0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HFA3624IA

HFA3624IA

  • 厂商:

    INTERSIL(Intersil)

  • 封装:

  • 描述:

    HFA3624IA - 2.4GHz Up/Down Converter - Intersil Corporation

  • 数据手册
  • 价格&库存
HFA3624IA 数据手册
HFA3624 Data Sheet November 1998 File Number 4066.8 2.4GHz Up/Down Converter The Intersil 2.4GHz PRISM™ chip set is a highly integrated five-chip solution for RF modems employing Direct Sequence Spread Spectrum (DSSS) signaling. The HFA3624 RF/IF converter is one of the five chips in the PRISM™ chip set (see Figure 1 for the typical application circuit). ™ Features • Complete Receive/Transmit Front End • RF Frequency Range . . . . . . . . . . . . . . 2.4GHz to 2.5GHz • IF Operation . . . . . . . . . . . . . . . . . . . . . 10MHz to 400MHz • Single Supply Battery Operation . . . . . . . . . 2.7V to 5.5V • Independent Receive/Transmit Power Enable Mode The HFA3624 Up/Down converter is a monolithic bipolar device for up/down conversion applications in the 2.4GHz to 2.5GHz range. Manufactured in the Intersil UHF1X process, the device consists of a low noise amplifier and down conversion mixer in the receive section and an up conversion mixer with power preamp in the transmit section. An energy saving power enable control feature assures isolation between the receive and transmit circuits for time division multiplexed systems. The device requires low drive levels from the local oscillator and is housed in a small outline 28 lead SSOP package ideally suited for PCMCIA card applications. Applications • Systems Targeting IEEE 802.11 Standard • PCMCIA Wireless Transceiver • Wireless Local Area Network Modems • TDMA Packet Protocol Radios • Part 15 Compliant Radio Links • Portable Battery Powered Equipment Block Diagram Ordering Information PART NUMBER HFA3624IA HFA3624IA96 TEMP. RANGE (oC) -40 to 85 -40 to 85 PACKAGE 28 Ld SSOP Tape and Reel LNA_RX_OUT PKG. NO. M28.15 RX BIAS RX_PE RXM_RF RXM_IF+ RXM_IFLO_BY LO_IN LOB Pinout HFA3624 (SSOP) TOP VIEW LNA_RX_VCC2 GND LNA_RX_OUT GND LNA_RX_VCC1 GND LNA_RX_IN PRE_TX_OUT GND 1 2 3 4 5 6 7 8 9 28 RX_PE 27 RX_VCC 26 RXM_RF 25 GND 24 RXM_IF+ 23 RXM_IF22 LO_BY 21 LO_IN 20 TXM_IF19 TXM_IF+ 18 GND 17 TXM_RF 16 TX_VCC 15 TX_PE PRE_TX_IN TX BIAS RXM LNA_RX_IN LNA PRE_TX_OUT PRE TXM TXM_IFTXM_IF+ TXM_RF TX_PE PRE_TX_VCC2 10 GND 11 PRE_TX_IN 12 GND 13 PRE_TX_VCC1 14 2-27 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 PRISM® is a registered trademark of Intersil Corporation. PRISM logo is a trademark of Intersil Corporation. HFA3624 HFA3724 (FILE# 4067) TUNE/SELECT HSP3824 (FILE# 4064) RXI DATA TO MAC CTRL SPREAD DPSK MOD. PRISM™ CHIP SET FILE #4063 HFA3424 (NOTE) (FILE# 4131) A/D DESPREAD DPSK DEMOD HFA3624 UP/DOWN CONVERTER (FILE# 4066) I RXQ A/D CCA 802.11 MAC-PHY INTERFACE ÷2 0o/90o M U X M U X RSSI A/D TXI RFPA HFA3925 (FILE# 4132) VCO VCO TXQ Q QUAD IF MODULATOR DUAL SYNTHESIZER DSSS BASEBAND PROCESSOR HFA3524 (FILE# 4062) NOTE: Required for systems targeting 802.11 Specifications. FIGURE 1. TYPICAL TRANSCEIVER APPLICATION CIRCUIT USING THE HFA3624 For additional information on the PRISM™ chip set, call (407) 724-7800 to access Intersil’ AnswerFAX system. When prompted, key in the four-digit document number (File #) of the datasheets you wish to receive. The four-digit file numbers are shown in Figure 1, and correspond to the appropriate circuit. 2-28 HFA3624 Absolute Maximum Ratings Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.0V Voltage on Any Other Pin. . . . . . . . . . . . . . . . . . . -0.3 to VCC +0.3V Thermal Information Thermal Resistance (Typical, Note 1) θJA (oC/W) 28 Lead Plastic SSOP . . . . . . . . . . . . . . . . . . . . . . . 