0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SKP15N60

SKP15N60

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    SKP15N60 - Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode - Infineon...

  • 数据手册
  • 价格&库存
SKP15N60 数据手册
SKP15N60 SKW15N60 Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour PG-TO-220-3-1 - parallel switching capability (TO-220AB) • Very soft, fast recovery anti-parallel EmCon diode • Pb-free lead plating; RoHS compliant • Qualified according to JEDEC1 for target applications • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKP15N60 SKW15N60 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25°C TC = 100°C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE ≤ 600V, Tj ≤ 150°C Diode forward current TC = 25°C TC = 100°C Diode pulsed current, tp limited by Tjmax Gate-emitter voltage Short circuit withstand time Power dissipation TC = 25°C Operating junction and storage temperature Soldering temperature wavesoldering, 1.6 mm (0.063 in.) from case for 10s Tj , Tstg Ts -55...+150 260 °C °C 2 C G E PG-TO-247-3 VCE 600V 600V IC 15A 15A VCE(sat) 2.3V 2.3V Tj 150°C 150°C Marking Package K15N60 PG-TO-220-3-1 K15N60 PG-TO-247-3 Symbol VCE IC Value 600 31 15 Unit V A ICpuls IF 62 62 31 15 IFpuls VGE tSC Ptot 62 ±20 10 139 V µs W VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C 1 2 J-STD-020 and JESD-022 Allowed number of short circuits: 1s. 1 Rev. 2.3 Sep 08 SKP15N60 SKW15N60 Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, junction – ambient RthJA PG-TO-220-3-1 PG-TO-247-3-1 62 40 RthJCD 1.7 RthJC 0.9 K/W Symbol Conditions Max. Value Unit Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0 V , I C =500 µ A VCE(sat) V G E = 1 5 V, I C =15A T j = 25 ° C T j = 150 ° C Diode forward voltage VF VGE=0V, IF=15A T j = 25 ° C T j = 150 ° C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C =400 µ A, V C E = V G E V C E = 60 0 V, V G E = 0 V T j = 25 ° C T j = 150 ° C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current 2) Symbol Conditions Value min. 600 1.7 1.2 3 3 Typ. 2 2.3 1.4 1.25 4 10.9 800 84 52 76 7 13 150 max. 2.4 2.8 1.8 1.65 5 Unit V µA 40 2000 100 960 101 62 99 A nC nH nA S pF IGES gfs Ciss Coss Crss QGate LE IC(SC) V C E = 0 V , V G E =20V V C E =20V, I C =15A V C E =25V, VGE=0V, f =1MHz V C C = 48 0 V, I C =15A V G E =15V PG-TO-220-3-1 PG-TO-247-3-21 V G E =15V, t S C ≤ 1 0 µ s V C C ≤ 6 0 0V, T j ≤ 1 50 ° C 2) Allowed number of short circuits: 1s. 2 Rev. 2.3 Sep 08 SKP15N60 SKW15N60 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm dirr/dt T j = 25 ° C , V R = 20 0 V , I F =15A, d i F /d t = 200A/ µ s 279 28 254 390 5.0 180 nC A A/µs ns td(on) tr td(off) tf Eon Eoff Ets T j = 25 ° C , V C C = 40 0 V, I C =15A, V G E = 0 /1 5 V, RG=21Ω, L σ 1 ) = 1 80nH , C σ 1 ) = 2 50p F Energy losses include “tail” and diode reverse recovery. 32 23 234 46 0.30 0.27 0.57 38 28 281 55 0.36 0.35 0.71 mJ ns Symbol Conditions Value min. typ. max. Unit Switching Characteristic, Inductive Load, at Tj=150 °C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm dirr/dt T j = 150 ° C V R = 20 0 V , I F =15A, d i F /d t = 200A/ µ s 360 40 320 1020 7.5 200 nC A A/µs ns td(on) tr td(off) tf Eon Eoff Ets T j = 150 ° C V C C = 40 0 V, I C =15A, V G E = 0 /1 5 V, RG=21Ω, L σ 1 ) = 1 80nH , C σ 1 ) = 2 50p F Energy losses include “tail” and diode reverse recovery. 