0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX1661

MAX1661

  • 厂商:

    MAXIM(美信)

  • 封装:

  • 描述:

    MAX1661 - Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus In...

  • 数据手册
  • 价格&库存
MAX1661 数据手册
19-1306; Rev 0; 10/97 EVALUATION KIT AVAILABLE Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface ________________General Description The MAX1661/MAX1662/MAX1663 serial-to-parallel/ parallel-to-serial converters are intended to control external power MOSFETs in power-plane switching applications. These small, low-cost devices can be used on a system motherboard to control point-of-load switching from a 2wire SMBus™ serial interface. Each device has three highvoltage open-drain outputs that double as TTL-level logic inputs, giving them bidirectional capabilities. The I/O pins can withstand +28V, so they can control battery voltagedistribution switches in notebook computers. The MAX1661 is intended for driving N-channel MOSFETs and its outputs are low upon power-up. The MAX1662/ MAX1663 are intended for P-channel MOSFETs, and their outputs are high-impedance upon power-up. This ensures that the MOSFETs are off at power-up, so the system can enforce power-plane sequencing. The SMBSUS control input selects control data between two separate data registers. This feature allows the system to select between two different power-plane configurations asynchronously, eliminating latencies introduced by the serial bus. Other features include thermal-overload and overcurrent protection, ultra-low supply current, and both hardware and software interrupt capabilities. These devices are available in the space-saving 10-pin µMAX package. ____________________________Features o Performs Serial-to-Parallel and Parallel-to-Serial Conversions o Three General-Purpose Digital Input/Output Pins (withstand +28V) o SMBus 2-Wire Serial Interface o Supports SMBSUS Asynchronous Suspend Mode o 3µA Supply Current o +2.7V to +5.5V Supply Range o Space-Saving, Low-Cost 10-Pin µMAX Package MAX1661/MAX1662/MAX1663 ______________Ordering Information PART MAX1661EUB MAX1662EUB MAX1663EUB TEMP. RANGE -40°C to +85°C -40°C to +85°C -40°C to +85°C PIN-PACKAGE 10 µMAX 10 µMAX 10 µMAX __________________Pin Configuration TOP VIEW VCC 1 I/O1 2 3 4 5 10 ALERT 9 SMBCLK SMBDATA SMBSUS ADD ________________________Applications Power-Plane Switching Point-of-Load Power-Bus Switching Notebook and Subnotebook Computers Desktop Computers Smart Batteries I/O2 I/O3 GND MAX1661 MAX1662 MAX1663 8 7 6 µMAX Typical Operating Circuits appear at end of data sheet. ______________________________________________________________Selector Guide PART x MAX1661 POWER-ONRESET STATE Outputs Low INTENDED APPLICATION N-Channel MOSFETs SMBus ADDRESS ADDRESS PIN GND High-Z VCC GND High-Z VCC GND High-Z VCC ADDRESS 0100000 0111100 1001000 0100001 0111101 1001001 0100010 0111110 1001010 MAX1662 Outputs High (high-Z state) Outputs High (high-Z state) P-Channel MOSFETs MAX1663 P-Channel MOSFETs SMBus is a trademark of Intel Corp. ________________________________________________________________ Maxim Integrated Products 1 For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468. Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface MAX1661/MAX1662/MAX1663 ABSOLUTE MAXIMUM RATINGS VCC to GND ..............................................................-0.3V to +6V I/O to GND (I/O1, I/O2, I/O3) ..................................-0.3V to +30V I/O Sink Current (I/O1, I/O2, I/O3), Internally Limited.............................................-1mA to +50mA Digital Inputs to GND (SMBCLK, SMBDATA, SMBSUS, ALERT).................................................-0.3V to +6V ADD to GND ...............................................-0.3V to (VCC + 0.3V) SMBDATA Current, ALERT Current ....................-1mA to +50mA Continuous Power Dissipation (TA = +70°C) 10-pin µMAX (derate 5.6mW/°C above +70°C) ...........444mW Operating Temperature Range MAX166_EUB ..................................................-40°C to +85°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VCC = +2.7V to +5.