MLC
Capacitors
Introduction to Knowles Capacitors
At Knowles Capacitors, we make Single Layer, Multilayer,
High Reliability and Precision Variable Capacitors; EMI
Filters; and Thin Film Devices.
Our business was formed by combining Dielectric
Laboratories, Johanson Manufacturing, Novacap, Syfer
Technology and Voltronics into a single organization — each
well-established specialty capacitor makers with a combined
history of more than 175 years.
Our expertise is the design and manufacture of components
important to engineers in applications where function and
reliability are key. The markets we serve include medical
implantable and medical equipment, military, aerospace/
avionics, EMI and connector filtering, oil exploration,
instrumentation, industrial electronics, optical networks,
telecom and automotive.
We aim to be a leader in every market we serve, to the benefit
of our customers and our mutual long-term success.
We achieve this by:
• Understanding our customers’ real needs and providing
products and services to meet and exceed them.
• Providing better products and services than competitors.
• Investing in product development, manufacturing
processes and people.
• Insisting on the highest ethical standards and a business
culture of trust, respect and open communication.
Products in this catalog form the basis of our ranges for
"new designs." However, there are legacy products from
our five brands that will still be available — we ask that
you contact your local Knowles Precision Devices Sales
Office for details and ordering.
Table of Contents
INTRODUCTION TO KNOWLES CAPACITORS
Product Selector .. .............................................................................................................................................................. 4-5
Dielectric Characteristics ................................................................................................................................................. 6-8
Dielectric Termination Combinations............................................................................................................................... 9
FlexiCap™ Overview .......................................................................................................................................................... 10
Manufacturing Processes ................................................................................................................................................. 11
Testing ................................................................................................................................................................................ 12
IECQ-CECC and AEC-Q200 — Periodic Tests .. .............................................................................................................. 13
High Reliability Testing ..................................................................................................................................................... 14
Regulations and Compliance ........................................................................................................................................... 15
Explanation of Aging of MLC ........................................................................................................................................... 16
Mounting, Soldering, Storage and Mechanical Precautions ........................................................................................ 17-19
Chip Marking System......................................................................................................................................................... 20
Ceramic Chip Capacitors — Packaging Information ..................................................................................................... 21-22
Chip Dimensions ............................................................................................................................................................... 23
MLCC ORDERING INFORMATION
Chip Ordering Information ............................................................................................................................................... 24-26
MLC CAPACITORS
C0G/NP0 (1B) — AEC-Q200 and Standard Ranges........................................................................................................ 27-29
X7R (2R1) — AEC-Q200 and Standard Ranges.. .............................................................................................................. 30-32
Ordering Information — AEC-Q200 and Standard Ranges........................................................................................... 33
Novacap Range (Lead-Containing). . ................................................................................................................................. 34-35
Standard Chip — BX .. ........................................................................................................................................................ 36
Improved ESR Capacitors — BX and X7R........................................................................................................................ 37
High Q Capacitors — Q and U Ranges............................................................................................................................ 38-40
Ultra-Low ESR High Q MLCCs — X8G Range.................................................................................................................. 41-42
High Q Capacitors, High Power RF — Surface Mount and Ribbon Leaded................................................................. 43-44
High Q Porcelain Capacitors — CF Series.. ..................................................................................................................... 45-47
