0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FT122Q-T

FT122Q-T

  • 厂商:

    FTDI(飞特帝亚)

  • 封装:

    WFQFN28_EP

  • 描述:

    IC USB CONTROLLER SPI 28-QFN

  • 数据手册
  • 价格&库存
FT122Q-T 数据手册
Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Future Technology Devices International Ltd. FT122 (Enhanced USB Device Controller with Parallel Bus IC) The FT122 is a USB generic interface controller with the following advanced  clock frequency (4 – 24 MHz) features:  USB 2.0 Full Speed compatible  High performance USB device controller with  30 kHz output clock provided during suspend  Integrated  and voltage regulators  Fully integrated clock generation external crystal required with  Supports 8-bit parallel interface to external  Supports DMA operation  Supports up to 8 bi-directional endpoints with total 2K bytes endpoint buffer  Max packet size is 504 bytes for isochronous endpoint and 64 bytes for control/bulk/ interrupt endpoint  Double buffer scheme for any endpoint Multiple interrupt modes to facilitate both bulk USB Battery Charger for USB USB connection indicator that toggles with USB Supports bus-powered or self-powered  VCC power supply operation at 3.3V or 5V  Internal 1.8V and 3.3V LDO regulators  VCC IO level range from 1.8V to 3.3V  Integrated power-on-reset circuit  UHCI/OHCI/EHCI host controller compatible  -40°C to 85°C extended operating temperature range and isochronous transfers  resistor applications increases data transfer throughput  pull-up transmit and receive activities no microcontroller DP connection integrated SIE, endpoint buffer, transceiver  Dedicated clock output pin with programmable  Available in Pb-free TSSOP-28 and QFN-28 packages (RoHS compliant) detection allowing optimized charging profile Neither the whole nor any part of the information contained in, or the product described in this manual, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. This product and its documentation are supplied on an as-is basis and no warranty as to their suitability for any particular purpose is either made or implied. Future Technology Devices International Ltd will not accept any claim for damages howsoever arising as a result of use or failure of this product. Your statutory rights are not affected. This product or any variant of it is not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to result in personal injury. This document provides preliminary information that may be subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH United Kingdom. Scotland Registered Company Number: SC136640 Copyright © 2014 Future Technology Devices International Limited 1 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 1 Typical Applications  Provide USB port to Microcontrollers  Provide USB port to FPGA’s  USB Industrial Control  Utilising USB to add system modularity  Mass storage data transfers for multitude of  Isochronous support for video applications in embedded systems applications, including security, industrial control, and quality medical, industrial data-logger, power- inspections metering, and test instrumentation 1.1 Part Numbers Part Number Package FT122T-x TSSOP-28 FT122Q-x QFN-28 Note: Packaging codes for x is: - R: Taped and Reel, (TSSOP is 2,500pcs per reel, QFN is 6,000pcs per reel). - U: Tube packing, 50pcs per tube (TSSOP only) - T: Tray packing, 490pcs per tray (QFN only) For example: FT122T-R is 2,500pcs taped and reel packing 1.2 USB Compliant At the time of writing this datasheet, the FT122 was in the process of completing USB compliance testing. Copyright © 2014 Future Technology Devices International Limited 2 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 2 Block Diagrams Figure 2-1 FT122 Block Diagram For a description of each function please refer to Section 4. Copyright © 2014 Future Technology Devices International Limited 3 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Table of Contents 1 Typical Applications ...................................................................... 2 1.1 Part Numbers...................................................................................... 2 1.2 USB Compliant .................................................................................... 2 2 Block Diagrams ............................................................................ 3 3 Device Pin Out and Signal Description .......................................... 6 3.1 TSSOP-28 Package Pin Out ................................................................. 6 3.2 QFN-28 Package Pin Out ..................................................................... 6 3.3 Pin Description ................................................................................... 7 4 Function Description..................................................................... 9 4.1 Functional Block Descriptions ............................................................. 9 4.2 Interrupt Modes ................................................................................ 10 5 Endpoint Buffer Management ..................................................... 11 5.1 Endpoint Buffer Management in Default Mode .................................. 11 5.2 Endpoint Buffer Management in Enhanced Mode .............................. 12 6 Commands and Registers ........................................................... 14 6.1 Command Summary .......................................................................... 14 6.2 Initialization Commands ................................................................... 19 6.2.1 Set Address Enable .................................................................................................... 19 6.2.2 Set Endpoint Enable ................................................................................................... 19 6.2.3 Set Mode .................................................................................................................. 19 6.2.4 Set DMA ................................................................................................................... 21 6.2.5 Set Endpoint Configuration (for Enhanced Mode) ........................................................... 22 6.3 Data Flow Commands ....................................................................... 23 6.3.1 Read Interrupt Register .............................................................................................. 23 6.3.2 Select Endpoint ......................................................................................................... 25 6.3.3 Read Last Transaction Status ...................................................................................... 25 6.3.4 Read Endpoint Status ................................................................................................. 26 6.3.5 Read Buffer ............................................................................................................... 27 6.3.6 Write Buffer .............................................................................................................. 27 6.3.7 Clear Buffer .............................................................................................................. 27 6.3.8 Validate Buffer .......................................................................................................... 28 6.3.9 Set Endpoint Status ................................................................................................... 28 6.3.10 6.4 Acknowledge Setup ................................................................................................ 28 General Commands ........................................................................... 28 6.4.1 Read Current Frame Number ....................................................................................... 29 6.4.2 Send Resume ............................................................................................................ 29 6.4.3 Set Buffer Interrupt Mode ........................................................................................... 