0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISL28006_11

ISL28006_11

  • 厂商:

    INTERSIL(Intersil)

  • 封装:

  • 描述:

    ISL28006_11 - Micropower, Rail to Rail Input Current Sense Amplifier - Intersil Corporation

  • 数据手册
  • 价格&库存
ISL28006_11 数据手册
Micropower, Rail to Rail Input Current Sense Amplifier with Voltage Output ISL28006 The ISL28006 is a micropower, uni-directional high-side and low-side current sense amplifier featuring a proprietary rail-to-rail input current sensing amplifier. The ISL28006 is ideal for high-side current sense applications where the sense voltage is usually much higher than the amplifier supply voltage. The device can be used to sense voltages as high as 28V when operating from a supply voltage as low as 2.7V. The micropower ISL28006 consumes only 50µA of supply current when operating from a 2.7V to 28V supply. The ISL28006 features a common-mode input voltage range from 0V to 28V. The proprietary architecture extends the input voltage sensing range down to 0V, making it an excellent choice for low-side ground sensing applications. The benefit of this architecture is that a high degree of total output accuracy is maintained over the entire 0V to 28V common mode input voltage range. The ISL28006 is available in fixed (100V/V, 50V/V, 20V/V and Adjustable) gains in the space saving 5 Ld SOT-23 package and the 6 Ld SOT-23 package for the adjustable gain part. The parts operate over the extended temperature range from -40°C to +125°C. Features • Low Power Consumption. . . . . . . . . . . . . . . . . . . . . . 50µA, Typ • Supply Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7V to 28V • Wide Common Mode Input. . . . . . . . . . . . . . . . . . . . 0V to 28V • Gain Versions - ISL28006-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100V/V - ISL28006-50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50V/V - ISL28006-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V/V - ISL28006-ADJ . . . . . . . . . . . . . . . . ADJ (Min Gain = 20V/V) • Operating Temperature Range . . . . . . . . . . . . -40°C to +125°C • Packages. . . . . . . . . . . . . . . . . . . . . .5 Ld SOT-23, 6 Ld SOT-23 Applications • Power Management/Monitors • Power Distribution and Safety • DC/DC, AC/DC Converters • Battery Management/Charging • Automotive Power Distribution Related Literature • See AN1532 for “ISL28006 Evaluation Board User’s Guide” SENSE +12VDC RSENSE +12VDC OUTPUT +5VDC ISL28006 + ISENSE +12VDC +5VDC OUTPUT +5VDC ISENSE +5VDC +1.0VDC OUTPUT ISENSE +1.0VDC ACCURACY (%) ISL28006 + SENSE +1.0VDC MULTIPLE OUTPUT POWER SUPPLY GND RSENSE 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 -1.2 -1.4 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 +100°C -40°C +25°C +125°C GAIN 100 SENSE +5VDC RSENSE +5VDC ISL28006 + VRS+ (V) FIGURE 1. TYPICAL APPLICATION FIGURE 2. GAIN ACCURACY vs VRS+ = 0V TO 28V May 23, 2011 FN6548.5 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2010, 2011. All Rights Reserved Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners. ISL28006 Block Diagram VCC I = 2.86µA VSENSE RS+ R1 RSR2 1.35V R3 + OUT Rf Rg gmHI HIGH-SIDE AND LOW-SIDE SENSING RS+ R1 RSR2 1.35V R3 + OUT Rf FB gmLO IMIRROR R5 VSENSE GND Rg gmHI I = 2.86µA VSENSE HIGH-SIDE AND LOW-SIDE SENSING VCC gmLO IMIRROR R5 VSENSE R44 R GND R44 R FIXED GAIN PARTS ADJUSTABLE GAIN PART Pin Configurations ISL28006-100, 50, 20 (5 LD SOT-23) TOP VIEW GND 1 OUT 2 VCC 3 