0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTC2845CUHF#PBF

LTC2845CUHF#PBF

  • 厂商:

    LINEAR(凌力尔特)

  • 封装:

    QFN38

  • 描述:

    IC TXRX 3.3V MULTIPROTOCOL 38QFN

  • 数据手册
  • 价格&库存
LTC2845CUHF#PBF 数据手册
LTC2845 3.3V Software-Selectable Multiprotocol Transceiver U FEATURES ■ ■ ■ ■ ■ DESCRIPTIO The LTC®2845 is a 5-driver/5-receiver multiprotocol transceiver. The LTC2845 and LTC2846 form the core of a complete software-selectable DTE or DCE interface port that supports the RS232, RS449, EIA530, EIA530-A, V.35, V.36 or X.21 protocols. The LTC2845 operates from a 3.3V supply and supplies provided by the LTC2846. This part is available in a 36-lead SSOP and 38-lead (7mm x 5mm) QFN package. The LTC2845 and LTC2847 in QFN packages offer the smallest multiprotocol serial port available. Software-Selectable Transceiver Supports: RS232, RS449, EIA530, EIA530-A, V.35, V.36, X.21 Operates from Single 3.3V Supply with LTC2846 or a Single 5V Supply with 3.3V Logic with LTC2847 TUV Rheinland of North America Inc. Certified NET1, NET2 and TBR2 Compliant, Report No.: TBR2/050101/02 Complete DTE or DCE Port with LTC2846 or LTC2847 Available in a 36-Lead Narrow (0.209") SSOP and 38-Lead (7mm x 5mm) QFN package U APPLICATIO S ■ ■ Data Networking CSU and DSU Data Routers U ■ , LTC and LT are registered trademarks of Linear Technology Corporation. TYPICAL APPLICATIO DTE or DCE Multiprotocol Serial Interface with DB-25 Connector RL TM RI LL CTS DSR DCD DTR RTS D2 D1 RXD TXC D4 R5 21 25 R4 * D3 R2 R3 18 13 5 22 6 TXD D3 D2 D1 T T T 12 15 11 24 14 LTC2846 LTC2845 D5 SCTE RXC R1 10 8 23 20 19 4 1 R2 T T 16 3 9 R1 17 2 TXD A (103) TXD B SCTE A (113) SCTE B TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B SG (102) SHIELD (101) RTS A (105) RTS B DTR A (108) DTR B DCD A (109) DCD B DSR A (107) DSR B CTS A (106) CTS B LL A (141) RI A (125) TM A (142) RL A (140) DB-25 CONNECTOR 7 R3 *OPTIONAL 2845 TA01 sn2845 2845fs 1 LTC2845 U W W W ABSOLUTE MAXIMUM RATINGS (Note 1) Supply Voltage VCC ....................................................... –0.3V to 6.5V VIN ..................................................................... – 0.3V to 6.5V VEE ...................................................................... –10V to 0.3V VDD ..................................................................... – 0.3V to 10V Input Voltage Transmitters ........................... – 0.3V to (VCC + 0.3V) Receivers ............................................... – 18V to 18V Logic Pins .............................. – 0.3V to (VCC + 0.3V) Output Voltage Transmitters .................. (VEE – 0.3V) to (VDD + 0.3V) Receivers ................................. – 0.3V to (VIN + 0.3V) Short-Circuit Duration Transmitter Output ..................................... Indefinite Receiver Output .......................................... Indefinite VEE .................................................................. 30 sec Operating Temperature Range LTC2845C ............................................... 0°C to 70°C LTC2845I ........................................... – 40°C to 85°C Storage Temperature Range ................ – 65°C to 150°C Lead Temperature (Soldering, 10 sec)................. 300°C W U U PACKAGE/ORDER INFORMATION 34 D1 A D2 4 D4 9 R1 R4 10 R2 M0 11 M1 12 R3 M2 13 DCE/DTE 14 D4 R4 D4ENB 15 D4 6 28 R2 A R4 7 27 R2 B M0 8 24 R3 A 26 R3 A M1 9 23 R3 B 25 R3 B M2 10 22 D4 A 24 D4 A NC 11 21 R4 A 23 R4 A DCE/DTE 12 22 R5 A R5 R5 17 D5 26 R2 A 39 25 R2 B UHF PART MARKING 20 R5 A 2845 2845I 13 14 15 16 17 18 19 21 D5 A R4EN 16 D5 18 27 D3/R1 B 29 D3/R1 B LTC2845CUHF LTC2845IUHF 20 VIN 19 VCC D5 A 8 28 D3/R1 A R3 5 VIN R3 R2 4 30 D3/R1 A 31 D2 B D3 29 D2 B VCC 7 30 D2 A R1 3 D5 R2 D2 31 D1 B D3 2 R5 6 32 D2 A LTC2845CG LTC2845IG R4EN 5 R1 33 D1 B 38 37 36 35 34 33 32 D2 1 D4ENB D3 D1 D1 A 35 GND 3 GND 2 D1 ORDER PART NUMBER TOP VIEW VEE VDD ORDER PART NUMBER VEE 36 VEE VCC 1 VDD VCC D1 TOP VIEW UHF PACKAGE 38-LEAD (7mm × 5mm) PLASTIC QFN TJMAX = 125°C, θJA = 34°C/ W EXPOSED PAD IS VEE (PIN 39) MUST BE SOLDERED TO PCB G PACKAGE 36-LEAD PLASTIC SSOP TJMAX = 125°C, θJA = 90°C/ W, θJC = 35°C/ W Consult LTC Marketing for parts specified with wider operating temperature ranges. ELECTRICAL CHARACTERISTICS The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 (Notes 2, 3) SYMBOL PARAMETER CONDITIONS VCC Supply Current (DCE Mode, All Digital Pins = GND or VIN) RS530, RS530-A, X.21 Modes, No Load RS530, RS530-A, X.21 Modes, Full Load V.28 Mode, No Load V.28 Mode, Full