29 6.4.4 Read Vendor ID ......................................................................................................... 30 Copyright © 2014 Future Technology Devices International Limited 4 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 6.4.5 Read Product ID ........................................................................................................ 30 6.4.6 Read FTDI ID ............................................................................................................ 30 6.4.7 Set IO Pad Drive Strength........................................................................................... 30 7 Application Information ............................................................. 32 8 Devices Characteristics and Ratings ........................................... 33 8.1 Absolute Maximum Ratings............................................................... 33 8.2 DC Characteristics............................................................................. 34 8.3 AC Characteristics ............................................................................. 35 9 Package Parameters ................................................................... 39 9.1 TSSOP-28 Package Dimensions ........................................................ 39 9.2 TSSOP-28 Package Markings ........................................................... 40 9.3 QFN-28 Package Dimensions ............................................................ 41 9.4 QFN-28 Package Markings ............................................................... 42 9.5 Solder Reflow Profile ........................................................................ 42 10 Contact Information ................................................................... 44 Appendix A– References ............................................................................ 45 Appendix B - List of Figures and Tables ..................................................... 45 Appendix C - Revision History .................................................................... 47 Copyright © 2014 Future Technology Devices International Limited 5 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 3 Device Pin Out and Signal Description 3.1 TSSOP-28 Package Pin Out Figure 3-1 TSSOP-28 package schematic symbol 3.2 QFN-28 Package Pin Out Figure 3-2 QFN-28 package schematic symbol Copyright © 2014 Future Technology Devices International Limited 6 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 3.3 Pin Description PIN No. (TSSOP28) PIN No. (QFN28) 1 26 2 PIN NAME TYPE DESCRIPTION D0 IO Data bus bit 0. 27 D1 IO Data bus bit 1. 3 28 D2 IO Data bus bit 2. 4 1 D3 IO Data bus bit 3. 5 2 VCCIO 6 3 D4 IO Data bus bit 4. 7 4 D5 IO Data bus bit 5. 8 5 D6 IO Data bus bit 6. 9 6 D7 IO Data bus bit 7. 10 7 ALE I P IO Supply Voltage; 1.8V, 2.5V or 3.3V Address latch enable for multiplexed address/data bus configuration. This pin must be pulled Low for non-multiplexed address/data bus configuration. 11 8 CS_n I 12 9 SUSPEND 13 10 CLKOUT 14 11 INT_n OD 15 12 RD_n I Read enable (Active Low). 16 13 WR_n I Write enable (Active Low). 17 14 DMREQ O DMA request. 18 15 DMACK_n I DMA acknowledge (Active Low). 19 16 EOT_n I End of DMA transfer (Active Low). Also function as Vbus sensing input for self-powered application. 20 17 RESET_n I Asynchronous reset (Active Low). 21 18 GL_n 22 19 VOUT3V3 I,OD O Chip select (Active Low). Device suspend (output) and wakeup (input). Programmable output clock. Interrupt (Active Low). OD USB bus activity indicator (Active Low) P 3.3V regulator output for 5V operation; To operate the IC at 3.3 V, supply 3.3 V to both the VCC and VOUT3V3 pins Copyright © 2014 Future Technology Devices International Limited 7 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 PIN No. (TSSOP28) PIN No. (QFN28) PIN NAME TYPE DESCRIPTION 23 20 VCC P 24 21 GND P 25 22 DM AIO USB data signal minus 26 23 DP AIO USB data signal plus 27 24 BCD_n O USB Charger detector output 28 25 A0 I Address bit for non-multiplexed address/data bus configuration. Power supply (3.3V or 5V) Ground - A0=1 indicates command phase; - A0=0 indicates data phase. This pin must be pulled High for multiplexed address/data bus configuration. - 29 GND P Ground. Die pad for QFN-28 package. Table 3-1 FT122 Pin Description Note: a) Pin name with suffix “_n” denotes active low input/output signal. b) Symbol used for pin TYPE: OD : Open Drain Output O : Output IO : Bi-directional Input and Output I : Plain input AIO : Analog Input and Output P : Power or ground Copyright © 2014 Future Technology Devices International Limited 8 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 4 Function Description The FT122 is a USB device controller which interfaces with microcontrollers via a generic 8-bit parallel bus. 4.1 Functional Block Descriptions The following sections describe the function of each block. Please refer to the block diagram shown in Figure 2-1. +1.8V LDO Regulator. The +1.8V LDO regulator generates the +1.8V reference voltage for the internal core of the IC with input capabilities from 3.3V or 5V. +3.3V LDO Regulator. The +3.3V LDO regulator generates the +3.3V supply voltage for the USB transceiver. An external decoupling capacitor needs to be attached to the VOUT3V3 regulator output pin. The regulator also provides +3.3V power to the 1.5kΩ internal pull up resistor on DP pin. The allowable input voltages are 5V or 3.3V. When using 3.3V as the input voltage, the VCC and VOUT3V3 pins should be tied together. This will result in the regulator being by-passed. USB Transceiver. The USB Transceiver cell provides the USB 1.1 / USB 2.0 full-speed physical interface. Output drivers provide +3.3V level slew rate control , while a differential input and two single ended input receivers provide data in, Single-Ended-0 (SE0) and USB reset detection conditions respectfully. A 1.5kΩ pull up resistor on DP is incorporated. DPLL. The DPLL cell locks on to the incoming NRZI USB data and generates recovered clock and data signals.. Internal Oscillator. The Internal Oscillator cell generates a reference clock. This provides an input to the Clock Multiplier function. Clock Multiplier. The 12MHz and 48MHz reference clock signals for various internal blocks can be generated from the reference clock via the oscillator functions and clock multiplier circuitry. Serial Interface Engine (SIE). The Serial Interface Engine (SIE) block performs the parallel to serial and serial to parallel conversion of the USB data. In accordance with the USB 2.0 specification, it performs bit stuffing/un-stuffing and CRC5/CRC16 generation. It also checks the CRC on the USB data stream. USB Protocol Engine. The USB Protocol Engine manages the data stream from the device USB control endpoint. It handles the low level USB protocol requests generated by the USB host controller. The Protocol Engine also includes a memory management unit which handles endpoint buffers. Copyright © 2014 Future Technology Devices International Limited 9 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 OUT Buffer. Data sent from the USB host controller to FT122 via the USB data OUT endpoint is stored in the OUT buffer. Data is removed from the OUT buffer to system memory under control of the parallel interface block. IN Buffer. Data from system memory is stored in the IN buffer. The USB host controller removes data from the IN buffer by sending a USB request for data from the device data IN endpoint. RESET Generator. The integrated Reset Generator cell provides a reliable power-on reset to the device internal circuitry at power up. The RESET_n input pin allows an external device to reset the FT122. Parallel Interface Block. The 8-bit parallel bus allows direct interface to a generic microcontroller (MCU), supporting both multiplexed and non-multiplexed address/data bus configurations. The FT122 also supports Direct Memory Access (DMA) operation. With DMA access data can be written to the IN buffer or read from the OUT buffer without MCU intervention. The DMA access can be done in single cycle or burst mode. 4.2 Interrupt Modes The FT122 interrupt pin (INT_n) can be programmed to generate an interrupt in different modes. The interrupt source can be any bit in the Interrupt Register, an SOF packet being received, or both. The interrupt modes are selectable by two register bits, one is the SOF-only Interrupt Mode bit (bit 7 of Clock Division Factor register), and the other is the Interrupt Pin Mode bit (bit 5 of DMA Configuration register). Interrupt mode Bit SOF-only Interrupt Mode Bit Interrupt Pin Mode Interrupt source 0 0 0 Any bit in Interrupt register 1 0 1 Any bit in Interrupt register and SOF 2 1 X SOF only Table 4-1 Interrupt modes Copyright © 2014 Future Technology Devices International Limited 10 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 5 Endpoint Buffer Management The FT122 has 2 modes of operation for command and memory management: the default mode (FT120 compatible mode) and the enhanced mode. The buffer management schemes are different in these two modes. Upon reset the default mode is functional. The enhanced mode is activated when any of the Set Endpoint Configuration commands (B0h – BFh) are received. 