High Q Porcelain Capacitors — AH Series...................................................................................................................... 48-50
UL Series — Ultra Low ESR Ceramic Capacitors............................................................................................................ 51-54
VC1 Residual Capacitors — X7R....................................................................................................................................... 55
TCC/VCC Capacitors — (BX and BZ) X7R........................................................................................................................ 56-57
Open Mode Capcitors — C0G/NP0 (1B) and X7R (2R1).................................................................................................. 58
Tandem Capacitors — X7R (2R1). . ..................................................................................................................................... 59
IECQ-CECC Range — Specialty High Reliability and Approved Parts.......................................................................... 60
High Capacitance Chip — X7R and X5R. . ........................................................................................................................ 61-62
StackiCapTM Capacitors — AEC-Q200 and Standard Ranges........................................................................................ 63
250Vac Rated 50/60Hz AC Capacitors — C0G/NP0 and X7R.....................................................................................................................64
Safety Certified AC Capacitors......................................................................................................................................... 65
Enhanced 250Vac and 305Vac Safety Certified AC Capacitors.. ................................................................................. 66-69
Legacy 250Vac Safety Certified AC Capacitors............................................................................................................. 70-72
Non-Magnetic Capacitors — High Q, C0G/NP0, X5R and X7R — 16V to 7.2kV. . ......................................................... 73-74
Non-Magnetic Capacitors, High Power RF — Porcelain High Q................................................................................... 75-76
115Vac 400Hz Capacitors.................................................................................................................................................. 77
DWV Chip Range — C0G/NP0 and X7R. . ......................................................................................................................... 78
X8R High Temperature Capacitors — up to 150ºC. . ....................................................................................................... 79
High Temperature Capacitors — 160ºC and 200ºC....................................................................................................... 80
High Temperature HiT Range — 200ºC — C0G/NP0 and X7R. . .................................................................................... 81
High Temperature HiT250 Range — 250°C — C0G/NP0 and X7R............................................................................... 82
Capacitor Assemblies — ST and SM — C0G/NP0 and X7R..........................................................................................................................83-88
Capacitor Assemblies — "Cap-Rack" Arrays................................................................................................................... 89
Capacitor Assemblies SV2220......................................................................................................................................... 90-92
MLC RADIAL LEADED CAPACITORS
Radial Leaded Capacitors — Ordering Information . . ..................................................................................................... 93
Standard Radial Leaded Capacitors — 50V to 5kV. . ...................................................................................................... 94
Standard Radial Leaded Capacitors — 500V to 10kV.................................................................................................... 95
Standard Radial Leaded Capacitors — C0G/NP0 and X7R.. .......................................................................................... 96
Standard Radial Leaded Capacitors — Packaging Information. . ................................................................................... 97
Radial Leaded Capacitors — Packaging Information..................................................................................................... 98-99
High Temperature Radial Leaded Capacitors — Epoxy Coated.................................................................................... 100
High Temperature Radial Leaded Capacitors — Encapsulated . . ................................................................................... 101
SM EMI FILTERS
Surface Mount EMI Filters — E01 and E07 Ranges. . ....................................................................................................... 102-103
Surface Mount EMI Filters — E03 X2Y Integrated Passive Components. . ................................................................... 104-105
3
Product Selector
Medical
RF
High Frequency
Snubber
Frequency Control/Tuning,
Impedance Matching
Modem/Tip and Ring
Capacitors
and Filters
SM and Leaded
Decoupling/Smoothing
AC Noise Removal
High Voltage Circuitry
High Speed Decoupling
Feedthrough Filtering
Automotive
Harsh Environments
Mil/Aero
is particularly recommended
for these applications where
possible.
