0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MXL1544CAI

MXL1544CAI

  • 厂商:

    MAXIM(美信)

  • 封装:

  • 描述:

    MXL1544CAI - 5V Multiprotocol, Software-Selectable Control Transceivers - Maxim Integrated Products

  • 数据手册
  • 价格&库存
MXL1544CAI 数据手册
19-1992; Rev 0; 4/01 +5V Multiprotocol, Software-Selectable Control Transceivers General Description The MXL1544/MAX3175 are four-driver/four-receiver multiprotocol transceivers that operate from a single +5V supply in conjunction with the MXL1543. The MXL1544/MAX3175, along with the MXL1543 and MXL1344A, form a complete software-selectable data terminal equipment (DTE) or data communication equipment (DCE) interface port that supports the V.28 (RS-232), V.10/V.11 (RS-449/V.36, EIA-530, EIA-530A, X.21, RS-423), and V.35 protocols. The MXL1544/ MAX3175 transceivers carry serial interface control signaling, while the MXL1543 carries the high-speed clock and data signals. Typically, the MXL1543 is terminated using the MXL1344A. The MAX3175 is identical to the MXL1544 except for the addition of a 10µs (typ) glitch rejection circuit at the receiver inputs. The MXL1544/ MAX3175 are available in 28-pin SSOP packages. Features o MXL1544/MAX3175, MXL1543, MXL1344A Chipset Is Pin Compatible with LTC1544, LTC1543, LTC1344A Chipset o Chipset Operates from a Single +5V Supply o Software-Selectable DCE/DTE o Supports V.28 (RS-232), V.10/V.11 (RS-449/V.36, EIA-530, EIA-530A, X.21, RS-423) Protocols o Flow-Through Pin Configuration o True Fail-Safe Operation o Low 0.5µA Shutdown Current (No-Cable Mode) o 10µs Receiver Input Deglitching (MAX3175 Only) o TUV-Certified NET1/NET2 and TBR1/TBR2 Compliant MXL1544/MAX3175 Applications Data Networking CSU and DSU Data Routers Switches PCI Cards Telecommunication Equipment Ordering Information PART MXL1544CAI MAX3175CAI TEMP. RANGE 0°C to +70°C 0°C to +70°C PIN-PACKAGE 28 SSOP 28 SSOP Pin Configuration appears at end of data sheet. Typical Operating Circuit LL CTS DSR DCD DTR RTS RXD RXC TXC SCTE TXD D4 R4 R3 R2 R1 MXL1544 MAX3175 D3 D2 D1 R3 R2 R1 MXL1543 D3 D2 D1 MXL1344A 18 LL A (141) 13 5 10 8 CTS A (106) CTS B DSR A (109) DSR B 22 6 DCD A (107) DCD B 23 20 19 4 DTR A (108) DTR B RTS A (105) RTS B 1 7 16 3 RXD A (104) RXD B 9 17 RXC A (115) RXC B 12 15 11 24 14 2 TXC A (114) TXC B SCTE A (113) SCTE B TXD A (103) TXD B DB-25 CONNECTOR ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. SG (102) SHIELD (101) 1 +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 ABSOLUTE MAXIMUM RATINGS All Voltages to GND Unless Otherwise Noted Supply Voltages VCC .......................................................................-0.3V to +6V VDD ....................................................................-0.3V to +7.2V VEE........................................................................+0.3V to -7V VDD to VEE (Note 1)............................................................13V Logic Input Voltage M0, M1, M2, DCE/DTE, INVERT, T_IN..................-0.3V to +6V Logic Output Voltage R_OUT ....................................................-0.3V to (VCC + 0.3V) Transmitter Outputs T_OUT_, T_OUT_/R_IN........................................