 0 V - - 100 A IGES G-E Leakage Current VGE = VGES, VCE = 0 V - - ±400 nA IC = 250 A, VCE = VGE 2.4 3.3 4.0 V V On Characteristics VGE(th) VCE(sat) G-E Threshold Voltage Collector to Emitter Saturation Voltage IC = 20 A, VGE = 15 V - 1.1 - IC = 40 A, VGE = 15 V - 1.35 - IC = 70 A, VGE = 15 V, TC = 25oC - 1.55 1.8 V IC = 70 A, VGE = 15 V, TC = 125oC - 1.61 - V - 1715 - pF VCE = 30 V, VGE = 0 V, f = 1 MHz - 75 - pF - 55 - pF - 8 - ns Dynamic Characteristics Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance Switching Characteristics td(on) Turn-On Delay Time tr Rise Time td(off) Turn-Off Delay Time tf td(on) VCC = 200 V, IC = 20 A RG = 5 , VGE = 15 V Resistive Load, TC = 25oC - 30 - ns - 52 - ns Fall Time - 260 - ns Turn-On Delay Time - 8 - ns tr Rise Time td(off) Turn-Off Delay Time tf Qg Qge Gate to Emitter Charge Qgc Gate to Collector Charge VCC = 200 V, IC = 20 A, RG = 5 , VGE = 15 V, Resistive Load, TC = 125oC - 32 - ns - 53 - ns Fall Time - 341 - ns Total Gate Charge - 60 - nC - 8 - nC - 20 - nC ©2010 Fairchild Semiconductor Corporation FGPF4633 Rev. C1 VCE = 200 V, IC = 20 A VGE = 15 V 2 www.fairchildsemi.com FGPF4633 — 330 V PDP Trench IGBT Package Marking and Ordering Information Figure 1. Typical Output Characteristics Figure 2. Typical Output Characteristics 300 300 o o 15V TC = 25 C 20V 200 10V 150 100 VGE = 8V 12V 200 10V 150 100 VGE = 8V 50 50 0 0 0 1 2 3 4 5 6 Collector-Emitter Voltage, VCE [V] 0 7 Figure 3. Typical Saturation Voltage Characteristics 1 2 3 4 5 6 Collector-Emitter Voltage, VCE [V] 7 Figure 4. Transfer Characteristics 300 300 Common Emitter VGE = 15V 250 TC = 25 C o TC = 125 C 200 Common Emitter VCE = 20V 250 o Collector Current, IC [A] Collector Current, IC [A] 15V 250 Collector Current, IC [A] Collector Current, IC [A] 250 150 100 o TC = 25 C o TC = 125 C 200 150 100 50 50 0 0 0 1 2 3 4 5 Collector-Emitter Voltage, VCE [V] 2 6 Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level Collector-Emitter Voltage, VCE [V] 70A 1.4 0.8 -55 40A IC = 20A -30 0 30 60 90 120 o Case Temperature, TC [ C] ©2010 Fairchild Semiconductor Corporation FGPF4633 Rev. C1 14 Common Emitter 1.6 1.0 6 8 10 12 Gate-Emitter Voltage,VGE [V] 20 Common Emitter VGE = 15V 1.2 4 Figure 6. Saturation Voltage vs. VGE 1.8 Collector-Emitter Voltage, VCE [V] 20V TC = 125 C 12V o TC = 25 C 16 12 70A 8 4 0 150 3 40A IC = 20A 0 4 8 12 16 Gate-Emitter Voltage, VGE [V] 20 www.fairchildsemi.com FGPF4633 — 330 V PDP Trench IGBT Typical Performance Characteristics Figure 7. Saturation Voltage vs. VGE Figure 8. Capacitance Characteristics 3000 20 Common Emitter VGE = 0V, f = 1MHz Common Emitter Collector-Emitter Voltage, VCE [V] o TC = 125 C o 16 Capacitance [pF] TC = 25 C 12 70A 8 40A 2000 Cies 1000 Coes 4 IC = 20A Cres 0 0.1 0 0 4 8 12 16 Gate-Emitter Voltage, VGE [V] 20 Figure 9. Gate charge Characteristics 1 10 Collector-Emitter Voltage, VCE [V] 30 Figure 10. SOA Characteristics 15 500 Common Emitter VCC = 100V 9 200V 6 3 0 0 10s 100 Collector Current, Ic [A] Gate-Emitter Voltage, VGE [V] o TC = 25 C 12 15 30 45 Gate Charge, Qg [nC] 100s 1ms 10 10 ms DC 1 Single Nonrepetitive Pulse TC = 25oC Curves must be derated linearly with increase in temperature 0.1 0.01 0.1 60 Figure 11. Turn-on Characteristics vs. Gate Resistance 1 10 100 Collector-Emitter Voltage, VCE [V] 500 Figure 12. Turn-off Characteristics vs. Gate Resistance 70 Switching Time [ns] Switching Time [ns] 500 tr td(on) 10 Common Emitter VCC = 200V, VGE = 15V IC = 20A td(off) tf 100 Common Emitter VCC = 