Load No-Cable Mode MIN TYP MAX UNITS 2.7 110 1 1 700 150 3 3 1400 mA mA mA mA µA Supplies ICC ● ● ● ● sn2845 2845fs 2 LTC2845 ELECTRICAL CHARACTERISTICS The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 (Notes 2, 3) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS IEE VEE Supply Current (DCE Mode, All Digital Pins = GND or VIN) RS530, RS530-A, X.21 Modes, No Load RS530, X.21 Modes, Full Load RS530-A, Full Load V.28 Mode, No Load V.28 Mode, Full Load No-Cable Mode 2 23 34 1 12 10 mA mA mA mA mA µA IDD VDD Supply Current (DCE Mode, All Digital Pins = GND or VIN) RS530, RS530-A, X.21 Modes, No Load RS530, RS530-A, X.21 Modes, Full Load V.28 Mode, No Load V.28 Mode, Full Load No-Cable Mode 0.3 0.3 1 13.5 10 mA mA mA mA µA IVIN VIN Supply Current (DCE Mode, All Digital Pins = GND or VIN) All Modes Except No-Cable Mode 650 µA PD Internal Power Dissipation (DCE Mode, All Digital Pins = GND or VIN) RS530, RS530-A, X.21 Modes, Full Load V.28 Mode, Full Load 240 64 mW mW Logic Inputs and Outputs VIH Logic Input High Voltage VIL Logic Input Low Voltage VCC = 5V R4EN when VCC = 3.3V ● IIN Logic Input Current D1, D2, D3, D4, D5 M0, M1, M2, DCE, D4ENB, R4EN = GND M0, M1, M2, DCE, D4ENB, R4EN = VIN ● ● ● –30 –75 2.7 3 ● VOH Output High Voltage IO = –3mA ● VOL Output Low Voltage IO = 1.6mA ● IOSR Output Short-Circuit Current 0V ≤ VO ≤ VIN ● IOZR Three-State Output Current M0 = M1 = M2 = VIN, VO = GND M0 = M1 = M2 = VIN, VO = VIN ● ● ● 2 –30 V 0.8 0.5 V V ±10 –120 ±10 µA µA µA V 0.2 0.4 V ±50 mA –85 –160 ±10 µA µA V.11 Driver VODO Open Circuit Differential Output Voltage RL = 1.95k (Figure 1) VODL Loaded Differential Output Voltage RL = 50Ω (Figure 1) ● 0.5VODO ±2 ±5 V 0.67VODO V V 0.2 V ∆VOD Change in Magnitude of Differential Output Voltage RL = 50Ω (Figure 1) ● VOC Common Mode Output Voltage RL = 50Ω (Figure 1) ● 3 V ∆VOC Change in Magnitude of Common Mode Output Voltage RL = 50Ω (Figure 1) ● 0.2 V ISS Short-Circuit Current VOUT = GND IOZ Output Leakage Current –0.25V ≤ VO ≤ 0.25V, Power Off or No-Cable Mode or Driver Disabled ● tr, tf Rise or Fall Time LTC2845C (Figures 2, 5) LTC2845I (Figures 2, 5) ● ● tPLH Input to Output LTC2845C (Figures 2, 5) LTC28451 (Figures 2, 5) tPHL Input to Output ∆t tSKEW ±150 mA ±1 ±100 µA 2 2 15 15 25 35 ns ns ● ● 20 20 40 40 65 75 ns ns LTC2845C (Figures 2, 5) LTC2845I (Figures 2, 5) ● ● 20 20 40 40 65 75 ns ns Input to Output Difference, tPLH – tPHL LTC2845C (Figures 2, 5) LTC2845I (Figures 2, 5) ● ● 0 0 3 3 12 17 ns ns Output to Output Skew (Figures 2, 5) 3 ns sn2845 2845fs 3 LTC2845 ELECTRICAL CHARACTERISTICS The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 (Notes 2, 3) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS V.11 Receiver VTH Input Threshold Voltage –7V ≤ VCM ≤ 7V ● ∆VTH Input Hysteresis –7V ≤ VCM ≤ 7V ● IIN Input Current (A, B) –10V ≤ VA,B ≤ 10V ● RIN Input Impedance –10V ≤ VA,B ≤ 10V ● tr, tf Rise or Fall Time (Figures 2, 6) tPLH Input to Output LTC2845C CL = 50pF (Figures 2, 6) LTC2845I CL = 50pF (Figures 2, 6) ● ● 50 50 80 90 ns ns tPHL Input to Output LTC2845C CL = 50pF (Figures 2, 6) LTC2845I CL = 50pF (Figures 2, 6) ● ● 50 50 80 90 ns ns ∆t Input to Output Difference, tPLH – tPHL LTC2845C CL = 50pF (Figures 2, 6) LTC2845I CL = 50pF (Figures 2, 6) ● ● 4 4 16 21 ns ns –0.2 15 15 0 0 0.2 V 40 mV ±0.66 mA 30 kΩ 15 ns V.10 Driver ±4 ±6 VO Output Voltage Open Circuit, RL = 3.9k ● VT Output Voltage RL = 450Ω (Figure 3) RL = 450Ω (Figure 3) ● V ISS Short-Circuit Current VO = GND IOZ Output Leakage Current –0.25V ≤ VO ≤ 0.25V, Power Off or No-Cable Mode or Driver Disabled tr, tf Rise or Fall Time RL = 450Ω, CL = 100pF (Figures 3, 7) 2 µs tPLH Input to Output RL = 450Ω, CL = 100pF (Figures 3, 7) 1 µs tPHL Input to Output RL = 450Ω, CL = 100pF (Figures 3, 7) 1 µs ±3.6 0.9VO V ±0.1 ● ±150 mA ±100 µA V.10 Receiver VTH Receiver Input Threshold Voltage ● ∆VTH Receiver Input Hysteresis ● IIN Receiver Input Current –10V ≤ VA ≤ 10V ● RIN Receiver Input Impedance –10V ≤ VA ≤ 10V ● tr, tf Rise or Fall Time CL = 50pF (Figures 4, 8) tPLH Input to Output tPHL Input to Output ∆t –0.25 0.25 25 15 V 50 mV ±0.66 mA 30 kΩ 15 ns CL = 50pF (Figures 4, 8) 55 ns CL = 50pF (Figures 4, 8) 109 ns Input to Output Difference, tPLH – tPHL CL = 50pF (Figures 4, 8) 60 ns VO Output Voltage Open Circuit RL = 3k (Figure 3) ● ● ISS Short-Circuit Current VO = GND ● IOZ Output Leakage Current –0.25V ≤ VO ≤ 0.25V, Power Off or No-Cable Mode or Driver Disabled ● SR Slew Rate RL = 3k, CL = 2500pF (Figures 3, 7) ● tPLH