4
X7R, C0G/NP0, High Q and Ultra-Low ESR
0402 to 4040 Non-Magnetic Termination
0.1pF to 6.8μF - 16V to 3kV
Pages 73-76
MRI/Non-Magnetic
High Q, C0G/NP0 & Porcelain Range
Ultra-Low ESR
Pages 38-54
Class 1 Dielectrics
Low DF/ESR
C0G/NP0 Range
0402 to 8060
0.47pF to 1μF - 10V to 12kV
Pages 27-29 and 34
Class 1 Dielectrics
X7R
1812/2220/2225
100nF to 1μF - 250Vdc
High Capacitance
X7R, C0G/NP0 Y2/X1, X2
Safety Certified Ranges UL/TÜV
1808/1812/2211/2215/2220
Pages 30-32 and 35
Pages 65-72
Safety Certified
X7R Range
0603 to 8060
100pF to 22μF - 16V to 12kV
Pages 30-32 and 35
High Capacitance
X7R, E03 X2Y IPCs
0603 to 1812
150pF to 1.2μF - 16V to 1kV
Pages 104-105
Balanced Line Capacitors
X7R, C0G/NP0, Y2/X1, X2
Safety Certified Ranges UL/TÜV
1808/1812/2211/2215/2220
Pages 65-72
X7R, C0G/NP0 Ranges
250Vac Rated 50/60Hz AC
Page 64
StackiCap™
Page 63
0505/1111/1825 Ranges
X7R, C0G/NP0, High Q
Pages 38-54
X7R and C0G/NP0, E03 X2Y IPCs
0603 to 2220
10pF to 1.2μF
Pages 104-105
E01/E07/SBSGC/SBSMC
X7R, C0G/NP0
0805 to 2220 - 1A to 20A
Pages 102-103 and
See EMI Filters Catalog
SBSP/SBSG/SBSM
X7R, C0G/NP0 1206 to 2220
22pF to 470nF - 1A to 10A
See EMI Filters Catalog
AEC-Q200 E03 X2Y IPCs
X7R and C0G/NP0 AEC-Q200 E01/E07
Feedthrough Capacitors
Pages 102-105
Open Mode and Tandem
FlexiCap™ Capacitors
With Extra Safe Electrode Design
Pages 58-59
AEC-Q200 Ranges
X7R, C0G/NP0
Pages 27-32
X8R Range
Operational Temperature up to 150°C
Page 79
Dipped Radial Leaded
Capacitors
Class I and II High Temperature
160°C, 200°C and 250°C
Pages 80-82
High Reliability
Capacitors and Filters
X7R, C0G/NP0
4.7pF to 22μF - 50V to 12kV
Pages 93-101
115Vac 400Hz Range
S02A/IECQ-CECC/MIL-PRF/Burn in
Hi Rel X2Y IPCs
Pages 60, 77 and 104-105
Safety Certified
250Vac Range
PCB Space Saving
Low Inductance Capacitors
Capacitive
Capacitive/Inductive Pi
Filtering
MLCC
High Temperature
5
Dielectric Characteristics
CLASS I DIELECTRICS
dielectric characteristics with negligible dependence of
capacitance and dissipation factor with time, voltage and
frequency. They exhibit the following characteristics:
Multilayer Ceramic Capacitors are generally divided into classes,
which are defined by the capacitance temperature characteristics
over specified temperature ranges. These are designated by alphanumeric codes. Code definitions are summarized below and are also
available in the relevant national and international specifications.
a) Time does not significantly affect capacitance and dissipation
factor (Tan δ) – no aging.
b) Capacitance and dissipation factor are not affected by voltage.
c) Linear temperature coefficient.
Capacitors within this class have a dielectric constant range from 10
to 100. They are used in applications that require ultra stable
CLASS I DIELECTRICS
Dielectric
classifications
Ordering code
Rated
temperature range
Maximum
capacitance
change over
temperature range
Tangent of loss
C0G/NP0 (1B) (Porcelain)
P90 (Porcelain)
C0G/NP0 (1B)
X8G
Class I High Temperature
Ultra Stable
Ultra Stable
Ultra Stable
Ultra Stable
Ultra Stable
IECQ-CECC
-
-
1B/CG
-
-
-
EIA
C0G/NP0 (1B)
P90
C0G/NP0 (1B)
X8G
-
-
MIL
-
-
CG (BP)
-
-
-
DLI
CF
AH
-
-
-
-
-
Novacap
-
-
-
N, RN
-
F
D, RD
Syfer
-
-
Q, U
C
H
-
G
Voltronics
F
H
Q
-
-
-
-
-
-55ºC to +125ºC
-55ºC to +125ºC
-55ºC to +125ºC
-55ºC to +125ºC
-55ºC to +150ºC
-55ºC to +160ºC
-55ºC to +200ºC
No DC
voltage applied
0 ± 15 ppm/ºC
+90 ± 20 ppm/ºC
0 ± 30 ppm/ºC
0 ± 30 ppm/ºC
0 ± 30 ppm/ºC
0 ± 30 ppm/ºC
0 ± 30 ppm/ºC
Rated DC
voltage applied
>50pF ≤0.0015
≤50pF
0.0015 (15/Cr + 0.7)
-
≤0.0005 @1MHz
Insulation
resistance (Ri)
Time constant
(Ri x Cr)
@25ºC = 106 MΩ min
@125ºC = 105 MΩ min
Cr 1.2kV
-
1.2 times
-
55/125/56
-
-
Dipped
-
-
-
55/125/21
-
-
Discoidal
-
-
-
55/125/56
-
-
-
-
Aging
characteristic
(Typical)
-
Approvals
Syfer Chip
6
≤0.0005 @1MHz
100GΩ or 1000s
(whichever is the least)
≤200V
>200V to 200V to 10pF. 1st digit is 0.