88 Package Power Dissipation at 70oC 28 Lead Plastic SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.9W Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . .-65oC ≤ TA ≤ 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC (SSOP - Lead Tips Only) Operating Conditions Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V Temperature Range . . . . . . . . . . . . . . . . . . . . . . . -40oC ≤ TA ≤ 85oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical Specifications VCC = +2.7V, LO = 2170MHz, IF = 280MHz, RF = 2450MHz, ZO = 50Ω, Unless Otherwise Specified SYMBOL TEMP (oC) MIN TYP MAX UNITS PARAMETER LO INPUT CHARACTERISTICS (LO_IN = 2170MHz/-3dBm, RSLO = 50Ω , tested in both RX and TX modes, all unused inputs and outputs are terminated into 50Ω) LO Input Frequency Range LO Input Drive Level LO Input VSWR LO_f LO_dr LO_SWR 25 25 Full 2.0 -6 -3 1.5 2.49 3 2.0:1 GHz dBm - RECEIVE LNA CHARACTERISTICS (LNA_RX_IN = 2450MHz/-25dBm, RS = RL = 50Ω , Receive Mode) Receive LNA Frequency Range LNA Noise Figure LNA Power Gain LNA Reverse Isolation (Source = 2450MHz/-25dBm) LNA Output 3rd Order Intercept (LNA_RX_IN = 2449.9MHz, 2450.1MHz / -35dBm) LNA Output 1dB Compression LNA Input VSWR LNA Input Return Loss LNA Output VSWR LNA Output Return Loss LNA_f LNA_NF LNA_PG LNA_ISO LNA_IP3 LNA_P1D LNA_ISWR LNA_IRL LNA_OSWR LNA_ORL 25 25 Full 25 25 25 Full Full Full Full 2.4 13.5 3.5 15.5 30 18 5.5 1.85:1 10.5 1.6 12.7 2.5 2.2:1 8.5 2.0:1 9.5 GHz dB dB dB dBm dBm dB dB RECEIVE MIXER CHARACTERISTICS (LO_IN = 2170MHz/-3dBm, RXM_RF = 2450MHz/-25dBm, RSLO = 50Ω , RSRF = 50Ω , RLIF = 50Ω with external matching network (Note 2), Receive Mode) Mixer RF Frequency Range Mixer IF Frequency Range SSB Noise Figure (Note 3) Mixer Power Conversion Gain (Note 2) RXM_RFf RXM_IFf RXM_NF RXM_PG 25 25 25 25 85 Mixer IF Output 3rd Order Intercept (RXM_RF = 2449.9MHz, 2450.1MHz/-30dBm) Mixer IF Output 1dB Compression Mixer RF Input VSWR (2.4GHz to 2.5GHz) Mixer RF Input Return Loss IF Open Collector Output Resistance (IF = 280MHz) IF Open Collector Output Capacitance RXM_IP3 RXM_P1D RXM_SWR RXM_IRL RXM_ROUT RXM_COUT 25 25 25 25 25 25 2.4 10 4 3 15 6 4.0 -5 1.5:1 14.0 1.5 0.4 2.5 400 2.0:1 9.5 GHz MHz dB dB dB dBm dBm dB kΩ pF 2-29 HFA3624 Electrical Specifications VCC = +2.7V, LO = 2170MHz, IF = 280MHz, RF = 2450MHz, ZO = 50Ω, Unless Otherwise Specified (Continued) SYMBOL RXA_LOR TEMP (oC) 25 MIN TYP 22 MAX UNITS dB PARAMETER Mixer LO to RF Isolation RECEIVE LNA/MIXER CASCADED CHARACTERISTICS (-3dB Loss RF Image Filter between LNA and Mixer, LNA_RX_IN = 2450MHz / 25dBm, RLIF = 250Ω external matching network, (Note 6)) Cascaded Noise Figure Cascaded Power Gain CRX_NF CRX_PG 25 25 85 Cascaded Input IP3 Cascaded Input Compression Point Maximum Input Power (Output may be gain compressed, but functional) CRX_IP3 CRX_P1D CRX_dr 25 25 25 15 14 6.24 18 -14.1 -23.2 +3 dB dB dB dBm dBm dBm TRANSMIT MIXER CHARACTERISTICS (LO_IN = 2170MHz/-3dBm, TXM_IF+ = 280MHz/-13dBm, RSIF = 50Ω, RSLO = 50Ω, RLRF = 50Ω, Transmit Mode) IF Input Frequency Range IF Input Resistance (IF = 280MHz) IF Input Capacitance (IF = 280MHz) Power Conversion Gain (RSIF = 50Ω) TXM_IFf TXM_RIN TXM_CIN TXM_PG50 25 25 25 25 85 Power Conversion Gain (RSIF = 250Ω) (Notes 4, 5) TXM_PG250 25 85 Transmit Mixer LO Leakage RF Output Frequency Range TXM_RF VSWR (2.4GHz to 2.5GHz) TXM_RF Return Loss Mixer Output 1dB Compression Output SSB Noise Figure (RSIF = 50Ω) Output 3rd Order Intercept (RSIF = 50Ω) Output SSB Noise Figure (RSIF = 250Ω) Output 3rd Order Intercept (RSIF = 250Ω) TXM_LEAK TXM_RFf TXM_OSWR