0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISL6277AIRZ

ISL6277AIRZ

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    VFQFN48_EP

  • 描述:

    IC PWM REG MULTIPH AMD 48-QFN

  • 数据手册
  • 价格&库存
ISL6277AIRZ 数据手册
DATASHEET ISL6277A FN8322 Rev.3.00 Oct 9, 2019 Multiphase PWM Regulator for AMD Fusion Mobile CPUs Using SVI 2.0 The ISL6277A is fully compliant with AMD Fusion SVI 2.0 and provides a complete solution for microprocessor and graphics processor core power. The ISL6277A controller supports two Voltage Regulators (VRs) with three integrated gate drivers and two optional external drivers for maximum flexibility. The Core VR can be configured for 3-, 2-, or 1-phase operation while the Northbridge VR supports 2- or 1-phase configurations. The two VRs share a serial control bus to communicate with the AMD CPU and achieve lower cost and smaller board area compared with two-chip solutions. The PWM modulator is based on the Renesas Robust Ripple Regulator R3™ Technology. Compared to traditional modulators, the R3 modulator can automatically change switching frequency for faster transient settling time during load transients and improved light load efficiency. The ISL6277A has several other key features. Both outputs support DCR current sensing with single NTC thermistor for DCR temperature compensation or accurate resistor current sensing. Both outputs utilize remote voltage sense, adjustable switching frequency, OC protection and power-good. Applications Features • Supports AMD SVI 2.0 serial data bus interface - Serial VID clock frequency range 100kHz to 25MHz • Dual output controller with integrated drivers - Two dedicated core drivers - One programmable driver for either Core or Northbridge • Precision voltage regulation - 0.5% system accuracy over-temperature - 0.5V to 1.55V in 6.25mV steps - Enhanced load line accuracy • Supports multiple current sensing methods - Lossless inductor DCR current sensing - Precision resistor current sensing • Programmable 1-, 2- or 3-phase for the core output and 1- or 2-phase for the Northbridge output • Adaptive body diode conduction time reduction • Superior noise immunity and transient response • Output current and voltage telemetry • AMD fusion CPU/GPU core power • Differential remote voltage sensing • Notebook computers • High efficiency across entire load range Related Literature • Programmable slew rate • Programmable VID offset and droop on both outputs For a full list of related documents, visit our website: • Programmable switching frequency for both outputs • ISL6277A device page • Excellent dynamic current balance between phases • Protection: OCP/WOC, OVP, PGOOD and thermal monitor • Small footprint 48 Ld 6x6 QFN package - Pb-free (RoHS compliant) Core Performance 100 1.12 90 1.10 VIN = 8V 70 1.08 VIN = 12V 60 VOUT (A) EFFICIENCY (%) 80 VIN = 19V 50 40 30 VIN = 8V 1.04 VIN = 12V 1.02 1.00 20 10 0 0 1.06 5 10 15 20 25 30 35 IOUT (A) 40 FIGURE 1. EFFICIENCY vs LOAD FN8322 Rev.3.00 Oct 9, 2019 45 50 VIN = 19V 0.98 VOUT CORE = 1.1V 55 0.96 VOUT CORE = 1.1V 0 5 10 15 20 25 30 35 IOUT (A) 40 45 50 55 FIGURE 2. VOUT vs LOAD Page 1 of 40 ISL6277A Table of Contents Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simplified Application Circuit for High Power CPU Core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simplified Application Circuit with 3 Internal Drivers Used for Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simplified Application Circuit for Mid-Power CPUs [2+1 