FIXED GAIN 4 RS+ 5 RSFB 1 OUT 2 VCC 3 ADJ. GAIN ISL28006-ADJ (6 LD SOT-23) TOP VIEW 6 GND 5 RS4 RS+ Pin Descriptions ISL28006-100, 50, 20 (5 LD SOT-23) 1 2 3 4 5 ISL28006-ADJ (6 LD SOT-23) 6 1 2 3 4 5 FB VCC RS- PIN NAME GND FB OUT VCC RS+ RSPower Ground DESCRIPTION Input Pin for External Resistors Amplifier Output Positive Power Supply Sense Voltage Non-inverting Input Sense Voltage Inverting Input CAPACITIVELY COUPLED ESD CLAMP OUT RS+ GND 2 FN6548.5 May 23, 2011 ISL28006 Ordering Information PART NUMBER (Notes 1, 2, 3) ISL28006FH100Z-T7 ISL28006FH100Z-T7A ISL28006FH50Z-T7 ISL28006FH50Z-T7A ISL28006FH20Z-T7 ISL28006FH20Z-T7A ISL28006FHADJZ-T7 ISL28006FHADJZ-T7A ISL28006FH-100EVAL1Z ISL28006FH-50EVAL1Z ISL28006FH-20EVAL1Z ISL28006FH-ADJEVAL1Z NOTES: 1. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28006. For more information on MSL please see techbrief TB363. 4. The part marking is located on the bottom of the part. GAIN 100V/V 100V/V 50V/V 50V/V 20V/V 20V/V ADJ ADJ BDJA BDJA BDHA BDHA BDGA BDGA BDFA BDFA PART MARKING (Note 4) PACKAGE Tape & Reel (Pb-Free) 5 Ld SOT-23 5 Ld SOT-23 5 Ld SOT-23 5 Ld SOT-23 5 Ld SOT-23 5 Ld SOT-23 6 Ld SOT-23 6 Ld SOT-23 PKG. DWG. # P5.064A P5.064A P5.064A P5.064A P5.064A P5.064A P6.064 P6.064 100V/V Evaluation Board 50V/V Evaluation Board 20V/V Evaluation Board Adjustable Evaluation Board 3 FN6548.5 May 23, 2011 ISL28006 Absolute Maximum Ratings Max Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28V Max Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA Max Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±0.5V Max Input Voltage (RS+, RS-, FB) . . . . . . . . . . . . . . . . . . . GND - 0.5V to 30V Max Input Current for Input Voltage 2V, VSENSE = 5mV VRS+ > 2V, VSENSE = 5mV VRS+ > 2V, VSENSE = 5mV Guaranteed by PSRR Pulse on RS+ pin, VOUT = 8VP-P (Figure 67) Pulse on RS+ pin, VOUT = 8VP-P (Figure 67) Pulse on RS+ pin, VOUT = 3.5VP-P (Figure 67) Pulse on RS+ pin, VOUT = 3.5VP-P (Figure 67) VRS+ = 12V, 0.1V, VSENSE = 100mV VRS+ = 12V, 0.1V, VSENSE = 100mV VRS+ = 12V, 0.1V, VSENSE = 100mV VRS+ = 12V, 0.1V, VSENSE = 100mV, Rf = 100kΩ, Rg = 1kΩ VRS+ = 12V, VSENSE = 100mV, Rf = 100kΩ, Rg = 2kΩ VRS+ = 0.1V, VSENSE = 100mV, Rf = 100kΩ, Rg = 2kΩ ADJ, Gain = 21 (Figure 59) VRS+ = 12V, VSENSE = 100mV, Rf = 100kΩ, Rg = 5kΩ VRS+ = 0.1V, VSENSE = 100mV, Rf = 100kΩ, Rg = 5kΩ tS Output Settling Time to 1% of Final Value Capacitive-Load Stability tS Power-up Power-Up Time to 1% of Final Value VCC = VRS+ = 12V, VOUT = 10V step, VSENSE > 7mV VCC = VRS+ = 0.2V, VOUT = 10V step, VSENSE > 7mV No sustained oscillations VCC = VRS+ = 12V, VSENSE = 100mV VCC = 12V, VRS+ = 0.2V, VSENSE = 100mV Saturation Recovery Time NOTES: 7. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. 8. DEFINITION OF TERMS: • VSENSEA = VSENSE @ 100mV • VSENSEB = VSENSE @ 20mV • VOUTA = VOUT @ VSENSEA = 100mV • VOUTB = VOUT @ VSENSEB = 20mV ⎛ V OUT A – V OUT B ⎞ • G = GAIN = ⎜ ----------------------------------------------------- ⎟ ⎝ V SENSE A – V SENSE B⎠ VCC = VRS+ = 12V, VSENSE = 100mV, overdrive 2.7 0.58 0.58 0.50 0.50 0.76 0.67 0.67 0.67 110 160 180 40 78 122 131 237 15 20 300 15 50 10 MIN (Note 7) TYP 50 MAX (Note 7) 59 62 Gain = 50, 20, 50 62 63 ADJ Gain = 21 Rf = 100kΩ, Rg = 5kΩ VCC Slew Rate Supply Voltage Gain = 100 Gain = 50 Gain = 20 ADJ Gain = 21 Rf = 100kΩ, Rg = 5kΩ BW-3dB Gain = 100 Gain = 50 Gain = 20 ADJ, Gain = 101 (Figure 59) ADJ, Gain = 51 (Figure 59) 50 62 63 28 UNIT