TXM_ORL TXM_P1D TXM_NF50 TXM_IP3_50 TXM_NF250 TXM_IP3_250 25 25 Full Full 25 25 25 25 25 10 -6 -7.5 -0.5 -2 2.4 3 0.5 -3.4 2.1 -20 1.5 14 -10.5 18.3 1.1 14.5 -1.5 400 -18 2.5 2.0:1 9.5 MHz kΩ pF dB dB dB dB dBm GHz dB dBm dB dBm dB dBm TRANSMIT POWER PRE-AMP CHARACTERISTICS (PRE_IN = 2450MHz/-13dBm, RS = RL = 50Ω , Transmit Mode) Power Pre-Amp Frequency Range Power Gain PRE_f PRE_PG 25 25 85 PRE_AMP Output 1dB Compression PRE_AMP Noise Figure PRE_AMP Output 3rd Order Intercept PRE_AMP Input VSWR (2.4GHz to 2.5GHz) PRE_AMP Input Return Loss PRE_AMP Output VSWR (2.4GHz to 2.5GHz) PRE_AMP Output Return Loss PRE_P1D PRE_NF PRE_IP3 PRE_ISWR PRE_IRL PRE_OSWR PRE_ORL 25 25 25 Full Full Full Full 2.4 10.8 7.8 5.0 12.3 5.6 5.7 15.3 1.3:1 17.7 1.3:1 17.7 2.5 2.0:1 9.5 2.0:1 9.5 GHz dB dB dBm dB dBm dB dB 2-30 HFA3624 Electrical Specifications VCC = +2.7V, LO = 2170MHz, IF = 280MHz, RF = 2450MHz, ZO = 50Ω, Unless Otherwise Specified (Continued) SYMBOL TEMP (oC) MIN TYP MAX UNITS PARAMETER TRANSMIT MIXER/POWER PRE-AMP CASCADED CHARACTERISTICS (TXM_IF+ = 280MHz/-13dBm, -3dB Loss RF Image Filter with no LO suppression between Mixer and Transmit Amp, RL = 50Ω, RSIF = 250Ω (Note 6)) Cascaded Power Gain CTX_PG 25 85 Cascaded Output P1dB Cascaded Output NF Cascaded Output 3rd Order Intercept Cascaded LO Leakage POWER SUPPLY AND LOGIC CHARACTERISTICS Voltage Supply Range Transmit Mode Supply Current (VCC = 2.7V) VCC TX_2.7ICC 25 25 85 Receive Mode Supply Current (VCC = 2.7V) RX_ICC 25 85 Power Down Current (VCC = 5.5V) Logic Input Low Level Logic Input High Level Logic Low Input Bias Current (VPE = 0V, VCC = 5.5V) Logic High Input Bias Current (VPE = 5.5V, VCC = 5.5V) TX/RX Power Enable Time (Note 7) TX/RX Power Disable Time (Note 7) NOTES: 2. See Figure 5 Test Circuit for 50Ω IF matching network component values. 3. SSB (Single Side Band) Noise Figure measurement requires the use of an IF Reject/Highpass Filter between the Noise Source and the RXM_RF port. This filter prevents IF input noise from interfering with the Mixer IF output Noise Figure Measurement. 4. Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. 5. Implied limit, production measurement uses 50Ω termination at pin 19 (RSIF = 50Ω). Typical transmit conversion gain increase of 5.5dB with application circuit Figure 5 (RSIF = 250Ω). 6. See Figure 2 for Typical Application Circuit. 7. Enable/Disable Time Specifications are tested with the external component values shown in the Figure 5 Test Circuit, with an IF frequency of 280MHz. Specifically the AC coupling capacitors on the TXM_IF+ and TXM_IF- pins are biased up to operating voltage from a fixed internal current source at power up. Increasing these AC coupling capacitors above 1000pF will slow Enable Time proportionately. POWER CONTROL TRUTH TABLE STATE Power Down (Receive/Transmit Channels Power Down) Transmit Mode (Receive Channel Power Down) Receive Mode (Transmit Channel Power Down) Not Recommended RX_PE Low Low High High TX_PE Low High Low High ICC_PD VIL VIH IB_LO IB_HI PEt PDt Full Full Full Full Full Full Full 2.7 32 43 10 19 -0.2 2.0 49 18 22.5 0.3 0.25 0.25 5.5 57 64 20.5 24 10 0.8 VCC 1 150 1 1 V mA mA mA mA µA V V µA µA µs µs CTX_P1D CTX_NF CTX_IP3 CTX_LEAK 25 25 25 25 8 5.5 11.4 -2.0 15 7.1 -8.7 dB dB dBm dB dBm dBm 2-31 HFA3624 Pin Descriptions PINS 1 3 SYMBOL LNA_RX_VCC2 LNA_RX_OUT DESCRIPTION Receive Channel Low Noise Amplifier Output Stage Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 5pF chip capacitor is recommended. Receive Channel Low Noise Amplifier Output (2400MHz to 2500MHz). The nominal impedance of 50Ω, over