Input to Output RL = 3k, CL = 2500pF (Figures 3, 7) ● tPHL Input to Output RL = 3k, CL = 2500pF (Figures 3, 7) ● V.28 Driver ±5 ±8.5 ±1 4 ±10 V V ±150 mA ±100 µA 30 V/µs 1.3 2.5 µs 1.3 2.5 µs sn2845 2845fs 4 LTC2845 ELECTRICAL CHARACTERISTICS The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 (Notes 2, 3) SYMBOL PARAMETER V.28 Receiver VTHL Input Low Threshold Voltage VTLH Input High Threshold Voltage ∆VTH Receiver Input Hysterisis RIN Receiver Input Impedance tr, tf Rise or Fall Time tPLH Input to Output tPHL Input to Output CONDITIONS MIN TYP ● ● Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: All currents into device pins are positive; all currents out of device are negative. All voltages are referenced to device ground unless otherwise specified. UNITS 0.8 V V V kΩ ns ns ns 2 ● –15V ≤ VA ≤ 15V CL = 50pF (Figures 4, 8) CL = 50pF (Figures 4, 8) CL = 50pF (Figures 4, 8) MAX 3 ● ● ● 0.1 5 15 60 150 0.3 7 100 500 Note 3: All typicals are given for VCC = 5V, VIN = 3.3V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 and TA = 25°C. U W TYPICAL PERFOR A CE CHARACTERISTICS RS530-A in DCE Mode (Three V.10 Drivers with Full Load) IEE vs Data Rate RS530, X.21 in DCE Mode (Three V.11, Two V.10 Drivers with Full Load) ICC vs Data Rate V.28 in DCE Mode (Five V.28 Drivers with Full Load) IDD vs Data Rate 34 140 16 TA = 25°C TA = 25°C 135 130 34 15 30 14 13 120 IDD (mA) IEE (mA) ICC (mA) 28 125 26 24 115 20 105 18 125 100 1000 DATA RATE (kBd) 2845 G01 120 IEE (mA) ICC (mA) 115 110 105 100 20 60 0 40 TEMPERATURE (°C) 80 100 2845 G04 7 30 40 50 60 70 80 100 20 DATA RATE (kBd) 2845 G02 RS530-A in DCE Mode (Three V.10 Drivers with Full Load) IEE vs Temperature RS530, X.21 in DCE Mode (Three V.11, Two V.10 Drivers with Full Load) ICC vs Temperature 95 –40 –20 8 10 10000 11 9 34.6 13.9 34.4 13.8 34.2 13.7 34.0 13.6 33.8 13.4 33.4 13.3 33.2 13.2 0 20 40 60 TEMPERATURE (°C) 20 30 40 50 60 70 80 100 2845 G03 DATA RATE (kBd) 13.5 33.6 33.0 –40 –20 10 V.28 in DCE Mode (Five V.28 Drivers with Full Load) IDD vs Temperature IDD (mA) 10 12 10 22 110 TA = 25°C 80 100 2845 G05 13.1 –40 –20 0 20 40 60 TEMPERATURE (°C) 80 100 2845 G06 sn2845 2845fs 5 LTC2845 U U U PIN FUNCTIONS (G-36/QFN-38 Packages) VCC (Pins 1, 19/Pins 17, 36): Positive Supply for the Transceivers. Connect to VCC Pin 8 on LTC2846 or to 5V supply. Connect a 1µF capacitor to ground. VDD (Pin 2/Pin 37): Positive Supply Voltage for V.28. Connect to VDD Pin 7 on LTC2846 or 8V supply. Connect a 1µF capacitor to ground. D1 (Pin 3/Pin 38): TTL Level Driver 1 Input. D2 (Pin 4/Pin 1): TTL Level Driver 2 Input. D3 (Pin 5/Pin 2): TTL Level Driver 3 Input. R1 (Pin 6/Pin 3): CMOS Level Receiver 1 Output. Receiver outputs have a weak pull up to VIN when high impedance. D5 (Pin 18/Pin 16): TTL Level Driver 5 Input. VIN (Pin 20/Pin 18): Positive Supply for the Receiver Outputs. 3V ≤ VIN ≤ 3.6V. Connect a 1µF capacitor to ground. D5 A (Pin 21/Pin 19): Driver 5 Inverting Output. R5 A (Pin 22/Pin 20): Receiver 5 Inverting Input. R4 A (Pin 23/Pin 21): Receiver 4 Inverting Input. D4 A (Pin 24/Pin 22): Driver 4 Inverting Input. R3 B (Pin 25/Pin 23): Receiver 3 Noninverting Input. R3 A (Pin 26/Pin 24): Receiver 3 Inverting Input. R2 (Pin 7/Pin 4): CMOS Level Receiver 2 Output. R2 B (Pin 27/Pin 25): Receiver 2 Noninverting Input. R3 (Pin 8/Pin 5): CMOS Level Receiver 3 Output. R2 A (Pin 28/Pin 26): Receiver 2 Inverting Input. D4 (Pin 9/Pin 6): TTL Level Driver 4 Input. D3/R1 B (Pin 29/Pin 27): Receiver 1 Noninverting Input and Driver 3 Noninverting Output. R4 (Pin 10/Pin 7): CMOS Level Receiver 4 Output. M0 (Pin 11/Pin 8): TTL Level Mode Select Input 0. Mode select inputs pull up to VIN. M1 (Pin 12/Pin 9): TTL Level Mode Select Input 1. M2 (Pin 13/Pin 10): TTL Level Mode Select Input 2. DCE/DTE (Pin 14/Pin 12): TTL Level Mode Select Input. Logic high enables Driver 3. Logic low enables Receiver 1. D4ENB (Pin 15/Pin 13): TTL Level Enable Input. Logic low enables Driver 4. Pulls up to VIN. D3/R1 A (Pin 30/Pin 28): Receiver 1 Inverting Input and Driver 3 Inverting Output. D2 B (Pin 31/Pin 29): Driver 2 Noninverting Output. D2 A (Pin 32/Pin 30): Driver 2 Inverting Output. D1 B (Pin 33/Pin 31): Driver 1 Noninverting Output. D1 A (Pin 34/Pin 32): Driver 1 Inverting Output. GND (Pin 35/Pin 33): Ground. R4EN (Pin 16/Pin 14): TTL Level Enable Input. Logic high enables Receiver 4. Pulls up to VIN. VEE (Pin 36/Pins 34, 35): Negative Supply Voltage. Connect to VEE Pin␣ 31 on LTC2846 or to –7V supply. Connect a 1µF capacitor