0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF1324SPBF

IRF1324SPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF1324SPBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRF1324SPBF 数据手册
PD - 97353A IRF1324SPbF IRF1324LPbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free D HEXFET® Power MOSFET G S VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited) 24V 1.3mΩ 1.65mΩ 340A 195A c G D S S D G TO-262 IRF1324LPbF D2Pak IRF1324SPbF G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Max. 340 240 195 1420 300 2.0 ± 20 0.46 -55 to + 175 300 Units A d f W W/°C V V/ns Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy °C Avalanche Characteristics EAS (Thermally limited) IAR EAR Ãd e Thermal Resistance Symbol RθJC RθJA g jk 270 See Fig. 14, 15, 22a, 22b mJ A mJ Junction-to-Case Junction-to-Ambient (PCB Mounted, steady-state) k Parameter Typ. ––– ––– Max. 0.50 40 Units °C/W www.irf.com 1 09/24/09 IRF1324S/LPbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS RG Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance Min. Typ. Max. Units 24 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– 22 1.3 ––– ––– ––– ––– ––– 2.3 Conditions ––– V VGS = 0V, ID = 250µA ––– mV/°C Reference to 25°C, ID = 5.0mA 1.65 mΩ VGS = 10V, ID = 195A 4.0 V VDS = VGS, ID = 250µA 20 µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C 250 200 nA VGS = 20V VGS = -20V -200 ––– Ω g d Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Min. Typ. Max. Units ––– 160 84 49 76 17 190 83 120 7590 3440 1960 4700 4490 ––– 240 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 10V, ID = 195A ID = 195A VDS = 12V VGS = 10V ID = 195A, VDS =0V, VGS = 10V VDD = 16V ID = 195A RG = 2.7Ω VGS = 10V VGS = 0V VDS = 24V ƒ = 1.0 MHz, See Fig. 5 VGS = 0V, VDS = 0V to 19V , See Fig. 11 VGS = 0V, VDS = 0V to 19V 180 ––– ––– ––– ––– Turn-On Delay Time ––– Rise Time ––– Turn-Off Delay Time ––– Fall Time ––– Input Capacitance ––– Output Capacitance ––– Reverse Transfer Capacitance ––– Effective Output Capacitance (Energy Related) ––– Effective Output Capacitance (Time Related) ––– g ns pF g Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton i h Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Min. Typ. Max. Units ––– ––– ––– 350 ––– ™ Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 195A, VGS = 0V TJ = 25°C VR = 20V, IF = 195A TJ = 125°C TJ = 25°C di/dt = 100A/µs TJ = 125°C TJ = 25°C D A A Ãd 1420 Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time ––– ––– 1.3 V ––– 46 ––– ns ––– 71 ––– ––– 160 ––– nC ––– 430 ––– ––– 7.7 ––– A Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g S g Notes:  Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140). ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.014mH RG = 25 Ω, IAS = 195A, VGS =10V. Part not recommended for use above this value. „ ISD ≤ 195A, di/dt ≤ 450A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400µs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom‰ Rθ is measured at TJ approximately 90°C. Coss while VDS is rising from 0 to 80% VDSS. mended footprint and soldering techniques refer to application note #AN-994. 2 www.irf.com IRF1324S/LPbF 10000 ≤60µs PULSE WIDTH Tj = 25°C TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.5V 4.0V 10000 ≤60µs PULSE WIDTH Tj = 175°C ID, Drain-to-Source Current (A) TOP ID, Drain-to-Source Current (A) 1000 100 1000 BOTTOM BOTTOM VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.5V 4.0V 10 100 1 4.0V 0.1 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) 4.0V 10 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 RDS(on) , Drain-to-Source On Resistance (Normalized) Fig 2. Typical Output Characteristics 2.0 ID = 195A VGS = 10V ID, Drain-to-Source Current (A) 100 T J = 175°C 10 T J = 25°C 1.5 1.0 1 VDS = 15V ≤60µs PULSE WIDTH 0.1 2 3 4 5 6 7 8 9 0.5 -60 -40 -20 0 20 40 60 80 100 120140 160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 100000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Fig 4. Normalized On-Resistance