the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC coupling. Receive Channel Low Noise Amplifier Input Stage Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF chip capacitor is recommended. Receive Channel Low Noise Amplifier Input (2400MHz to 2500MHz). The nominal impedance of 50Ω, over the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC coupling. Transmit Channel Power Pre-Amplifier Output (2400MHz to 2500MHz). The nominal impedance of 50Ω, over the operating frequency range, is achieved with on chip narrowband tuned circuit. This pin requires AC coupling. Transmit Channel Power Pre-Amplifier Output Stage Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF chip capacitor is recommended. Transmit Channel Power Pre-Amplifier Input (2400MHz to 2500MHz). The nominal impedance of 50Ω, over the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC coupling. Transmit Channel Power Pre-Amplifier Input Stage Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF chip capacitor is recommended. Transmit Channel Power Enable Control Input. TTL compatible input. Refer to “Power Control Truth Table” on previous page. Transmit Channel Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF chip capacitor is recommended. Transmit Channel Mixer RF Output (2400MHz to 2500MHz). The nominal impedance of 50Ω, over the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC coupling. Transmit Channel Mixer IF+ Input (10MHz to 400MHz). The TXM_IF+ and TXM_IF- pins form a high input impedance differential pair. Either input (or both inputs for special applications) may be used for the IF signal. Typically the TXM_IF- pin is bypassed to ground with a 470pF capacitor and the TXM_IF+ pin is AC coupled to the transmit IF signal. The high impedance input requires external termination. The specified input impedance is modeled as a resistor in parallel with a capacitor derived from S parameters at 280MHz. The input Impedance will increase at lower IF frequencies. This pin requires AC coupling. Increasing the AC coupling capacitor to larger than 1000pF will degrade Transmit Enable Time. 20 TXM_IFTransmit Channel Mixer IF- Input (10MHz to 400MHz). The TXM_IF+ and TXM_IF- pins form a high input impedance differential pair. Either input (or both for special applications) may be used for the IF signal. Typically the TXM_IF- pin is bypassed to ground with a 470pF capacitor and the TXM_IF+ pin is AC coupled to the transmit IF signal. The high impedance input requires external termination. The specified input impedance is modeled as a resistor in parallel with a capacitor derived from S parameters at 280MHz. The input impedance will increase at lower IF frequencies. This pin requires AC coupling. Increasing the AC coupling capacitor to larger than 1000pF will degrade Transmit Enable Time. 21 LO_IN Local Oscillator Input (2000MHz to 2490MHz). The LO_IN and LO_BY pins form a differential pair with a mutual broadband 50Ω impedance. Refer to the LO_BY pin for details. The recommended LO power is 3dBm, however usable performance is obtained for the range -6dBm to +3dBm. The LO_IN pin requires AC coupling. Local Oscillator Input Bypass (2000MHz to 2490MHz). The LO_IN and LO_BY pins form a differential pair with a mutual broadband 50Ω input impedance. The LO_BY pin can be used as a signal input, but may have slightly degraded performance due to a clamp circuit to GND. Typically the LO_BY pin is bypassed to GND with a 5pF capacitor. The LO_BY pin requires AC coupling. 