µA µA µA µA µA µA V V/µs V/µs V/µs V/µs kHz kHz kHz kHz kHz kHz kHz kHz µs µs pF µs µs µs V OUT A 9. VOS is extrapolated from the gain measurement. V OS = V SENSE A – ---------------G ⎛ G MEASURED – G EXPECTED⎞ 10. % Gain Accuracy = GA = ⎜ -------------------------------------------------------------------- ⎟ × 100 G EXPECTED ⎝ ⎠ ⎛ VOUT MEASURED – VOUT EXPECTED⎞ 11. Output Accuracy % VOA = ⎜ ------------------------------------------------------------------------------------------ ⎟ × 100, where VOUT = VSENSE X GAIN and VSENSE = 100mV VOUT EXPECTED ⎝ ⎠ 6 FN6548.5 May 23, 2011 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. 1.8 1.6 1.4 1.2 VOLTS (V) 1.0 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1.0 1.2 TIME (ms) 1.4 1.6 1.8 2.0 VRS+ 2.4 VRS+ 2.0 VTH(L-H) = 1.52V VRS+ (V) VTH(H-L) = 1.23V 1.6 1.2 0.8 G100, VOUT = 1V G50, VOUT = 500mV G20, VOUT = 200mV 0.4 0 VOUT (G = 100) RL = 1MΩ VCC = 12V 10 8 6 4 2 0 2.0 VOUT (V) 12 VOUT (G = 100) G100, VOUT = 2V G50, VOUT = 1V G20, VOUT = 400mV 0 0.2 0.4 0.6 0.8 1.0 1.2 TIME (ms) 1.4 1.6 1.8 FIGURE 3. HIGH-SIDE and LOW-SIDE THRESHOLD VOLTAGE VRS+(L-H) and VRS+(H-L), VSENSE = 10mV FIGURE 4. VOUT vs VRS+, VSENSE = 20mV TRANSIENT RESPONSE 12 GAIN 100 10 8 VOUT (V) VOUT (V) 6 4 2 0 12 GAIN 100 10 8 6 4 2 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 TIME (µs) 40 50 60 TIME (µs) 70 80 90 100 FIGURE 5. LARGE SIGNAL TRANSIENT RESPONSE VRS+ = 0.2V, VSENSE = 100mV FIGURE 6. LARGE SIGNAL TRANSIENT RESPONSE VRS+ = 12V, VSENSE = 100mV 20 GAIN 100 18 VSENSE = 20mV, 100mV 16 14 VOS (µV) UNITS 12 10 8 6 4 2 0 -250 -200 -150 -100 -50 VOS (µV) 0 50 100 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 GAIN 100 VSENSE = 20mV, 100mV +125°C +100°C -40°C 0 2 4 6 8 +25°C 10 12 14 16 18 20 22 24 26 28 VRS+ (V) FIGURE 7. VOS (µV) DISTRIBUTION AT +25°C, VRS+ = 12V, QUANTITY: 100 FIGURE 8. VOS vs VRS+ 7 FN6548.5 May 23, 2011 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 +125°C GAIN 100 VSENSE = 20mV, 100mV +100°C 250 200 150 100 VOS (µV) 50 0 -50 -100 -150 -200 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -250 2 4 6 8 GAIN 100 VSENSE = 2mV, 20mV 10 12 14 16 18 20 22 24 26 28 VCC (V) -40°C +125°C +100°C +25°C VOS (µV) -40°C +25°C VRS+ (V) FIGURE 9. VOS vs VRS+ FIGURE 10. VOS vs VCC, VRS+= 12V 3000 +100°C 2000 1000 VOS (µV) -40°C 0 +25°C GAIN 100 VSENSE = 2mV, 20mV 0.6 0.4 0.2 ACCURACY (%) 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 +100°C -40°C +25°C +125°C +125°C -1000 -2000 -3000 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) -1.4 GAIN 100 VSENSE = 20mV, 100mV 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) FIGURE 11. VOS vs VCC, VRS+ = 0.1V FIGURE 12. GAIN ACCURACY vs VRS+ = 0V TO 28V 0.6 0.4 0.2 ACCURACY (%) 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 0 0.2 0.4 0.6 +125°C +25°C ACCURACY (%) +100°C -40°C GAIN 100 VSENSE = 20mV, 100mV 0.8 1.0 1.2 VRS+ (V) 1.4 1.6 1.8 2.0 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5 +100°C +25°C -40°C +125°C GAIN 100 VSENSE = 2mV, 20mV 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 13. GAIN ACCURACY vs VRS+ = 0V TO 2V FIGURE 14. GAIN ACCURACY vs VCC, VRS+ = 1 2V 8 FN6548.5 May 23, 2011 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 2 VOA PERCENT ACCURACY (%) 0 -2 ACCURACY (%) -4 -6 -8 -10 -12 -14 -16 -18 -20 2 4 6 8 GAIN 100 VSENSE = 2mV, 20mV 10 12 14 16 18 20 22 24 26 28 VCC (V) +100°C +125°C +25°C -40°C 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 