2nd and 3rd digits are significant
figures of capacitance code. The 4th
digit is number of zeros following
e.g., 0470 = 47pF
0512 = 5100pF
Values 2225
812
1825
2225
>2225
1812
1825
2225
>2225
1812
1825
2225
>2225
0.100/2.54
0.100/2.54
0.120/3.05
N/A
0.200/5.08
0.200/5.08
0.240/6.10
N/A
0.300/7.62
0.300/7.62
0.360/9.14
N/A
0.400/10.20
0.400/10.20
0.480/12.20
N/A
0.520/13.20
0.520/13.20
0.635/16.10
N/A
0.180/4.57
0.180/4.57
0.200/5.08
0.200/5.08
0.280/7.11
0.280/7.11
0.320/8.13
0.320/8.13
0.380/9.65
0.380/9.65
0.440/11.2
0.440/11.2
0.480/12.2
0.480/12.2
0.560/14.2
0.560/14.2
0.600/15.2
0.600/15.2
0.715/18.2
0.715/18.2
N/A
0.180/4.57
0.200/5.08
0.200/5.08
N/A
0.280/7.11
0.320/8.13
0.320/8.13
N/A
0.380/9.65
0.440/11.20
0.440/11.20
N/A
0.480/12.20
0.560/14.20
0.560/14.20
N/A
0.600/15.2
0.715/18.2
0.715/18.2
DIMENSIONS — INCHES/MM
Size
1812
1825
2225
3640
4540
5550
7565
C*
0.210/ 5.33
0.210/5.33
0.250/6.35
0.400/10.20
0.480/12.20
0.580/14.70
0.780/19.80
D*
0.125/3.18
0.250/6.35
0.250/6.35
0.400/10.20
0.400/10.20
0.500/12.70
0.650**/16.50
E max
0.260/6.60
0.260/6.60
0.300/7.62
0.430/10.90
0.530/13.50
0.630/16.00
0.830/21.10
L nom
0.180/4.57
0.180/4.57
0.220/5.59
0.360/9.14
0.450/11.40
0.550/14.00
0.750/19.10
N/A
3
3
4
4
5
6
Leads per side
Notes: 1) *C & D inches ±0.025:/mm ±0.64: 2) **±0.035/0.89
ORDERING INFORMATION — ST AND SM CAPACITOR ASSEMBLIES
ST
3640
B
474
M
101
LJ
X
W
-5
R
Style
Size
Dielectric
Capacitance
Tolerance
Voltage VDCW
Lead style
Thickness option
Packing
No. Chips
RoHS
ST =
Commercial
See
Chart
N = C0G/NP0
B = X7R
Value in Picofarads.
Two significant
figures, followed by
number of zeros:
825 = 8,200,000pF
(8.2µF)
F = ±1%*
B = ±2%*
H = ±3%*
J = ±5%
K = ±10%
M = ±20%
Z = +80 -20%
P = +100 -0%
Two significant
figures, followed by
number of zeros:
101 = 100V
LN = Straight*
LL = L Lead*
LJ = J Lead*
TL = L Tab
TJ = J tab
NN = Nickel
NP = Pd/Ag
Specify standoff
dimension
if less than max.
