0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HA12206

HA12206

  • 厂商:

    HITACHI(日立)

  • 封装:

  • 描述:

    HA12206 - Audio Signal Processor for Cassette Deck - Hitachi Semiconductor

  • 数据手册
  • 价格&库存
HA12206 数据手册
HA12206NT Audio Signal Processor for Cassette Deck ADE-207-198B (Z) 3rd Edition Jun. 1999 Description HA12206NT is silicon monolithic bipolar IC providing music sensor system, ALC, REC equalizer system and each electronic control switch in one chip. Functions • REC equalizer • Line Amp. × 2 channel × 2 channel • ALC (Automatic Level Control) • MS (Music Sensor) • Each electronic control switch to change REC equalizer, bias, etc. • REC mute Features • REC equalizer is very small number of external parts, built-in 2 types of frequency characteristics. • Correspondence with normal position (TYPE I) / high position (TYPE II). • TYPE I / TYPE II and PB equalizer fully electronic control switching built-in. • Controllable from direct micro-computer output. • Available to reduce substrate-area because of high integration and small external parts. HA12206NT Pin Description, Equivalent Circuit (VCC = 7.0V, VEE = –7.0V, Ta = 25°C, No signal, The value in the table show typical value.) Pin No. 2 Pin Name PB-Ain (R) Note V=0 Equivalent Circuit Pin Description A Deck PB input V 100k 29 4 27 5 26 9 22 12 3 PB-Ain (L) PB-Bin (R) PB-Bin (L) REC-in (R) REC-in (L) EQ-in (R) EQ-in (L) MIMS AB out (R) V=0 14.9k 10.6k V B Deck PB input REC input Equalizer input MS Gain control Time constant for NAB standard 28 6 AB out (L) ATT (R) V=0 V Variable impedance for attenuation 25 7 ATT (L) RPOUT (R) VCC REC or PB output VEE 24 RPOUT (L) Rev.3, Jun. 1999, page 2 of 32 HA12206NT Pin Description, Equivalent Circuit (VCC = 7.0V, VEE = –7.0V, Ta = 25°C, No signal, The value in the table show typical value.) (cont) Pin No. 8 Pin Name ADD in (R) 100k 23 100k 100k Note Equivalent Circuit Pin Description Adder input 8 100k 100k 23 10 ADD in (L) EQOUT (R) V = 0V Equalizer output 100k V 21 11 EQOUT (L) IREF V = 1.2V Equalizer reference current input V 13 DET MS V = VCC – 4.2V V Time constant for rectifier 15 16 DET ALC MS V = 2.3V MS output Rev.3, Jun. 1999, page 3 of 32 HA12206NT Pin Description, Equivalent Circuit (VCC = 7.0V, VEE = –7.0V, Ta = 25°C, No signal, The value in the table show typical value.) (cont) Pin No. 17 Pin Name Acr Note V = 0V Equivalent Circuit VCC Pin Description Mode control 22k 100k V 18 19 20 1 14 30 Bcr REC MUTE REC / A / B VEE VCC GND V = 2.5V VEE pin VCC pin GND pin Rev.3, Jun. 1999, page 4 of 32 PB Ain (L) GND R1L 15k C3L + ATTL RPOUTL ADDINL −30dBs 100k Mute 100k 100k 1k C + − B A SW1L SW2L ALC DET 27.5dB N REC − + (580mV) −2.5dBs 67k 100k 10.6k 22.7k 20dB SW4L EQINL EQOL RECAB RECMUTE BCR ACR MS C1L 4700p AINL ABOUTL C2L 0.1µ BINL RECINL C4L 0.1µ R8 3.9k R2L 2.2k R3L 5V Block Diagram PB Bin (L) REC in (L) RECOUT (L) or PBOUT (L) RECMUTE Bcr (SW3) (SW2) EQOUT (SW1) REC/A/B ON/OFF C/N (L) Acr (SW2) C/N 30 −30dBs −30dBs 29 28 27 26 25 16 24 23 22 21 20 19 18 17 ADDER A B 100k C 1k 22.7k 10.6k 20dB SW3R 14.9k 100k 100k (24.5mV) −30dBs −30dBs −30dBs REC 67k + − −2.5dBs (580mV) (1.64Vpp) + 27.5dB − N SW1R SW2R REC⋅EQ 14.9k SW3L + − MS DET Mute 100k −26dBs REC⋅EQ 100k SW4R −5dBs 1 AINR ABOUTR C1R 4700p R1R 15k VEE −7V PB Ain (R) PB Bin (R) REC in (R) −12.7dBs (180mV) R2R 2.2k + C3R BINR RECINR C2R 0.1µ 2 3 4 5 6 7 C4R 0.1µ 8 9 10 (436mV) 11 (38.8mV) EQINR EQOR IREF R4 12 13 14 15 DETALC R6 330k R3R VEE C7 10µ + R7 1M MIMS DETMS R5 68k C6 C5 0.33µ + 2200p ATTR RPOUTR ADDINR Rev.3, Jun. 1999, page 5 of 32 RECOUT (R) or PBOUT (R) EQOUT (R) VCC +7V HA12206NT Unit R : Ω C:F HA12206NT Truth Table Parallel Data Format NAB SW Position (SW 2) REC / A / B (Pin 20) Acr (Pin 17) L L H H Bcr (Pin 18) L H L H L TYPE I TYPE II TYPE I TYPE II M TYPE I TYPE I TYPE II TYPE II H TYPE I TYPE I TYPE I TYPE I REC-EQ Mode TYPE I TYPE II TYPE I TYPE II Line Amp (SW 1) ALC REC-EQ Behind (SW 4) Note: B OFF OFF A OFF ON REC *1 ON 1. Follow the position of REC-MUTE pin. REC-MUTE (Pin 19) L H REC-EQ Before (SW 3) Active MUTE ALC ON OFF Control Pin Position Under the Open Case Acr (Pin 17) Bcr (Pin 18) REC-MUTE (Pin 19) REC / A / B (Pin 20) L L L M Rev.3, Jun. 1999, page 6 of 32 Input — Output — Measure Other IQ=I (DC SOURCE 3) — Test No. Symbol IQ 1 2-1 Acr (VIL) Bcr REC-MUTE Ain Bin EQin (0.5dB) (dB) Test Conditions Set No. SG. — 1 10kHz, –30dBs 2 10kHz, –30dBs 3 1kHz, –26dBs 4 PBOUT AC VM2 PBOUT AC VM2 V(AC VM2) EQOUT AC VM2 VIL V(DC SOURCE 1) (0.5dB) 2-2 (VIM) (dB) RECAB RECAB 5 5 RPOUT AC VM2 RPOUT AC VM2 V(AC VM2) 1kHz, –30dBs Bin 1kHz, –30dBs Ain VIM VIM V(DC SOURCE 1) 2-3 (VIH) Ain Bin EQin RECin RPOUT RPOUT EQOUT RPOUT V(AC VM2) 0.3dB (dB) 60dB Acr Bcr REC-MUTE RECAB 2 3 4 5 AC VM2 AC VM2 V(AC VM2) AC VM2 (dB) (0.5dB) AC VM2 10kHz, –30dBs 10kHz, –30dBs 1kHz, –26dBs 1kHz, –30dBs VIH (Acr, Bcr) V(DC SOURCE 1) VIH (REC-MUTE) VIH V(DC SOURCE 1) (RECAB) 3-1 6 7 8 9 6 6 9 1kHz, –0.7dBs RECin 1kHz, –30dBs RECin 1kHz Ain 1kHz, –30dBs Ain 10kHz, –30dBs Bin 1kHz, –30dBs Bin 1kHz, –30dBs Ain GV(1) RPOUT AC VM1 GV=20 log {V(AC VM2) / V(AC VM1)} AC VM2 RPOUT AC VM1 GV=20 log {V(AC VM2) / V(AC VM1)} AC VM2 RPOUT AC VM1 GV=20 log {V(AC VM2) / V(AC VM1)} AC VM2 RPOUT AC VM2 Vi=V(AC VM2) at SW5, SW6=REC RPOUT AC VM2 Vo=V(AC VM2) at T.H.D=1% RPOUT Distortion 400 to 30kHz BPF Analyzer RPOUT Distortion 400 to 30kHz BPF Analyzer GV=20 log {V(AC VM2 / Vi)} Vomax=20 log (Vo / 580mV) 3-2 GV(2) 3-3 GV(3) 3-4 4 5-1 GV(4) Vomax THD(1) Rev.3, Jun. 1999, page 7 of 32 HA12206NT 5-2 THD(2) HA12206NT Test Conditions (cont) Rev.3, Jun. 1999, page 8 of 32 Set No. 6 9 10 11 12 6 — 1kHz, –18dBs* 1kHz, –18dBs* 1kHz, –0.7dBs 5kHz S/N=20 log {580mV / V(Noise)} CCIR / ARM CT=20 log {580mV / V(AC