Configuration] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simplified Application Circuit for Low Power CPUs [1+1 Configuration] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 5 6 7 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Gate Driver Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiphase R3 Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diode Emulation and Period Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Channel Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Start-Up Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Regulation and Load Line Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase Current Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FB2 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adaptive Body Diode Conduction Time Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 16 16 16 17 17 18 18 20 21 21 21 Resistor Configuration Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VR Offset Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Floating DriverX and PWM_Y Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VID-on-the-Fly Slew Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CCM Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 22 22 22 AMD Serial VID Interface 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pre-PWROK Metal VID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SVI Interface Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VID-on-the-Fly Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SVI Data Communication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SVI Bus Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic Load Line Slope Trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic Offset Trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 23 23 23 24 26 26 26 27 Telemetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Protection Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Monitor [NTC, NTC_NB] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fault Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interface Pin Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27 27 28 28 28 29 29 Key Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inductor DCR Current-Sensing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resistor Current-Sensing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Load Line Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 29 31 31 32 32 FN8322 Rev.3.00 Oct 9, 2019 Page 2 of 40 ISL6277A Current Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Monitor Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bootstrap Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optional FCCM_NB Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 33 34 34 Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 PCB Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 FN8322 Rev.3.00 Oct 9, 2019 Page 3 of 40 ISL6277A Typical Applications ISEN1_NB NB_PH2 ISEN2_NB UGATEX LGATEX ISUMN_NB Cn VNB2 VIN BOOTX PHASEX Ri VNB1 VDDP VDD VIN NB_PH1 ENABLE Simplified Application Circuit for High Power CPU Core NTC NB_PH1 VNB1 VNB FCCM_NB ISUMP_NB VIN PWM2_NB ISL6208 NB_PH1 NB_PH2 NB_PH2 COMP_NB VNB2 IMON_NB FB_NB * *OPTIONAL NTC_NB VR_HOT_L VSEN_NB VNB_SENSE IMON PWROK NTC SVT µP VIN SVD SVC VDDIO COMP PWM_Y * BOOT2 FB *OPTIONAL PH3 ISL6277A FB2 * THERMAL INDICATOR ISL6208 * VIN UGATE2 VSEN VCORE PHASE2 VCORE_SENSE RTN LGATE2 PH1 ISEN1 PH2 ISEN2 PH3 ISEN3 BOOT1 VO2 VIN PGOOD PHASE1 LGATE1 PH1 VO1 