31 23 261 54 0.45 0.41 0.86 38 28 313 65 0.54 0.53 1.07 mJ ns Symbol Conditions Value min. typ. max. Unit 1) Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E. 3 Rev. 2.3 Sep 08 SKP15N60 SKW15N60 80A 70A 60A 100A Ic tp=5µs 15µs IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 50A 40A 30A 20A 10A 0A 10Hz TC=110°C TC=80°C 10A 50µs 200µs 1A 1ms Ic 0.1A 1V 10V 100V DC 1000V 100Hz 1kHz 10kHz 100kHz f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 21Ω) VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 35A 140W 30A 120W 100W 80W 60W 40W 20W 0W 25°C IC, COLLECTOR CURRENT POWER DISSIPATION 25A 20A 15A 10A 5A 0A 25°C Ptot, 50°C 75°C 100°C 125°C 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Rev. 2.3 Sep 08 SKP15N60 SKW15N60 50A 45A 40A 50A 45A 40A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 35A 30A 25A 20A 15A 10A 5A 0A 0V VGE=20V 15V 13V 11V 9V 7V 5V 35A 30A 25A 20A 15A 10A 5A VGE=20V 15V 13V 11V 9V 7V 5V 1V 2V 3V 4V 5V 0A 0V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) 45A 40A Tj=+25°C -55°C +150°C VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 50A 4.0V 3.5V IC = 30A IC, COLLECTOR CURRENT 35A 30A 25A 20A 15A 10A 5A 0A 0V 2V 4V 6V 3.0V 2.5V IC = 15A 2.0V 1.5V 8V 10V 1.0V - 50°C 0°C 50°C 100°C 150°C VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2.3 Sep 08 SKP15N60 SKW15N60 td(off) td(off) t, SWITCHING TIMES 100ns tf t, SWITCHING TIMES 100ns tf td(on) tr 10ns 0Ω td(on) tr 10ns 5A 10A 15A 20A 25A 30A 20Ω 40Ω 60Ω IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 2 1 Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 15A, Dynamic test circuit in Figure E) 5.5V td(off) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V -50°C 0°C 50°C 100°C 150°C typ. max. t, SWITCHING TIMES 100ns tf tr td(on) min. 10ns 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 15A, RG = 2 1 Ω, Dynamic test circuit in Figure E) Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.4mA) 6 Rev. 2.3 Sep 08 SKP15N60 SKW15N60 1.8mJ 1.6mJ *) Eon and Ets include losses due to diode recovery. 1.4mJ Ets* 1.2mJ *) Eon and Ets include losses due to diode recovery. Ets* E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 1.4mJ 1.2mJ 1.0mJ 0.8mJ 0.6mJ 0.4mJ 0.2mJ 0.0mJ 0A Eon* Eoff 1.0mJ 0.8mJ 0.6mJ 0.4mJ 0.2mJ 0.0mJ 0Ω Eoff Eon* 5A 10A 15A 20A 25A 30A 35A 20Ω 40Ω 60Ω 80Ω IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 2 1 Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 15A, Dynamic test circuit in Figure E) 1.0mJ Ets* ZthJC, TRANSIENT THERMAL IMPEDANCE *) Eon and Ets include losses due to diode recovery. 