VM2)} CT=20 log {580mV / V(AC VM2)} ALC=20 log {V(AC VM2) / 580mV} VON=20 log {V(AC VM2) / 580mV} at DC VM= — Ain Ain/Bin RECin Ain SG. — Input — Output RPOUT RPOUT RPOUT RPOUT RPOUT RPOUT Measure — — AC VM2 AC VM2 AC VM2 AC VM2 DC VM DC VM AC VM2 AC VM2 AC VM2 AC VM2 AC VM2 AC VM2 AC VM2 AC VM2 Distortion Analyzer GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} R-MUTE ATT=20 log {436mV / V(AC VM2)} at T.H.D=1% 400 to 30kHz BPF S/N=20 log {436mV / V(AC VM2)} Noise Meter Other S/N=20 log {580mV / V(Noise)} CCIR / ARM 6 13 13 13 13 13 13 14 13 13 1kHz, –30dBs 1kHz, –46dBs 8kHz, –46dBs 12kHz, –46dBs 1kHz, –46dBs 8kHz, –46dBs 12kHz, –46dBs 1kHz, –14dBs* 1kHz 1kHz, –26dBs RPOUT EQout EQout EQout EQout EQout EQout EQout EQout EQout EQout — — Ain EQin EQin EQin EQin EQin EQin EQin EQin EQin 13 Test No. Symbol 6-1 S/N (1) S/N (2) 6-2 CT R/L 7 CT A/B 8 ALC 9 VON 10 11 12-1 12-2 12-3 13-1 13-2 13-3 14 15 16 VOL GV REC N1 GV REC N2 GV REC N3 GV REC C1 GV REC C2 GV REC C3 R-MUTE ATT Vomax REC THD REC 17 S/N REC Note: or large level without dipping Test Conditions (cont) SW Position (Pre-Set for Each TEST) Set No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 3 *1 A B EQ B A B B REC A A⇔B REC EQ EQ A EQ 5 *1 RP RP EQ RP RP RP RP RP RP RP RP EQ EQ RP EQ 6 *1 RP RP EQ RP RP RP RP RP RP RP RP EQ EQ RP EQ 8 L L M L L L L H L L L L L L L L 9 L L L M L H H H H H H L L H H L 10 M OFF L H M M L L H M L⇔M H M M M M 7 L M L L L L L L L L L L L L L L 4 –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –6V –6V 3 –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –6V –6V 4 *1 *2 *2 *2 *2 *2 *2 *2 *2 L⇔R *2 *2 *2 *2 *2 *2 SW-Position 1 2 OFF *1 *2 A *2 B *2 EQ *2 B *2 A *2 B *2 B *2 REC R⇔L A *2 A⇔B *2 REC EQ *2 *2 EQ A *2 EQ *2 DC-SOURCE(V) 1 2 2.5V 5V 0 to VCC 5V 0 to VCC 5V 0 to VCC 5V 0 to VCC 5V 2.5V 5V *1 5V *1 5V *1 5V 2.5V 5V 2.5V 5V *1 5V 2.5V 5V 2.5V 5V 2.5V 5V 2.5V 5V Note: 1. Either will do 2. Measured channel Lch or Rch Rev.3, Jun. 1999, page 9 of 32 HA12206NT HA12206NT Functional Description Power Supply Range Table 1 Supply Voltage Power Supply Range Item Single Supply VCC 6.0V to 7.5V VEE –7.5V to –6.0V | VCC | – | VEE | Inside 1.0V Note: HA12206NT is designed to operate on split supply. As VEE pin is joined the substrate of chip, there is the possibility of latch-up in such case that the other pin is supplied a voltage and VEE pin is open. Therefore please use as VEE pin become the lowest voltage of low impedance all the time. When power supply is thrown into this IC, that caution is necessary especially. Operating Mode Control HA12206NT provides fully electronic switching circuits. And each operating mode control is controlled by parallel data (DC voltage). Table 2 shows the control voltage of each control input pin. Table 2 Pin No. 17, 18, 19 Control Voltage Lo 0.0 to 1.0 Mid — Hi 4.0 to VCC Unit V Test Condition Input Pin Measure 20 Note: 0.0 to 1.0 2.0 to 3.0 4.0 to VCC V 1. Each pin is pulled down with 100kΩ internal resistor. 