PH3 PH1 PH2 ISUMP PGOOD_NB VO3 NTC GND PAD ISUMN Cn PH2 UGATE1 Ri VO1 VO2 VO3 FIGURE 3. TYPICAL APPLICATION CIRCUIT USING INDUCTOR DCR SENSING FN8322 Rev.3.00 Oct 9, 2019 Page 4 of 40 ISL6277A Simplified Application Circuit with 3 Internal Drivers Used for Core NB_PH1 ISEN1_NB NB_PH2 ISEN2_NB Ri VNB1 VNB2 Cn PWM_Y ISL6208 VDDP ENABLE VIN VDD VIN VNB NB_PH1 ISUMN_NB VNB1 FCCM_NB NTC VIN PWM2_NB ISL6208 ISUMP_NB NB_PH1 NB_PH2 NB_PH2 VNB2 COMP_NB IMON_NB * FB_NB * *OPTIONAL NTC_NB VR_HOT_L VSEN_NB VNB_SENSE THERMAL INDICATOR IMON PWROK NTC SVT µP SVD BOOTX SVC VIN UGATEX VDDIO PHASEX LGATEX COMP PH3 V03 ISL6277A * FB2 FB * BOOT2 *OPTIONAL VIN VSEN UGATE2 VCORE_SENSE RTN VCORE PHASE2 PH1 ISEN1 PH2 ISEN2 PH3 ISEN3 LGATE2 BOOT1 Ri VO1 ISUMN NTC VIN PHASE1 LGATE1 PH1 VO1 PH3 PH1 PH2 ISUMP PGOOD VO3 VO2 UGATE1 PGOOD_NB Cn GND PAD VO2 PH2 FIGURE 4. TYPICAL APPLICATION CIRCUIT USING INDUCTOR DCR SENSING FN8322 Rev.3.00 Oct 9, 2019 Page 5 of 40 ISL6277A Simplified Application Circuit for Mid-Power CPUs [2+1 Configuration] PWM_Y ISEN1_NB +5V VNB ISL6208 10kΩ* VDDP ENABLE VIN * Resistor required or ISEN1_NB will pull HIGH if left open and disable Channel 1. VDD VIN ISEN2_NB Ri NBN ISUMN_NB NBP NBN VP2 VN2 FCCM_NB NTC Cn ISUMP_NB NBP PWM2_NB OPEN IMON_NB COMP_NB NTC_NB * FB_NB * *OPTIONAL VSEN_NB VNB_SENSE PWROK SVT µP BOOTX OPEN UGATEX OPEN PHASEX OPEN LGATEX OPEN SVD SVC VR_HOT_L THERMAL INDICATOR VDDIO IMON COMP ISL6277A FB2 * * NTC BOOT2 FB VIN UGATE2 *OPTIONAL VSEN PHASE2 VCORE_SENSE RTN LGATE2 VP1 ISEN1 VP2 ISEN2 +5V VCORE BOOT1 ISEN3 UGATE1 NTC LGATE1 VP1 VN1 VP1 VP2 ISUMP PHASE1 PGOOD Cn GND PAD VN2 ISUMN PGOOD_NB Ri VN1 VIN FIGURE 5. TYPICAL APPLICATION CIRCUIT USING RESISTOR SENSING FN8322 Rev.3.00 Oct 9, 2019 Page 6 of 40 ISL6277A 10kΩ* VDDP ENABLE VIN * Resistor required or ISEN1_NB will pull HIGH if left open and disable Channel 1. VDD Simplified Application Circuit for Low Power CPUs [1+1 Configuration] ISEN1_NB UGATEX ISEN2_NB +5V Ri VNB1 VNB PHASEX ISUMN_NB LGATEX NTC Cn VIN BOOTX NB_PH1 VNB1 ISUMP_NB NB_PH1 FCCM_NB PWM2_NB OPEN COMP_NB * * IMON_NB FB_NB *OPTIONAL NTC_NB VSEN_NB VNB_SENSE VR_HOT NTC PWROK SVT µP THERMAL INDICATOR IMON SVD SVC VDDIO * Resistor required or ISEN1 will pull HIGH if left open and disable Channel 1. 10kΩ* ISEN1 +5V ISEN2 +5V ISEN3 ISL6277A PWM_Y OPEN BOOT2 OPEN UGATE2 OPEN PHASE2 OPEN LGATE2 OPEN COMP OPEN * * FB2 BOOT1 VIN FB UGATE1 *OPTIONAL VSEN VCORE_SENSE VCORE PHASE1 RTN LGATE1 PH1 VO1 Cn PH1 ISUMP GND PAD ISUMN NTC PGOOD VO1 PGOOD_NB Ri FIGURE 6. TYPICAL APPLICATION CIRCUIT USING INDUCTOR DCR SENSING FN8322 Rev.3.00 Oct 9, 2019 Page 7 of 40 ISL6277A Block Diagram VSEN CORE_I COMP_NB NB_I + RTN  IMON_NB + + _ FB_NB E/A + ISUMN_NB _ PWM2_NB VR2 MODULATOR IDROOP_NB ISUMP_NB IMON CURRENT A/D CURRENT SENSE VDD PGOOD_NB OC FAULT ISEN1_NB CURRENT BALANCING ISEN2_NB IBAL FAULT OV FAULT NB_V NTC_NB T_MONITOR TEMP MONITOR NTC VOLTAGE A/D FLOATING DRIVER & PWM CONFIG LOGIC VR_HOT_L OFFSET FREQ SLEWRATE CONFIG BOOTX DRIVER UGATEX PHASEX PROG DRIVER LGATEX IDROOP_NB ENABLE A/D IDROOP D/A DAC2 DAC1 PWROK DIGITAL INTERFACE SVC PWM_Y VCCP CORE_I SVD BOOT2 NB_I TELEMETRY SVT CORE_V NB_V DRIVER VDDIO UGATE2 PHASE2 COMP VSEN + RTN FB ISUMN _ E/A DRIVER LGATE2 BOOT1 IDROOP FB2 + VR1 MODULATOR + _ FB2 CIRCUIT ISUMP  + CURRENT SENSE DRIVER VOLTAGE A/D UGATE1 PHASE1 CORE_V ISEN3 ISEN2 DRIVER CURRENT BALANCING OC FAULT ISEN1 LGATE1 PGOOD IBAL FAULT OV FAULT GND FIGURE 7. BLOCK DIAGRAM FN8322 Rev.3.00 Oct 9, 2019 Page 8 of 40 ISL6277A Ordering Information PART NUMBER (Notes 2, 3) PART MARKING TEMP. RANGE (°C) TAPE AND REEL (Units) (Note 1) PACKAGE (RoHS Compliant) PKG. DWG. # ISL6277AHRZ 6277A HRZ -10 to +100 - 48 Ld 6x6 QFN L48.6x6B ISL6277AHRZ-T 6277A HRZ -10 to +100 4k 48 Ld 6x6 QFN L48.6x6B ISL6277AIRZ 6277A IRZ -40 to +100 - 48 Ld 6x6 QFN L48.6x6B ISL6277AIRZ-T 6277A IRZ -40 to +100 4k 48 Ld 6x6 QFN L48.6x6B NOTES: 1. See TB347 for details about reel specifications. 2. Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J-STD-020. 3. For Moisture Sensitivity Level (MSL), see the ISL6277A device page. For more information about MSL, see TB363. Pin Configuration UGATEX LGATEX PHASEX PWM2_NB FCCM_NB PGOOD_NB COMP_NB VSEN_NB FB_NB ISUMP_NB ISUMN_NB ISEN1_NB (48 LD QFN) TOP VIEW 48 47 46 45 44 43 42 41 40 39 38 37 ISEN2_NB 1 36 BOOTX NTC_NB 2 35 VIN IMON_NB 3 34 BOOT2 SVC 4 33 UGATE2 VR_HOT_L 5 SVD 6 GND PAD 31 LGATE2 VDDIO 7 (BOTTOM) 30 VDDP SVT 8 29 VDD ENABLE 9 28 PWM_Y PWROK 10 27 LGATE1 IMON 11 26 PHASE1 NTC 12 25 UGATE1 BOOT1 24 RTN 19 FB2 20 FB 21 COMP 22 PGOOD 23 ISUMP 16 ISUMN 17 VSEN 18 ISEN1 15 ISEN2 14 37 ISEN3 13 32 PHASE2 Pin Descriptions PIN NUMBER SYMBOL 1 ISEN2_NB 2 NTC_NB 3 IMON_NB 4 SVC 5 VR_HOT_L 6 SVD 7 VDDIO FN8322 Rev.3.00 Oct 9, 2019 DESCRIPTION Individual current sensing for Channel 2 of the Northbridge VR. When ISEN2_NB is pulled to +5V, the controller will disable Channel 2 and the Northbridge VR will run single-phase. Thermistor input to VR_HOT_L circuit to monitor Northbridge VR temperature. Northbridge output current monitor. A current proportional to the Northbridge VR output current is sourced from this pin. Serial VID clock input from the CPU processor master device. Thermal indicator signal to AMD CPU. Thermal overload open-drain output indicator active LOW. Serial VID data bidirectional signal from the CPU processor master device to the VR. VDDIO is the processor memory interface power rail and this pin serves as the reference to the controller IC for this processor I/O signal level. Page 9 of 40 ISL6277A Pin Descriptions (Continued) PIN NUMBER SYMBOL DESCRIPTION 8 SVT Serial VID Telemetry (SVT) data line input to the CPU from the controller IC. Telemetry and VID-on-the-fly complete signal provided from this pin. 9 ENABLE Enable input. A high level logic on this pin enables both VRs. 10 PWROK System power-good input. When this pin is high, the SVI 2 interface is active and the I2C protocol is running. While this pin is low, the SVC and SVD input states determine the pre-PWROK metal VID. This pin must be low prior to the ISL6277A PGOOD output going high per the AMD SVI 2.0 Controller Guidelines. 11 IMON 12 NTC 13 ISEN3 ISEN3 is the individual current sensing for Channel 3. When ISEN3 is pulled to +5V, the controller disables Channel 3, and the Core VR runs in two-phase mode. 14 ISEN2 Individual current sensing for Channel 2 of the Core VR. When ISEN2 is pulled to +5V, the controller disables Channel 2, and the Core VR runs in single-phase mode. 15 ISEN1 Individual current sensing for Channel 1 of the Core VR. If ISEN2 is tied to +5V, this pin cannot be left open and must be tied to GND with a 10kΩ resistor. If ISEN1 is tied to +5V, the Core portion of the IC is shut down. 16 ISUMP Noninverting input of the transconductance amplifier for current monitor and load line of Core output. 17 ISUMN Inverting input of the transconductance amplifier for current monitor and load line of Core output. 