5.1 Endpoint Buffer Management in Default Mode In default mode the FT122 has 3 bi-directional endpoints (EP0, EP1 and EP2). EP0 is the control endpoint, with 16 bytes maximum packet size for both control OUT and control IN endpoint. EP1 can be used as either a bulk endpoint or an interrupt endpoint, with 16 bytes maximum packet size for both OUT and IN endpoints. Table 5-1 shows the endpoint type and maximum packet size for EP0 and EP1. Endpoint Number (EP) Endpoint Index (EPI) Endpoint Direction Transfer Type Max Packet Size 0 0 OUT Control 16 1 IN Control 16 2 OUT Bulk/Interrupt 16 3 IN Bulk/Interrupt 16 1 Table 5-1 Endpoint configuration for EP0 and EP1 EP2 is the primary endpoint. It can be configured as either a bulk/interrupt or isochronous endpoint. The maximum packet size allowed for EP2 depends on the mode of configuration through the Set Mode command. Table 5-2 shows all the 4 endpoint configuration modes for EP2. EP2 Endpoint Configuration Mode Endpoint Index (EPI) Endpoint Direction Transfer Type Max Packet Size 0 4 OUT Bulk/Interrupt 64 (default) 5 IN Bulk/Interrupt 64 1 4 OUT Isochronous 128 2 5 IN Isochronous 128 3 4 OUT Isochronous 64 5 IN Isochronous 64 Table 5-2 Endpoint configuration for EP2 Copyright © 2014 Future Technology Devices International Limited 11 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 As the primary endpoint, EP2 is suitable for transmitting or receiving relatively large data. To improve the data throughput, EP2 is implemented with double buffering. This allows the concurrent operation between USB bus access and MCU or DMA local bus access. For example, for EP2 IN endpoint (EPI5), the USB host can read data from FT122 Buffer 0 while the local MCU is writing to Buffer 1 at the same time. The USB host can subsequently read from FT122 Buffer 1 without waiting for it to be filled. Buffer switching is handled automatically by the FT122. The EP2 buffer also supports DMA operation. The MCU needs to initialize the DMA operation through the Set DMA command. Once DMA operation is enabled, data will be moving between the system memory and FT122 endpoint buffer under the DMA controller. Buffer switching between Buffer 0 and Buffer 1 is handled automatically. 5.2 Endpoint Buffer Management in Enhanced Mode In enhanced mode the FT122 supports a dedicated 1kB buffer for IN packets and a dedicated 1kB buffer for OUT packets. The OUT/IN buffer can be allocated to any endpoint with the same direction, up to a maximum of 504 bytes double buffered (1008 bytes in total) to one endpoint. 504 is the maximum byte count as there are 1024 bytes in total per OUT/IN Buffer and 8 bytes for IN and OUT packets on control endpoint 0 must always be reserved. Control, interrupt and bulk endpoints can have a maximum packet size of 64 bytes and only isochronous endpoints can be allocated more than 64 bytes. Isochronous modes can have larger buffer sizes as USB packets can be larger than 64 bytes for isochronous transfer. The isochronous buffer is managed in the same way as bulk, interrupt and control buffers – i.e. a buffer is for one USB packet only and will not span more than one USB packet. Each cell indicates a 64 byte block An example of buffer configurations follows, where Configuration 1 and 2 have larger isochronous buffers. Configuration 0 EP Buffer 7 1 7 0 6 1 6 0 5 1 5 0 4 1 4 0 3 1 3 0 2 1 2 0 1 1 0 0 1 0 1 0 Configuration 1 EP Buffer 7 1 (ISO) 7 0 (ISO) 6 1 6 0 2 1 2 0 1 (ISO) Configuration 2 EP Buffer 5 (ISO) 1 5 (ISO) 0 0 0 1 0 1 1 (ISO) 0 0 0 1 0 Table 5-3 - Example buffer configuration Copyright © 2014 Future Technology Devices International Limited 12 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 The endpoint buffer configurations, settable using the Set Endpoint Configuration command, are as follows: Endpoint buffer size register setting (0b’) Non-isochronous endpoint Isochronous endpoint 0000 8 bytes 16 bytes 0001 16 bytes 32 bytes 0010 32 bytes 48 bytes 0011 64 bytes 64 bytes 0100 - 96 bytes 0101 - 128 bytes 0110 - 160 bytes 0111 - 192 bytes 1000 - 256 bytes 1001 - 320 bytes 1010 - 384 bytes 1011 - 504 bytes 1100-1111 - - Table 5-4 - Endpoint Maximum Packet Size Note: 504 is the maximum byte count as there are 1024 bytes in total and 8 bytes IN and OUT packets for control endpoint 0 must always be reserved. Copyright © 2014 Future Technology Devices International Limited 13 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 6 Commands and Registers The FT122 supports two command sets: a default command set (Table 6-1) and an enhanced command set (Table 6-2). The enhanced command set is activated if any of the Set Endpoint Configuration commands (0xB0-0xBF) are received by the FT122. Otherwise, the default command set shall be valid. 6.1 Command Summary Command Name Target Code (hex) Data phase Initialization Commands Set Address Enable Device D0h Write 1 byte Set Endpoint Enable Device D8h Write 1 byte Set Mode Device F3h Write 2 bytes Set DMA Device FBh Write/Read 1 byte Data Flow Commands Read Interrupt Register Device F4h Read 2 bytes Select Endpoint Endpoint 0 OUT 00h Read 1 byte (optional) Endpoint 0 IN 01h Read 1 byte (optional) Endpoint 1 OUT 02h Read 1 byte (optional) Endpoint 1 IN 03h Read 1 byte (optional) Endpoint 2 OUT 04h Read 1 byte (optional) Endpoint 2 IN 05h Read 1 byte (optional) Endpoint 0 OUT 40h Read 1 byte Endpoint 0 IN 41h Read 1 byte Endpoint 1 OUT 42h Read 1 byte Endpoint 1 IN 43h Read 1 byte Endpoint 2 OUT 44h Read 1 byte Endpoint 2 IN 45h Read 1 byte Endpoint 0 OUT 80h Read 1 byte Endpoint 0 IN 81h Read 1 byte Endpoint 1 OUT 82h Read 1 byte Endpoint 1 IN 83h Read 1 byte Endpoint 2 OUT 84h Read 1 byte Read Last Transaction Status Read Endpoint Status Copyright © 2014 Future Technology Devices International Limited 14 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Command Name Target Code (hex) Data phase Endpoint 2 IN 85h Read 1 byte Read Buffer Selected Endpoint F0h Read multiple bytes Write Buffer Selected Endpoint F0h Write multiple bytes Set Endpoint Status Endpoint 0 OUT 40h Write 1 byte Endpoint 0 IN 41h Write 1 byte Endpoint 1 OUT 42h Write 1 byte Endpoint 1 IN 43h Write 1 byte Endpoint 2 OUT 44h Write 1 byte Endpoint 2 IN 45h Write 1 byte Acknowledge Setup Selected Endpoint F1h None Clear Buffer Selected Endpoint F2h None Validate Buffer Selected Endpoint FAh None General Commands Read Current Frame Number Device F5h Read 1 or 2 bytes Send Resume Device F6h None Target Code (hex) Table 6-1 FT122 default command set Command Name Data phase Initialization Commands Set Address Enable Device D0h Write 1 byte Set Endpoint Enable Device D8h Write 1 byte Set Mode Device F3h Write 2 bytes Set DMA Device FBh Write/Read 2 bytes Set Endpoint Configuration Endpoint 0 OUT B0h Write 1 byte Endpoint 0 IN B1h Write 1 byte Endpoint 1 OUT B2h Write 1 byte Endpoint 1 IN B3h Write 1 byte Endpoint 2 OUT B4h Write 1 byte Endpoint 2 IN