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are for TA = +25°C.) (Note 1) PARAMETER Input Voltage Range Supply Current Undervoltage Lockout/ Power-On Reset Threshold I/O Sink Current I/O Current Limit Thermal Shutdown I/O Leakage Current Digital Input Current SMBus Logic Input Voltage Range Logic Input High Voltage Logic Input Low Voltage SMBDATA Output Low Sink Current ALERT Output Low Sink Current ALERT Output Leakage Current SMBus Input Capacitance SMBus Clock Frequency SMBCLK High Time SMBCLK Low Time tHIGH tLOW Static condition; SMBDATA, SMBCLK, ADD, ALERT = VCC or GND (Note 2) VCC falling VI/O_ = 0.4V, VCC = 2.7V or 5.5V VI/O_ = 1.0V, VCC = 4.5V I/O1, I/O2, or I/O3; VCC = 4.5V Typical hysteresis of 10°C VI/O_ = 28V, high-impedance state VI/O_ = 0V, VCC; high-impedance state VSMBDATA, VSMBCLK, V SMBSUS, VADD = 0V, VCC VCC = 2.7V to 5.5V; SMBDATA, SMBCLK, SMBSUS I/O_, SMBSUS, SMBCLK, SMBDATA I/O_, SMBSUS, SMBCLK, SMBDATA VSMBDATA = 0.6V V ALERT = 0.4V V ALERT = 5.5V, high-Z state SMBCLK, SMBDATA (Notes 3, 4) Measured between the 90% level of the rising edge and the 90% level of the falling edge Measured between the 10% level of the falling edge and the 10% level of the rising edge 4 4.7 5 100 6 1 1 -1 -1 0 2.4 0.8 1.2 2 8 15 13 20 140 0.5 0.5 5 1 1 5.5 50 SYMBOL CONDITIONS MIN 2.7 3 1.6 TYP MAX 5.5 10 2.5 UNITS V µA V mA mA °C µA µA V V V mA mA µA pF kHz µs µs 2 _______________________________________________________________________________________ Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface ELECTRICAL CHARACTERISTICS (continued) (VCC = +2.7V to +5.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are for TA = +25°C.) (Note 1) PARAMETER Start-Condition Setup Time SYMBOL tSU:STA CONDITIONS Measured from 90% of the SMBCLK rising edge to 90% of the SMBDATA falling edge Measured from 10% of the falling edge of SMBDATA to 90% of the falling edge of SMBCLK Measured from 90% of the rising edge of SMBCLK to 10% of the rising edge of SMBDATA 10% or 90% of SMBDATA to 10% of the rising edge of SMBCLK VCC = 4.5V to 5.5V VCC = 2.7V to 4.5V MIN 4.7 TYP MAX UNITS µs MAX1661/MAX1662/MAX1663 Start-Condition Hold Time tHD:STA 4 µs SMBus Stop-Condition Setup Time tSU:STO 4 µs SMBDATA Valid to SMBCLK Rising Edge Time, Slave Clocking in Data SMBCLK Falling Edge to SMBDATA Transition Hold Time SMBCLK Falling Edge to SMBus Data Valid Time SMBus Bus-Free Time SMBus Write to I/O_ Propagation Delay I/O Data Valid to SMBCLK Rising-Edge Setup Time I/O Data Hold Time START-STOP Software-Interrupt Pulse Width 500 ns 1000 0 1 4.7 100 15 0 10 15 30 µs µs µs ns µs µs µs tSU:DAT tHD:DAT tDV tBUF tP:I/O tSU:I/O tHD:I/O tLOW:SS (Notes 4, 5) Tested with a 10kΩ pull-up resistor on SMBDATA (Note 6) Between stop and start conditions (Note 7) Measured from SMBCLK rising edge to 10% or 90% of I/O (Note 4) Measured from 10% or 90% of VI/O to 10% of the rising edge of SMBCLK (Note 8) (Note 8) Measured from the 10% point of the falling edge of SMBDATA to the 10% point of the rising edge of SMBDATA (Note 7) Note 1: Specifications from 0°C to -40°C are guaranteed by design, not production tested. Note 2: Supply current is specified for static state only. Note 3: The SMBus logic block is a static design that works with clock frequencies down to DC. While slow operation is possible, it violates the 10kHz minimum clock frequency of the SMBus specifications, and may monopolize the bus. Note 4: Refer to Figures 2a and 2b for SMBus timing parameter definitions (write and read diagrams). Note 5: A transition must internally provide a hold time of 300ns to accommodate for the undefined region of the falling edge. Note 6: Refer to Figure 3 for the acknowledge timing diagram and tDV parameter definition. Note 7: Refer to Figure 5 for START-STOP interrupt timing diagrams and parameter definitions. Note 8: Refer to Figure 4 for I/O setup and hold timing parameter definitions. _______________________________________________________________________________________ 3 ?@@@@@@@@ehY0@@@@@@@@ehY0@@@@@@@@@@&?@@@@@@@@e@@@@@@@@@@@4V?hY0@@@@@@@@@@e@@@@@@@@@@@@&?fY0@@@@@@@@@@&?@@@@@@@@ehY0@@@@@@@@ehY0@@@@@@@@@@@? ? ?@@@@@@@@h?Y(@@@@@@@@@hYY(@@@@@@@@@@&W?@@@@@@@@e1@@@@@@@@@@@'Vg?Y(@@@@@@@@@@7e@@@@@@@@@@@&W?e?Y(@@@@@@@@@@&W?@@@@@@@@h?Y(@@@@@@@@@h?Y(@@@@@@@@@@&W? @@h? @@ ?@@@@@@@@hY(@@@@@@@@@@g?Y((@@@@@@@@@@&We@@@@@@@@eX)@@@@@@@@@@@'V?fY(@@@@@@@@@@&We@@@@@@@@@@@JfY(@@@@@@@@@@&We@@@@@@@@hY(@@@@@@@@@@hY(@@@@@@@@@@&W7? ?