17 to 19 pins are low-level, 20 pin is midlevel, when each pin is open. 2. Over shoot level and under shoot level of input signal must be the standardized. (High: Less than VCC, Low: More than –0.2V) Rev.3, Jun. 1999, page 10 of 32 HA12206NT PB Equalizer By switching logical input level of pin17 (for Ain) or pin18 (for Bin), you can equalize corresponding to tape position at play back mode. Frequency characteristics of high position (TYPE II) depends on capacitor C1 on the block diagram figure. Figure 1 is shown by a motive of the NAB standard. GV τ1 = C1 • (10.6k+14.9k) τ2 = C1 • 14.9k f τ1 τ2 Figure 1 Frequency Characteristics of PB Equalizer Music Sensor VCC 0.33µ to ALC 13 330k 100k C4 L 23 C4 R 8 100k 100k to ALC LR addend stage R5 C5 100k 43p 100k 100k + – MS DET 16 D VCC (5V) 22k 12 68k 2200p Detection stage Output stage Amplification stage Figure 2 Music Sensor Block Diagram Rev.3, Jun. 1999, page 11 of 32 HA12206NT The Sensitivity of Music Sensor Frequency characteristics of MS amplification stage is shown by figure 3. GV f1 = f2 = f f1 f2 f3 1 [Hz] 2π • C5 • (R5 + 100k) 1 [Hz] 2π • C5 • R5 [Hz] f3 = 25k Figure 3 Frequency Characteristic of MS AMP Occasion of the external component of figure 2, f1 is 430Hz and f2 is 1.1kHz. As the MS sensitivity is prescribed at 5kHz, this stage’s gain is 7.9dB. But in only one-sided channel input case, this gain is considered as –6dB down, because the other channel input pin is imaginary earth. That is, the gain from RPOUT to MSDET is 1.86dB. As the detection sensitivity at MSDET is fixed 130mVrms, the sensitivity at RPOUT (8 pin or 23 pin) is calculated by the following formula. 10 ^ 130mV = 105mV 1.86 20 Because of RPOUT=580mVrms=0dB, therefore, the MS sensitivity becomes –14.8dB. That is the detection level. Time Constant of Detection Figure 4 (1) generally shows that detection time is in proportion to value of capacitor C16. But, with 1 2 Attack* and Recovery* the detection time differs exceptionally. Note: 1. Attack : Non-music → Music 2. Recovery : Music → Non-music Detection time Detection time Recovery Attack Detection time Recovery Recovery Attack Attack C6 R6 Detection level Input level Function Characteristics of MS (1) Function Characteristics of MS (2) Function Characteristics of MS (3) Figure 4 Function Characteristic of MS Like the figure 4 (2), Recovery time is variably possible by value of resistor R6. But Attack time gets about fixed value. Attack time has dependence by input level. When a large signal is inputted, Attack time is short tendency. Rev.3, Jun. 1999, page 12 of 32 HA12206NT Music Sensor Output (MSOUT) Because MS out pin is connected to the collector of NPN type directly, it is requested to use pull up resistor (RL=10k to 22kΩ) Output level is “High” sensing no signal. And output level is “Low” sensing signal. Please take notice of MS Low level voltage (GND+0.9V). The connected supply voltage must be less than VCC voltage, with MSOUT pull up resistor. Automatic Level Control (ALC) ALC is the input decay rate variable system. It has internal variable resistors of pin6 (pin25) by RECOUT signal that is inputted to pin8 (pin23). The operation is similitude to MS, detected by pin15. The signal input pin is pin5 (pin26). Resistor R1, R2 and capacitor C2, external components, for the input circuit are commended as figure 6. These are requested to use value of the block diagram figure for performance maintenance of S/N, T.H.D. etc. Figure 5 shows the relation with R1 front REC IN point and RPOUT. ALC operation level is 775mVrms {standard level (580mVrms) +2.5dB}. And it is designed to operate from 0dB to +15dB as 775mVrms=0dB. Adopted maximum value circuit, ALC is operated by a large channel of a signal. ALC on/off is linked with REC mute. When REC mute is on, ALC is off. RPOUT 775mV 580mV 2.5dB 15dB RECIN Figure 5 ALC Operation Level R1 Input RECIN C2 5 24.5mV 27.5dB 7 RPOUT 580mV Output C4 6 R2 ATT ALC 8 ADDIN R7 DETALC VCC + 15 C7 Figure 6 ALC Block Diagram REC-Equalizer REC mute is located at input-part of REC-equalizer. Therefore it has realized low pop noise. But because there is deference DC offset at the each mode of REC-equalizer, it is necessary for a coupling capacitor between EQOUT pin and recording head. Rev.3, Jun. 1999, page 13 of 32 HA12206NT Absolute Maximum Rating (Ta = 25°C) Item Max supply voltage Max supply voltage Power dissipation Operating temperature Storage temperature Operating voltage Symbol VCC max VEE max Pd Topr Tstg Vopr Rating +8 –8 500 –40 to +75 –55 to +125 VCC=–VEE=6 to 7.5 Unit V V mW °C °C V Ta≤75°C Note Rev.3, Jun. 1999, page 14 of 32 Application Terminal Input Output Bcr L R 14 17 to 20 20 17 to 20 L No signal fin (Hz) R COM Note Vin (dBs) Other Item Active TYPE I TYPE I — Symbol Test Condition IC Condition REC/ REC Min Typ Max Unit A/B MUTE Acr Quiescent current Logical threshold Line amp. gain Maximum output THD IQ VIL VIM VIH GV(1) GV(2) GV(3) GV(4) Vomax THD(1) THD(2) A — — — A B B REC A A REC — — — Mute Mute Mute Mute Mute Mute Active 0dB 0dB 0dB 0dB THD=1% 0dB, BW 400Hz to 30kHz +12dB (ALC ON) BW 400Hz to 30kHz 2 4 4 5 2 2 5 7 7 7 7 7 7 7 24 24 24 24 24 24 24 29 7 29 7 24 24 24 7 7 24 7 7 7 24 24 24 16 2, 3 3 –0.7 — — +12dB (ALC ON) 29 29 27 26 29 29 29 27 27 26 29 29 26 Rg=10kΩ, CCIR/ARM 2 S=580mVrms Rg=2.2kΩ, CCIR/ARM 2 S=580mVrms +12dB +12dB 1 2 Mute TYPE I TYPE I — — — –18 –18 — — — TYPE I TYPE I TYPE I TYPE I TYPE I TYPE I TYPE I — — — — — — TYPE I 1k TYPE I 1k TYPE II 10k TYPE I 1k TYPE I 1k TYPE I 1k TYPE I 1k A REC Mute TYPE I TYPE I — A A/B Mute TYPE I TYPE I 1k Mute TYPE I TYPE I 1k REC Active TYPE I TYPE I 1k A Mute TYPE