18 VSEN Output voltage sense pin for the Core controller. Connect to the +sense pin of the microprocessor die. 19 RTN Output voltage sense return pin for both Core VR and Northbridge VR. Connect to the -sense pin of the microprocessor die. 20 FB2 There is a switch between the FB2 pin and the FB pin. The switch is on in 2-phase or 3-phase mode and is off in 1-phase mode. The components connecting to FB2 are used to adjust the compensation in 1-phase mode of the Core VR to achieve optimum performance. 21 FB Output voltage feedback to the inverting input of the Core controller error amplifier. 22 COMP Core controller error amplifier output. A resistor from COMP to GND sets the Core VR offset voltage. 23 PGOOD Open-drain output to indicate the Core portion of the IC is ready to supply regulated voltage. Pull-up externally to VDD or 3.3V through a resistor. 24 BOOT1 Connect an MLCC capacitor across the BOOT1 and the PHASE1 pins. The boot capacitor is charged, through an internal boot diode connected from the VDDP pin to the BOOT1 pin, each time the PHASE1 pin drops below VDDP minus the voltage dropped across the internal boot diode. 25 UGATE1 Output of the Phase 1 high-side MOSFET gate driver of the Core VR. Connect the UGATE1 pin to the gate of the Phase 1 high-side MOSFET(s). 26 PHASE1 Current return path for the Phase 1 high-side MOSFET gate driver of VR1. Connect the PHASE1 pin to the node consisting of the high-side MOSFET source, the low-side MOSFET drain, and the output inductor of Phase 1. 27 LGATE1 Output of the Phase 1 low-side MOSFET gate driver of the Core VR. Connect the LGATE1 pin to the gate of the Phase 1 low-side MOSFET(s). 28 PWM_Y Floating PWM output used for either Channel 3 of the Core VR or Channel 1 of the Northbridge VR depending on the FCCM_NB resistor connected between FCCM_NB and GND. 29 VDD 30 VDDP Input voltage bias for the internal gate drivers. Connect +5V to the VDDP pin. Decouple with at least 1µF of capacitance to GND. A high quality, X7R dielectric MLCC capacitor is recommended. 31 LGATE2 Output of the Phase 2 low-side MOSFET gate driver of the Core VR. Connect the LGATE2 pin to the gate of the Phase 2 low-side MOSFET(s). FN8322 Rev.3.00 Oct 9, 2019 Core output current monitor. A current proportional to the Core VR output current is sourced from this pin. Thermistor input to VR_HOT_L circuit to monitor Core VR temperature. 5V bias power. A resistor [2Ω] and a decoupling capacitor should be used from the +5V supply. A high quality, X7R dielectric MLCC capacitor is recommended. Page 10 of 40 ISL6277A Pin Descriptions (Continued) PIN NUMBER SYMBOL DESCRIPTION 32 PHASE2 Current return path for the Phase 2 high-side MOSFET gate driver of the Core VR. Connect the PHASE2 pin to the node consisting of the high-side MOSFET source, the low-side MOSFET drain, and the output inductor of Phase 2. 33 UGATE2 Output of the Phase 2 high-side MOSFET gate driver of the Core VR. Connect the UGATE2 pin to the gate of the Phase 2 high-side MOSFET(s). 34 BOOT2 Connect an MLCC capacitor across the BOOT2 and PHASE2 pins. The boot capacitor is charged, through an internal boot diode connected from the VDDP pin to the BOOT2 pin, each time the PHASE2 pin drops below VDDP minus the voltage dropped across the internal boot diode. 35 VIN 36 BOOTX Boot connection of the programmable internal driver used for either Channel 3 of the Core VR or Channel 1 of the Northbridge VR based on the configuration state selected by the FCCM_NB resistor. Connect an MLCC capacitor across the BOOT1X and the PHASEX pins. The boot capacitor is charged, through an internal boot diode connected from the VDDP pin to the BOOTX pin, each time the PHASEX pin drops below VDDP minus the voltage dropped across the internal boot diode. 