1µ 10µ 100µ IOUT(A) +25°C 1m 10m +100°C -40°C +125°C GAIN 100 FIGURE 15. GAIN ACCURACY vs VCC, VRS+ = 0.1V FIGURE 16. NORMALIZED VOA vs IOUT 45 35 GAIN 100 25 GAIN (dB) VRS+= 100mV VRS+ = 12V VOS (µV) 15 5 -5 VCC = 12V -15 V SENSE = 100mV A = 100 -25 V RL = 1MΩ -35 10 100 40 20 0 -20 -40 -60 -80 1k 10k FREQUENCY (Hz) 100k 1M -100 -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 GAIN 100 VSENSE = 20mV, 100mV VRS+ = 12V FIGURE 17. GAIN vs FREQUENCY VRS+ = 100mV/12V, VSENSE = 100mV, VOUT = 50mVP-P FIGURE 18. VOS (µV) vs TEMPERATURE 0.30 0.25 GAIN ACCURACY (%) 0.20 0.15 0.10 0.05 0 -0.05 -0.10 -50 -25 0 25 GAIN 100 VSENSE = 20mV, 100mV VRS+ = 12V VOUT ERROR (%) -0.5 GAIN 100 VRS+ = 12V -0.6 -0.7 -0.8 -0.9 50 75 100 125 -1 -50 -25 0 TEMPERATURE (°C) 25 50 75 TEMPERATURE (°C) 100 125 FIGURE 19. GAIN ACCURACY (%) vs TEMPERATURE FIGURE 20. V OUT ERROR (%) vs TEMPERATURE 9 FN6548.5 May 23, 2011 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 20 GAIN 50 18 VSENSE = 20mV, 100mV 16 14 VOS (µV) UNITS 12 10 8 6 4 2 0 -250 -200 -150 -100 -50 VOS (µV) 0 50 100 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 GAIN 50 VSENSE = 20mV, 100mV +125°C +100°C -40°C 0 2 4 6 8 VRS+ (V) +25°C 10 12 14 16 18 20 22 24 26 28 FIGURE 21. VOS (µV) DISTRIBUTION AT +25°C, VRS+ = 12V, QUANTITY: 100 FIGURE 22. VOS vs VRS+ 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 +125°C GAIN 50 VSENSE = 20mV, 100mV 250 200 150 +100°C GAIN 50 VSENSE = 2mV, 0mV +100°C +25°C -40°C 100 VOS (µV) 50 0 -50 +25°C +125°C VOS (µV) -100 -150 -200 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -250 2 4 6 -40°C 8 VRS+ (V) 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 23. VOS vs VRS+ FIGURE 24. VOS vs VCC, VRS+ = 1 2V 3000 2000 1000 VOS (µV) +100°C +25°C 0.6 0.4 0.2 +25°C -40°C -40°C 0 +125°C ACCURACY (%) 0 -0.2 -0.4 -0.6 -0.8 -1.0 GAIN 50 VSENSE = 20mV, 100mV 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) +100°C +125°C -1000 -2000 -3000 GAIN 50 VSENSE = 2mV, 0mV 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) -1.2 -1.4 FIGURE 25. VOS vs VCC, VRS+ = VRS+ = 0.1V FIGURE 26. GAIN ACCURACY vs VRS+ = 0V TO 28V 10 FN6548.5 May 23, 2011 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 0.6 0.4 0.2 ACCURACY (%) 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 0 0.2 +125°C 0.4 0.6 -40°C GAIN 50 VSENSE = 20mV, 100mV 1.4 1.6 1.8 2.0 +100°C ACCURACY (%) +25°C 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 +100°C +25°C -40°C +125°C GAIN 50 VSENSE = 2mV, 20mV 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) 0.8 1.0 1.2 VRS+ (V) FIGURE 27. GAIN ACCURACY vs VRS+ = 0V TO 2V FIGURE 28. GAIN ACCURACY vs VCC, HIGH-SIDE 2 VOA PERCENT ACCURACY (%) 0 -2 ACCURACY (%) -4 -6 -8 -10 -12 -14 -16 -18 -20 2 4 6 8 +125°C +100°C +25°C -40°C 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 1µ 10µ 100µ IOUT(A) -40°C +125°C +100°C +25°C 1m 10m GAIN 50 GAIN 50 VSENSE = 2mV, 20mV 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 29. GAIN ACCURACY vs VCC, LOW-SIDE FIGURE 30. NORMALIZED VOA vs IOUT 45 35 25 GAIN (dB) GAIN 50 -70 -90 -110 VOS (µV) -130 -150 -170 -190 -210 GAIN 50 VSENSE = 20mV, 100mV VRS+ = 12V 15 5 -5 -15 V SENSE = 100mV A = 100 -25 V RL = 1MΩ -35 10 100 VCC = 12V VRS+= 100mV VRS+ = 12V 1k 10k FREQUENCY (Hz) 100k 1M -230 -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 FIGURE 31. GAIN vs FREQUENCY VRS+ = 100mV/12V, VSENSE = 100mV, VOUT = 50mVP-P FIGURE 32. VOS (µV) vs TEMPERATURE 11 FN6548.5 May 23, 2011 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 0.18 0.17 GAIN ACCURACY (%) 0.16 0.15 0.14 0.13 0.12 0.11 0.1 -50 -25 0 25 50 75 100 125 GAIN 50 VSENSE = 20mV, 100mV VRS+ = 12V VOUT ERROR (%) 0.10 0.08 0.06 0.04 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.10 -0.12 -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 GAIN 50 VRS+ = 12V TEMPERATURE (°C) FIGURE 33. GAIN ACCURACY (%) vs TEMPERATURE FIGURE 34. V OUT ERROR (%) vs TEMPERATURE 30 25 20 15 10 5 0 GAIN 20 VSENSE = 20mV, 100mV -250 -200 -150 -100 -50 0 VOS (µV) 50 100 150 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 GAIN 20 VSENSE = 20mV, 100mV VOS (µV) UNITS +125°C +100°C -40°C 0 2 4 6 8 VRS+ (V) +25°C 10 12 14 16 18 20 22 24 26 28 FIGURE 35. VOS (µV) DISTRIBUTION AT +25°C, VRS+ = 12V, QUANTITY: 100 FIGURE 36. VOS vs VRS+ 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 +100°C +125°C GAIN 20 VSENSE = 20mV, 100mV 250 200 150 100 VOS (µV) 50 0 -50 -40°C +25°C +125°C +100°C GAIN 20 VSENSE = 2mV, 20mV VOS (µV) +25°C -40°C -100 -150 -200 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -250 2 4 6 8 VRS+ (V) 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 37. VOS vs VRS+ FIGURE 38. VOS vs VCC, VRS+ = 12V 12 FN6548.5 May 23, 2011 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 3000 +100°C 2000 1000 VOS (µV) 0 ACCURACY (%) +25°C GAIN 20 VSENSE = 2mV, 20mV 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -3000 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) -1.4 0 2 4 6 8 GAIN 20 VSENSE = 20mV, 100mV 10 12 14 16 18 20 22 24 26 28 VRS+ (V) +125°C +100°C -40°C +25°C -40°C +125°C -1000 -2000 FIGURE 39. VOS vs VCC, VRS+ = 0.1V FIGURE 40. GAIN ACCURACY vs VRS+ = 0V TO 28V 0.6 0.4 0.2 ACCURACY (%) 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 0 0.2 0.4 +125°C 0.6 -40°C +100°C +25°C GAIN 20 VSENSE = 20mV, 100mV ACCURACY (%) 0.8 1.0 1.2 VRS+ (V) 1.4 1.6 1.8 2.0 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 GAIN 20 VSENSE = 2mV, 20mV +100°C +25°C -40°C +125°C 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 41. GAIN ACCURACY vs VRS+ = 0V TO 2V FIGURE 42. GAIN ACCURACY vs VCC, HIGH-SIDE 2 VOA PERCENT ACCURACY (%) 0 -2 ACCURACY (%) -4 -6 -8 -10 -12 -14 -16 -18 -20 2 4 6 8 +125°C +100°C +25°C -40°C 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 1µ 10µ 100µ IOUT(A) +25°C +125°C +100°C -40°C 1m 10m GAIN 20 GAIN 20 VSENSE = 2mV, 20mV 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 43. GAIN ACCURACY vs VCC, LOW-SIDE FIGURE 44. NORMALIZED VOA vs IOUT 13 FN6548.5 May 23, 2011 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 45 35 25 GAIN (dB) VRS+ = 100mV VRS+ = 12V VOS (µV) 15 5 -5 -15 V SENSE = 100mV A = 100 -25 V RL = 1MΩ -35 10 100 VCC = 12V -60 -80 -100 -120 -140 -50 GAIN 20 -20 -40 GAIN 20 VSENSE = 20mV, 100mV VRS+ = 12V 1k 10k FREQUENCY (Hz) 100k 1M -25 0 25 50 75 TEMPERATURE (°C) 100 125 FIGURE 45. GAIN vs FREQUENCY VRS+ = 100mV/12V, VSENSE = 100mV, VOUT = 50mVP-P FIGURE 46. VOS (µV) vs TEMPERATURE 0.330 0.325 GAIN ACCURACY (%) 0.320 0.3150 0.310 0.305 0.300 0.295 0.290 -50 -25 0 25 GAIN 20 VSENSE = 20mV, 100mV VRS+ = 12V VOUT ERROR (%) 0.31 0.29 0.27 0.25 0.23 0.21 0.19 0.17 GAIN 20 VRS+ = 12V 50 75 100 125 0.15 -50 -25 0 TEMPERATURE (°C) 25 50 75 TEMPERATURE (°C) 100 125 FIGURE 47. GAIN ACCURACY (%) vs TEMPERATURE FIGURE 48. V OUT ERROR (%) vs TEMPERATURE 26 GAIN 101 ADJ 24 Rf = 100k, Rg = 1k 22 V = 20mV, 100mV 