to ground. R5 (Pin 17/Pin 15): CMOS Level Receiver 5 Output. EXPOSED Pad VEE (Pin 39): Must be Soldered to PCB. sn2845 2845fs 6 LTC2845 W BLOCK DIAGRA TEST CIRCUITS A VCC 1 36 VEE VDD 2 35 GND RL 34 D1A D1 3 VOD D1 32 D2A D2 4 D2 VOC RL 33 D1B B 2845 F01 Figure 1. V.11 Driver Test Circuit 31 D2B 30 D3/R1 A D3 5 D3 10k 20k 6k S3 10k 20k 29 D3/R1 B R1 6 R1 B RL 100Ω A CL 100pF B CL 100pF A R 28 R2A 20k CL 6k 10k R2 7 S3 R2 2845 F02 Figure 2. V.11 Driver/Receiver AC Test Circuit 10k 27 R2B 20k 26 R3A 20k 6k 10k R3 8 S3 R3 D 10k A 25 R3B D4 9 D4 RL CL 20k 24 D4A 23 R4A 10k R4 10 20k 2845 F03 6k Figure 3. V.10/V.28 Driver Test Circuit R4 S3 DCE/DTE 14 D4ENB 15 22 R5A R4EN 16 10k R5 17 20k 6k R5 S3 D D5 18 D5 21 D5A A A R CL M0 11 M1 12 2845 F04 MODE SELECTION LOGIC Figure 4. V.10/V.28 Receiver Test Circuit M2 13 20 VIN 19 VCC 2845 BD sn2845 2845fs 7 LTC2845 U W ODE SELECTIO MODE NAME Not Used (Default V.11) RS530A RS530 X.21 V.35 RS449/V.36 V.28/RS232 No Cable Not Used (Default V.11) RS530A RS530 X.21 V.35 RS449/V.36 V.28/RS232 No Cable MODE NAME Not Used (Default V.11) RS530A RS530 X.21 V.35 RS449/V.36 V.28/RS232 No Cable Not Used (Default V.11) RS530A RS530 X.21 V.35 RS449/V.36 V.28/RS232 No Cable M2 M1 M0 DCE /DTE (Note 1) (Note 4) (Note 1) D1, D2, D3 D4, D5 D1 D2 (Note 4) D4A D5A D3 A B A B A B 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 TTL TTL TTL TTL TTL TTL TTL X X X X X X X X X V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.11 Z V.11 Z Z V.11 V.10 V.11 V.11 V.28 V.11 V.28 Z V.11 Z V.11 V.11 Z V.11 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z V.10 V.10 V.10 V.10 V.28 V.10 V.28 Z 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 TTL TTL TTL TTL TTL TTL TTL X TTL TTL TTL TTL TTL TTL TTL X V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.11 Z V.11 Z Z V.11 V.10 V.11 V.11 V.28 V.11 V.28 Z V.11 Z V.11 V.11 Z V.11 Z Z V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.11 Z V.11 Z Z V.10 V.10 V.10 V.10 V.28 V.10 V.28 Z (Note 2) R1 A B (Note 2) R2 A B (Note 2) R3 A B (Note 2) (Note 3) (Note 5) (Note 3) (Note 5) R4A R1 R2, R3 R5A R4, R5 M2 M1 M0 DCE /DTE 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 V.11 V.11 V.11 V.11 V.28 V.11 V.28 30k V.11 V.11 V.11 V.11 30k V.11 30k 30k V.11 V.10 V.11 V.11 V.28 V.11 V.28 30k V.11 30k V.11 V.11 30k V.11 30k 30k V.11 V.11 V.11 V.11 V.28 V.11 V.28 30k V.11 V.11 V.11 V.11 30k V.11 30k 30k V.10 V.10 V.10 V.10 V.28 V.10 V.28 30k CMOS CMOS CMOS CMOS CMOS CMOS CMOS Z CMOS CMOS CMOS CMOS CMOS CMOS CMOS Z 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 30k 30k 30k 30k 30k 30k 30k 30k 30k 30k 30k 30k 30k 30k 30k 30k V.11 V.10 V.11 V.11 V.28 V.11 V.28 30k V.11 30k V.11 V.11 30k V.11 30k 30k V.11 V.11 V.11 V.11 V.28 V.11 V.28 30k V.11 V.11 V.11 V.11 30k V.11 30k 30k V.10 V.10 V.10 V.10 V.28 V.10 V.28 30k Z Z Z Z Z Z Z Z CMOS CMOS CMOS CMOS CMOS CMOS CMOS Z Note 1: Driver inputs are TTL level compatible. Note 2: Unused receiver inputs are terminated with 30k to ground. Note 3: Receiver outputs are CMOS level compatible and have a weak pull-up to VIN when Z. Note 4: Driver 4 is enabled by D4ENB=0 (Pin 15). Note 5: Receiver 4 is enabled by R4EN=1 (Pin 16). sn2845 2845fs 8 LTC2845 U W W SWITCHI G TI E WAVEFOR S 3V f = 1MHz : t r ≤ 10ns : t f ≤ 10ns 1.5V D 0V 1.5V t PHL t PLH VO B–A –VO 90% 50% 10% 90% VDIFF = V(B) – V(A) 50% 1/2 VO tr 10% tf A VO B t SKEW t SKEW 2845 F05 Figure 5. V.11 Driver Propagation Delays VOD2 B–A –VOD2 f = 1MHz : t r ≤ 10ns : t f ≤ 10ns 0V INPUT t PLH VOH R VOL 0V t PHL OUTPUT 1.65V 1.65V 2845 F06 Figure 6. V.11 Receiver Propagation Delays 3V 1.5V 1.5V D 0V VO t PHL t PLH 3V 3V 0V A 0V –3V –VO 2845 F07 –3V tf tr Figure 7. V.10, V.28 Driver Propagation Delays VIH RECEIVER THRESHOLD A VIL VOH R VOL t PHL RECEIVER THRESHOLD t PLH 1.65V 1.65V 2845 F08 Figure 8. V.10, V.28 Receiver Propagation Delays sn2845 2845fs 9 LTC2845 U U W U APPLICATIONS INFORMATION A complete DCE-to-DTE interface operating in EIA530 mode is shown in Figure 9. The LTC2846 of each port is used to generate the clock and data signals. The LTC2845 is used to generate the control signals along with LL (Local Loop-Back), RL (Remote Loop-Back), TM (Test Mode) and RI (Ring Indicate). Cable termination is used only for the clock and data signals because they must support V.11 cable termination. The control signals do not need any external resistors. Overview The LTC2846/LTC2845 or LTC2847/LTC2845 form the core of a complete software-selectable DTE or DCE interface port that supports