B5h Write 1 byte Copyright © 2014 Future Technology Devices International Limited 15 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Command Name Target Code (hex) Data phase Endpoint 3 OUT B6h Write 1 byte Endpoint 3 IN B7h Write 1 byte Endpoint 4 OUT B8h Write 1 byte Endpoint 4 IN B9h Write 1 byte Endpoint 5 OUT BAh Write 1 byte Endpoint 5 IN BBh Write 1 byte Endpoint 6 OUT BCh Write 1 byte Endpoint 6 IN BDh Write 1 byte Endpoint 7 OUT BEh Write 1 byte Endpoint 7 IN BFh Write 1 byte Data Flow Commands Read Interrupt Register Device F4h Read 1 to 4 bytes Select Endpoint Endpoint 0 OUT 00h Read 1 byte (optional) Endpoint 0 IN 01h Read 1 byte (optional) Endpoint 1 OUT 02h Read 1 byte (optional) Endpoint 1 IN 03h Read 1 byte (optional) Endpoint 2 OUT 04h Read 1 byte (optional) Endpoint 2 IN 05h Read 1 byte (optional) Endpoint 3 OUT 06h Read 1 byte (optional) Endpoint 3 IN 07h Read 1 byte (optional) Endpoint 4 OUT 08h Read 1 byte (optional) Endpoint 4 IN 09h Read 1 byte (optional) Endpoint 5 OUT 0Ah Read 1 byte (optional) Endpoint 5 IN 0Bh Read 1 byte (optional) Endpoint 6 OUT 0Ch Read 1 byte (optional) Endpoint 6 IN 0Dh Read 1 byte (optional) Endpoint 7 OUT 0Eh Read 1 byte (optional) Endpoint 7 IN 0Fh Read 1 byte (optional) Endpoint 0 OUT 40h Read 1 byte Read Last Transaction Status Copyright © 2014 Future Technology Devices International Limited 16 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Command Name Target Read Endpoint Status Code (hex) Data phase Endpoint 0 IN 41h Read 1 byte Endpoint 1 OUT 42h Read 1 byte Endpoint 1 IN 43h Read 1 byte Endpoint 2 OUT 44h Read 1 byte Endpoint 2 IN 45h Read 1 byte Endpoint 3 OUT 46h Read 1 byte Endpoint 3 IN 47h Read 1 byte Endpoint 4 OUT 48h Read 1 byte Endpoint 4 IN 49h Read 1 byte Endpoint 5 OUT 4Ah Read 1 byte Endpoint 5 IN 4Bh Read 1 byte Endpoint 6 OUT 4Ch Read 1 byte Endpoint 6 IN 4Dh Read 1 byte Endpoint 7 OUT 4Eh Read 1 byte Endpoint 7 IN 4Fh Read 1 byte Endpoint 0 OUT 80h Read 1 byte Endpoint 0 IN 81h Read 1 byte Endpoint 1 OUT 82h Read 1 byte Endpoint 1 IN 83h Read 1 byte Endpoint 2 OUT 84h Read 1 byte Endpoint 2 IN 85h Read 1 byte Endpoint 3 OUT 86h Read 1 byte Endpoint 3 IN 87h Read 1 byte Endpoint 4 OUT 88h Read 1 byte Endpoint 4 IN 89h Read 1 byte Endpoint 5 OUT 8Ah Read 1 byte Endpoint 5 IN 8Bh Read 1 byte Endpoint 6 OUT 8Ch Read 1 byte Endpoint 6 IN 8Dh Read 1 byte Copyright © 2014 Future Technology Devices International Limited 17 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Command Name Target Code (hex) Data phase Endpoint 7 OUT 8Eh Read 1 byte Endpoint 7 IN 8Fh Read 1 byte Read Buffer Selected Endpoint F0h Read n bytes Write Buffer Selected Endpoint F0h Write n bytes Set Endpoint Status Endpoint 0 OUT 40h Write 1 byte Endpoint 0 IN 41h Write 1 byte Endpoint 1 OUT 42h Write 1 byte Endpoint 1 IN 43h Write 1 byte Endpoint 2 OUT 44h Write 1 byte Endpoint 2 IN 45h Write 1 byte Endpoint 3 OUT 46h Write 1 byte Endpoint 3 IN 47h Write 1 byte Endpoint 4 OUT 48h Write 1 byte Endpoint 4 IN 49h Write 1 byte Endpoint 5 OUT 4Ah Write 1 byte Endpoint 5 IN 4Bh Write 1 byte Endpoint 6 OUT 4Ch Write 1 byte Endpoint 6 IN 4Dh Write 1 byte Endpoint 7 OUT 4Eh Write 1 byte Endpoint 7 IN 4Fh Write 1 byte Acknowledge Setup Selected Endpoint F1h None Clear Buffer Selected Endpoint F2h None Validate Buffer Selected Endpoint FAh None General Commands Send Resume Device F6h None Read Current Frame Number Device F5h Read 1 or 2 bytes Set IO Pad Drive Strength Device E9h Write 1 byte Set Buffer Interrupt Mode Device ECh None Copyright © 2014 Future Technology Devices International Limited 18 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Command Name Target Code (hex) Data phase Read Vendor ID Device EBh Read 2 bytes Read Product ID Device EAh Read 2 bytes Read FTDI ID Device EDh Read 1 byte Table 6-2 enhanced command set 6.2 Initialization Commands 6.2.1 Set Address Enable Command : D0h Data : Write 1 byte Bit 6-0 7 Symbol Address Reset Description 0b’0000000 USB assigned device address. A bus reset will reset all address bits to 0. Enable 0 Function enable. A bus reset will automatically enable the function at default address 0. Reset Description Table 6-3 Address Enable Register 6.2.2 Set Endpoint Enable Command : D8h Data : Write 1 byte Bit Symbol 0 EP_Enable 7-1 Reserved 0 Enable all endpoints (Note EP0 is always enabled regardless the setting of EP_Enable bit). Endpoints can only be enabled when the function is enabled. 0b’0000000 Reserved, write to 0 Table 6-4 Endpoint Enable Register 6.2.3 Set Mode Command : F3h Data : Write 2 bytes Bit Symbol Reset Description 0 Reserved 0 Reserved, write to 0 1 No Suspend Clock 1 0: CLKOUT switches to 30 KHz during USB suspend Copyright © 2014 Future Technology Devices International Limited 19 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Bit Symbol Reset Description 1: CLKOUT remains unchanged during USB suspend Note: The programmed value will not be changed by a bus reset. 2 Clock Running 1 0: internal clocks stop during USB suspend 1: internal clocks continue running during USB suspend This bit must be set to ‘0’ for bus powered application in order to meet the USB suspend current requirement. Note: The programmed value will not be changed by a bus reset. 3 Interrupt Mode 1 0: interrupt will not generate on NAK or Error transactions 1: interrupt will generate on NAK and Error transactions Note: The programmed value will not be changed by a bus reset. 4 DP_Pullup 0 0: Pullup resistor on DP pin disabled 1: Pullup resistor on DP pin enabled when Vbus is present Note: The programmed value will not be changed by a bus reset. 5 7-6 Reserved 0 Endpoint Configuration Mode 0b’00 Reserved, write to 0 Set the endpoint configuration mode for EP2. 00: Mode 0 (Non-ISO Mode) 01: Mode 1 (ISO-OUT Mode) 10: Mode 2 (ISO-IN Mode) 11: Mode 3 (ISO-IO Mode) In Enhanced Mode, these 2 bits are reserved. The Endpoint Configuration will be done through separate command. See “Set Endpoint Configuration” commands. Table 6-5 Configuration Register (Byte 1) Bit 3-0 Symbol Clock Division Factor Reset Description 0b’1011 The Clock Division Factor value (CDF) determines the output clock frequency on the CLKOUT pin. Frequency = 48 MHz / (CDF +1), where CDF ranges 1-12 or the allowed CLKOUT frequency is 4-24 MHz. Default CLKOUT is 4 MHz. When the CDF is programmed to 0b’1111, the CLKOUT will be turned off. It is recommended to turn off the CLKOUT if it is not used, for power saving (about 3mA). Note: The programmed value will not be changed by a bus reset. Copyright © 2014 Future Technology Devices International Limited 20 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Bit 5-4 Symbol Reserved Reset 0b’00 Description Reserved, write to 0 6 SET_TO_ONE 0 This bit must be set to 1 7 SOF-only Interrupt Mode 0 0: normal operation 1: interrupt will generate on receiving SOF packet only, regardless the value of the Interrupt Pin Mode bit in DMA configuration register. Table 6-6 Clock Division Factor Register (Byte 2) 6.2.4 Set DMA Command : FBh Data : Read/Write 1 byte; Read/Write 2 bytes (for Enhanced Mode) Bit 1-0 Symbol DMA Burst Reset 0b’00 Description Set the DMA burst size 00: Single cycle mode 01: 4 cycle burst mode 10: 8 cycle burst mode 11: 16 cycle burst mode 2 DMA Enable 0 Enable DMA operation 0: DMA operation is disabled 1: DMA operation is enabled FT122 will clear this bit upon EOT_n assertion. 3 DMA Direction 0 This bit indicates the DMA read or write operation. 0: DMA read. Data read from FT122 OUT buffer to system memory. 1: DMA write. Data write to FT122 IN buffer from system memory. 4 Auto Reload 0 Automatically restart the DMA operation. 0: DMA needs to restart by software 1: DMA will restart automatically after the previous DMA transfer finishes 5 Interrupt Pin Mode 0 0: normal operation. Interrupt will generate if any of the bit in the interrupt register is set. 1: interrupt will generate upon receiving SOF packet or if any of the bit in the interrupt register is set. 6 EPI4 Interrupt Enable 0 Interrupt Enable for endpoint index 4. During DMA operation, EPI4 interrupt should be turned off to avoid un-necessary interrupt service. For enhanced mode this bit has no function. EPI4 interrupt is always enabled unless it is selected as a DMA Copyright © 2014 Future Technology Devices International Limited 21 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Bit Symbol Reset Description endpoint. 