-15V to +15V Short-Circuit Duration.............................................Continuous Receiver Inputs R_IN_, T_OUT_/R_IN_ .........................................-15V to +15V Continuous Power Dissipation (TA = +70°C) 28-Pin SSOP (derate 11.1mW/°C above +70°C) .........889mW Operating Temperature Range...............................0°C to +70°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Note 1: VDD and VEE- can have maximum magnitude of 7.2V and 7V, respectively, but their difference cannot exceed 13V. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VCC = +5V, VDD = +6.8V, VEE = -5.6V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER POWER SUPPLIES RS-530, RS-530A, X.21, no load VCC Supply Current (DCE Mode) (Digital Inputs = GND or VCC) (Transmitters Outputs Static) RS-530, RS-530A, X.21, full load ICC V.28, no load V.28, full load No-cable mode, Invert = VCC RS-530, RS-530A, X.21, no load VEE Supply Current (DCE Mode) (Digital Inputs = GND or VCC) (Transmitters Outputs Static) RS-530, X.21, full load IEE RS-530A, full load V.28, no load V.28, full load No-cable mode RS-530, RS-530A, X.21, no load VDD Supply Current (DCE Mode) (Digital Inputs = GND or VCC) (Transmitters Outputs Static) Internal Power Dissipation (DCE Mode) RS-530, RS-530A, X.21, full load IDD V.28, no load V.28, full load No-cable mode PD RS-530, RS-530A, X.21, full load V.28, full load 2.0 0.8 ±10 -100 -50 -30 ±10 2.7 95 1 1 0.5 2.1 14 25 1 12 0.5 0.6 1 1 12 0.5 300 54 µA mW mA µA mA 120 2 2 10 µA mA SYMBOL CONDITIONS MIN TYP MAX UNITS LOGIC INPUTS (M0, M1, M2, DCE/DTE, INVERT, T1IN, T2IN, T3IN, T4IN) Input High Voltage VIH Input Low Voltage VIL T1IN, T2IN, T3IN, T4IN M0, M1, M2, DCE/DTE, INVERT = Logic Input Current IIN GND M0, M1, M2, DCE/DTE, INVERT = VCC V V µA 2 _______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Control Transceivers ELECTRICAL CHARACTERISTICS (continued) (VCC = +5V, VDD = +6.8V, VEE = -5.6V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER Output High Voltage Output Low Voltage Output Short-Circuit Current Output Pullup Current RECEIVER INPUTS Receiver Glitch Rejection V.11 TRANSMITTER Open-Circuit Differential Output Voltage Loaded Differential Output Voltage Change in Magnitude of Output Differential Voltage Common-Mode Output Voltage Change in Magnitude of Output Common-Mode Voltage Short-Circuit Current Output Leakage Current Rise or Fall Time Transmitter Input to Output Data Skew Output-to-Output Skew V.11 RECEIVER Differential Input Voltage Input Hysteresis Receiver Input Current Receiver Input Resistance Rise or Fall Time Receiver Input to Output Data Skew VTH ∆VTH IIN RIN tr, tf tPHL, tPLH |tPHL tPLH| -7V ≤ VCM ≤ 7V -7V ≤ VCM ≤ 7V -10V ≤VA,B ≤ 10V -10V ≤ VA,B ≤ 10V (Figures 2, 6) (Figures 2, 6) (Figures 2, 6) MXL1544 MAX3175 MXL1544 MAX3175 15 30 15 50 10 4 1 16 80 -200 15 200 40 ±0.66 mV mV mA kΩ ns ns µs ns µs VODO Open circuit, R = 1.95kΩ (Figure 1) R = 50Ω (Figure 1), TA = +25°C R = 50Ω (Figure 1) ∆VOD VOC ∆VOC ISC IZ tr, tf tPHL, tPLH |tPHL tPLH| R = 50Ω (Figure 1) R = 50Ω (Figure 1) R = 50Ω (Figure 1) VOUT = GND -0.25V < VOUT < +0.25V, power-off or nocable mode R = 50Ω (Figures 2, 5) R = 50Ω (Figures 2, 5) (Figures 2, 5) (Figures 2, 5) 2 ±1 15 50 3 3 0.5 ✕ VODO ±2 0.2 3 0.2 150 ±100 25 75 12 V V V mA µA