the RS232, RS449, EIA530, EIA530A, V.35, V.36 or X.21 protocols. Cable termination is provided on-chip, eliminating the need for discrete designs. SERIAL CONTROLLER DTE DCE LTC2846 LTC2846 SERIAL CONTROLLER TXD D1 TXD 103Ω R3 TXD SCTE D2 SCTE 103Ω R2 SCTE R1 D3 TXC R1 103Ω TXC D3 TXC RXC R2 103Ω RXC D2 RXC RXD R3 103Ω RXD D1 RXD LTC2845 LTC2845 RTS D1 RTS R3 RTS DTR D2 DTR R2 DTR D3 R1 DCD R1 DCD D3 DCD DSR R2 DSR D2 DSR CTS R3 CTS D1 CTS LL TM RI RL LL D4 R4 TM R4 R5 D5 RI RL D4 D5 R5 LL TM RI RL 2845 F09 Figure 9. Complete Multiprotocol Interface in EIA530 Mode sn2845 2845fs 10 LTC2845 U W U U APPLICATIONS INFORMATION Mode Selection Cable Termination The interface protocol is selected using the mode select pins M0, M1 and M2 (see the Mode Selection table). Traditional implementations have included switching resistors with expensive relays, or required the user to change termination modules every time the interface standard has changed. Custom cables have been used with the termination in the cable head or separate terminations are built on the board and a custom cable routes the signals to the appropriate termination. Switching the termination with FETs is difficult because the FETs must remain off even though the signal voltage is beyond the supply voltage for the FET drivers or the power is off. For example, if the port is configured as a V.35 interface, the mode selection pins should be M2 = 1, M1 = 0, M0 = 0. For the control signals, the drivers and receivers will operate in V.28 (RS232) electrical mode. For the clock and data signals, the drivers and receivers will operate in V.35 electrical mode. The DCE/DTE pin will configure the port for DCE mode when high, and DTE when low. The interface protocol may be selected simply by plugging the appropriate interface cable into the connector. The mode pins are routed to the connector and are left unconnected (1) or wired to ground (0) in the cable as shown in Figure 10. Using the LTC2846/LTC2845 solves the cable termination switching problem. Via software control, appropriate termination for the V.10 (RS423), V.11 (RS422), V.28 (RS232) and V.35 electrical protocols is chosen. The internal pull-up current sources will ensure a binary 1 when a pin is left unconnected and that the LTC2846/ LTC2845 enters the no-cable mode when the cable is removed. In the no-cable mode the LTC2846/LTC2845 supply current drops to less than 1000µA and all driver outputs are forced into a high impedance state. V.10 (RS423) Interface A typical V.10 unbalanced interface is shown in Figure 11. A V.10 single-ended generator output A with ground C is connected to a differential receiver with inputs A' connected to A, and input C' connected to the signal return ground C. Usually, no cable termination is required for V.10 interfaces, but the receiver inputs must be compliant with the impedance curve shown in Figure 12. The mode selection may also be accomplished by using jumpers to connect the mode pins to ground or VIN. CONNECTOR (DATA) M0 LTC2846 M1 M2 NC DCE/DTE NC DCE/DTE VIN CABLE M2 M1 LTC2845 M0 D4ENB 3.3k R4EN (DATA) 2845 F10 Figure 10. Single Port DCE V.35 Mode Selection in the Cable sn2845 2845fs 11 LTC2845 U U W U APPLICATIONS INFORMATION The V.10 receiver configuration in the LTC2845 is shown in Figure 13. In V.10 mode switch S3 inside the LTC2845 is turned off. The noninverting input is disconnected inside the LTC2845 receiver and connected to ground.The cable termination is then the 30k input impedance to ground of the LTC2845 V.10 receiver. BALANCED INTERCONNECTING CABLE GENERATOR LOAD CABLE TERMINATION A A' C C' RECEIVER 2845 F11 Figure 11. Typical V.10 Interface IZ 3.25mA V.11 (RS422) Interface A typical V.11 balanced interface is shown in Figure 14. A V.11 differential generator with outputs A and B with ground C is connected to a differential receiver with ground C', inputs A' connected to A, B' connected to B. The V.11 interface has a differential termination at the receiver end that has a minimum value of 100Ω. The termination resistor is optional in the V.11 specification, but for the high speed clock and data lines, the termination is required to prevent reflections from corrupting the data. The receiver inputs must also be compliant with the impedance curve shown in Figure 12. In V.11 mode, all switches are off except S1 of the LTC2846’s receivers which connects a 103Ω differential termination impedance to the cable as shown in Figure␣ 151. The LTC2845 only handles control signals, so no