7 EPI5 Interrupt Enable 0 Interrupt Enable for endpoint index 5. During DMA operation, EPI5 interrupt should be turned off to avoid un-necessary interrupt service. For enhanced mode this bit has no function. EPI5 interrupt is always enabled unless it is selected as a DMA endpoint. Table 6-7 DMA Configuration Register (Byte 1) Bit Symbol Reset Description 3-0 DMA Endpoint Index 0b’0000 Select the endpoint index number for DMA operation. DMA operation occurs between the selected endpoint buffer and the DMA agent. Any of the 16 endpoint index can be selected for DMA data transfers, but only one at a time. 7-4 Reserved 0b’0000 Reserved, write to 0 Table 6-8 DMA Endpoint Select Register (Byte 2, for Enhanced Mode) 6.2.5 Set Endpoint Configuration (for Enhanced Mode) Command : B0-BFh Data : Write 1 byte Bit 0 2-1 Symbol Endpoint Enabled Endpoint Type Reset 0 0b’00 Description Enable or disable the endpoint index associated with the command Endpoint type 00: control 01: bulk or interrupt 10: isochronous 11: reserved 6-3 7 Max Packet Size Reserved 0b’0000 0 Maximum USB packet size for this endpoint. Defined the IN buffer or OUT buffer size for the endpoint. Refer to Table 5-4 for full details on the buffer configuration. Reserved, write to 0 Table 6-9 Endpoint Configuration Register Copyright © 2014 Future Technology Devices International Limited 22 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 6.3 Data Flow Commands 6.3.1 Read Interrupt Register Command : F4h Data : Read 1 or 2 bytes (Default Mode); Read 1-4 bytes (Enhanced Mode) Bit Symbol Reset Description 0 Endpoint 0 Out 0 Interrupt for endpoint 0 OUT buffer. Cleared by Read Last Transaction Status command. 1 Endpoint 0 In 0 Interrupt for endpoint 0 IN buffer. Cleared by Read Last Transaction Status command. 2 Endpoint 1 Out 0 Interrupt for endpoint 1 OUT buffer. Cleared by Read Last Transaction Status command. 3 Endpoint 1 In 0 Interrupt for endpoint 1 IN buffer. Cleared by Read Last Transaction Status command. 4 Endpoint 2 Out 0 Interrupt for endpoint 2 OUT buffer. Cleared by Read Last Transaction Status command. 5 Endpoint 2 In 0 Interrupt for endpoint 2 IN buffer. Cleared by Read Last Transaction Status command. 6 Bus Reset 0 Interrupt for bus reset. This bit will be cleared after reading. 7 Suspend Change 0 Interrupt for USB bus suspend status change. This bit will be set to ‘1’ when FT122 goes to suspend (missing 3 continuous SOFs) or resumes from suspend. This bit will be cleared after reading. Reset Description Interrupt for end of DMA transfer. This bit will be cleared after reading. Table 6-10 Interrupt Register Byte 1 Bit Symbol 0 DMA EOT 0 7-1 Reserved 0b’xxxxxxx Reserved Table 6-11 Interrupt Register Byte 2 Bit Symbol Reset Description 0 Endpoint 3 Out 0 Interrupt for endpoint 3 OUT buffer. Cleared by Read Last Transaction Status command. 1 Endpoint 3 In 0 Interrupt for endpoint 3 IN buffer. Cleared by Read Last Transaction Status command. 2 Endpoint 4 Out 0 Interrupt for endpoint 4 OUT buffer. Cleared by Read Last Transaction Status command. Copyright © 2014 Future Technology Devices International Limited 23 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Bit Symbol Reset Description 3 Endpoint 4 In 0 Interrupt for endpoint 4 IN buffer. Cleared by Read Last Transaction Status command. 4 Endpoint 5 Out 0 Interrupt for endpoint 5 OUT buffer. Cleared by Read Last Transaction Status command. 5 Endpoint 5 In 0 Interrupt for endpoint 5 IN buffer. Cleared by Read Last Transaction Status command. 6 Endpoint 6 Out 0 Interrupt for endpoint 6OUT buffer. Cleared by Read Last Transaction Status command. 7 Endpoint 6 In 0 Interrupt for endpoint 6 IN buffer. Cleared by Read Last Transaction Status command. Table 6-12 Interrupt Register Byte 3 (for Enhanced Mode) Bit Symbol Reset Description 0 Endpoint 7 Out 0 Interrupt for endpoint 7 OUT buffer. Cleared by Read Last Transaction Status command. 1 Endpoint 7 In 0 Interrupt for endpoint 7 IN buffer. Cleared by Read Last Transaction Status command. 7-2 Reserved 0b’xxxxxx Reserved Table 6-13 Interrupt Register Byte 4 (for Enhanced Mode) Copyright © 2014 Future Technology Devices International Limited 24 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 6.3.2 Select Endpoint Command : 00-05h (00-0Fh for Enhanced Mode) Data : Optional Read 1 byte Bit 0 Symbol Reset Full/Empty 0 Description 0: selected endpoint buffer is empty 1: selected endpoint buffer is full 1 Stall 0 0: selected endpoint is not stalled 1: selected endpoint is stalled 7-2 Reserved 0b’xxxxxx Reserved Table 6-14 Endpoint Status Register 6.3.3 Read Last Transaction Status Command : 40-45h (40-4Fh for Enhanced Mode) Data : Read 1 byte Bit Symbol Reset 0 Data Receive/Transmit Success 0 4-1 5 Error Code Description 0: indicate USB data receive or transmit not OK 1: indicate USB data receive or transmit OK 0b’0000 Setup Packet 0 Refer to Table 6-16 0: indicate not a setup packet 1: indicate last received packet has a SETUP token 6 Data 0/1 Packet 0 0: packet has a DATA0 token 1: packet has a DATA1 token 7 Previous Status not Read 0 0: previous transaction status was read 1: previous transaction status was not read Table 6-15 Endpoint Last Transaction Status Register Error Code Result 0000 No error 0001 PID encoding error Copyright © 2014 Future Technology Devices International Limited 25 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Error Code Result 0010 PID unknown 0011 Unexpected packet 0100 Token CRC error 0101 Data CRC error 0110 Time out error 0111 Reserved 1000 Unexpected EOP 1001 Packet NAKed 1010 Sent stall 1011 Buffer overflow 1101 Bit stuff error 1111 Wrong DATA PID Table 6-16 Transaction error code 6.3.4 Read Endpoint Status Command : 80-85h (80-8Fh for Enhanced Mode) Data : Read 1 byte Bit 1-0 2 Symbol Reserved Reset 0b’00 Setup packet 0 Description Reserved 0: indicate not a setup packet 1: indicate last received packet has a SETUP token 4-3 5 Reserved 0b’xx Buffer 0 Full 0 Reserved 0: buffer 0 is not filled up 1: buffer 0 is filled up 6 Buffer 1 Full 0 0: buffer 1 is not filled up 1: buffer 1 is filled up Copyright © 2014 Future Technology Devices International Limited 26 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Bit 7 Symbol Reset Endpoint Stalled 0 Description 0: endpoint is not stalled 1: endpoint is stalled Table 6-17 Endpoint Buffer Status Register 6.3.5 Read Buffer Command : F0h Data : Read multiple bytes The Read Buffer command is used to read the received packet from the selected endpoint OUT buffer. The data in the endpoint buffer is organized as follows: byte 0: length of payload packet, MSB (for default mode this byte is ignored) byte 1: length of payload packet, LSB byte 2: Payload packet byte 1 byte 3: Payload packet byte 2 … byte n+1: Payload packet byte n (n = packet length) For DMA read operation the first two bytes are skipped. Only the payload packet itself will be read and stored in system memory. 6.3.6 Write Buffer Command : F0h Data : Write multiple bytes The Write Buffer command is used to write payload packet to the selected endpoint IN buffer. The data must be organized in the same way as described in the Read Buffer command. For default mode byte 0 should always be set to 00h. For DMA write operation the first two bytes are skipped. Only the payload packet itself shall be written to the selected endpoint OUT buffer. Buffer is validated when the max packet size is reached, or when the DMA transfer is terminated by EOT_n (usually the last packet). 