5 7 LNA_RX_VCC1 LNA_RX_IN 8 PRE_TX_OUT 10 12 PRE_TX_VCC2 PRE_TX_IN 14 15 16 17 PRE_TX_VCC1 TX_PE TX_VCC TXM_RF 19 TXM_IF+ 22 LO_BY 2-32 HFA3624 Pin Descriptions PINS 23 (Continued) DESCRIPTION Receive Channel Mixer IF- Output (10MHz to 400MHz). The RXM_IF+ and RXM_IF- pins form a complimentary open collector output driver pair. The open collector outputs require an external load to VCC not to exceed 500Ω, for the Single Ended IF case shown in Figure 3, or 1kΩ for the Differential IF cases shown in Figures 2 and 4. This pin requires AC coupling. Receive Channel Mixer IF+ Output (10MHz to 400MHz) The RXM_IF+ and RXM_IF- pins form a complimentary open collector output driver pair. The open collector outputs require an external load to VCC not to exceed 500Ω, for the Single Ended IF case shown in Figure 3, or 1kΩ for the Differential IF cases shown in Figures 2 and 4. This pin requires AC coupling. Receive Channel Mixer RF Input (2400MHz to 2500MHz). The nominal impedance of 50Ω, over the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC coupling. Receive Channel Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF chip capacitor is recommended. Receive Channel Power Enable Control Input. TTL compatible input. Refer to “Power Control Truth Table” on previous page. Circuit Ground Pins (Qty 8). Internally connected. SYMBOL RXM_IF- 24 RXM_IF+ 26 27 28 2, 4, 6, 9, 11, 13, 18, 25 RXM_RF RX_VCC RX_PE GND Typical Application Circuits -3dB/50Ω BPF 2450MHz LFJ30-03B2442B084 muRata RECEIVE ENABLE C32 C12 RXA_VCC2 GND RXA_OUT C13 GND RXA_VCC1 RF INPUT 2450MHz 50Ω RF OUTPUT 2450MHz 50Ω GND C41 RXA_IN TXA_OUT C40 C11 GND TXA_VCC2 GND TXA_IN GND TXA_VCC1 C10 C15 TRANSMIT ENABLE -3dB/50Ω BPF 2450MHz LFJ30-03B2442B084 muRata 1 2 3 4 5 6 7 8 9 10 11 12 13 14 TX BIAS TXA TXM RXA RXM RX BIAS 28 27 26 25 24 RX_PE RX_VCC RXM_RF GND RXM_IF+ 22 L46 C45 L47 C25 C51 R50 C48 IF OUTPUT 280MHz 250Ω C21 VCC = 2.7V C14 HFA3624 LOB RXM_IF- 22 23 LO_BY C27 22 LO_IN 21 TXM_IF- C28 20 TXM_IF+ 19 GND 18 C23 TXM_RF 17 TX_VCC 16 TX_PE C19 15 C26 LO INPUT 2170MHz 50Ω R35 250Ω IF INPUT 280MHz, 250Ω C37 FIGURE 2. DIFFERENTIAL TO SINGLE ENDED IF OUTPUT TRANSLATION WITH 250Ω IF IMPEDANCE 2-33 HFA3624 Typical Application Circuits (Continued) -3dB/50Ω BPF 2450MHz LFJ30-03B2442B084 muRata RECEIVE ENABLE C32 C12 RXA_VCC2 GND RXA_OUT C13 GND RXA_VCC1 RF INPUT 2450MHz 50Ω RF OUTPUT 2450MHz 50Ω GND C41 RXA_IN TXA_OUT C40 C11 GND TXA_VCC2 GND TXA_IN GND TXA_VCC1 C10 C15 TRANSMIT ENABLE -3dB/50Ω BPF 2450MHz LFJ30-03B2442B084 muRata 1 2 3 4 5 6 7 8 9 10 11 12 13 14 TX BIAS TXA TXM RXA RXM RX BIAS 28 27 26 25 24 23 22 21 20 19 18 17 16 15 RX_PE RX_VCC RXM_RF GND RXM_IF+ RXM_IFLO_BY LO_IN TXM_IF- C28 TXM_IF+ GND TXM_RF TX_VCC TX_PE C19 C23 C37 R35 250Ω C26 C27 C25 22 L46 R50 C51 IF OUTPUT 280MHz 250Ω C21 VCC = 2.7V C14 HFA3624 LOB LO INPUT 2170MHz 50Ω IF INPUT 280MHz, 250Ω C48 FIGURE 3. SINGLE ENDED IF OUTPUT WITH 250Ω IF IMPEDANCE 2-34 HFA3624 Typical Application Circuits (Continued) -3dB/50Ω BPF 2450MHz LFJ30-03B2442B084 muRata RECEIVE ENABLE C31 C12 RXA_VCC2 GND RXA_OUT C13 GND RXA_VCC1 RF INPUT 2450MHz 50Ω RF OUTPUT 2450MHz 50Ω GND C41 RXA_IN TXA_OUT C40 C11 GND TXA_VCC2 GND TXA_IN GND TXA_VCC1 C15 C10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 TX BIAS TXA TXM RXA RXM RX BIAS 28 27 26 25 24 23 22 21 20 19 18 17 16 15 RX_PE RX_VCC RXM_RF GND RXM_IF+ RXM_IFLO_BYC27 LO_IN TXM_IF- C28 TXM_IF+ GND TXM_RF TX_VCC TX_PE C19 C23 C37 R35 250Ω C26 C25 22 22 C27 LO INPUT 2170MHz 50Ω IF INPUT 280MHz 250Ω R50 C4 IF OUTPUT 280MHz XFMR 250Ω 500Ω:250Ω (2:1) C21 C32 VCC = 2.7V C14 HFA3624 LOB TRANSMIT ENABLE -3dB/50Ω BPF 2450MHz LFJ30-03B2442B084 muRata FIGURE 4. DIFFERENTIAL TO SINGLE ENDED IF OUTPUT TRANSLATION USING TRANSFORMER INTO 250Ω 2-35 HFA3624 Typical Application Circuits (Continued) RECEIVE ENABLE VCC = 2.7V C15 5pF C16 5pF RECEIVE AMP RF OUTPUT 50Ω SIG. GEN. 2450MHz 50Ω TRANSMIT AMP RF OUTPUT 50Ω C3 5pF C7 200pF LNA_VCC2 GND LNA_OUT GND LNA_VCC1 C8 5pF C9 5pF C26 200pF C4 5pF GND LNA_IN PRE_OUT GND TXA_VCC2 GND PRE_IN GND PRE_VCC1 C19 200pF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 TX BIAS TXM LNA RX BIAS RXM 28 27 26 25 24 RX_PE RX_VCC RXM_RF GND RXM_IF+ C14 5pF 22 C17 2.7pF R6 2kΩ C6 470pF L3 12nH C13 2.2µF C11 2200pF C1 200pF C10 200pF SIG. GEN. 2450MHz 50Ω IF OUTPUT 280MHz 50Ω C5 6.8pF HFA3624 PRE LOB AMP SIG. GEN. 2450MHz 50Ω 22 RXM_IF23 LO_BY C20 22 C28 LO_IN 10pF 21 C24 TXM_IF10pF 20 TXM_IF+ 470pF 19 GND C22 C21 18 5pF 470pF TXM_RF 17 TX_VCC 16 TX_PE 15 C23 200pF L2 39nH L1 68nH C18 SIG. GEN. 470pF 2170MHz 50Ω L4 47nH R5 250Ω C25 1.5pF SIG. GEN. 280MHz 50Ω TRANSMIT. MIXER RF OUTPUT 50Ω C2 200pF TRANSMIT ENABLE FIGURE 5. OPTIMIZED LAB EVALUATION CIRCUIT Typical Performance Curves 16 VCC = 2.7V TA = 25oC 1dB COMPRESSION POINT CONVERSION GAIN (dB) -3 VCC = 2.7V TA = 25oC 15 POWER GAIN (dB) -4 1dB COMPRESSION POINT 14 1dB 13 -5 1dB -6 12 -25 -21 -17 -13 -9 -5 -7 -20 -17 -14 -11 -8 -5 IF INPUT POWER (dBm) IF INPUT POWER (dBm) FIGURE 6. TRANSMIT PRE-AMP 1dB COMPRESSION FIGURE 7. TRANSMIT MIXER 1dB COMPRESSION 2-36 HFA3624 Typical Performance Curves VCC = 2.7V TA = 25oC 10 20 MAG (dB) MAG (dB) 0 DUT + FIXTURE DUT (Continued) 30 VCC = 2.7V TA = 25oC 10 -10 0 -20 DUT DUT + FIXTURE 1.0 2.0 FREQUENCY (GHz) 3.0 1.0 2.0 FREQUENCY (GHz) 3.0 FIGURE 8. PRE-AMPLIFIER S11 LOG MAG INPUT RETURN LOSS FIGURE 9. PRE-AMPLIFIER S21 LOG MAG FORWARD GAIN VCC = 2.7V TA = 25oC -20 MAG (dB) DUT MAG (dB) 0 VCC = 2.7V TA = 25oC -30 DUT + FIXTURE -40 -10 -20 DUT DUT + FIXTURE -50 1.0 2.0 FREQUENCY (GHz) 3.0 -30 1.0 2.0 FREQUENCY (GHz) 3.0 FIGURE 10. PRE-AMPLIFIER S12 LOG MAG REVERSE ISOLATION FIGURE 11. PRE-AMPLIFIER S22 LOG MAG OUTPUT RETURN LOSS VCC = 2.7V TA = 25oC 10 30 VCC = 2.7V TA = 25oC DUT 20 MAG (dB) DUT MAG (dB) 0 10 DUT + FIXTURE 0 -10 -20 DUT + FIXTURE -10 1.0 2.0 FREQUENCY (GHz) 3.0 1.0 2.0 FREQUENCY (GHz) 3.0 FIGURE 12. LNA S11 LOG MAG INPUT RETURN LOSS FIGURE 13. LNA S21 LOG MAG FORWARD GAIN 2-37 HFA3624 Typical Performance Curves 0 VCC = 2.7V TA = 25oC (Continued) 10 VCC = 2.7V TA = 25oC -20 MAG (dB) DUT + FIXTURE MAG (dB) 0 DUT -10 -40 -60 DUT -20 DUT + FIXTURE -80 1.0 2.0 FREQUENCY (GHz) 3.0 -30 1.0 2.0 FREQUENCY (GHz) 3.0 FIGURE 14. LNA S12 LOG MAG REVERSE ISOLATION VCC = 2.7V TA = 25oC 10 FIGURE 15. LNA S22 LOG MAG OUTPUT RETURN LOSS 0 VCC = 2.7V, (NOTE) TA = 25oC -10 MAG (dB) MAG (dB) 0 -20 -10 -30 -20 -40 1.0 2.0 FREQUENCY (GHz) 3.0 230 250 270 290 310 330 FREQUENCY (MHz) NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. FIGURE 16. TRANSMIT MIXER S22 LOG MAG RF OUTPUT RETURN LOSS 2.3 VCC = 2.7V TA = 25oC 10 FIGURE 17. TRANSMIT MIXER S11 LOG MAG IF INPUT RETURN LOSS 0.3 MAG (dB) -1.7 MAG (dB) VCC = 2.7V, (NOTE) TA = 25oC, LO = 2.17GHz 2.45 FREQUENCY (GHz) 2.5 0 -10 -3.7 -20 2.4 1.0 2.0 FREQUENCY (GHz) 3.0 NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. FIGURE 18. TRANSMIT MIXER CONVERSION GAIN vs IF FREQUENCY SWEEP FIGURE 19. RECEIVE MIXER S11 LOG MAG RF INPUT RETURN LOSS 2-38 HFA3624 Typical Performance Curves VCC = 2.7V TA = 25oC (Continued) 7 VCC = 2.7V, TA = 25oC RF = 2.45GHz 5 MAG (dB) 0 MAG (dB) 250 270 290 310 330 3 -10 1 -20 230 230 250 270 290 310 330 FREQUENCY (MHz) FREQUENCY (MHz) FIGURE 20. RECEIVE MIXER S22 LOG MAG IF OUTPUT RETURN LOSS FIGURE 21. RECEIVE MIXER CONVERSION GAIN vs LO FREQUENCY SWEEP VCC = 2.7V TA = 25oC 0 VCC = 2.7V TA = 25oC 0 MAG (dB) -10 MAG (dB) -10 -20 -20 -30 -30 1.0 2.0 FREQUENCY (GHz) 3.0 1.0 2.0 FREQUENCY (GHz) 3.0 FIGURE 22. LO_IN S11 LOG MAG RECEIVE MODE LO INPUT RETURN LOSS FIGURE 23. LO_IN S11 LOG MAG TRANSMIT MODE LO INPUT RETURN LOSS 19 THIRD ORDER INTERCEPT (dBm) TA = 25oC 18 5.5V 17 GAIN (dB) 4.0V 16 15 14 13 2.3 3.0V 2.7V 23 22 21 20 19 TA = 25oC, F1 -F2 = 200kHz 5.5V 4.0V 18 3.0V 17 2.7V 16 15 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.35 2.4 2.45 2.5 2.55 2.6 FREQUENCY (GHz) FREQUENCY (GHz) FIGURE 24. LOW NOISE AMPLIFIER GAIN vs FREQUENCY FIGURE 25. LOW NOISE AMPLIFIER IP3 vs FREQUENCY 2-39 HFA3624 Typical Performance Curves 4.3 4.2 4.1 NOISE FIGURE (dB) 13 4.0 GAIN (dB) 3.9 3.8 3.7 3.6 3.5 3.4 2.3 4.0V 3.0V 2.7V 2.35 2.4 2.45 2.5 2.55 2.6 9 8 2.3 5.5V 12 11 10 2.7V 5.5V TA = 25oC 14 (Continued) 15 4.0V 3.0V TA = 25oC 2.35 2.4 2.45 2.5 2.55 2.6 FREQUENCY (GHz) FREQUENCY (GHz) FIGURE 26. LOW NOISE AMPLIFIER NOISE FIGURE vs FREQUENCY 10 TA = 25oC 9 1dB COMPRESSION (dBm) 8 7 6 5 4 3 2.3 2.35 2.4 2.45 2.5 2.55 2.6 FREQUENCY (GHz) 2.7V 4.0V GAIN (dB) 3.0V 5.5V FIGURE 27. PRE-AMPLIFIER GAIN vs FREQUENCY 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 2.3 2.35 2.4 2.45 2.5 2.55 2.6 3.0V 2.7V 5.5V 4.0V TA = 25oC IF = 280MHz RF FREQUENCY (GHz) FIGURE 28. PRE-AMPLIFIER RF OUTPUT 1dB COMPRESSION vs FREQUENCY FIGURE 29. RECEIVE MIXER GAIN vs RF FREQUENCY FOR FIXED IF FREQUENCY 7.0 THIRD ORDER INTERCEPT (dBm) 6.5 6.0 4.0V 5.5 3.0V 5.0 4.5 4.0 3.5 3 2.3 2.7V TA = 25oC 5.5V NOISE FIGURE (dB) F1 -F2 = 200kHz IF = 280MHz 16.5 TA = 25oC, IF = 280MHz 16.0 15.5 5.5V 15.0 4.0V 14.5 14.0 13.5 2.3 3.0V 2.7V 2.35 2.4 2.45 2.5 2.55 2.6 2.35 2.4 2.45 2.5 2.55 2.6 RF FREQUENCY (GHz) RF FREQUENCY (GHz) FIGURE 30. RECEIVE MIXER IP3 vs RF FREQUENCY FIGURE 31. RECEIVE MIXER SSB NOISE FIGURE vs RF FREQUENCY 2-40 HFA3624 Typical Performance Curves -24.0 -24.5 -25.0 -25.5 POWER (dBm) -26.0 -26.5 -27.0 -27.5 -28.0 -28.5 -29.0 2.02 2.7V 3.0V 4.0V 5.5V POWER (dBm) -36 -37 -38 -39 -40 -41 2.02 2.7V 3.0V TA = 25oC, LO_IN = -3dBm -35 5.5V 4.0V (Continued) -34 TA = 25oC, LO_IN = -3dBm 2.07 2.12 2.17 2.22 LO FREQUENCY (GHz) 2.27 2.32 2.07 2.12 2.17 2.22 LO FREQUENCY (GHz) 2.27 2.32 FIGURE 32. RECEIVE MIXER LO TO RF PORT LEAKAGE vs LO FREQUENCY 6 TA = 25oC, IF = 280MHz (NOTE) 5 5.5V 4 GAIN (dB) 3 2 2.7V 1 0 -1 2.3 2.35 2.4 2.45 2.5 2.55 2.6 RF FREQUENCY (GHz) 4.0V 3.0V FIGURE 33. RECEIVE MIXER LO TO IF PORT LEAKAGE vs LO FREQUENCY -6 5.5V -7 1dB COMPRESSION (dBm) -8 -9 -10 2.7V -11 -12 -13 2.3 4.0V TA = 25oC, IF = 280MHz (NOTE) 3.0V 2.35 2.4 2.45 2.5 RF FREQUENCY (GHz) 2.55 2.6 NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. FIGURE 34. TRANSMIT MIXER GAIN vs RF FREQUENCY 16.5 TA = 25oC, IF = 280MHz (NOTE) 16 NOISE FIGURE (dB) 15.5 15 5.5V 14.5 4.0V 14 13.5 13 2.3 3.0V 2.7V NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. FIGURE 35. TRANSMIT MIXER OUTPUT 1dB COMPRESSION vs RF FREQUENCY -17 -18 -19 -20 POWER (dBm) -21 -22 -23 -24 -25 -26 -27 -28 2.35 2.4 2.45 2.5 RF FREQUENCY (GHz) 2.55 2.6 -29 -30 2.02 2.7V 3.0V 4.0V 5.5V TA = 25oC, LO_IN = -3dBm NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. FIGURE 36. TRANSMIT MIXER SSB NOISE FIGURE vs RF FREQUENCY 2.07 2.12 2.17 2.22 2.27 2.32 LO FREQUENCY (GHz) FIGURE 37. TRANSMIT MIXER LO TO RF PORT LEAKAGE vs LO FREQUENCY 2-41 HFA3624 Typical Performance Curves -34 -35 -36 -37 POWER (dBm) TA = 25oC, LO_IN = -3dBm 35 30 (Continued) 40 ICC (mA) -38 -39 -40 -41 -42 -43 -44 2.02 2.7V 3.0V 25 20 15 +5.5V 4.0V 5.5V +2.7V 2.07 2.12 2.17 2.22 RF FREQUENCY (GHz) 2.27 2.32 10 -40 -30 -20 -10 0 10 20 30 40 TEMPERATURE (oC) 50 60 70 85 FIGURE 38. TRANSMIT MIXER LO TO IF PORT LEAKAGE vs LO FREQUENCY