termination other than its V.11 receivers’ 30k input impedance is necessary. BALANCED INTERCONNECTING CABLE GENERATOR LOAD CABLE TERMINATION –3V –10V A A' B B' C C' RECEIVER VZ 3V 100Ω MIN 10V 2845 F14 Figure 14. Typical V.11 Interface 2845 F12 –3.25mA Figure 12. V.10 Receiver Input Impedance A' LTC2846 R1 51.5Ω A' R8 6k LTC2845 R8 6k R6 10k R5 20k S1 S2 R6 10k S3 R4 20k R3 124Ω RECEIVER S3 RECEIVER B' B' R5 20k R7 10k C' R2 51.5Ω R4 20k R7 10k GND 2845 F15 Figure 15. V.11 Receiver Configuration C' GND 2845 F13 Figure 13. V.10 Receiver Configuration 1Actually, there is no switch S1 in receivers R2 and R3. However, for simplicity, all termination networks on the LTC2846 can be treated identically if it is assumed that an S1 switch exists and is always closed on the R2 and R3 receivers. sn2845 2845fs 12 LTC2845 U U W U APPLICATIONS INFORMATION V.28 (RS232) Interface A typical V.28 unbalanced interface is shown in Figure 16. A V.28 single-ended generator output A with ground C is connected to a single-ended receiver with input A' connected to A, ground C' connected via the signal return ground C. In V.28 mode, all switches are off except S3 inside the LTC2846/LTC2845 which connects a 6k (R8) impedance to ground in parallel with 20k (R5) plus 10k (R6) for a combined impedance of 5k as shown in Figure 17. The noninverting input is disconnected inside the LTC2846/ LTC2845 receiver and connected to a TTL level reference voltage for a 1.4V receiver trip point. V.35 Interface A typical V.35 balanced interface is shown in Figure 18. A V.35 differential generator with outputs A and B with ground C is connected to a differential receiver with ground C', inputs A' connected to A, B' connected to B. The V.35 interface requires a T or delta network termination at the receiver end and the generator end. The receiver differential impedance measured at the connector must be 100Ω␣ ±10Ω, and the impedance between shorted terminals (A' and B') and ground C' must be 150Ω ±15Ω. In V.35 mode, both switches S1 and S2 inside the LTC2846 are on, connecting the T network impedance as shown in Figure 19. The 30k input impedance of the receiver is placed in parallel with the T network termination, but does not affect the overall input impedance significantly. The generator differential impedance must be 50Ω to 150Ω and the impedance between shorted terminals (A and B) and ground C must be 150Ω ±15Ω. For the generator termination, switches S1 and S2 are both on as shown in Figure 20. BALANCED INTERCONNECTING CABLE GENERATOR BALANCED INTERCONNECTING CABLE GENERATOR LOAD CABLE TERMINATION A' A 50Ω 125Ω 50Ω 125Ω 50Ω C' C RECEIVER RECEIVER A' A LOAD CABLE TERMINATION 50Ω 2845 F16 B B' C C' 2845 F18 Figure 16. Typical V.28 Interface A' LTC2845 R8 6k Figure 18. Typical V.35 Interface A' R5 20k R6 10k S3 LTC2846 R1 51.5Ω R6 10k RECEIVER S1 S2 R4 20k B' C' R8 6k R5 20k R7 10k B' GND C' R3 124Ω RECEIVER S3 R2 51.5Ω R4 20k R7 10k GND 2845 F19 2845 F17 Figure 17. V.28 Receiver Configuration Figure 19. V.35 Receiver Configuration sn2845 2845fs 13 LTC2845 U U W U APPLICATIONS INFORMATION A LTC2846 51.5Ω V.35 DRIVER 124Ω S1 S2 51.5Ω B C 2845 F20 Figure 20. V.35 Driver No-Cable Mode The no-cable mode (M0 = M1 = M2 = D4ENB = 1, R4EN = 0) is intended for the case when the cable is disconnected from the connector. The bias circuitry, drivers and receivers are turned off, the driver outputs are forced into a high impedance state, and the supply current drops to less than 700µA. LTC2846 and LTC2847 Supplies The LTC2846 and LTC2847 use an internal capacitive charge pump to generate VDD and VEE as shown in Figure 21. A voltage doubler generates about 8V on VDD and a voltage inverter generates about – 7.5V for VEE. Three 1µF surface mounted tantalum or ceramic capacitors are required for C1, C2 and C3. The VEE capacitor C4 should be a minimum of 3.3µF. All capacitors are 16V and should be placed as close as possible to the LTC2846 to reduce EMI. The LTC2846 has an internal boost switching regulator which generates a 5V output from the 3.3V supply as shown in Figure 22. The 5V VCC supplies its internal charge pump and transceivers as well as its companion chip. The LTC2847 requires an external 5V supply. Receiver Fail-Safe All LTC2846/LTC2845 receivers feature fail-safe operation in all modes. If the receiver inputs are left floating or shorted together by a termination resistor, the receiver output will always be forced to a logic high. DTE vs DCE Operation The DCE/DTE pin acts as an enable