6.3.7 Clear Buffer Command : F2h Data : None Copyright © 2014 Future Technology Devices International Limited 27 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 The Clear Buffer command should be issued after all data has been read out from the endpoint buffer. This is to free the buffer to receive next packet from USB host. 6.3.8 Validate Buffer Command : FAh Data : None The Validate Buffer command should be issued after all data has been written to the endpoint buffer. This is to set the buffer full flag so that the packet can be sent to USB host when IN token arrives. 6.3.9 Set Endpoint Status Command : 40-45h (40-4Fh for Enhanced Mode) Data : Write 1 byte Bit 0 Symbol Reset Stall 0 Description 0: Disable the endpoint STALL state. 1: Enable the endpoint STALL state. For EP0 OUT (control OUT endpoint) the STALL state will automatically be cleared by receiving a SETUP packet. When this bit is written to ‘0’, the endpoint will reinitialize. Any data in the endpoint buffer will be flushed away, and the PID for next packet will carry DATA0 flag. 7-1 Reserved 0b’xxxxxxx Reserved Table 6-18 Endpoint Control Register 6.3.10 Acknowledge Setup Command : F1h Data : None When receiving a SETUP packet the FT122 will flush the IN buffer and disable the Validate Buffer and Clear Buffer commands for both Control IN and Control OUT endpoints. The MCU shall read and process the SETUP packet, and then issue the Acknowledge Setup command to re-enable the Validate Buffer and Clear Buffer commands. The Acknowledge Setup command must be sent to both Control IN and Control OUT endpoints. 6.4 General Commands Copyright © 2014 Future Technology Devices International Limited 28 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 6.4.1 Read Current Frame Number Command : F5h Data : Read One or Two Bytes Bit 7-0 Symbol Frame Number LSB Reset 00h Description Frame number for last received SOF, byte 1 (least significant byte) Table 6-19 Frame Number LSB Register Bit Symbol 2-0 Frame Number MSB 7-3 Reserved Reset 0b’000 0b’00000 Description Frame number for last received SOF, byte 2 (Most significant byte) Reserved Table 6-20 Frame Number MSB Register 6.4.2 Send Resume Command : F6h Data : None To perform remote-wakeup when suspended, the MCU needs to issue Send Resume command. The FT122 will send an upstream resume signal for a period of 10 ms. If the clock is not running during suspend, the MCU needs to wakeup FT122 by drive SUSPEND pin to LOW, followed by Send Resume command. 6.4.3 Set Buffer Interrupt Mode Command : ECh (for Enhanced Mode) Data : none The read or write buffer commands can be interrupted, typically by a read interrupt register or read last transaction status command, and can be resumed without having to re-issue a read or write buffer command. When the default command set is in use, a read or write buffer command can be resumed after 2 bytes have been read at a read interrupt command. In this case the FT122 design is primed to resume a read or write buffer command if another command is not issued and a read or write occurs. For the enhanced command set the read interrupt register command has been extended to read 4 bytes. The FT122 therefore needs to know whether to prime at 2 or 4 bytes. The Set Buffer Interrupt Mode command notifies the FT122 to prime after 4 bytes. Copyright © 2014 Future Technology Devices International Limited 29 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 6.4.4 Read Vendor ID Command : EBh (for Enhanced Mode) Data : read 2 bytes Read the 2 bytes Vendor ID. Shall return 0403h. 6.4.5 Read Product ID Command : EAh (for Enhanced Mode) Data : read 2 bytes Read the 2 bytes Product ID. Shall return 6018h. 6.4.6 Read FTDI ID Command : EDh (for Enhanced Mode) Data : read 1 byte Read the 1 byte FTDI ID. Shall return 11h. 6.4.7 Set IO Pad Drive Strength Command : E9h Data : Write 1 byte Bit 1-0 Symbol CLKOUT pin Reset 0b’00 Description 00: 4mA 01: 8mA 10: 12mA 11:16mA 3-2 D[7:0] pins 0b’00 00: 4mA 01: 8mA 10: 12mA 11:16mA 5-4 INT_n, SUSPEND, DMREQ pins 0b’00 00: 4mA 01: 8mA 10: 12mA 11:16mA 7-6 GL_n pin 0b’00 00: 4mA 01: 8mA 10: 12mA 11:16mA Copyright © 2014 Future Technology Devices International Limited 30 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Table 6-21 IO Pad Drive Strength Register Copyright © 2014 Future Technology Devices International Limited 31 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 7 Application Information Figure 7-1 shows a reference application circuit for a USB bus-powered application. Figure 7-2 shows a reference application circuit for a USB self-powered application. VCC VCC Ferrite Bead 1 100nF 10k VCC 2 27R 3 27R 10k DM SUSPEND DP 4 P3.3 INT_n EOT_n 47pF 5 FT122 10nF RESET_n VCC3V3 VCCIO D[7:0] P0.7-P0.0 WR_n WR#/P3.6 XTAL1 GN D AL E 80C51 RD#/P3.7 CLKOUT CS _n GN D 100nF 100nF + P3.4 RD_n VOUT3V3 VCC INT#/P3.2 A0 DMACK_n SHIELD VCC 4.7uF Figure 7-1 FT122 bus-powered application VCC3V3 1M VCC VCC 100nF 1M 10k 1 VCC 10k VCC 2 27R 3 27R DM INT_n 470k 5 47pF EOT_n 47pF FT122 A0 DMACK_n SHIELD RESET_n VCC3V3 VCCIO WR_n WR#/P3.6 CLKOUT AL E 100nF 100nF + GN D VCC P0.7-P0.0 RD_n VOUT3V3 INT#/P3.2 P3.4 D[7:0] CS _n 1M P3.3 80C51 RD#/P3.7 XTAL1 GN D SUSPEND DP 4 4.7uF Figure 7-2 FT122 self-powered application Copyright © 2014 Future Technology Devices International Limited 32 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 8 Devices Characteristics and Ratings 8.1 Absolute Maximum Ratings The absolute maximum ratings for the FT122 devices are as follows. These are in accordance with the Absolute Maximum Rating System (IEC 60134). Exceeding these may cause permanent damage to the device. Parameter Value Unit Storage Temperature -65 to 150 °C Floor Life (Out of Bag) At Factory Ambient 168 (30°C / 60% Relative Humidity) (IPC/JEDEC J-STD-033A MSL Level 3 Compliant)* Hours Ambient Temperature (Power Applied) -40 to 85 °C Latch-up current ±200 mA ±2 kV ±200 V ±500 V VCC Supply Voltage -0.5 to +6.0 V DC Input Voltage – DP and USBDM -0.5 to +3.8 V DC Input Voltage – High Impedance Bidirectional -0.5 to + (VCC +0.5) V DC Input Voltage – All Other Inputs -0.5 to + (VCC +0.5) V DC Output Current – Outputs 22 mA Electrostatic Discharge Voltage(ESD) human body model(HBM) Electrostatic Discharge Voltage(ESD) machine model(MM) Electrostatic Discharge Voltage(ESD) charged device model(CDM) Table 8-1 Absolute Maximum Ratings * If devices are stored out of the packaging beyond this time limit the devices should be baked before use. The devices should be ramped up to a temperature of +125°C and baked for up to 17 hours. Copyright © 2014 Future Technology Devices International Limited 33 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 8.2 DC Characteristics DC Characteristics (Ambient Temperature = -40°C to +85°C). Parameter Description Minimum Typical Maximum Units Conditions VCC1 VCC Operating Supply Voltage 4.0 5.0 5.5 V Normal Operation VCC2 VCC Operating Supply Voltage 3.0 3.3 3.6 V Regulator by-pass mode Operation VCCIO VCCIO Operating Supply Voltage 1.65 3.6 V Icc Operating Supply Current Icc2 Suspend Current VOUT3V3 3.3v regulator output 3.9 84 3.0 mA Normal Operation, USB bus transmit or receive μA USB Suspend, Clock Running = ‘0’, excluding the DP_Pullup current 3.3 3.6 V VCC=5V Typical Maximum Units Conditions V I source = 4mA V I sink = 4mA Table 8-2 Operating Voltage and Current Parameter Description Minimum Voh Output Voltage High 2.9 Vol Output Voltage Low Vih Input Voltage High 2.0 Vil Input Voltage Low - 0.4 V 0.8 V Maximum Units Conditions V I source = 4mA V I sink = 4mA Table 8-3 digital I/O Pin Characteristics (VCCIO=+3.3V) Parameter Description Minimum Voh Output Voltage High 2.25 Vol Output Voltage Low Vih Input Voltage High 1.7 Vil Input Voltage Low - Typical 0.4 V 0.7 V Table 8-4 digital I/O Pin Characteristics (VCCIO=+2.5V) Copyright © 2014 Future Technology Devices International Limited 34 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Parameter Description Minimum Voh Output Voltage High 1.62 Vol Output Voltage Low Vih Input Voltage High 1.17 Vil Input Voltage Low - Typical Maximum 0.4 Units Conditions V I source = 4mA V I sink = 4mA V 0.63 V Maximum Units Conditions Table 8-5 digital I/O Pin Characteristics (VCCIO=+1.8V) Parameter Description Minimum Typical UVoh I/O