I TYPE I 5k A Mute TYPE I TYPE I — 70 — — — — dB dB dB dB 73 70 60 0.0 2.5 5.5 dB –18.7 –14.7 –10.7 dB — 1.0 1.5 V 80 70 81 78 10.0 –0.2 2.0 4.0 26.0 26.0 20.9 26.0 12.0 — — 16.0 — — — 27.5 27.5 22.9 27.5 13.0 0.05 1.0 mA V V V dB dB dB dB dB % % — — — — –30 –30 –30 –30 — –30 –0.7 22.0 1.0 3.0 VCC 29.0 29.0 24.9 29.0 — 0.3 3.0 Signal to noise ratio S/N(1) S/N(2) Channel separation Crosstalk CT R/L CT A/B ALC operation level MS sensing level MS output low level ALC VON VOL 2 2 4 5 2 2 Note: 1. VCC(VEE) = ±6.0V 2. From REC in point Electrical Characteristics (Ta=25°C, VCC=±7.0V (VEE), 0dB=580mVrms=–2.52dBs (Vout)) Rev.3, Jun. 1999, page 15 of 32 3. For inputting signal to one side channel HA12206NT Application Terminal Input Output Bcr fin (Hz) R L R Note L COM EQin (dBs) Other HA12206NT Item GV REC-N1 GV REC-N2 GV REC-N3 GV REC-C1 GV REC-C2 GV REC-C3 R-MUTE ATT 18.7 20.2 23.1 25.1 28.4 31.4 22.6 24.1 28.5 30.5 33.2 36.4 70 80 21.7 27.1 34.4 25.6 32.5 39.4 — dB dB dB dB dB dB dB +12dB THD=1% Rg=5.1kΩ, A-WTG S=–5dBs 9 9 9 dBs A A % dB A Active TYPE I TYPE I 1k Active TYPE I TYPE I 1k Active TYPE I TYPE I — — –26 — 22 10 21 22 10 21 22 10 21 4 –46 –46 –46 –46 –46 –46 –14 7.0 — 0.35 0.7 60 — A A A A A A A Active Active Active Active Active Active Mute 9 9 9 9 9 9 9 22 22 22 22 22 22 22 10 10 10 10 10 10 10 21 21 21 21 21 21 21 TYPE I TYPE I 1k TYPE I TYPE I 8k TYPE I TYPE I 12k TYPE I TYPE II 1k TYPE I TYPE II 8k TYPE I TYPE II 12k TYPE I TYPE I 1k Rev.3, Jun. 1999, page 16 of 32 Symbol Test Condition IC Condition REC/ RECMin Typ Max Unit A/B MUTE Acr REC-EQ frequency response Normal speed Normal tape REC-EQ frequency response Normal speed Chrom tape REC-MUTE attenuation REC-EQ maximum output Vomax REC 4.0 REC-EQ THD THD REC — REC-EQ S/N S/N REC 52 Electrical Characteristics (Ta=25°C, VCC=±7.0V (VEE), 0dB=580mVrms=–2.52dBs (Vout)) (cont) Note: 4. VCC=±6.0V (V) HA12206NT Test Circuit Rev.3, Jun. 1999, page 17 of 32 HA12206NT Characteristic Curves Quiescent Current vs. Supply Voltage (PB mode) 18 Ta=25˚C Ain, Bin, Ain, Bin, , Nor , Nor , Cro , Cro 17 Quiescent Current ICC (mA) 16 15 14 13 12 5 6 7 8 Supply Voltage VCC (V) 9 Quiescent Current vs. Supply Voltage (REC mode) 18 Ta=25˚C Ain, Bin, Ain, Bin, , Nor , Nor , Cro , Cro 17 Quiescent Current ICC (mA) 16 15 14 13 12 5 6 7 8 Supply Voltage VCC (V) 9 Rev.3, Jun. 1999, page 18 of 32 HA12206NT Quiescent Current vs. Supply Voltage (PB mode) –12 Ta=25˚C Ain, Bin, Ain, Bin, , Nor , Nor , Cro , Cro –13 Quiescent Current IEE (mA) –14 –15 –16 –17 –18 –5 –6 –7 –8 Supply Voltage VEE (V) –9 Quiescent Current vs. Supply Voltage (REC mode) –12 Ta=25˚C Ain, Bin, Ain, Bin, , Nor , Nor , Cro , Cro –13 Quiescent Current IEE (mA) –14 –15 –16 –17 –18 –5 –6 –7 –8 Supply Voltage VEE (V) –9 Rev.3, Jun. 1999, page 19 of 32 HA12206NT RPOUT vs. Frequency (1) Ain mode 30 28 26 24 GV RPOUT (dB) VCC=7V Ta=25˚C 