@@@@@@@@g?Y(@@@@@@@@@ @@@@@@@@@@&W?e@@@@@@@@e?X6@@@@@@@@@@@'Ve?M(@@@@@@@@@@&W?e@@@@@@@@@@7?e?Y(@@@@@@@@@@&W?e@@@@@@@@g?Y(@@@@@@@@@@@g?Y(@@@@@@@@@@@ ?@@@@@@@@gY(@@@@@@@@@@@@f?Y(@@@@@@@@@@&W?f@@@@@@@@gX)@@@@@@@@@@@@@@@@@@@@@@@2W?f@@@@@@@@&Wee(@@@@@@@@@@&W?f@@@@@@@@f?Y(@@@@@@@@@@@@@f?Y(@@@@@@@@@@@&WW? @gY(@@@@@@@@@@&Wf@@@@@@@@f?K)@@@@@@@@@@'IM0@@@@@@@@@@@&Wf@@@@@@@@@&W??YY(@@@@@@@@@@&Wf@@@@@@@@gY(@@@@@@@@@@@@gY(@@@@@@@@@@@& ?@@@@@@@@f?Y(@@@@@@ ?@@@@@@@@fY(@@@@@@@@@@@@@@fY(@@@@@@@@@@&Wg@@@@@@@@g?X)@@@@@@@@@@@@@@@@@@@@&O?g@@@@@@@&W?eY(@@@@@@@@@@&Wg@@@@@@@@fY(@@@@@@@@@@@@@@fY(@@@@@@@@@@@&W? ?@@@@@@@@e?Y(@@@@@@@@@@@@@@@e?Y(@@@@@@@@@@&W?g@@@@@@@@h?X)@@@@@@@@@@@@@@@@&W?h@@@@@@@Je?Y(@@@@@@@@@@&W?g@@@@@@@@eY(@@@@@@@@@@@@@@@@eY(@@@@@@@@@@@&&W @@@@@@ ?@@@@@@@@eY(@@@@@@@@@@@@@@@@eY(@@@@@@@@@@&Wh@@@@@@@@hX)@@@@@@@@@@@@@@@@@@&Wh@@@@@@@?eY(@@@@@@@@@@&Wh@@@@@@@@e?Y(@@@@@@@@@@@@@@@e?Y(@@@@@@@@@@@W? ?@@@@@@@@? @@@@@@@@@@@?Y(@@@@@@@@@@&W?h@@@@@@@@ehX)@@@@@@@@@@@@@@&Weh@@@@@@@??Y(@@@@@@@@@@&W?h@@@@@@@@?Y(@@@@@@@@@@@@@@@@@?Y(@@@@@@@@@@@ ?@@@@@@@@YY(@@@@@@@@@@@@@@@@@Y(@@@@@@@@@@&Weh@@@@@@@@eh?X)@@@@@@@@@@@@&W?eh@@@@@@@?M(@@@@@@@@@@&Weh@@@@@@@@Y(@@@@@@@@@@@@@@@@@@Y(@@@@@@@@@@@&&W ?@@@@@@@@@(@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&W?eh@@@@@@@@fhL@@@@@@@@@@@@?fh@@@@@@@@@@@@@@@@@@@&W?eh@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&WW? @@@@@@@@ ?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&Wfh@@@@@@@@fh(@@@@@@@@@@@@@N?eh@@@@@@@@@@@@@@@@@2W?fh@@@@@@@@@@@@@@@@@@&W@@@@@@@@@@@@@@@@@@&WW? @@@@@@@@@@@@@&W@@@@@@@@@@@@@@@@@& @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@& ?@@@@@@@@@@@@@@@@@&W?@@@@@@@@@@@@@@@@&WW?fh@@@@@@@@ehY(@@@@@@@@@@@@@@'Veh@@@@@@@@@@@@@@@&O?&Wfh@@@@@@@@@@@@@@@@@&W?@@@@@@@@@@@@@@@@@&W? @@@@@@@@eh?YH@@@@@@@@@@@@3fh@@@@@@@@@@@@@@@@@@ ?@@@@@@@@@@@@@@@@&We@@@@@@@@@@@@@@@&W? ?@@@@@ ?@@@@@@@@@@@@@@@@&We@@@@@@@@@@@@@@@& @@@@@@@@h?Y(@@@@@@@@@@@@@@@@'V?h@@@@@@@@@@@@@@&W @@@@@@@@h?Y(@@@@@@@@@@@@@@@@'V?h@@@@@@@@@@@@@@&W @@@@@@@@@@@@@@@@&We@@@@@@@@@@@@@@@@&W @@@@@@@@@@@@@@@@&We@@@@@@@@@@@@@@@@&W ?@@@@@@@@@@@@@@@&W?e@@@@@@@@@@@@@@@JW? @@@@@@@@hY(@@@@@@@@@@@@@@@@@@'Vh@@@@@@@@@@@@@&W? @@@@@@@@@@@@@@@&W?e@@@@@@@@@@@@@@@&W? ?@@@@@@@@@@@@@@&Wf@@@@@@@@@@@@@@ @@@@@@@@g?Y(@@@@@@@@@@@@@@@@@@@@'V?g@@@@@@@@@@@@ @@@@@@@@@@@@@@&Wf@@@@@@@@@@@@@@ ?@@@@@@@@@@@@@&W?f@@@@@@@@@@@@@&7? @@@@@@@@gY(@@@@@@@@@&OK)@@@@@@@@@'Vg@@@@@@@@@@@&&W @@@@@@@@@@@@@&W?f@@@@@@@@@@@@@&&W ?@@@@@@@@@@@@&Wg@@@@@@@@@@@@&WW? @@@@@@@@f?Y(@@@@@@@@@&WeX)@@@@@@@@@'V?f@@@@@@@@@@&WW? @@@@@@@@@@@@&Wg@@@@@@@@@@@@&WW? ? @@@@@@@@fY(@@@@@@@@@&W?e?X)@@@@@@@@@'Vf@@@@@@@@@& @@@@@@@@@@@&W?g@@@@@@@@@@@& ?@@@@@@@@@@@&W?g@@@@@@@@@@@&W? @@@@@@@@f5@@@@@@@@@&WgX)@@@@@@@@@3f@@@@@@@@&WW? @@@@@@@@@@&Wh@@@@@@@@@@&WW? ?@@@@@@@@@@&Wh@@@@@@@@@@&W @@@@@@@@f@@@@@@@@@2W?g?X6@@@@@@@@@f@@@@@@@2W? @@@@@@@@@2W?h@@@@@@@@@2W? ?@@@@@@@@@2W?h@@@@@@@@@2W? MAX1661/MAX1662/MAX1663 Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface (VCC = +5.0V, TA = +25°C, unless otherwise noted.) 4 POR DELAY (µs) CURRENT LIMIT (mA) SUPPLY CURRENT (µA) __________________________________________Typical Operating Characteristics _______________________________________________________________________________________ INPUT BIAS CURRENT (µA) INPUT BIAS CURRENT (µA) 0.5 1.0 1.5 SUPPLY CURRENT (µA) 4.0 MAX1661toc03 5.0 SUPPLY CURRENT vs. TEMPERATURE 4.5 SUPPLY CURRENT vs. SUPPLY VOLTAGE 15.0 I/O_ SINK CURRENT vs. SUPPLY VOLTAGE MAX1661toc01 MAX1661toc02 4.5 VCC = 5.5V 3.5 SINK CURRENT (mA) 2.0 2.5 3.0 3.5 10 15 20 25 MAX1661toc07 MAX1661toc08 35 10 12 14 22 CURRENT LIMIT (mA) 16 MAX1661toc04 MAX1661toc05 26 0 -40 ALL I/Os OFF -20 I/O_ CURRENT LIMIT vs. TEMPERATURE 0 TEMPERATURE (°C) 20 40 VCC = 2.7V 60 80 100 25.0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 0 2.0 I/O_ CURRENT LIMIT vs. I/O_ VOLTAGE 2.5 3.0 SUPPLY VOLTAGE (V) 3.5 4.0 4.5 5.0 5.5 10.5 12.0 13.5 1.5 3.0 4.5 6.0 7.5 9.0 40 0 0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0 POR DELAY vs. TEMPERATURE SUPPLY VOLTAGE (V) VI/O_ = 1.0V VI/O_ = 0.4V MAX1661toc06 24 VI/O_ FORCED TO 15V VCC = 5.5V 17.5 POR DELAY (µs) 18 20 -40 POR DELAY vs. SUPPLY VOLTAGE -20 0 TEMPERATURE (°C) 20 40 60 80 100 10.0 12.5 15.0 20.0 22.5 1.0 2.5 5.0 7.5 0 0 3 I/O_ INPUT BIAS CURRENT vs. TEMPERATURE 6 VCC = 2.7V 9 12 15 18 21 24 27 30 VI/O_ (V) VCC = 5.5V 1.0 10 15 20 25 30 35 0 5 -40 -20 I/O_INPUT BIAS CURRENT vs. OUTPUT VOLTAGE 0 TEMPERATURE (°C) 20 40 60 80 100 MAX1661toc09 30 0 5 3.0 3.5 SUPPLY VOLTAGE (V) 4.0 4.5 5.0 5.