Pins Static Output (High) 2.8 3.6 V RL = 1.5kΩ to 3.6 V UVol I/O Pins Static Output (Low) - 0.3 V RL = 15kΩ to GND UVse Single Ended Rx Threshold 0.8 2.0 V UCom Differential Common Mode 0.8 2.5 V UVDif Differential Input Sensitivity 0.2 UDrvZ Driver Output Impedance 29 V - 44 Including external 22 Ω ±1% series resistor Ω Table 8-6 USB I/O Pin (DP, USBDM) Characteristics 8.3 AC Characteristics Symbol Parameter VCCIO=3.3V Min Max VCCIO=1.8V Min Unit Max ALE Timings: tLH ALE High Pulse Width tAVLL Address Valid to ALE Low Time tLLAX ALE Low to Address Transition Time 20 20 ns 3 5 ns 2 3 ns Write Timings: tCLWL CS_n (DMACK_n) Low to WR_n Low Time 0 1 ns tWHCH WR_n High to CS_n (DMACK_n) High Time 1 1 ns Copyright © 2014 Future Technology Devices International Limited 35 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Symbol Parameter VCCIO=3.3V Min Max VCCIO=1.8V Min Unit Max tAVWL A0 Valid to WR_n Low Time 0 1 ns tWHAX WR_n High to A0 Transition Time 1 1 ns tWL WR_n Low Pulse Width 30 30 ns tWDSU Write Data Setup Time 5 8 ns tWDH Write Data Hold Time 1 1 ns tWC Write Cycle Time 40 40 ns t(WC-WD) Write command to write data 40 40 ns Read Timings: tCLRL CS_n (DMACK_n) Low to RD_n Low Time 0 1 ns tRHCH RD_n High to CS_n (DMACK_n) High Time 1 1 ns tAVRL A0 Valid to RD_n Low Time 0 1 ns tRL RD_n Low Pulse Width 30 30 ns tRLDD RD_n Low to Data Valid Time 25 25 ns tRHDZ RD_n High to Data Hi-Z Time 20 20 ns tRHNDV RD_n High to Next Data Valid Time 40 50 ns tRC Read Cycle Time 40 50 ns t(WC-RD) Write command to read data 40 50 ns Table 8-7 Parallel Interface IO timing Figure 8-1 ALE Timing Copyright © 2014 Future Technology Devices International Limited 36 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Figure 8-2 Parallel interface timing Symbol Parameter VCCIO=3.3V Min Max VCCIO=1.8V Min Unit Max Single-cycle DMA Timings: tRHSH DMREQ High to RD_n/WR_n High Time tAHRH DMACK_n High to DMREQ High Time tSHAH RD_n/WR_n High to DMACK_n High Time tEL EOT_n Low Pulse Width (Simultaneous 120 120 330 ns 330 ns 130 130 ns 10 10 ns DMACK_n, RD_n/WR_n and EOT_n low time) Burst DMA Timings: tSLRL RD_n/WR_n Low to DMREQ Low Time tRHSH DMREQ High to RD_n/WR_n High Time tSHAH RD_n/WR_n High to DMACK_n High Time 15 40 ns 40 120 ns 3 130 ns EOT Timings: Copyright © 2014 Future Technology Devices International Limited 37 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Symbol Parameter VCCIO=3.3V Min tELRL EOT_n Low to DMREQ Low Time Max VCCIO=1.8V Min 40 Unit Max 40 ns Table 8-8 DMA timing characteristics Figure 8-3 Single cycle DMA timing Figure 8-4 Burst mode DMA timing Figure 8-5 DMA terminated by EOT_n Copyright © 2014 Future Technology Devices International Limited 38 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 9 Package Parameters The FT122 is available in two different packages. The FT122T is the TSSOP-28 package option and the FT122Q is the QFN-28 package option. The solder reflow profile for both packages is described in section 9.5. 9.1 TSSOP-28 Package Dimensions Figure 9-1 TSSOP-28 Package Dimensions Copyright © 2014 Future Technology Devices International Limited 39 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 The FT122T is supplied in a RoHS compliant 28 pin TSSOP package. The package is lead (Pb) free and uses a ‘green’ compound. The package is fully compliant with European Union directive 2002/95/EC. This package is nominally 4.4mm x 9.7mm body (6.4mm x9.7mm including pins). The pins are on a 0.65 mm pitch. The above mechanical drawing shows the TSSOP-28 package. All dimensions are in millimetres. 9.2 TSSOP-28 Package Markings Line 1 – FTDI Logo YYWW-B FT122T Line 2 – Date Code, Revision Line 3 – FTDI Part Number Figure 9-2 TSSOP-28 Package Markings The date code format is YYWW where WW = 2 digit week number, YY = 2 digit year number. Copyright © 2014 Future Technology Devices International Limited 40 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 9.3 QFN-28 Package Dimensions Figure 9-3 QFN-28 Package Dimensions The FT122Q is supplied in a RoHS compliant leadless QFN-28 package. The package is lead ( Pb ) free, and uses a ‘green’ compound. The package is fully compliant with European Union directive 2002/95/EC. This package is nominally 4.00mm x 4.00mm. The solder pads are on a 0.40mm pitch. The above mechanical drawing shows the QFN-28 package. All dimensions are in millimetres. The centre pad on the base of the FT122Q is internally connected to GND pin, and can be left unconnected, or connected to ground (recommended). Copyright © 2014 Future Technology Devices International Limited 41 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 9.4 QFN-28 Package Markings Line 1 – FTDI Logo YYWW-B Line 2 – Date Code, Revision FT122Q Line 3 – FTDI Part Number Figure 9-4 QFN-28 Package Markings The date code format is YYWW where WW = 2 digit week number, YY = 2 digit year number. 9.5 Solder Reflow Profile The FT122 is supplied in Pb free TSSOP-28 and QFN-28 packages. The recommended solder reflow profile for both package options is shown in Figure 9-5. Temperature, T (Degrees C) tp Tp Critical Zone: when T is in the range TL to Tp Ramp Up TL tL TS Max Ramp Down TS Min tS Preheat 25 T = 25º C to TP Time, t (seconds) Figure 9-5 FT122 Solder Reflow Profile Copyright © 2014 Future Technology Devices International Limited 42 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 The recommended values for the solder reflow profile are detailed in Table 9-1. Values are shown for both a completely Pb free solder process (i.e. the FT122 is used with Pb free solder), and for a non-Pb free solder process (i.e. the FT122 is used with non-Pb free solder). Profile Feature Average Ramp Up Rate (Ts to Tp) Pb Free Solder Process 3°C / second Max. Non-Pb Free Solder Process 3°C / Second Max. Preheat - Temperature Min (Ts Min.) 150°C - Temperature Max (Ts Max.) 200°C - Time (ts Min to ts Max) 60 to 120 seconds 100°C 150°C 60 to 120 seconds Time Maintained Above Critical Temperature TL: - Temperature (TL) - Time (tL) Peak Temperature (Tp) Time within 5°C of actual Peak Temperature (tp) Ramp Down Rate Time for T= 25°C to Peak Temperature, Tp 217°C 183°C 60 to 150 seconds 60 to 150 seconds 260°C 240°C 20 to 40 seconds 20 to 40 seconds 6°C / second Max. 6°C / second Max. 8 minutes Max. 6 minutes Max. Table 9-1 Reflow Profile Parameter Values Copyright © 2014 Future Technology Devices International Limited 43 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 10 Contact Information Head Office – Glasgow, UK Future Technology Devices International Limited Unit 1, 2 Seaward Place, Centurion Business Park Glasgow G41 1HH United Kingdom Tel: +44 (0) 141 429 2777 Fax: +44 (0) 141 429 2758 E-mail (Sales) E-mail (Support) E-mail (General Enquiries) sales1@ftdichip.com support1@ftdichip.com admin1@ftdichip.com Branch Office – Tigard, Oregon, USA Future Technology Devices International Limited (USA) 7130 SW Fir Loop Tigard, OR 97223 Tel: +1 (503) 547 0988 Fax: +1 (503) 547 0987 E-Mail (Sales) E-Mail (Support) E-Mail (General Enquiries) us.sales@ftdichip.com us.support@ftdichip.com us.admin@ftdichip.com Branch Office – Taipei, Taiwan Branch Office – Shanghai, China Future Technology Devices International Limited (Taiwan) 2F, No. 516, Sec. 1, NeiHu Road Taipei 114 Taiwan , R.O.C. Tel: +886 (0) 2 8791 3570 Fax: +886 (0) 2 8791 3576 Future Technology Devices International Limited (China) Room 1103, No.666 West Huaihai Road, Shanghai, 200052 China Tel: +86 21 62351596 Fax: +86 21 62351595 E-mail (Sales) E-mail (Support) E-mail (General Enquiries) tw.sales1@ftdichip.com E-mail (Sales) tw.support1@ftdichip.com E-mail (Support) tw.admin1@ftdichip.com E-mail (General Enquiries) cn.sales@ftdichip.com cn.support@ftdichip.com cn.admin@ftdichip.com Branch Office – Singapore Future Technology Devices International Limited (Singapore) 178 Paya Lebar Road #07-03/04/05 Singapore 409030 Tel: +65 6841 1174 Fax: +65 6841 6071 E-mail (Support) E-mail (General Enquiries) support1@ftdichip.com admin1@ftdichip.com Web Site http://ftdichip.com System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640 Copyright © 2014 Future Technology Devices International Limited 44 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Appendix A– References Useful Application Notes http://www.ftdichip.com/Documents/AppNotes/AN_167_FT1248_Parallel_Serial_Interface_Basics.pdf http://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_100_USB_VID-PID_Guidelines.pdf http://www.ftdichip.com/Support/Documents/AppNotes/AN_175_Battery%20Charging%20Over%20USB %20with%20FTEX%20Devices.pdf http://www.usb.org/developers/devclass_docs/BCv1.2_011912.zip Appendix B - List of Figures and Tables List of Figures Figure 2-1 FT122 Block Diagram ..................................................................................................... 