120µ 22 20 18 16 14 12 10 10 70µ 100 1k 10k Frequency (Hz) RPOUT vs. Frequency (2) Rin mode 100k 1M 30 28 26 24 GV RPOUT (dB) VCC=7V Ta=25˚C 22 20 18 16 14 12 10 10 100 1k 10k Frequency (Hz) 100k 1M Rev.3, Jun. 1999, page 20 of 32 HA12206NT RPOUT Total Harmonic Distortion vs. Input Level 10 VCC=7V, f=1kHz, Vout=580mVrms Ta=25˚C Ain (NORM) Ain (CROM) Bin (NORM) 1.0 Total Harmonic Distortion T.H.D. (%) 0.1 0.01 –20 –10 0 Input Level Vin (dB) 10 20 RPOUT Total Harmonic Distortion vs. Output Level 10 VCC=7V, f=1kHz, Vout=580mVrms Ta=25˚C Rin (RM-ON) Rin (RM-OFF) 1.0 Total Harmonic Distortion T.H.D. (%) 0.1 0.01 –20 –10 0 10 Output Level Vout (dB) 20 Rev.3, Jun. 1999, page 21 of 32 HA12206NT RPOUT Maximum Output Level vs. Supply Voltage 20 Maximum Output Level Vomax (dB) 15 10 Ta=25˚C, f=1kHz, RPOUT=580mVrms=0dB Ain Bin Rin RM-ON (ALC OFF) Rin RM-OFF (ALC ON) 5 0 4 5 6 7 Supply Voltage VCC (V) 8 9 RPOUT Signal to Noise Ratio vs. Supply Voltage 85 Signal to Noise Ratio S/N (dB) 80 75 Ta=25˚C, CCIR/ARM RPOUT=580mVrms=0dB Ain NORM Ain CROM Bin Rin RM-ON Rin RM-OFF 70 65 4 5 6 7 Supply Voltage VCC (V) 8 9 Rev.3, Jun. 1999, page 22 of 32 HA12206NT Line Amp. Crosstalk vs. Frequency VCC=7V, Ta=25˚C, 0dB=RPOUT=580mV, –10 Vin=+10dB, Normal, Ain mode –20 Line Amp. Crosstalk (dB) 0 –30 –40 –50 –60 –70 –80 –90 –100 100 Rin mode (REC) Bin mode 1k 10k 100k Frequency (Hz) Line Amp. Channel Separation vs. Frequency 1M 10M 0 –10 Line Amp. Channel Separation (dB) –20 –30 –40 –50 –60 –70 –80 –90 VCC=7V, Ta=25˚C, 0dB=RPOUT=580mV, Vin=+10dB, Normal, Ain mode L→R R→L –100 100 1k 10k 100k Frequency (Hz) 1M 10M Rev.3, Jun. 1999, page 23 of 32 HA12206NT EQOUT vs. Frequency VCC=7V Ta=25˚C 50 40 GV EQOUT (dB) 30 Chrom 20 Norm 10 10 100 1k Frequency (Hz) 10k 100k REC-EQ Total Harmonic Distortion (Normal) vs. Output Level VCC=7V, Ta=25˚C, 400 to 30kHz BPF Total Harmonic Distortion T.H.D. (%) 10.0 5kHz 1.0 1kHz 0.1 –10 –5 0 5 Output Level Vout (dBs) 10 15 Rev.3, Jun. 1999, page 24 of 32 HA12206NT REC-EQ Total Harmonic Distortion (Chrom) vs. Output Level VCC=7V, Ta=25˚C, 400 to 30kHz BPF Total Harmonic Distortion T.H.D. (%) 10.0 1.0 5kHz 0.1 –10 1kHz –5 0 5 Output Level Vout (dBs) 10 REC-EQ Maximum Output Level vs. Supply Voltage 20 Norm Crom T.H.D≥1% Ta=25˚C 15 Maximum Output Level Vomax (dBs) 10 5 0 4 5 6 7 Supply Voltage VCC (V) 8 9 Rev.3, Jun. 1999, page 25 of 32 HA12206NT REC-EQ Signal to Noise Ratio vs. Supply Voltage 70 0dB=Vout=-5dBs, A-WTG, Ta=25˚C REC-EQ Signal to Noise Ratio S/N (dB) 65 Normal Chrom 60 55 50 4 5 6 7 Supply Voltage VCC (V) 8 9 REQ-EQ Channel Separation vs. Frequency 60 40 REQ-EQ Channel Separation (dB) VCC=7V, Ta=25˚C, Vin=+12dB, Normal mode R→R reference 20 0 –20 –40 –60 –80 –100 –120 –140 10 R→L L→R 100 1k Frequency (Hz) 10k 100k Rev.3, Jun. 1999, page 26 of 32 HA12206NT REQ-EQ Mute Attenuation vs. Frequency 60 40 20 