20 SENSE 18 16 14 12 10 8 6 4 2 0 -200 -160 -120 -80 -40 0 40 VOS (µV) 80 120 160 200 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 20mV, 100mV VOS (µV) UNITS +125°C +100°C -40°C 0 2 4 6 8 VRS+ (V) +25°C 10 12 14 16 18 20 22 24 26 28 FIGURE 49. VOS (µV) DISTRIBUTION AT +25°C, VRS+ = 12V, QUANTITY: 100 FIGURE 50. VOS vs VRS+ 14 FN6548.5 May 23, 2011 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 20mV, 100mV +125°C 250 200 150 100 VOS (µV) 50 0 -50 -40°C +25°C GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 2mV, 20mV +100°C VOS (µV) -40°C +25°C +100°C -100 -150 -200 +125°C 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -250 2 VRS+ (V) FIGURE 51. VOS vs VRS+ FIGURE 52. VOS vs VCC, HIGH-SIDE 3000 2000 1000 VOS (µV) +100°C +25°C GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 2mV, 20mV ACCURACY (%) 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 +25°C +100°C +125°C GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 20mV, 100mV -40°C 0 +125°C -40°C -1000 -2000 -3000 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) -1.4 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) FIGURE 53. VOS vs VCC, LOW-SIDE FIGURE 54. GAIN ACCURACY vs VRS+ = 0V TO 28V 0.6 0.4 0.2 ACCURACY (%) 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 0 0.2 0.4 0.6 +25°C -40°C +100°C +125°C GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 20mV, 100mV ACCURACY (%) 0.8 1.0 1.2 VRS+ (V) 1.4 1.6 1.8 2.0 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 -40°C +100°C +25°C GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 2mV, 20mV +125°C 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 55. GAIN ACCURACY vs VRS+ = 0V TO 2V FIGURE 56. GAIN ACCURACY vs VCC, VRS+ = 1 2V 15 FN6548.5 May 23, 2011 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 2 0 -2 ACCURACY (%) -4 -6 -8 -10 -12 -14 -16 -18 -20 2 4 6 8 GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 2mV, 20mV 10 12 14 16 18 20 22 24 26 28 VCC (V) +125°C VOA PERCENT ACCURACY (%) +100°C +25°C -40°C 0.2 0.0 -0.2 -0.4 -0.6 GAIN 101 ADJ R = 100k -0.8 Rf = 1k g -1.0 0.2 0.0 -0.2 -0.4 -0.6 GAIN 21 ADJ -0.8 Rf = 100k R = 5k -1.0 g 1µ 10µ -40°C +100°C +125°C +25°C -40°C +100°C +125°C 100µ IOUT(A) 1m 10m +25°C FIGURE 57. GAIN ACCURACY vs VCC, VRS+ = 0.1V FIGURE 58. NORMALIZED VOA vs IOUT 45 40 35 30 GAIN (dB) 25 20 VRS+ = 0.1V GAIN = 21 VCC = 12V 15 VSENSE = 100mV VRS+ = 0.1V GAIN = 101 VRS+ = 12V GAIN = 51 VRS+ = 12V GAIN = 101 200 150 100 50 VOS (µV) 0 -50 -100 -150 -200 -250 -300 -350 -50 GAIN = 21 GAIN = 101 VSENSE = 20mV, 100mV VRS+ = 12V GAIN = 21, 101 Rf = 100k Rg = 1k, 5k RL = 1MΩ VRS+ = 12V GAIN = 21 10 GAIN = 21, 51, 101 Rf = 100k 5 Rg = 1k, 2k, 5k VRS+ = 12V GAIN = 51 RL = 1MΩ 0 100 1k 10k 100k FREQUENCY (Hz) 1M -25 0 25 50 75 TEMPERATURE (°C) 100 125 FIGURE 59. GAIN vs FREQUENCY VRS+ = 100mV/12V, VSENSE = 100mV, VOUT = 50mVP-P FIGURE 60. VOS (µV) vs TEMPERATURE 0.40 0.35 GAIN = 101 GAIN ACCURACY (%) VOUT ERROR (%) 0.30 0.25 0.20 0.15 VSENSE = 20mV, 100mV VRS+ = 12V GAIN = 21 0.6 0.5 0.4 0.3 0.2 0.1 VSENSE = 20mV, 100mV VRS+ = 12V GAIN = 21 GAIN = 101 0.10 GAIN = 21, 101 Rf = 100k 0.05 Rg = 1k, 5k RL = 1MΩ 0 -50 -25 0 25 50 75 100 125 0 GAIN = 21, 101 Rf = 100k -0.1 Rg = 1k, 5k RL = 1MΩ -0.2 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C) TEMPERATURE (°C) FIGURE 61. GAIN ACCURACY (%) vs TEMPERATURE FIGURE 62. V OUT ERROR (%) vs TEMPERATURE 16 FN6548.5 May 23, 2011 ISL28006 Test Circuits