10 K/W D=0.5 0.2 10 K/W -1 0 E, SWITCHING ENERGY LOSSES 0.8mJ 0.1 0.05 0.02 0.6mJ Eon* 0.4mJ Eoff 10 K/W -2 0.01 R,(1/W) 0.5321 0.2047 0.1304 0.0027 R1 τ, (s) 0.04968 -3 2.58*10 -4 2.54*10 -4 3.06*10 R2 0.2mJ 10 K/W single pulse -3 C 1= τ1/R 1 C 2= τ2/R 2 0.0mJ 0°C 50°C 100°C 150°C 10 K/W 1µs -4 10µs 100µs 1ms 10ms 100ms 1s Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 15A, RG = 2 1 Ω, Dynamic test circuit in Figure E) tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Rev. 2.3 Sep 08 SKP15N60 SKW15N60 25V 1nF 20V Ciss VGE, GATE-EMITTER VOLTAGE 15V 120V 480V C, CAPACITANCE 100pF Coss 10V 5V Crss 0V 0nC 25nC 50nC 75nC 100nC 10pF 0V 10V 20V 30V QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 15A) VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 µ s 250A tsc, SHORT CIRCUIT WITHSTAND TIME 20 µ s IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 200A 15 µ s 150A 10 µ s 100A 5µ s 50A 0µ s 1 0V 11V 12V 13V 14V 15V 0A 10V 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Rev. 2.3 Sep 08 SKP15N60 SKW15N60 500ns 2000nC trr, REVERSE RECOVERY TIME IF = 30A Qrr, REVERSE RECOVERY CHARGE 400ns 1500nC IF = 30A 300ns IF = 15A 200ns 1000nC IF = 15A IF = 7.5A IF = 7.5A 500nC 100ns 0ns 100A/µs 300A/µs 500A/µs 700A/µs 900A/µs 0nC 100A/µs 300A/µs 500A/µs 700A/µs 900A/µs d i F /d t , DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) d i F /d t , DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 20A 1 000A/ µs IF = 30A 12A DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT Irr, REVERSE RECOVERY CURRENT 16A 800A/ µs 600A/ µs IF = 15A 8A IF = 7.5A 400A/ µs 4A dirr/dt, 200A/ µs 0A 100A/µs 300A/µs 500A/µs 700A/µs 900A/µs 0A/ µs 1 00A/µs 300A/ µs 500A/µs 700A/µs 900A/µs d i F /d t , DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 9 Rev. 2.3 Sep 08 SKP15N60 SKW15N60 30A 2.0V 25A I F = 3 0A VF, FORWARD VOLTAGE IF, FORWARD CURRENT 20A 150°C 15A 100°C 10A 25°C 5A -55°C 1.5V I F = 15A 0A 0.0V 0.5V 1.0V 1.5V 2.0V 1.0V -40°C 0°C 40°C 80°C 120°C VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature ZthJCD, TRANSIENT THERMAL IMPEDANCE 10 K/W 0 D=0.5 0.2 0.1 0.05 10 K/W 0.02 0.01 single pulse C1=τ1/R1 C2=τ2/R2 -1 R,(1/W) 0.311 0.271 0.221 0.584 0.314 R1 τ, (s) -2 7.83*10 -2 1.21*10 -3 1.36*10 -4 1.53*10 -5 2.50*10 R2 10 K/W 1µs -2 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) 10 Rev. 2.3 Sep 08 SKP15N60 SKW15N60 PG-TO220-3-1 11 Rev. 2.3 Sep 08 SKP15N60 SKW15N60 PG-TO247-3 M M MIN 4.90 2.27 1.85 1.07 1.90 1.90 2.87 2.87 0.55 20.82 16.25 1.05 15.70 13.10 3.68 1.68 5.44 3 19.80 4.17 3.50 5.49 6.04 MAX 5.16 2.53 2.11 1.33 2.41 2.16 3.38 3.13 0.68 21.10 17.65 1.35 16.03 14.15 5.10 2.60 MIN 0.193 0.089 0.073 0.042 0.075 0.075 0.113 0.113 0.022 0.820 0.640 0.041 0.618 0.516 0.145 0.066 0.214 3 MAX 0.203 0.099 0.083 0.052 0.095 0.085 0.133 0.123 0.027 0.831 0.695 0.053 0.631 0.557 0.201 0.102 Z8B00003327 0 0 55 7.5mm 20.31 4.47 3.70 6.00 6.30 0.780 0.164 0.138 0.216 0.238 0.799 0.176 0.146 0.236 0.248 17-12-2007 03 12 Rev. 2.3 Sep 08 SKP15N60 SKW15N60 i,v diF /dt tr r =tS +tF Qr r =QS +QF IF tS QS tr r tF 10% Ir r m t VR Ir r m QF dir r /dt 90% Ir r m Figure C. Definition of diodes switching characteristics τ1 Tj (t) p(t) r1 r2 τ2 τn rn r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance Lσ =180nH a nd Stray capacity C σ =250pF. Published by Infineon Technologies AG, 13 Rev. 2.3 Sep 08 SKP15N60 SKW15N60 Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 14 Rev. 2.3 Sep 08
SKP15N60 价格&库存

很抱歉,暂时无法提供与“SKP15N60”相匹配的价格&库存,您可以联系我们找货

免费人工找货