VCC=7V, Ta=25˚C, Vin=+20dB, Normal mode REQ-EQ Mute Attenuation (dB) reference 0 –20 –40 –60 –80 –100 –120 –140 10 , , MUTE B, MUTE 100 1k Frequency (Hz) ALC Operate Level vs Input Level 10k 100k 30 VCC=7V, Ta=25˚C, Single or Both input 100Hz to 10kHz Output Level (dB) 0dB=580mVrms 20 10 0 –10 –20 –20 –10 0 10 20 Input Level Vin (dB) Rin=180mVrms=0dB 30 Rev.3, Jun. 1999, page 27 of 32 HA12206NT ALC Total Harmonic Distortion vs. Input Level VCC=7V, Ta=25˚C, Single or Both input Total Harmonic Distortion T.H.D. (%) 1.0 0.5 10kHz 100Hz 0.1 0.05 1kHz 0.01 –20 –10 0 10 20 Input Level Vin (dB) Rin=180mVrms=0dB ALC Operate Level vs. Frequency 30 10 VCC=7V, Vin=+12dB, Vout=580mVrms=0dB Ta=25˚C Single input Both input 5 Output Level (dB) 0 –5 10 50 100 500 1k Frequency (Hz) 5k 10k 50k 100k Rev.3, Jun. 1999, page 28 of 32 HA12206NT MS Sensing Level vs Frequency VCC=7V, Ta=25˚C, Lo→Hi –2 MSOUT Hi→Lo –4 MS Sensing Level (dB) 0 –6 –8 –10 –12 –14 –16 –18 –20 100 500 1k 5k Frequency (Hz) 10k 50k 100k Singnal Sensing Time vs. Capacitor 100 VCC=7V, Ta=25˚C, f=5kHz MSOUT 50 Ain→RPOUT=580mVrms=0dB 0dB –5dB –10dB 20 10 5 2 PBOUT VCC 14 330kΩ MSDET 13 Singnal Sensing Time (ms) 1 MSOUT 0.5 0.2 0.1 0.01 0.05 0.1 Capacitor (mF) 0.5 1.0 Rev.3, Jun. 1999, page 29 of 32 HA12206NT No Signal Sensing Time vs. Resistor 1000 VCC=7V, Ta=25˚C, f=5kHz MSOUT Ain→RPOUT=580mVrms=0dB 500 0dB –5dB 200 V 14 CC No Signal Sensing Time (ms) 100 50 20 10 5 2 1 10k 0.33µF MSDET 13 + PBOUT MSOUT 50k 100k Resistor (W) 500k 1M VMSOUT vs. Resistor RL 5 VCC=7V, Ta=25˚C, f=5kHz MSOUT Ain→RPOUT=580mVrms=0dB Vin=0dB 5V RL MSOUT 16 4 VMSOUT (V) 3 2 1 0 100 500 1k 5k 10k Resistor RL (Ω) 50k 100k 500k 1M Rev.3, Jun. 1999, page 30 of 32 HA12206NT Package Dimensions Unit: mm 27.10 28.10 Max 30 16 10.0 Max 1 1.5 Max 1.0 15 5.06 Max 8.8 10.16 0.51 Min 2.54 Min 1.78 ± 0.25 0.25 – 0.05 1˚ – 13˚ Hitachi Code JEDEC EIAJ Weight (reference value) + 0.10 0.48 ± 0.10 DP-30S — Conforms 1.98 g Rev.3, Jun. 1999, page 31 of 32 HA12206NT Disclaimer 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Sales Offices Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http://semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia : http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: (89) 9 9180-0 Fax: (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: (1628) 585000 Fax: (1628) 585160 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : -538-6533/538-8577 Fax : -538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : -(2)-2718-3666 Fax : -(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : -(2)-735-9218 Fax : -(2)-730-0281 URL : http://www.hitachi.com.hk Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: (408) 433-1990 Fax: (408) 433-0223 Copyright  Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0 Rev.3, Jun. 1999, page 32 of 32
HA12206 价格&库存

很抱歉,暂时无法提供与“HA12206”相匹配的价格&库存,您可以联系我们找货

免费人工找货