for Driver 3/Receiver␣ 1 in the LTC2846, and Driver 3/Receiver 1 in the LTC2845. The LTC2846/LTC2845 can be configured for either DTE or DCE operation in one of two ways: a dedicated DTE or DCE port with a connector of appropriate gender, or a port with one connector that can be configured for DTE or DCE operation by rerouting the signals to the LTC2846/LTC2845 using a dedicated DTE cable or dedicated DCE cable. A dedicated DTE port using a DB-25 male connector is shown in Figure 23. The interface mode is selected by logic outputs from the controller or from jumpers to either VIN or GND on the mode select pins. A dedicated DCE port using a DB-25 female connector is shown in Figure 24. A port with one DB-25 connector, can be configured for either DTE or DCE operation is shown in Figure 25. The configuration requires separate cables for proper signal routing in DTE or DCE operation. For example, in DTE mode, the TXD signal is routed to Pins 2 and 14 via Driver␣ 1 in the LTC2846. In DCE mode, Driver 1 now routes the RXD signal to Pins 2 and 14. Compliance Testing The LTC2846/LTC2845 chipset has been tested by TUV Rheinland of North America Inc. and passed the NET1, NET2 and TBR2 requirements. Copies of the test report are available from LTC or TUV Rheinland of North America Inc. The title of the report is Test Report No.TBR2/050101/02 The address of TUV Rheinland of North America Inc. is: TUV Rheinland of North America Inc. 1775, Old Highway 8 NW, Suite 107 St. Paul, MN 55112 Tel. (651) 639-0775 Fax (651) 639-0873 L1 5.6µH VIN 3.3V C3 1µF C1 1µF VDD C2 + C1+ C2 – C1– LTC2846 OR LTC2847 C2 1µF SHDN VEE + VCC 5V C6 10µF C4 3.3µF D1 SW BOOST SWITCHING REGULATOR SHDN FB GND VIN VCC 5V 480mA R1 13k C5 10µF R2 4.3k GND C1,C2: TAIYO YUDEN X5R JMK316BJ106ML D1: ON SEMICONDUCTOR MBR0520 L1: SUMIDA CR43-5R6 C5 10µF 2845 F22 2845 F21 Figure 21. Charge Pump Figure 22. LTC2846 Boost Switching Regulator sn2845 2845fs 14 LTC2845 U TYPICAL APPLICATIONS L1 5.6µH VIN 3.3V C6 10µF SHDN VDD 8V C3 1µF D1 MBR0520 VCC 5V R1 13k BOOST SWITCHING REGULATOR R2 4.3k C5 10µF C2 1µF C1 1µF CHARGE PUMP VCC 5V VEE –7.5V C4 3.3µF + LTC2846 2 TXD D1 T SCTE D2 T D3 11 R1 12 17 T R2 RXC 9 3 RXD SCTE B T 15 TXC TXD A (103) 14 TXD B 24 SCTE A (113) T R3 16 M0 VIN 3.3V M1 7 TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B SG M2 1 DCE/DTE C7 1µF C8 1µF VCC VEE VDD GND DB-25 MALE CONNECTOR C9 1µF 4 RTS D1 19 20 D2 DTR SHIELD 23 RTS A (105) RTS B DTR A (108) DTR B D3 LTC2845 8 DCD R1 10 DSR R2 22 6 5 R3 CTS 13 18 D4 LL RI R4 TM R5 * 25 21 D5 RL M0 M0 VIN M1 M1 D4ENB M2 M2 DCE/DTE R4EN C10 1µF NC DCD A (109) DCD B DSR A (107) DSR B CTS A (106) CTS B LL (141) RI (125) TM (142) RL (140) VIN 3.3V *OPTIONAL 2845 F23 Figure 23. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector sn2845 2845fs 15 LTC2845 U TYPICAL APPLICATIONS L1 5.6µH VIN 3.3V C6 10µF SHDN VDD 8V C3 1µF D1 MBR0520 VCC 5V R1 13k BOOST SWITCHING REGULATOR R2 4.3k C5 10µF C2 1µF C1 1µF CHARGE PUMP VCC 5V VEE –7.5V C4 3.3µF + LTC2846 2 RXD D1 T RXC D2 T D3 11 R1 12 24 T R2 SCTE 11 2 TXD RXC B T 15 TXC RXD A (104) 14 RXD B 24 RXC A (115)B T R3 14 M0 VIN 3.3V M1 7 TXC A (114) TXC B SCTE A (113) SCTE B TXD A (103) TXD B SG (102) M2 NC C7 1µF C8 1µF 1 DCE/DTE VCC VEE VDD GND DB-25 FEMALE CONNECTOR C9 1µF 5 CTS D1 13 6 D2 DSR SHIELD (101) 22 CTS A (106) CTS B DSR A (107) DSR B D3 LTC2845 DCD R1 DTR R2 8 10 20 23 4 R3 RTS 19 * D4 RI LL R4 RL R5 18 21 25 D5 TM M0 M0 VIN M1 M1 D4ENB M2 M2 NC DCE/DTE R4EN C10 1µF DCD A (109) DCD B DTR A (108) DTR B RTS A (105) RTS B RI (125) LL (141) RL (140) TM (142) VIN 3.3V NC *OPTIONAL 2845 F24 Figure 24. Controller-Selectable DCE Port with DB-25 Connector sn2845 2845fs 16 LTC2845 U TYPICAL APPLICATIONS L1 5.6µH VIN 3.3V C6 10µF SHDN VDD 8V C3 1µF D1 MBR0520 VCC 5V R1 13k BOOST SWITCHING REGULATOR R2 4.3k C5 10µF C2 1µF C1 1µF CHARGE PUMP VCC 5V VEE –7.5V C4 3.3µF + DTE LTC2846 DTE_TXD/DCE_RXD D1 2 T 14 24 DTE_SCTE/DCE_RXC D2 T D3 11 R1 12 17 T R2 DTE_RXC/DCE_SCTE 9 3 DTE_RXD/DCE_TXD RXD A TXD B RXD B SCTE A RXC A SCTE B RXC B TXC A TXC A T 15 DTE_TXC/DCE_TXC DCE TXD A T R3 16 M0 VIN 3.3V M1 7 TXC B TXC B RXC A SCTE A RXC B SCTE B RXD A TXD A RXD B TXD B SG M2 1 DCE/DTE C7 1µF C8 1µF VCC VEE VDD GND DB-25 CONNECTOR C9 1µF 4 DTE_RTS/DCE_CTS D1 19 20 D2 DTE_DTR/DCE_DSR SHIELD 23 RTS A CTS A RTS B CTS B DTR A DSR A DTR B DSR B DCD A DCD B DCD A DCD B DSR A DTR A DSR B DTR B CTS A RTS A CTS B RTS B D3 LTC2845 8 DTE_DCD/DCE_DCD R1 10 DTE_DSR/DCE_DTR R2 22 6 5 R3 DTE_CTS/DCE_RTS 13 18 D4 DTE_LL/DCE_RI DTE_RI/DCE_LL R4 DTE_TM/DCE_RL R5 * 25 21 D5 DTE_RL/DCE_TM M0 M0 VIN M1 M1 D4ENB M2 M2 DCE/DTE DCE/DTE R4EN C10 1µF NC LL RI RI LL TM RL RL TM VIN 3.3V *OPTIONAL 2845 F25 Figure 25. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector sn2845 2845fs 17 LTC2845 U PACKAGE DESCRIPTION G Package 36-Lead Plastic SSOP (5.3mm) (Reference LTC DWG # 05-08-1640) 12.50 – 13.10* (.492 – .516) 1.25 ±0.12 7.8 – 8.2 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 5.3 – 5.7 7.40 – 8.20 (.291 – .323) 0.42 ±0.03 0.65 BSC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 RECOMMENDED SOLDER PAD LAYOUT 5.00 – 5.60** (.197 – .221) 2.0 (.079) 0° – 8° 0.09 – 0.25 (.0035 – .010) 0.55 – 0.95 (.022 – .037) 0.65 (.0256) BSC 0.22 – 0.38 (.009 – .015) 0.05 (.002) G36 SSOP 0802 NOTE: 1. CONTROLLING DIMENSION: MILLIMETERS MILLIMETERS 2. DIMENSIONS ARE IN (INCHES) 3. DRAWING NOT TO SCALE *DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .152mm (.006") PER SIDE **DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE sn2845 2845fs 18 LTC2845 U PACKAGE DESCRIPTIO UHF Package 38-Lead Plastic QFN (5mm × 7mm) (Reference LTC DWG # 05-08-1701) 0.70 ± 0.05 5.50 ± 0.05 (2 SIDES) 4.10 ± 0.05 (2 SIDES) 3.20 ± 0.05 (2 SIDES) PACKAGE OUTLINE 0.25 ± 0.05 0.50 BSC 5.20 ± 0.05 (2 SIDES) 6.10 ± 0.05 (2 SIDES) 7.50 ± 0.05 (2 SIDES) RECOMMENDED SOLDER PAD LAYOUT 5.00 ± 0.10 (2 SIDES) 3.15 ± 0.10 (2 SIDES) 0.75 ± 0.05 0.00 – 0.05 0.435 0.18 0.18 37 38 PIN 1 TOP MARK (SEE NOTE 6) 1 0.23 2 5.15 ± 0.10 (2 SIDES) 7.00 ± 0.10 (2 SIDES) 0.40 ± 0.10 0.200 REF 0.25 ± 0.05 0.200 REF 0.00 – 0.05 0.75 ± 0.05 NOTE: 1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE M0-220 VARIATION WHKD 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 0.50 BSC R = 0.115 TYP (UH) QFN 0303 BOTTOM VIEW—EXPOSED PAD 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE sn2845 2845fs Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 19 LTC2845 U TYPICAL APPLICATIO DTE or DCE Multiprotocol Serial Interface with DB-25 Connector RL TM RI LL CTS DSR DCD DTR RTS D2 D1 RXD TXC D4 R5 21 25 R4 * D3 R2 R3 18 13 5 R1 10 8 TXD D3 D2 D1 T T T 12 15 11 24 14 LTC2846 LTC2845 D5 SCTE RXC 22 6 23 20 19 4 1 7 R3 R2 T T 16 3 9 R1 17 2 TXD A (103) TXD B SCTE A (113) SCTE B TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B SG (102) SHIELD (101) RTS A (105) RTS B DTR A (108) DTR B DCD A (107) DCD B DSR A (109) DSR B CTS A (106) CTS B LL A (141) RI A (125) TM A (142) RL A (140) DB-25 CONNECTOR *OPTIONAL 2845 TA01 RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTC1321 Dual RS232/RS485 Transceiver Two RS232 Driver/Receiver Pairs or Two RS485 Driver/Receiver Pairs LTC1334 Single 5V RS232/RS485 Multiprotocol Transceiver Two RS232 Driver/Receiver or Four RS232 Driver/Receiver Pairs LTC1343 Software-Selectable Multiprotocol Transceiver 4-Driver/4-Receiver for Data and Clock Signals LTC1344A Software-Selectable Cable Terminator Perfect for Terminating the LTC1543 (Not Needed with LTC1546) LTC1345 Single Supply V.35 Transceiver 3-Driver/3-Receiver for Data and Clock Signals LTC1346A Dual Supply V.35 Transceiver 3-Driver/3-Receiver for Data and Clock Signals LTC1543 Software-Selectable Multiprotocol Transceiver Terminated with LTC1344A for Data and Clock Signals, Companion to LTC1544 or LTC1545 for Control Signals LTC1544 Software-Selectable Multiprotocol Transceiver Companion to LTC1546 or LTC1543 for Control Signals Including LL LTC1545 Software-Selectable Multiprotocol Transceiver 5-Driver/5-Receiver Companion to LTC1546 or LTC1543 for Control Signals Including LL, TM and RL LTC1546 Software-Selectable Multiprotocol Transceiver 3-Driver/3-Receiver with Termination for Data and Clock Signals LTC2844 3.3V Software-Selectable Multiprotocol Transceiver 3.3V Supply, 4-Driver/4-Receiver Companion to LTC2846 for Control Signals Including LL LTC2846 3.3V Software-Selectable Multiprotocol Transceiver 3.3V Supply, 3-Driver/3-Receiver with Termination for Data and Clock Signals, Generates the Required 5V and ±8V Supplies for LTC2846 and Companion Parts LTC2847 Software-Selectable Multiprotocol Transceiver with 3.3V Digital Interface 3-Driver/3-Receiver with Termination for Data and Clock Signals. Seperate Supply for Digital Interface Works Down to 3.3V sn2845 2845fs 20 Linear Technology Corporation LT/TP 0703 1K • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com  LINEAR TECHNOLOGY CORPORATION 2002
LTC2845CUHF#PBF 价格&库存

很抱歉,暂时无法提供与“LTC2845CUHF#PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货