200V, VGE = 15V IC = 20A o TC = 25 C o TC = 25 C o TC = 125 C o 6 0 10 20 30 40 50 0 Gate Resistance, RG [ ] ©2010 Fairchild Semiconductor Corporation FGPF4633 Rev. C1 TC = 125 C 40 10 20 30 40 50 Gate Resistance, RG [ ] 4 www.fairchildsemi.com FGPF4633 — 330 V PDP Trench IGBT Typical Performance Characteristics Figure 13. Turn-on Characteristics vs. Collector Current Figure 14. Turn-off Characteristics vs. Collector Current 500 100 td(off) 10 Switching Time [ns] Switching Time [ns] tr Common Emitter VGE = 15V, RG = 5 td(on) 100 tf Common Emitter VGE = 15V, RG = 5 o o TC = 25 C TC = 25 C o o TC = 125 C TC = 125 C 3 20 30 40 50 60 10 20 70 30 Figure 15. Switching Loss vs. Gate Resistance 50 60 70 Figure 16. Switching Loss vs. Collector Current 3 2 Common Emitter VCC = 200V, VGE = 15V 1 IC = 20A 1 o Switching Loss [mJ] TC = 25 C Switching Loss [mJ] 40 Collector Current, IC [A] Collector Current, IC [A] o TC = 125 C Eoff 0.1 Eoff 0.1 Eon Common Emitter VGE = 15V, RG = 5 o TC = 25 C o Eon 0.03 0 10 20 30 TC = 125 C 40 0.01 20 50 Gate Resistance, RG [ ] 30 40 50 60 70 Collector Current, IC [A] Figure 17. Turn off Switching SOA Characteristics 500 Collector Current, IC [A] 100 10 1 Safe Operating Area o VGE = 15V, TC = 125 C 0.1 1 10 100 500 Collector-Emitter Voltage, VCE [V] ©2010 Fairchild Semiconductor Corporation FGPF4633 Rev. C1 5 www.fairchildsemi.com FGPF4633 — 330 V PDP Trench IGBT Typical Performance Characteristics FGPF4633 — 330 V PDP Trench IGBT Typical Performance Characteristics Figure 18.Transient Thermal Impedance of IGBT Thermal Response [Zthjc] 5 0.5 1 0.2 0.1 0.05 PDM 0.1 0.02 t1 t2 0.01 Duty Factor, D = t1/t2 Peak Tj = Pdm x Zthjc + TC single pulse 0.01 0.006 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Rectangular Pulse Duration [sec] ©2010 Fairchild Semiconductor Corporation FGPF4633 Rev. C1 6 www.fairchildsemi.com FGPF4633 — 330 V PDP Trench IGBT Package Dimensions Figure 19. TO-220F 3L - TO220, MOLDED, 3LD, FULL PACK, EIAJ SC91, STRAIGHT LEAD Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF220-003 ©2010 Fairchild Semiconductor Corporation FGPF4633 Rev. C1 7 www.fairchildsemi.com *Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used here in: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I66 ©2010 Fairchild Semiconductor Corporation FGPF4633 Rev. C1 8 www.fairchildsemi.com FGPF4633 — 330 V PDP Trench IGBT TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPower™ Sync-Lock™ F-PFS™ ® AX-CAP®* FRFET® ®* ® Global Power ResourceSM PowerTrench BitSiC™ Build it Now™ GreenBridge™ PowerXS™ TinyBoost® CorePLUS™ Programmable Active Droop™ Green FPS™ TinyBuck® ® CorePOWER™ QFET Green FPS™ e-Series™ TinyCalc™ CROSSVOLT™ QS™ Gmax™ TinyLogic® Quiet Series™ CTL™ GTO™ TINYOPTO™ Current Transfer Logic™ RapidConfigure™ IntelliMAX™ TinyPower™ DEUXPEED® ISOPLANAR™ ™ TinyPWM™ Dual Cool™ Marking Small Speakers Sound Louder TinyWire™ EcoSPARK® Saving our world, 1mW/W/kW at a time™ and Better™ TranSiC™ EfficentMax™ SignalWise™ MegaBuck™ TriFault Detect™ SmartMax™ MICROCOUPLER™ ESBC™ TRUECURRENT®* SMART START™ MicroFET™ ® SerDes™ Solutions for Your Success™ MicroPak™ SPM® MicroPak2™ Fairchild® ® STEALTH™ MillerDrive™ Fairchild Semiconductor UHC® SuperFET® MotionMax™ FACT Quiet Series™ ® Ultra FRFET™ ® SuperSOT™-3 mWSaver FACT UniFET™ OptoHiT™ SuperSOT™-6 FAST® ® VCX™ OPTOLOGIC SuperSOT™-8 FastvCore™ ® ® VisualMax™ OPTOPLANAR SupreMOS FETBench™ VoltagePlus™ SyncFET™ FPS™ XS™
FGPF4633TU 价格&库存

很抱歉,暂时无法提供与“FGPF4633TU”相匹配的价格&库存,您可以联系我们找货

免费人工找货