37 UGATEX High-side MOSFET gate driver portion of the programmable internal driver used for either Channel 3 of the Core VR or Channel 1 of the Northbridge VR based on the configuration state selected by the FCCM_NB resistor. Connect the UGATEX pin to the gate of the high-side MOSFET(s) for either Phase 3 of the Core VR or Phase 1 of the Northbridge VR based on the configuration state selected. 38 PHASEX Phase connection of the programmable internal driver used for either Channel 3 of the Core VR or Channel 1 of the Northbridge VR based on the configuration state selected by the FCCM_NB resistor. Current return path for the high-side MOSFET gate driver of the floating internal driver. Connect the PHASEX pin to the node consisting of the high-side MOSFET source, the low-side MOSFET drain, and the output inductor of either Phase 3 of the Core VR or Phase 1 of the Northbridge VR based on the configuration state selected. 39 LGATEX Low-side MOSFET gate driver portion of floating internal driver used for either Channel 3 of the Core VR or Channel 1 of the Northbridge VR based on the configuration state selected by the FCCM_NB resistor. Connect the LGATEX pin to the gate of the low-side MOSFET(s) for either Phase 3 of the Core VR or Phase 1 of the Northbridge VR based on the configuration state selected. 40 PWM2_NB PWM output for Channel 2 of the Northbridge VR. Disabled when ISEN2_NB is tied to +5V. 41 FCCM_NB Diode emulation control signal for Renesas MOSFET drivers. When FCCM_NB is LOW, diode emulation at the driver this pin connects to is allowed. A resistor from FCCM_NB pin to GND configures the PWM_Y and floating internal gate driver [BOOTX, UGATEX, PHASEX, LGATEX pins] to support Phase 3 of the Core VR and Phase 1 of the Northbridge VR. The FCCM_NB resistor value also is used to set the slew rate for the Core VR and Northbridge VR. A capacitor place holder from the FCCM_NB pin to GND is recommended for filtering noise on this pin due to layout. 42 PGOOD_NB Open-drain output to indicate the Northbridge portion of the IC is ready to supply regulated voltage. Pull-up externally to VDDP or 3.3V through a resistor. 43 COMP_NB Northbridge VR error amplifier output. A resistor from COMP_NB to GND sets the Northbridge VR offset voltage and is used to set the switching frequency for the Core VR and Northbridge VR. 44 FB_NB 45 VSEN_NB Output voltage sense pin for the Northbridge controller. Connect to the +sense pin of the microprocessor die. 46 ISUMN_NB Inverting input of the transconductance amplifier for current monitor and load line of the Northbridge VR. 47 ISUMP_NB Noninverting input of the transconductance amplifier for current monitor and load line of the Northbridge VR. 48 ISEN1_NB Individual current sensing for Channel 1 of the Northbridge VR. If ISEN2_NB is tied to +5V, this pin cannot be left open and must be tied to GND with a 10kΩ resistor. If ISEN1_NB is tied to +5V, the Northbridge portion of the IC is shutdown. GND (Bottom Pad) FN8322 Rev.3.00 Oct 9, 2019 Battery supply voltage, used for feed-forward. Output voltage feedback to the inverting input of the Northbridge controller error amplifier. Signal common of the IC. Unless otherwise stated, signals are referenced to the GND pin. Page 11 of 40 ISL6277A Absolute Maximum Ratings Thermal Information