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 VCC = 5.5V VI/O_ = 15V -40 -20 0 TEMPERATURE (°C) 20 40 60 80 100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0 3 6 OUTPUT VOLTAGE (V) 9 12 15 18 21 24 27 30 Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface ______________________________________________________________Pin Description PIN 1 2 3 4 5 6 7 8 9 10 NAME VCC I/O1 I/O2 I/O3 GND ADD SMBSUS SMBDATA SMBCLK ALERT Supply Voltage Input, 2.7V to 5.5V. Input 1 or Output 1 (open drain). This pin can tolerate up to 28V. Input 2 or Output 2 (open drain). This pin can tolerate up to 28V. Input 3 or Output 3 (open drain). This pin can tolerate up to 28V. Ground SMBus Address Select Pin (see Table 1 for details). SMBus Suspend-Mode Control Input. Drive low to select the suspend-mode register. Drive high to select the normal-mode register. (See Detailed Description.) SMBus Serial-Data Input/Output (open drain) SMBus Serial Clock Input Interrupt Output, active low, open drain FUNCTION MAX1661/MAX1662/MAX1663 TRANSITION DETECTORS I/01 SMBCLK SMBDATA SMB 8 INPUT REGISTER I/02 MAX1661/ MAX1662/ MAX1663 ADD I/03 ADDRESS DECODER NORMAL NORMAL DATA REGISTER MUX SUSPEND CONTROL NORMAL MUX SUSPEND CONTROL NORMAL MUX SUSPEND CONTROL O3 O2 O1 7 ALERT RESPONSE REGISTER ALERT R FAULT LATCH S THERMAL SHUTDOWN SUSPENDMODE DATA REGISTER SMBSUS Figure 1. Functional Diagram _______________________________________________________________________________________ 5 Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface MAX1661/MAX1662/MAX1663 _______________Detailed Description T he MAX1661/MAX1662/MAX1663 convert 2-wire SMBus serial data into three latched parallel outputs (I/O1, I/O2, I/O3). These devices are intended to drive Nchannel and P-channel, high-side MOSFET switches in load power-management systems. Readback capabilities allow them to function as parallel-to-serial devices. The MAX1661/MAX1662/MAX1663 operate from a single supply with a typical quiescent current of 3µA, making them ideal for portable applications (Figure 1). Table 1. SMBus Addresses ADD GND High-Z (floating) VCC MAX1661 0100000 0111100 1001000 MAX1662 0100001 0111101 1001001 MAX1663 0100010 0111110 1001010 SMBus Interface Operation The SMBus serial interface is a 2-wire interface with multi-mastering capability. From a software perspective, the MAX1661/MAX1662/MAX1663 appears as a set of byte-wide registers that contain information controlling the I/O_ pins, masking capabilities, and a control bit that determines which register is being addressed. The 2-wire slave interface employs standard SMBus send-byte and receive-byte protocols. SMBDATA and SMBCLK are Schmitt-triggered inputs that can accommodate slower edges; however, the rising and falling edges should still be faster than 1µs and 300ns, respectively. Except for the stop and start conditions, the SMBDATA input never transitions while SMBCLK is high. A third interface line ( SMBSUS) is used to execute commands asynchronously from previously stored registers (see the section S MBSUS (Suspend-Mode) Input) . This reduces the inherent delay in a standard 2-wire serial interface. In the receive-byte operation, the SMBus interface reads back I/O states and thermal-shutdown status. SMBus Send-Byte Commands If the MAX1661/MAX1662/MAX1663 receives its correct slave address (Table 1) followed by R/W low, it expects to receive a byte of information. If the device detects a start or stop condition prior to clocking in the byte of data, it considers this an error condition and disregards all of the data. The MAX1661/MAX1662/MAX1663 generates a first acknowledge after the write bit and another acknowledge after the data. It executes the data byte at the rising edge of SMBCLK following the second acknowledge, just prior to the stop condition (Figure 2a). See Table 2 for sendbyte operations. SMBSUS (Suspend-Mode) Input The SMBus can write to either of the normal-data and suspend-mode registers via the MSB (bit 7) of the send-byte word (Table 2). The state of