W = Waffle
1 to 5
≥250V
RoHS
SM = High
Reliability
*C0G/NP0 only
84
*Not 1812
T = Tape
& Reel*
*Consult the
sales office
Capacitor Assemblies — ST and SM — C0G/NP0
C0G/NP0 CAPACITANCE AND VOLTAGE SELECTION
Size
Rated Voltage
Cap
10pF
12
15
18
22
27
33
39
47
56
68
82
100pF
120
150
180
220
270
330
390
470
560
680
820
1.0nF
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10nF
12
15
18
22
27
33
39
47
56
68
82
100nF
120
150
180
220
270
330
390
470
560
680
820
1.0µF
1.2
1.5
1.8
2.2
2.7
1812
50V
100V
1825
200V
500V
50V
100V
2225
200V
500V
50V
100V
3640
200V
500V
50V
100V
200V
500V
Code ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM
100
120
150
180
220
270
330
390
470
560
680
820
101
121
151
181
221
271
331
391
471
561
681
821
102
122
152
182
222
272
332
392
472
562
682
822
103
123
153
183
223
273
333
393
473
563
683
823
104
124
154
184
224
274
334
394
474
564
684
824
105
125
155
185
225
275
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
Number of chips required to
achieve the capacitance value
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
85
Capacitor Assemblies — ST and SM — C0G/NP0
Note: Capacitance values are shown as 3-digit code:
2 significant figures followed by the no. of zeros, e.g., 183 = 18,000pF.
C0G/NP0 CAPACITANCE AND VOLTAGE SELECTION
4540
50V
100V
5550
200V
500V
50V
100V
6560
200V
500V
50V
100V
7565
200V
500V
50V
100V
Size
200V
500V
ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM
Number of chips required to
achieve the capacitance value
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
86
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
1
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
Rated Voltage
Cap
Code
10pF
12
15
18
22
27
33
39
47
56
68
82
100pF
120
150
180
220
270
330
390
470
560
680
820
1.0nF
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10nF
12
15
18
22
27
33
39
47
56
68
82
100nF
120
150
180
220
270
330
390
470
560
680
820
1.0µF
1.2
1.5
1.8
2.2
2.7
100
120
150
180
220
270
330
390
470
560
680
820
101
121
151
181
221
271
331
391
471
561
681
821
102
122
152
182
222
272
332
392
472
562
682
822
103
123
153
183
223
273
333
393
473
563
683
823
104
124
154
184
224
274
334
394
474
564
684
824
105
125
155
185
225
275
Capacitor Assemblies — ST and SM — X7R
X7R CAPACITANCE AND VOLTAGE SELECTION
Size
Vdc
Cap
1812
50V
100V
1825
200V
500V
50V
100V
2225
200V
500V
50V
100V
3640
200V
500V
50V
Code ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM
1.0nF
102
1.2
122
1.5
152
1.8
182
2.2
222
2.7
272
3.3
332
3.9
392
4.7
472
5.6
562
6.8
682
8.2
822
10nF
103
12
123
15
153
18
183
22
223
27
273
33
333
39
393
47
473
56
563
68
683
82
823
100nF
104
120
124
150
154
180
184
220
224
270
274
330
334
390
394
470
474
560
564
680
684
820
824
1.0µF
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10µF
12
15
18
22
27
33
39
47
56
68
82
100µF
105
125
155
185
225
275
335
395
475
565
685
825
106
126
156
186
226
276
336
396
476
566
686
826
107
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
100V
200V
500V
ST SM
ST
SM
ST
SM
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
Number of chips required to
achieve the capacitance value
87
Capacitor Assemblies — ST and SM — X7R
Note: Capacitance values are shown as 3-digit code:
2 significant figures followed by the no. of zeros, e.g., 183 = 18,000pF.