and Waveforms VCC VR1 R1 + + VRS+ VSENSE GND 1MΩ RL VOUT RS+ RSOUT + + VRS+ VSENSE R2 VR2 RS+ RSGND 1MΩ RL VOUT OUT VCC FIGURE 63. IS, VOS, VOA, CMRR, PSRR, GAIN ACCURACY FIGURE 64. INPUT BIAS CURRENT, LEAKAGE CURRENT SIGNAL GENERATOR VCC RS+ VRS+ VSENSE RSGND 1MΩ RL VOUT VCC RS+ VRS+ VRSRSGND 1MΩ RL VOUT OUT OUT PULSE GENERATOR FIGURE 65. ts, SATURATION RECOVERY TIME VCC RS+ VRS+ RSGND 1MΩ FIGURE 66. GAIN vs FREQUENCY OUT RL VOUT PULSE GENERATOR FIGURE 67. SLEW RATE Applications Information Functional Description The ISL28006-20, ISL28006-50 and ISL28006-100 are single supply, uni-directional current sense amplifiers with fixed gains of 20V/V, 50V/V and 100V/V respectively. The ISL28006-ADJ is single supply, uni-directional current sense amplifier with an adjustable gain via external resistors (see Figure 72). The ISL28006-ADJ is stable for gains of 20 and higher. The ISL28006 is a 2-stage amplifier. Figure 68 shows the active circuitry for high-side current sense applications where the sense voltage is between 1.35V to 28V. Figure 69 shows the active circuitry for ground sense applications where the sense voltage is between 0V to 1.35V. The first stage is a bi-level trans-conductance amp and level translator. The gm stage converts the low voltage drop (VSENSE) sensed across an external milli-ohm sense resistor, to a current (@ gm = 21.3µA/V). The trans-conductance amplifier forces a current through R1 resulting to a voltage drop across R1 that is equal to the sense voltage (VSENSE). The current through R1 is mirrored across R5 creating a ground-referenced voltage at the input of the second amplifier equal to VSENSE. 17 The second stage is responsible for the overall gain and frequency response performance of the device. The fixed gains (20, 50, 100) are set with internal resistors Rf and Rg. The variable gain (ADJ) has an additional FB pin and uses external gain resistors to set the gain of the output. For the fixed gain amps the only external component needed is a current sense resistor (typically 0.001Ω to 0.01Ω, 1W to 2W). The transfer function for the fixed gain parts is given in Equation 1. V OUT = GAIN × ( I S R S + V OS ) (EQ. 1) The transfer function for the adjustable gain part is given in Equation 2. RF⎞ ⎛ V OUT = ⎜ 1 + ------ ⎟ ( I S R S + V OS ) R G⎠ ⎝ (EQ. 2) The input gm stage derives its ~2.86µA supply current from the input source through the RS+ terminal as long as the sensed voltage at the RS+ pin is >1.35V and the gmHI amplifier is selected. When the sense voltage at RS+ drops below the 1.35V threshold, the gmLO amplifier kicks in and the gmLO output current reverses, flowing out of the RS- pin. FN6548.5 May 23, 2011 ISL28006 VCC OPTIONAL FILTER CAPACITOR IS + RSR2 + OPTIONAL TRANSIENT PROTECTION 1.35V OUT Rf FB gmLO ‘VSENSE R5 Rg ADJ OPTION ONLY I = 2.86µA VSENSE RS+ RS VSENSE R1 gmHI HIGH-SIDE SENSING VRS+ = 2V TO 28V VCC = 2V to 28V R3 LOAD R4 IMIRROR GND FIGURE 68. HIGH-SIDE CURRENT DETECTION VCC OPTIONAL FILTER CAPACITOR IS + RSR2 LOAD + OPTIONAL TRANSIENT PROTECTION 1.35V R3 OUT Rf FB gmLO R5 ‘VSENSE GND Rg ADJ OPTION ONLY I = 2.86µA VSENSE RS+ RS R1 VSENSE gmHI LOW-SIDE SENSING VRS+= 0V TO 2V VCC = 2V TO 28V VCC IMIRROR R4 FIGURE 69. LOW-SIDE CURRENT DETECTION 18 FN6548.5 May 23, 2011 ISL28006 Hysteretic Comparator The input trans-conductance amps are under control of a hysteretic comparator operating from the incoming source voltage on the RS+ pin (Figure 