the SMBSUS input selects which register contents (normal data or suspend mode) are applied to the I/O_ pins. Driving SMBSUS low selects the suspend-mode register, while driving SMBSUS high selects the normal-data register. This feature allows the system to select between two different power-plane configurations asynchronously, eliminating latencies introduced by the serial bus. SMBSUS typically connects to the SUSTAT# signal in a notebook computer. SMBus Receive-Byte Operation If the MAX1661/MAX1662/MAX1663 receives its correct slave address, followed by R/ W high, the device becomes a slave transmitter (Figure 2b). After receiving the address data, the device generates an acknowledge during the acknowledge clock pulse and drives SMBDATA in sync with SMBCLK. The SMB protocol requires that the master terminate the read transmission by not acknowledging during the acknowledge bit of SMBCLK. See Table 3 for receive-byte data format. Figure 4 shows the complete receive-byte operation timing diagram. The logic states of the three I/O pins can be read over the serial interface (Table 3). The state of the I/O pins is sampled at the falling edge of the SMBCLK pulse that follows the R/W bit and acknowledge bit (Figure 4). The states of the I/O bits in the status register reflect the SMBus Addressing Each slave device only responds to two addresses: its own unique address and the alert response address. The device’s unique address is determined at power-up (Table 1). The three-level state of the address-select pin (ADD) is only sampled upon power-on reset (POR) causing momentary input bias current of 100µA. The address will not change until the part is power cycled. Stray capacitance in excess of 50pF on the ADD pin when floating may cause address recognition problems. The normal start condition consists of a high-to-low transition on SMBDATA while SMBCLK is high. After the start condition, the master transmits a 7-bit address followed by a single bit to determine whether the device is sending or receiving (high = READ, low = WRITE). If the address is correct, the MAX1661/MAX1662/ MAX1663 sends an acknowledgment pulse by pulling SMBDATA low. Otherwise, the address is not recognized and the device stays off the bus and waits until another start condition occurs. 6 _______________________________________________________________________________________ Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface MAX1661/MAX1662/MAX1663 tP: I/O I/O A B C D E F G H I J K L M tLOW tHIGH SMBCLK SMBDATA tSU:STA tHD:STA tSU:DAT tHD:DAT F = ACKNOWLEDGE BIT CLOCKED INTO MASTER G = MSB OF DATA CLOCKED INTO SLAVE (OP/SUS BIT) H = LSB OF DATA CLOCKED INTO SLAVE I = SLAVE PULLS SMBDATA LINE LOW tSU:STO tBUF J = ACKNOWLEDGE CLOCKED INTO MASTER K = ACKNOWLEDGE CLOCK PULSE L = STOP CONDITION, DATA EXECUTED BY SLAVE M = NEW START CONDITION A = START CONDITION B = MSB OF ADDRESS CLOCKED INTO SLAVE C = LSB OF ADDRESS CLOCKED INTO SLAVE D = R/W BIT CLOCKED INTO SLAVE E = SLAVE PULLS SMBDATA LINE LOW Send-Byte Format ADDRESS START CONDITION 7 bits WRITE 1 bit (low) ACK 1 bit (low) DATA 8 bits ACK 1 bit (low) STOP CONDITION Shaded = Slave Transmission Figure 2a. SMBus Send-Byte Timing Diagram and Format Table 2. Format for Send-Byte Data BIT 7 (MSB) 6 5 4 3 2 1 0 NAME SELECT Mask SS Mask 3 Mask 2 Mask 1 I/O3 I/O2 I/O1 POR STATE* (MAX1661) N/A 1 1 1 1 0 0 0 POR STATE* (MAX1662/MAX1663) N/A 1 1 1 1 1 1 1 FUNCTION Writes data to normal register when high; writes data to suspend register when low. Masks START-STOP software interrupts when high. Masks I/O3 interrupts when high. Masks I/O2 interrupts when high. Masks I/O1 interrupts when high. I/O output enable bit. I/O3 is on when this bit is low (low state). I/O output enable bit. I/O2 is on when this bit is low (low state). I/O output enable bit. I/O1 is on when this bit is low (low state). *Note: POR states apply to both suspend- and normal-mode registers. current I/O pin states (i.e., they are not latched). There is a 15µs data-setup time requirement, due to the slow level translators needed for high-voltage (28V) operation. Data-hold time is zero. Interrupts The MAX1661/MAX1662/MAX1663 generate interrupts (hardware and software) whenever the logic states of the I/O pins change