Supply Voltage, VDD, VDDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +7V Battery Voltage, VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +28V Boot Voltage (BOOT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +33V Boot to Phase Voltage (BOOT-PHASE) . . . . . . . . . . . . . . . . -0.3V to +7V(DC) -0.3V to +9V (20mil). IMPORTANT: Sense the inductor current by routing the sensing circuit to the inductor pads. If possible, route the traces on a different layer from the inductor pad layer and use vias to connect the traces to the center of the pads. If no via is allowed on the pad, consider routing the traces into the pads from the inside of the inductor. The following drawings show the two preferred ways of routing current sensing traces. INDUCTOR INDUCTOR VIAS CURRENT-SENSING TRACES CURRENT-SENSING TRACES 18 VSEN Place the filter on these pins in close proximity to the controller for good coupling. 19 RTN 20 FB2 21 FB 22 COMP 23 PGOOD No special consideration. 24 BOOT1 Use a wide trace width (>30mil). Avoid routing any sensitive analog signal traces close to or crossing over this trace. 25 UGATE1 26 PHASE1 These two signals should be routed together in parallel. Each trace should have sufficient width (>30mil). Avoid routing these signals near sensitive analog signal traces or crossing over them. Routing PHASE1 to the Core VR Channel 1 high-side MOSFET source pin instead of a general connection to PHASE1 copper is recommended for better performance. 27 LGATE1 Use sufficient trace width (>30mil). Avoid routing this signal near any sensitive analog signal traces or crossing over them. 28 PWM_Y No special considerations. 29 VDD A high quality, X7R dielectric MLCC capacitor is recommended to decouple this pin to GND. Place the capacitor in close proximity to the pin with the filter resistor nearby the IC. 30 VDDP A high quality, X7R dielectric MLCC capacitor is recommended to decouple this pin to GND. Place the capacitor in close proximity to the pin. 31 LGATE2 Use sufficient trace width (>30mil). Avoid routing this signal near any sensitive analog signal traces or crossing over them. 32 PHASE2 33 UGATE2 These two signals should be routed together in parallel. Each trace should have sufficient width (>30mil). Avoid routing these signals near sensitive analog signal traces or crossing over them. Routing PHASE2 to the Core VR Channel 2 high-side MOSFET source pin instead of a general connection to PHASE2 copper is recommended for better performance. 34 BOOT2 Use a wide trace width (>30mil). Avoid routing any sensitive analog signal traces close to or crossing over this trace. 35 VIN 36 BOOTX Use a wide trace width (>30mil). Avoid routing any sensitive analog signal traces close to or crossing over this trace. 37 UGATEX 38 PHASEX These two signals should be routed together in parallel. Each trace should have sufficient width (>30mil). Avoid routing these signals near sensitive analog signal traces or crossing over them. Routing PHASEX to the high-side MOSFET source pin instead of a general connection to the PHASEX copper is recommended for better performance. 39 LGATEX Use sufficient trace width (>30mil). Avoid routing this signal near any sensitive analog signal traces or crossing over them. Place the compensation components in general proximity of the controller. Place the decoupling capacitor in close proximity to the pin with a short connection to the internal GND plane. 40 PWM2_NB No special considerations. 