X7R CAPACITANCE AND VOLTAGE SELECTION
4540
50V
100V
5550
200V
500V
50V
100V
6560
200V
500V
50V
100V
7565
200V
500V
50V
100V
Size
200V
500V
ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM ST SM
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
Number of chips required to
achieve the capacitance value
88
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
4
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
3
4
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
5
Vdc
Cap
Code
1.0nF
102
1.2
122
1.5
152
1.8
182
2.2
222
2.7
272
3.3
332
3.9
392
4.7
472
5.6
562
6.8
682
8.2
822
10nF
12
15
18
22
103
123
153
183
223
27
273
33
333
39
393
47
56
68
473
563
683
82
823
100nF
104
120
124
150
154
180
220
270
184
224
274
330
334
390
470
560
394
474
564
680
684
820
824
1.0µF
105
1.2
125
1.5
155
1.8
185
2.2
225
2.7
275
3.3
335
3.9
395
4.7
475
5.6
565
6.8
685
8.2
10µF
12
15
18
22
27
33
39
47
56
68
82
100µF
825
106
126
156
186
226
276
336
396
476
566
686
826
107
Capacitor Assemblies — "Cap-Rack" Arrays
Mechanical advantages include reduced board area; easier to
handle; reduced placement cost; reduced component stress and
decreased cycle time. "Cap-Rack" can also be used with traditional
pick and place equipment.
The "Cap-Rack" (US Patent 6,058,004) is an assembly of individual chip capacitors,
bonded with high temperature epoxy. A "Cap-Rack" can be made up of a pair, to as
many as eight, same-size chips — 0603, 0805, 1005, 1206, 1210, 1808, 1812, 1825,
2221 and 2225 — into one single component providing extended freedom for PCB
space utilization. Footprint dimensions can also vary to further optimize board space
usage. The patented design allows the chips to behave as individual components, not
as a single large ceramic mass, and therefore reduces harmful thermal stress during
assembly. Typical applications are in Multi-line designs, Mobile phones, Automotive,
Computers, Network Devices and Medical products.
Consult the sales office for High Reliability versions and custom designs,
particularly for high voltage applications.
• For dielectric characteristics, see pages 6 to 8.
• For dimensions of individual chips, see page 23.
Electrical advantages include reduction in “cross talk,” to insignificant levels, by
elimination of capacitance coupling between adjacent capacitors; the ability to
combine resistors and inductors within the "Cap-Rack", as well as mixing and matching
capacitance values and dielectrics.
• P and AW dimensions are dependant on the chips utilized in the array.
• Cap Arrays require drawings to specify length and width of array
and chip size used. Please contact the Sales Office.
T
DIMENSIONS — INCHES/MM
Size
0603
0805
1005
Max number of Caps
6
6
6
1206 1210 1808 1812 1825 2221 2225
6
6
6
8
8
8
L
P
0.010
(0.25)
typ.
H
8
AW
MB
ORDERING INFORMATION — "CAP-RACK" ARRAYS
CR
1206
N
562
K
101
N
H
T
-4
Style
Size
Dielectric
Capacitance in
picofarads (pF)
Capacitance
tolerance
Voltage d.c.
Termination
Hi-Rel
Option
Packing
No. of chips
Cap-Rack
Size of
individual
chips that
make up
the array
N = C0G/NP0
B = X7R
Value in Picofarads.
Two significant
figures, followed by
number of zeros:
562 = 5600pF
B = 0.10pF*
C = 0.25pF*
D = 0.50pF*
F = ± 1.0%*
G = ± 2.0%*
H = ± 3.0%*
J = ± 5%
K = ± 10%
M = ± 20%
Z = +80% -20%
P = +100% -0%
*C0G/NP0 only
Two significant
figures, followed by
number of zeros:
101 = 100V
N = Nickel Barrier
(100% tin)
P = Palladium Silver
Y = Nickel Barrier
(90% tin/10% lead)
Ref: MILPRF-55681 &
MIL-PRF-123
T=
Tape & Reel
W = Waffle Pack
89
Capacitor Assemblies SV2220
The SV capacitor assemblies are a vertical stacking of ceramic capacitors, offering far
superior performance than either aluminum or tantalum electrolytic capacitors. They can
be made with up to 10 same size chips with various lead configurations to safeguard against
thermal and mechanical stresses and are 100% tested for dielectric withstanding voltage, insulation
resistance, capacitance and dissipation factor.