or when thermal shutdown occurs. Interrupts are signaled with the hardware ALERT pin _______________________________________________________________________________________ 7 Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface MAX1661/MAX1662/MAX1663 A tLOW B tHIGH C D E F G H I J K SMBCLK SMBDATA tSU:STA tHD:STA A = START CONDITION B = MSB OF ADDRESS CLOCKED INTO SLAVE C = LSB OF ADDRESS CLOCKED INTO SLAVE D = R/W BIT CLOCKED INTO SLAVE tSU:DAT E = SLAVE PULLS SMBDATA LINE LOW F = ACKNOWLEDGE BIT CLOCKED INTO MASTER G = MSB OF DATA CLOCKED INTO MASTER H = LSB OF DATA CLOCKED INTO MASTER tSU:STO I = ACKNOWLEDGE CLOCK PULSE J = STOP CONDITION K = NEW START CONDITION tBUF Receive-Byte Format ADDRESS START CONDITION 7 bits READ 1 bit (high) ACK 1 bit (low) DATA 8 bits ACK 1 bit (high-Z) STOP CONDITION ACK = SMBDATA High Shaded = Slave Transmission Figure 2b. SMBus Receive-Byte Timing Diagram and Format Table 3. Format for Receive-Byte Data BIT 7 (MSB) 6 5 4 3 2 1 0 NAME — — — — THSD Data 3 Data 2 Data 1 POR STATE 0 0 0 0 N/A N/A N/A N/A Not used Not used Not used Not used This bit indicates a thermal shutdown. This bit indicates the state of I/O3 (high or low). This bit indicates the state of I/O2 (high or low). This bit indicates the state of I/O1 (high or low). FUNCTION LATCHED — — — — Yes No No No and with the software START-STOP method (software interrupts are discussed in the START-STOP Software Interrupt section). The I/O interrupts can be masked individually. In addition, the software START-STOP interrupt can be masked independently. The power-onreset state masks the START-STOP interrupt, as well as the individual I/O interrupts to the ALERT pin (Table 1). The thermal-shutdown interrupt cannot be masked. Note that excessive noise on the supply can cause false interrupts (see Applications Information). 8 The MAX1661/MAX1662/MAX1663 are slave-only devices that never initiate communications, except when asserting an interrupt by forcing ALERT low, or via the software START-STOP interrupt. Alert Response Address (0001100) The Alert Response (interrupt pointer) address provides quick fault identification for simple slave devices that lack the complex, expensive logic needed to be a bus master. When a slave device generates an inter- _______________________________________________________________________________________ Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface MAX1661/MAX1662/MAX1663 R/W BIT CLOCKED INTO SLAVE ACKNOWLEDGE BIT CLOCKED INTO MASTER MOST SIGNIFICANT BIT OF DATA CLOCKED INTO MASTER SMBCLK ••• SLAVE PULLING SMBDATA LOW SMBDATA ••• tDV tDV Figure 3. SMB Serial-Interface Timing—Acknowledge and Data Valid ADDRESS MSB ADDRESS LSB SLAVE ACKNOWLEDGE I/O LATCHED R/W BIT DATA MSB SLAVE ACKNOWLEDGE (ACK) START DATA LSB SMBCLK tSU:I/O (NOTE 1) SMBDATA SLAVE PULLS SMBDATA LOW 4 ZEROS (NOT USED) tHD:I/O (NOTE 1) THSD DATA3 DATA2 DATA1 NOTE 1: THE SETUP AND HOLD TIMING LIMITS ARE ABSOLUTE LIMITS (15µs MIN AND 0µs MIN, RESPECTIVELY) AND DO NOT NECESSARILY CORRESPOND TO A PARTICULAR CLOCK EDGE. Figure 4. I/O Read Timing Diagram rupt, the host (Bus Master) interrogates the bus slave devices via a special receive-byte operation that includes the alert response address. The data returned by this receive-byte operation is the address of the offending slave device. The interrupt pointer address can activate several different slave devices simultaneously. If more than one slave attempts to respond, bus arbitration rules apply, with the lowest address code going first. The other device(s) will not generate an acknowledge and will continue to hold the ALERT line low or repeat the START-STOP interrupt until serviced. Clearing Interrupts via Alert Response When a fault occurs, ALERT asserts and latches low. If the fault is momentary and disappears before the device is serviced, ALERT remains asserted. Normally, the master sends out the Alert Response address followed by a read bit (00011001). ALERT clears when the device responds by successfully putting its address on the bus. R eading the Alert Response address is the only method for clearing hardware and software interrupt latches. Clearing the interrupt has no effect on the state of the status