68). The comparator monitors the voltage on RS+ and switches the sense amplifier from the low-side gm amp to the high-side gm amplifier whenever the input voltage at RS+ increases above the 1.35V threshold. Conversely, a decreasing voltage on the RS+ pin, causes the hysteric comparator to switch from the high-side gm amp to the low-side gm amp as the voltage decreases below 1.35V. It is that low-side sense gm amplifier that gives the ISL28006 the proprietary ability to sense current all the way to 0V. Negative voltages on the RS+ or RS- are beyond the sensing voltage range of this amplifier. 0.5 0.4 0.3 ACCURACY (%) 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 0 0.2 0.4 0.6 0.8 1.0 1.2 VRS+ (V) 1.4 1.6 1.8 2.0 value of 100Ω will provide protection for a 2V transient with the maximum of 20mA flowing through the input while adding only an additional 13µV (worse case over-temperature) of VOS. Refer to Equation 3: ( ( R P × I RS- ) = ( 100 Ω × 130nA ) = 13 μ V ) (EQ. 3) Switching applications can generate voltage spikes that can overdrive the amplifier input and drive the output of the amplifier into the rails, resulting in a long overload recover time. Capacitors CM and CD filter the common mode and differential voltage spikes. Error Sources There are 3 dominant error sources: gain error, input offset voltage error and Kelvin voltage error (see Figure 71). The gain error is dominated by the internal resistance matching tolerances. The remaining errors appear as sense voltage errors at the input to the amplifier. They are VOS of the amplifier and Kelvin voltage errors. If the transient protection resistor is added, an additional VOS error can result from the IxR voltage due to input bias current. The limiting resistor should only be added to the RS- input, due to the high-side gm amplifier (gmHI) sinking several micro amps of current through the RS+ pin. Layout Guidelines The Kelvin Connected Sense Resistor The source of Kelvin voltage errors is illustrated in Figure 71. The resistance of 1/2 Oz copper is ~1mΩ per square with a TC of ~3900ppm/°C (0.39%/°C). When you compare this unwanted parasitic resistance with the total 1mΩ to 10mΩ resistance of the sense resistor, it is easy to see why the sense connection must be chosen very carefully. For example, consider a maximum current of 20A through a 0.005Ω sense resistor, generating a VSENSE = 0.1 and a full scale output voltage of 10V (G = 100). Two side contacts of only 0.25 square per contact puts the VSENSE input about 0.5 x 1mΩ away from the resistor end capacitor. If only 10A the 20A total current flows through the kelvin path to the resistor, you get an error voltage of 10mV (10A x 0.5sq x 0.001Ω/sq. = 10mV) added to the 100mV sense voltage for a sense voltage error of 10% (0.110V-0.1)/0.1V) x 100. FIGURE 70. GAIN ACCURACY vs VRS+ = 0V TO 2V Typical Application Circuit Figure 72 shows the basic application circuit and optional protection components for switched-load applications. For applications where the load and the power source is permanently connected, only an external sense resistor is needed. For applications where fast transients are caused by hot plugging the source or load, external protection components may be needed. The external current limiting resistor (RP) in Figure 72 may be required to limit the peak current through the internal ESD diodes to
ISL28006_11 价格&库存

很抱歉,暂时无法提供与“ISL28006_11”相匹配的价格&库存,您可以联系我们找货

免费人工找货