They are ideally suited for the input and output stages of switch-mode power supplies and DC-DC
converters; the SV capacitor assemblies offer several key benefits:
•
•
•
•
Reduces the overall circuit board footprint
High capacitance to volume ratio
Low ESR and low ESL
Capability to handle high ripple currents at high frequencies
ELECTRICAL SPECIFICATIONS
DIELECTRIC WITHSTANDING VOLTAGE:
250% of rated voltage for 5 seconds
INSULATION RESISTANCE AT 25°C:
500 mega-ohm/micro-farad minimum
INSULATION RESISTANCE AT 125°C:
50 mega-ohm/micro-farad minimum
CAPACITANCE AT 25°C:
1.0±0.2 VRMS at 120 Hz
DISSIPATION FACTOR AT 25°C
5% maximum at 1.0±0.2 VRMS at 120 Hz
LIFE TEST:
150% of rated voltage at 125°C for 1000 hours
MOISTURE RESISTANCE:
10 cycles without voltage. MIL-STD-202 M106
THERMAL SHOCK:
MIL-STD-202 M107, test condition A -55°C to +125°C
IMMERSION CYCLING:
MIL-STD-20 M104, condition B
RESISTANCE TO SOLDER HEAT:
MIL-STD-202, M210, condition B 20 seconds at 260°C
90
Benefits
Applications
Capacitor Assemblies SV2220
• Input and output stages of switch-mode power supplies and DC-DC converters
• High capacitance to volume ratio
• Reduces the overall circuit board footprint
• Superior performance over
aluminum or tantalum capacitors
• Low ESR and low ESL
Capacitance (µF)
14
22
27
47
68
100
220
-3
-5
-10
Voltage
25V
50V
100V
-3
-3
-5
-5
-10
-10
Note: Dash number denotes number of capacitors and leads per side.
Typical ESR (Ohms)
22µF
27µF
47µF
100µF
220µF
ESR @ 1kHz
0.0830
0.0680
0.0400
0.0240
0.0110
ESR @ 10kHz
0.0086
0.0070
0.0040
0.0033
0.0015
ESR @ 50kHz
0.0044
0.0031
0.0020
0.0013
0.0006
ESR @ 100kHz
0.0032
0.0022
0.0015
0.0009
0.0004
91
Capacitor Assemblies SV2220
LN (STRAIGHT WIRE LEADS)
D
D
E
0.055±0.010
(1.40±0.25)
X
LJ AND LL (BENT WIRE LEADS)
LN
LL
X
0.020±0.002
(0.51±0.05)
0.020±0.002
(0.51±0.05)
C
0.070±0.020
(1.778±0.508)
C
0.10 (2.54)
0.10 (2.54)
0.025min/0.100 max
(0.63 min/2.54 max)
0.025min/0.100 max
(0.63 min/2.54 max)
NUMBER
LJ
0.070±0.010
(1.78±0.25)
0.010
(0.25)
0.010
(0.25)
0.25 min
(6.35 min)
E
STYLE
C±.025"
D (MAX)
E (MAX)
X (MAX)
-3
LN
.250" (6.35)
.375" (9.5)
.300" (7.62)
.285" (7.24)
-3
LJ, LL
.250" (6.35)
.375" (9.5)
.300" (7.62)
.300" (7.62)
-5
LN
.250" (6.35)
.575" (14.6)
.300" (7.62)
.285" (7.24)
-5
LJ, LL
.250" (6.35)
.575" (14.6)
.300" (7.62)
.300" (7.62)
-10
LN
.250" (6.35)
1.075" (27.3)
.300" (7.62)
.285" (7.24)
-10
LJ, LL
.250" (6.35)
1.075" (27.3)
.300" (7.62)