registers. _______________________________________________________________________________________ 9 Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface MAX1661/MAX1662/MAX1663 START SLAVE ACKNOWLEDGE (ACK) STOP SMBCLK tLOW:SS SMBDATA tBUF ALERT START-STOP INTERRUPT ALERT RESPONSE ADDRESS (0001100) DATA LINE HELD LOW BY SLAVE ACTUAL SLAVE ADDRESS (0100000 IN THIS EXAMPLE) DUMMY BIT (1) Figure 5. START-STOP Software Interrupt Timing Diagram and Alert Response START-STOP Software Interrupt The START-STOP interrupt is a method for the slave device to initiate a signal over the 2-wire interface without the need for a third (interrupt) wire. A START-STOP interrupt is a start condition followed by a stop condition; in other words, SMBDATA goes low and then high with SMBCLK high (Figure 5 shows the START-STOP interrupt and a subsequent Alert Response transmission used to clear the interrupt). The START-STOP function can be disabled (masked) by setting the data register mask SS (bit 6) high. In order to avoid bus collisions, the START-STOP interrupt will not occur when the bus is busy. If the device begins a start condition simultaneously with another transmitter on the bus, it recognizes the falling SMBCLK as a collision and re-transmits the interrupt when the bus becomes available. Upon thermal shutdown or a transition on an I/O line, the device issues only one START-STOP interrupt, and won’t repeat it unless there has been a collision. However, thermal-shutdown faults, not being edge triggered, may result in a continuous stream of START-STOP bits. monly used in power-switching applications. Other factors include the VGS, the input capacitance of the MOSFET, and the pull-up resistor value used in the circuit. Typical MOSFET gate capacitance ranges from 150pF to 2000pF. Increasing the RC time constant slows down the MOSFET’s response, but provides for a smoother transition. Power-On Reset The power-on reset circuit keeps the external MOSFETs off during a power-up sequence. When the supply voltage falls below the power-on reset threshold voltage, the MAX1662/MAX1663’s outputs reset to a highimpedance state, and the MAX1661’s outputs reset to a low state. During the initial power-up sequence, as VCC increases, the A LERT pin goes low and then high, which indicates the device is powered on. The time between the low and high state on ALERT is the poweron delay time. Below VCC = 0.8V (typical) the POR states can’t be enforced, and the I/O pins of all versions exhibit increasingly weak pull-down current capability, eventually becoming high impedance. Input/Output Pins Each input/output (I/O) is protected by an internal 20mA (typical) current-limit circuit. The I/O current limit depends on the supply voltage and the voltage applied to the I/O pins (see Typical Operating Characteristics). The typical I/O bias current is 0.5µA to VI/O_ = 28V. The ability of the I/Os to sink current depends on VCC as well as the voltage on the I/O. Typical pull-down onresistance at VCC = 2.7V and 5.5V is 106Ω and 66Ω, respectively. I/O source and sink capability can affect the rise and fall times of external power MOSFETs com- Thermal Shutdown These devices have internal thermal-shutdown circuitry that turns off all output stages (I/O pins) when the junction temperature exceeds +140°C typical. Thermal shutdown only occurs during an overload condition on the I/O pins. The device cycles between thermal shutdown and the overcurrent condition until the overload condition is removed. This could cause a sustained START-STOP interrupt and, in the extreme case, tie up the master controller. However, the device asserts ALERT low, indicating this fault status. 