3 Figure 3-1 TSSOP-28 package schematic symbol .............................................................................. 6 Figure 3-2 QFN-28 package schematic symbol.................................................................................. 6 Figure 7-1 FT122 bus-powered application ..................................................................................... 32 Figure 7-2 FT122 self-powered application ..................................................................................... 32 Figure 8-1 ALE Timing ................................................................................................................. 36 Figure 8-2 Parallel interface timing ............................................................................................... 37 Figure 8-3 Single cycle DMA timing ............................................................................................... 38 Figure 8-4 Burst mode DMA timing ............................................................................................... 38 Figure 8-5 DMA terminated by EOT_n ........................................................................................... 38 Figure 9-1 TSSOP-28 Package Dimensions ..................................................................................... 39 Figure 9-2 TSSOP-28 Package Markings ........................................................................................ 40 Figure 9-3 QFN-28 Package Dimensions ........................................................................................ 41 Figure 9-4 QFN-28 Package Markings ............................................................................................ 42 Figure 9-5 FT122 Solder Reflow Profile .......................................................................................... 42 List of Tables Table 3-1 FT122 Pin Description ..................................................................................................... 8 Table 4-1 Interrupt modes ........................................................................................................... 10 Table 5-1 Endpoint configuration for EP0 and EP1 ........................................................................... 11 Table 5-2 Endpoint configuration for EP2 ....................................................................................... 11 Table 5-3 - Example buffer configuration ....................................................................................... 12 Table 5-4 - Endpoint Maximum Packet Size .................................................................................... 13 Table 6-1 FT122 default command set ........................................................................................... 15 Table 6-2 enhanced command set ................................................................................................ 19 Table 6-3 Address Enable Register ................................................................................................ 19 Table 6-4 Endpoint Enable Register ............................................................................................... 19 Table 6-5 Configuration Register (Byte 1) ...................................................................................... 20 Table 6-6 Clock Division Factor Register (Byte 2) ............................................................................ 21 Table 6-7 DMA Configuration Register (Byte 1) ............................................................................... 22 Table 6-8 DMA Endpoint Select Register (Byte 2, for Enhanced Mode) ............................................... 22 Copyright © 2014 Future Technology Devices International Limited 45 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Table 6-9 Endpoint Configuration Register ..................................................................................... 22 Table 6-10 Interrupt Register Byte 1 ............................................................................................. 23 Table 6-11 Interrupt Register Byte 2 ............................................................................................. 23 Table 6-12 Interrupt Register Byte 3 (for Enhanced Mode) ............................................................... 24 Table 6-13 Interrupt Register Byte 4 (for Enhanced Mode) ............................................................... 24 Table 6-14 Endpoint Status Register ............................................................................................. 25 Table 6-15 Endpoint Last Transaction Status Register ..................................................................... 25 Table 6-16 Transaction error code ................................................................................................ 26 Table 6-17 Endpoint Buffer Status Register .................................................................................... 27 Table 6-18 Endpoint Control Register ............................................................................................ 28 Table 6-19 Frame Number LSB Register ........................................................................................ 29 Table 6-20 Frame Number MSB Register........................................................................................ 29 Table 6-21 IO Pad Drive Strength Register ..................................................................................... 31 Table 8-1 Absolute Maximum Ratings ............................................................................................ 33 Table 8-2 Operating Voltage and Current ....................................................................................... 34 Table 8-3 digital I/O Pin Characteristics (VCCIO=+3.3V) ................................................................. 34 Table 8-4 digital I/O Pin Characteristics (VCCIO=+2.5V) ................................................................. 34 Table 8-5 digital I/O Pin Characteristics (VCCIO=+1.8V) ................................................................. 35 Table 8-6 USB I/O Pin (DP, USBDM) Characteristics ........................................................................ 35 Table 8-7 Parallel Interface IO timing ............................................................................................ 36 Table 8-8 DMA timing characteristics............................................................................................. 38 Table 9-1 Reflow Profile Parameter Values ..................................................................................... 43 Copyright © 2014 Future Technology Devices International Limited 46 Document No.: FT_000647 FT122 ENHANCED USB DEVICE CONTROLLER WITH PARALLEL BUS IC Datasheet Version 1.1 Clearance No.: FTDI# 313 Appendix C - Revision History Document Title: DS_FT122 Document Reference No.: FT_000647 Clearance No.: FTDI# 133 Product Page: http://www.ftdichip.com/Products/ICs/FT122.htm Document Feedback: Send Feedback Version Draft Initial draft 30th July 2012 Version 1.0 Initial release 1st October 2012 Version 1.1 Updated release 23rd March 2015 Copyright © 2014 Future Technology Devices International Limited 47
FT122Q-T 价格&库存

很抱歉,暂时无法提供与“FT122Q-T”相匹配的价格&库存,您可以联系我们找货

免费人工找货