.300" (7.62)
SV
2220
BB
476
M
101
LJ
W
-10
R
SERIES
SIZE
DIELECTRIC
CAPACITANCE
TOLERANCE
VOLTAGE
VDCW
LEAD STYLE
PACKAGING
CAPS/LEADS
RoHS
See Chart
BB = X7R
Class II
BME
Value in
picofarads —
two significant
figures,
followed by
number of
zeros:
476 =
47,000,000pF
M = +/-20%
Two
significant
figures,
followed
by number
of zeros:
250 = 25V
500 = 50V
101 = 100V
92
LN = Straight
LL = L Lead
LJ = J Lead
W=
Waffle Pack
Number of
caps and
leads per
side
R = RoHS
compliant
with
exemption 7a
R = 100% Sn
finish on lead
No R on P/N
= 60Sn/40Pb
finish on
leads
Radial Leaded Capacitors — Ordering Information
NOVACAP ORDERING INFORMATION — RADIAL LEADED — STANDARD AND HIGH REL
0805
B
123
K
501
LE
A
R
Size
Dielectric
Capacitance
Tolerance
Voltage-VDCW
Lead Styles
Packing
RoHS
See
charts
N = C0G/NP0
RoHS if ≥ 250V
Value in
Picofarads.
Two significant
figures, followed
by number of
zeros:
123 = 12,000pF
F = ±1%*
G = ±2%*
J = ± 5%
K = ± 10%
M = ± 20%
Two significant
figures, followed by
number of zeros:
501 = 500V
LE, LB, LD, LR, LQ* = Yellow
conformal coated
LO = without any coating
No suffix = Bulk
A = Ammo pack
2K/pack
R = RoHS
Compliant
(Tin Plating)
* Product and Case size
dependent
T = Tape & Reel
4K/Reel
None = Tin/
Lead Plating
B = X7R
RoHS if ≥ 250V
RN = C0G/NP0
RoHS
RB = X7R RoHS
S = X8R
not RoHS compliant
*C0G parts only
NOVACAP ORDERING INFORMATION — RADIAL LEADED — HIGH TEMPERATURE
2520
E
563
K
501
LG
W
R
Size
Dielectric
Capacitance
Tolerance
Voltage-VDCW
Lead Styles
Packing
RoHS
See
charts
D = 200 C
C0G/NP0
Value in
Picofarads.
Two significant
figures, followed
by number of
zeros:
563 = 56,000pF
F = ±1%*
G = ±2%*
J = ± 5%
K = ± 10%
M = ± 20%
Two significant figures,
followed by number of
zeros:
501 = 500V
LC = Encapsulated
No suffix = Bulk
LG = Black Epoxy Coated
W = Waffle pack
R = RoHS
Compliant
(Tin Plating)
o
E = 200oC
Class II
LO = without any coating
None = Tin/
Lead Plating
*C0G parts only
SYFER ORDERING INFORMATION — RADIAL LEADED — STANDARD
8111M
Type No./
Size ref.
8111M
8111N
8121M
8121N
8121T
8131M
8131T
8141M
8151M
8161M
8165M
8171M
100
Voltage d.c.
Value
050 = 50V
063 = 63V
100 = 100V
200 = 200V
250 = 250V
500 = 500V
630 = 630V
1K0 = 1kV
1K2 = 1.2kV
1K5 = 1.5kV
2K0 = 2kV
2K5 = 2.5kV
3K0 = 3kV
4K0 = 4kV
5K0 = 5kV
6K0 = 6kV
8K0 = 8kV
10K = 10kV
12K = 12kV
Marking
code
(C)
(D)
(E)
(F)
(Q)
-
0102
J
C
Capacitance in
picofarads (pF)
Capacitance
tolerance
Dielectric
Rel Release
codes