vs. Temperature 14.0 ID= 195A VGS, Gate-to-Source Voltage (V) 12.0 10.0 8.0 6.0 4.0 2.0 0.0 VDS= 19V VDS= 12V C, Capacitance (pF) 10000 Ciss Coss Crss 1000 1 10 VDS, Drain-to-Source Voltage (V) 100 0 50 100 150 200 QG, Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRF1324S/LPbF 1000 10000 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100µsec 1msec 100 Limited by package 10msec Tc = 25°C Tj = 175°C Single Pulse 1 0.0 0.5 1.0 1.5 1 10 VDS, Drain-to-Source Voltage (V) 100 VSD, Source-to-Drain Voltage (V) 100 TJ = 175°C 10 T J = 25°C ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 10 VGS = 0V 1.0 DC 350 300 ID, Drain Current (A) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 32 Id = 5mA Limited By Package 250 200 150 100 50 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) 30 28 26 24 -60 -40 -20 0 20 40 60 80 100 120140 160180 T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature 2.0 1.8 1.6 1.4 Fig 10. Drain-to-Source Breakdown Voltage 1200 EAS , Single Pulse Avalanche Energy (mJ) 1000 800 600 400 200 0 ID 44A 83A BOTTOM 195A TOP Energy (µJ) 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -5 0 5 10 15 20 25 30 25 50 75 100 125 150 175 Fig 11. Typical COSS Stored Energy VDS, Drain-to-Source Voltage (V) Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent 4 www.irf.com IRF1324S/LPbF 1 Thermal Response ( Z thJC ) °C/W D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 0.001 τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4 Ri (°C/W) 0.0125 0.0822 0.2019 0.2036 τi (sec) 0.000008 0.000078 0.001110 0.007197 Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 0.001 1E-006 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) 100 0.05 0.10 0.01 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 tav (sec) 1.0E-03 1.0E-02 1.0E-01 Fig 14. Typical Avalanche Current vs.Pulsewidth www.irf.com 5 IRF1324S/LPbF 300 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) EAR , Avalanche Energy (mJ) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 195A Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature 4.5 VGS(th) , Gate threshold Voltage (V) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) ID = 250µA ID = 1.0mA ID = 1.0A Fig 16. Threshold Voltage vs. Temperature 6 www.irf.com IRF1324S/LPbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 22b. Unclamped Inductive Waveforms VDS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10% VGS td(on) tr t d(off) tf Fig 23a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. Fig 23b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V .2µF .3µF D.U.T. VGS 3mA + V - DS Vgs(th) IG ID Current Sampling Resistors Qgs1 Qgs2 Qgd Qgodr www.irf.com Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform 7 IRF1324S/LPbF D2Pak (TO-263AB) Package Outline D2Pak (TO-263AB) Part Marking Information UCDTÃDTÃ6IÃDSA$"TÃXDUC GPUÃ8P9@Ã'!# 6TT@H7G@9ÃPIÃXXÃ!Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅGÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S A$"T 96U@Ã8P9@ `@6SÃÃ2Ã! X@@FÃ! GDI@ÃG 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ A$"T Q6SUÃIVH7@S 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69ÃÃAS@@ QSP9V8UÃPQUDPI6G `@6SÃÃ2Ã! X@@FÃ! 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ www.irf.com Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 IRF1324S/LPbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information @Y6HQG@) UCDTÃDTÃ6IÃDSG" "G GPUÃ8P9@à &'( 6TT@H7G@9ÃPIÃXXà (à ((& DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ `@6SÃ&Ã2à ((& X@@Fà ( GDI@Ã8 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃPQUDPI6G `@6SÃ&Ã2à ((& X@@Fà ( 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@ Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRF1324S/LPbF D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 30.40 (1.197) MAX. 26.40 (1.039) 24.40 (.961) 3 4 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/2009 10 www.irf.com
IRF1324SPBF 价格&库存

很抱歉,暂时无法提供与“IRF1324SPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货