FIGURE 39. RECEIVE MODE ICC vs TEMPERATURE 120 110 100 90 ICC (mA) 80 70 60 50 40 30 20 -40 -30 -20 -10 0 10 20 30 40 TEMPERATURE (oC) 50 60 70 85 +2.7V +5.5V GAIN (dB) 17.5 17.0 +5.5V 16.5 16.0 15.5 15.0 14.5 14.0 -40 -30 -20 -10 +2.7V 0 10 20 30 40 TEMPERATURE (oC) 50 60 70 85 FIGURE 40. TRANSMIT MODE ICC vs TEMPERATURE FIGURE 41. LOW NOISE AMPLIFIER GAIN vs TEMPERATURE 8.0 7.5 +5.5V 7.0 GAIN (dB) 6.5 6.0 5.5 5.0 4.5 -40 -30 -20 -10 +2.7V GAIN (dB) IF = 280MHz, RF = 2.45GHz LO = -3dBm 15 14 13 12 11 10 9 8 7 6 0 10 20 30 40 50 60 70 85 5 -40 -30 -20 -10 0 10 20 30 40 50 60 70 85 +5.5V +2.7V TEMPERATURE (oC) TEMPERATURE (oC) FIGURE 42. RECEIVE MIXER GAIN vs TEMPERATURE FIGURE 43. PRE-AMPLIFIER GAIN vs TEMPERATURE 2-42 HFA3624 Typical Performance Curves 4 3 2 GAIN (dB) 1 +2.7V 0 -1 -2 -40 -30 -20 -10 IF = 280MHz, RF = 2.45GHz LO = -3dBm 0 10 20 30 40 50 60 70 85 (Continued) -24.5 LO_IN = -3dBm AT 2.17GHz +5.5V POWER (dBm) -25.0 -25.5 +5.5V -26.0 -26.5 -27.0 -27.5 -40 -30 -20 -10 +2.7V 0 10 20 30 40 50 60 70 85 TEMPERATURE (oC) TEMPERATURE (oC) FIGURE 44. TRANSMIT MIXER GAIN vs TEMPERATURE FIGURE 45. RECIEVE MIXER LO TO RF PORT LEAKAGE vs TEMPERATURE -20 -21 -22 POWER (dBm) -23 -24 -25 -26 -27 -28 -29 -30 -40 -30 -20 -10 0 10 20 30 40 50 60 70 85 +5.5V POWER (dBm) LO_IN = -3dBm AT 2.17GHz -26.0 LO_IN = -3dBm AT 2.17GHz -26.5 +2.7V -27.0 +5.5V -27.5 -28.0 +2.7V -28.5 -29.0 -40 -30 -20 -10 0 10 20 30 40 50 60 70 85 TEMPERATURE (oC) TEMPERATURE (oC) FIGURE 46. TRANSMIT MIXER LO TO RF PORT LEAKAGE vs TEMPERATURE FIGURE 47. RECEIVE MIXER LO TO IF PORT LEAKAGE vs TEMPERATURE 5.5 THIRD ORDER INTERCEPT (dBm) 7.3 7.2 7.1 7.0 GAIN (dB) 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 -6 -5 -4 -3 -2 -1 0 1 2 3 TA = 25oC, IF = 280MHz RF = 2.45GHz 5 4.5 4 3.5 3 2.5 2 1.5 -6 TA = 25oC, IF = 280MHz RF = 2.45GHz, F1 - F2 = 200kHz -5 -4 -3 -2 -1 0 1 2 3 LO DRIVE (dBm) LO DRIVE (dBm) FIGURE 48. RECEIVE MIXER GAIN vs LO DRIVE FIGURE 49. RECEIVE MIXER IP3 vs LO DRIVE 2-43 HFA3624 Typical Performance Curves 16.5 16 NOISE FIGURE (dB) 15.5 GAIN (dB) 2.20 2.15 2.10 2.05 2.00 -6 15 14.5 14 13.5 -6 TA = 25oC, IF = 280MHz LO = 2.17GHz (Continued) 2.35 2.30 2.25 TA = 25oC, RF = 2.45GHz IF = 280MHz (NOTE) -5 -4 -3 -2 -1 0 1 2 3 -5 -4 -3 -2 -1 0 1 2 3 LO DRIVE (dBm) LO DRIVE (dBm) NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. FIGURE 50. RECEIVE MIXER SSB NOISE FIGURE vs LO DRIVE FIGURE 51. TRANSMIT MIXER GAIN vs LO DRIVE -9.2 -9.3 1dB COMPRESSION (dBm) -9.4 GAIN (dB) -9.5 -9.6 -9.7 -9.8 -9.9 -10.0 -6 TA = 25oC, RF = 2.45GHz IF = 280MHz (NOTE) 4.0 3.5 3.0 TA = 25oC, RF = 2.45GHz (NOTE) +5.5V 2.5 2.0 1.5 1.0 0.5 0 -5 -4 -3 -2 -1 0 LO DRIVE (dBm) 1 2 3 10 20 40 60 80 100 200 400 IF FREQUENCY (MHz) +2.7V +4.0V +3.0V NOTE: Transmit mixer measured with Impedance Transform Network 250Ω at device to 50Ω at the source. Refer to Figure 5, pin 19. FIGURE 52. TRANSMIT MIXER OUTPUT 1dB COMPRESSION vs LO DRIVE NOTE: TXM_IF input matching network modified for each IF frequency as described in Table 1. FIGURE 53. TRANSMIT MIXER GAIN vs IF FREQUENCY TABLE 1. TXM_IF INPUT 50Ω TO 250Ω IMPEDANCE TRANSFORM CIRCUIT COMPONENT VALUES IF FREQ 10MHz 20MHz 40MHz 70MHz 100MHz 200MHz 280MHz 400MHz NOTE: Refer to Figure 5, pin 19. LO CAPACITORS C20, C28 5pF 5pF 5pF 5pF 7pF 7pF 10pF 10pF IF BYPASS C24, C21 0.1µF 0.022µF 0.012µF 0.0068mF 0.0033mF 1000pF 470pF 330pF IF SHUNT C C25 150pF 68pF 33pF 18pF 12pF 3.9pF 1.5pF 0 IF SERIES L L4 1.2µH 680nH 330nH 180nH 120nH 68nH 47nH 33nH 2-44 HFA3624 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029 2-45
HFA3624IA 价格&库存

很抱歉,暂时无法提供与“HFA3624IA”相匹配的价格&库存,您可以联系我们找货

免费人工找货