10 ______________________________________________________________________________________ Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface __________Applications Information Bypassing and Grounding Considerations Voltage transients exceeding 500mV at 25V/µs may trigger a false interrupt and thermal-shutdown indication. If large VCC transients are expected, add a 100Ω resistor in series with VCC. Retain the 0.1µF capacitor from VCC to GND to act as a filter. P-Channel/N-Channel Load Switch with Controlled Turn-On For a more controlled voltage-switching application, add a series resistor to slow the switch turn-on time. The external MOSFET gate has typical capacitance of 150pF to 2000pF, but an optional external capacitance can be added to further slow the switching time (Figure 6). MAX1661/MAX1662/MAX1663 +5V 100Ω* 10k 10k 10k 10k 0.1µF 200k I/O1 I/O2 I/O3 IRF7406 200k IRF7406 200k IRF7406 0.01µF* 10k 0.01µF* 10k 0.01µF* VCC MAX1662 MAX1663 ALERT TO/FROM HOST SMBDATA SMBCLK SMBSUS ADD GND LOAD1 LOAD2 LOAD3 +12V +5V 100Ω* 10k 10k 10k 0.1µF 10k 10k IRF7413 200k I/O1 I/O2 I/O3 0.01µF* 200k 0.01µF* 10k IRF7413 200k 0.01µF* IRF7413 VCC MAX1661 ALERT TO/FROM HOST SMBDATA SMBCLK SMBSUS ADD GND LOAD1 LOAD2 LOAD3 *OPTIONAL Figure 6. Load Switch with Controlled Turn-On ______________________________________________________________________________________ 11 Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface MAX1661/MAX1662/MAX1663 Battery Switch with Back-to-Back MOSFETs For battery-operated applications, use back-to-back MOSFETs to keep reverse currents from flowing from the load to the supply (Figure 7). This protects the battery from potential damage, and isolates the load from the power source. LED Drivers A MAX1661/MAX1662/MAX1663 can be used as a programmable LED driver (Figure 8). With their low quiescent current, these devices are ideal for use as indicator light drivers on the front panel of a notebook computer. +5V 100Ω* 100k 10k 10k 10k VCC 0.1µF IRF7406 +3.3V TO +28V P MAX1662 MAX1663 ALERT TO/FROM HOST SMBDATA SMBCLK SMBSUS ADD GND I/O1 I/O2 75k** 1M IRF7406 I/O3 P LOAD NOTE: I/O2 AND I/O3 CAN BE CONFIGURED SIMILARLY. *OPTIONAL **75kΩ RESISTOR FOR VOLTAGES GREATER THAN +12V. Figure 7. Battery Switch with Back-to-Back MOSFETs +5V 100Ω* 1k 10k 10k VCC 0.1µF 1k 1k MAX1661 MAX1662 ALERT MAX1663 SMBDATA TO/FROM HOST SMBCLK SMBSUS ADD GND I/O1 I/O2 I/O3 *OPTIONAL Figure 8. LED Drivers 12 ______________________________________________________________________________________ Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface Mechanical Switch Monitor The ability of the MAX1661/MAX1662/MAX1663 to read back the logic state of the I/Os makes them suitable for checking system status. They can be used as an “open-lid indicator”, sensing a change in the I/O and sending an interrupt to the master to indicate a change in status (Figure 9). The same can be done to detect a chassis intrusion. +5V 100Ω* 0.1µF 100k 100k 100k Simple High-Voltage Switch For applications requiring a higher voltage, use a simple resistive divider to protect the gate from breakdown yet allow the MOSFETs to handle higher-voltage applications (Figure 10). MAX1661/MAX1662/MAX1663 10k 10k 10k VCC MAX1661 MAX1662 ALERT MAX1663 I/O1 TO/FROM HOST SMBDATA SMBCLK SMBSUS ADD GND *OPTIONAL I/O2 I/O3 Figure 9. Open-Lid Detect or Chassis Intrusion Detector +5V 100Ω* 200k 10k 10k 10k VCC 0.1µF VIN = 10V TO 28V MAX1662 MAX1663 ALERT TO/FROM HOST SMBCLK SMBDATA SMBSUS ADD *OPTIONAL I/O2 AND I/O3 CAN BE CONFIGURED SIMILIARLY. GND I/O1 I/O2 I/O3 0.01µF* 200k IRF7406 LOAD Figure 10. Simple High-Voltage Switch ______________________________________________________________________________________ 13 Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface MAX1661/MAX1662/MAX1663 ___________________________________________________Typical Operating Circuit +2.7V TO +5.5V VCC 100k 0.1µF 100k 100k MAX1662 MAX1663 ALERT SMBUS TO/ FROM HOST SMBDATA SMBCLK SMBSUS ADD GND I/O1 I/O2 I/O3 P-CH LOAD1 LOAD2 LOAD3 +12V +2.7V TO +5.5V 100k 0.1µF 100k 100k VCC MAX1661 ALERT SMBUS TO/ FROM HOST SMBDATA SMBCLK SMBSUS ADD GND I/O1 I/O2 I/O3 N-CH LOAD1 LOAD2 LOAD3 ___________________Chip Information TRANSISTOR COUNT: 3334 SUBSTRATE CONNECTED TO GND 14 ______________________________________________________________________________________ Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface ________________________________________________________Package Information 10LUMAXB.EPS MAX1661/MAX1662/MAX1663 ______________________________________________________________________________________ 15 Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface MAX1661/MAX1662/MAX1663 NOTES Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 1997 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
MAX1661 价格&库存

很抱歉,暂时无法提供与“MAX1661”相匹配的价格&库存,您可以联系我们找货

免费人工找货