41 FCCM_NB FN8322 Rev.3.00 Oct 9, 2019 Page 36 of 40 ISL6277A TABLE 14. LAYOUT CONSIDERATIONS FOR THE ISL6277A CONTROLLER (Continued) PIN NUMBER SYMBOL LAYOUT GUIDELINES 42 PGOOD_NB No special consideration. 43 COMP_NB Place the compensation components in general proximity of the controller. 44 FB_NB 45 VSEN_NB Place the filter on this pin in close proximity to the controller for good coupling. 46 ISUMN_NB Place the current sensing circuit in general proximity of the controller. Place capacitor Cn very close to the controller. ISUMP_NB Place the NTC thermistor next to Core VR Channel 1 inductor so it senses the inductor temperature correctly. Each phase of the power stage sends a pair of VSUMP and VSUMN signals to the controller. Run these two signals traces in parallel fashion with decent width (>20mil). 47 IMPORTANT: Sense the inductor current by routing the sensing circuit to the inductor pads. If possible, route the traces on a different layer from the inductor pad layer and use vias to connect the traces to the center of the pads. If no via is allowed on the pad, consider routing the traces into the pads from the inside of the inductor. The following drawings show the two preferred ways of routing current sensing traces. INDUCTOR INDUCTOR VIAS CURRENT-SENSING TRACES 48 CURRENT-SENSING TRACES ISEN1_NB FN8322 Rev.3.00 Oct 9, 2019 Page 37 of 40 ISL6277A Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision. DATE REVISION Oct 9, 2019 FN8322.3 Updated links throughout document. Added Related Literature section Updated the ordering information table by adding tape and reel information and updating notes. Updated the Overcurrent Protection section on page 30. Removed About Intersil section. Updated disclaimer. Dec 4, 2015 FN8322.2 On page 1 under Features, changed "SVC Frequency Range 100kHz to 20MHz" to "Serial VID clock frequency range 100kHz to 25MHz" Mar 27, 2015 FN8322.1 On page 1 under Features, added "SVC Frequency Range 100kHz to 20MHz" below "Supports AMD SVI 2.0 serial data bus interface”. On page 13 in the EC Table: “LOGIC THRESHOLDS” section, added “SVC Frequency Range” with limits of 0.1MHz to 20MHz. Dec 19, 2012 FN8322.0 Initial Release FN8322 Rev.3.00 Oct 9, 2019 CHANGE Page 38 of 40 ISL6277A For the most recent package outline drawing, see L48.6x6B. Package Outline Drawing L48.6x6B 48 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE Rev 0, 9/09 4X 4.4 6.00 44X 0.40 A B 6 PIN 1 INDEX AREA 6 PIN #1 INDEX AREA 48 37 1 6.00 36 4 .40 ± 0.15 25 12 0.15 (4X) 13 24 0.10 M C A B 0.05 M C TOP VIEW 48X 0.45 ± 0.10 4 48X 0.20 BOTTOM VIEW SEE DETAIL "X" 0.10 C BASE PLANE MAX 1.00 ( SEATING PLANE 0.08 C ( 44 X 0 . 40 ) ( 5. 75 TYP ) C SIDE VIEW 4. 40 ) C 0 . 2 REF 5 ( 48X 0 . 20 ) ( 48X 0 . 65 ) 0 . 00 MIN. 0 . 05 MAX. DETAIL "X" TYPICAL RECOMMENDED LAND PATTERN NOTES: 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. 2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994. 3. Unless otherwise specified, tolerance : Decimal ± 0.05 4. Dimension applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. 5. Tiebar shown (if present) is a non-functional feature. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 indentifier may be either a mold or mark feature. FN8322 Rev.3.00 Oct 9, 2019 Page 39 of 40 1RWLFH  'HVFULSWLRQVRIFLUFXLWVVRIWZDUHDQGRWKHUUHODWHGLQIRUPDWLRQLQWKLVGRFXPHQWDUHSURYLGHGRQO\WRLOOXVWUDWHWKHRSHUDWLRQRIVHPLFRQGXFWRUSURGXFWV DQGDSSOLFDWLRQH[DPSOHV
ISL6277AIRZ 价格&库存

很抱歉,暂时无法提供与“ISL6277AIRZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货