ns ns ns ns ±5 0.67 ✕ VODO V MAX3175 only 5 10 15 µs SYMBOL VOH VOL ISC IL CONDITIONS ISOURCE = 4mA ISINK = 4mA 0 ≤ VOUT ≤ VCC VOUT = 0, no-cable mode -50 70 MIN 3 TYP 4.5 0.3 0.8 50 MAX UNITS V V mA µA MXL1544/MAX3175 LOGIC OUTPUTS (R1OUT, R2OUT, R3OUT, R4OUT) VODL V _______________________________________________________________________________________ 3 +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 ELECTRICAL CHARACTERISTICS (continued) (VCC = +5V, VDD = +6.8V, VEE = -5.6V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER V.10 TRANSMITTER Open-Circuit Output Voltage Swing Output Voltage Swing Short-Circuit Current Output Leakage Current Rise or Fall Time Transmitter Input to Output V.10 RECEIVER Differential Threshold Voltage Input Hysteresis Receiver Input Current Receiver Input Impedance Rise or Fall Time VTH ∆VTH IIN RIN tr, tf tPLH Receiver Input to Output tPHL Data Skew V.28 TRANSMITTER Output Voltage Swing Short-Circuit Current Output Leakage Current Output Slew Rate Transmitter Input to Output V.28 RECEIVER Input Low Voltage Input High Voltage Input Hysteresis Input Resistance Rise or Fall Time VIL VIH VHYS RIN tr, tf -15V < VIN < +15V (Figures 4, 8) 3 2.0 1.3 1.3 0.05 5 15 0.3 7 0.8 V V V kΩ ns VO ISC IZ SR tPHL tPLH Open circuit (Figure 3) RL = 3kΩ (Figure 3) VO = GND -0.25V ≤ VOUT ≤ +0.25V, power-off or no-cable mode RL = 3kΩ, CL = 2500pF (Figures 3, 7) RL = 3kΩ, CL = 2500pF (Figures 3, 7) 4 1.5 1.5 ±1 ±5 ±6 ±150 ±100 30 2.5 3 ±7 V V mA µA V/µs µs |tPHL tPLH| (Figures 4, 8) (Figures 4, 8) -10V ≤ VA ≤ 10V -10V ≤ VA ≤ 10V (Figures 4, 8) MXL1544 MAX3175 MXL1544 MAX3175 MXL1544 MAX3175 15 30 15 55 10 109 10 60 1 -250 25 250 50 ±0.66 mV mV mA kΩ ns ns µs ns µs ns µs VO RL = 3.9kΩ (Figure 3) RL = 450Ω (Figure 3) VT ISC IZ tr, tf tPHL, tPLH RL = 450Ω (Figure 3), TA = +25°C VO = GND, TA = +25°C -0.25V < VOUT < +0.25V, power-off or no-cable mode RL = 450Ω, CL = 100pF (Figures 3, 7) RL = 450Ω, CL = 100pF (Figures 3, 7) ±1 2 1 ±4 ±3.6 0.9 x VO ±150 ±100 V mA µA µs µs ±6 V SYMBOL CONDITIONS MIN TYP MAX UNITS 4 _______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Control Transceivers ELECTRICAL CHARACTERISTICS (continued) (VCC = +5V, VDD = +6.8V, VEE = -5.6V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL tPLH Receiver Input to Output tPHL (Figures 4, 8) CONDITIONS MXL1544 MAX3175 MXL1544 MAX3175 MIN TYP 60 10 70 10 450 MAX 100 UNITS ns µs ns µs MXL1544/MAX3175 Note 2: MXL1544/MAX3175 are designed to operate with VDD and VEE supplied by the MXL1543 charge pump. Typical Operating Characteristics (TA = +25°C, unless otherwise noted.) V.11 MODE SUPPLY CURRENT (ICC) vs. DATA RATE MXL1544/MAX3175 toc01 V.11 MODE SUPPLY CURRENT (IDD) vs. DATA RATE 9 8 7 IDD (mA) 6 5 4 100 80 ICC (mA) 60 40 20 FULL LOAD, R = 50Ω DCE MODE INVERT = 1 DCE MODE INVERT = 1 3 2 NO LOAD, R = 1.95kΩ 1 0 0.1 1 10 100 1000 10,000 0.1 1 10 100 1000 10,000 DATA RATE (kbps) DATA RATE (kbps) FULL, R = 50Ω NO LOAD, R = 1.95kΩ 0 V.11 MODE SUPPLY CURRENT (IEE) vs. DATA RATE MXL1544/MAX3175 toc03 V.28 MODE SUPPLY CURRENT (ICC) vs. DATA RATE 0.72 0.71 ICC (mA) 0.70 0.69 0.68 FULL LOAD (RL = 3kΩ, CL = 2500) AND NO LOAD DCE MODE INVERT = 0 MXL1544/MAX3175 toc04 10 9 8 7 IEE (mA) 6 5 4 3 2 1 0 0.1 1 10 100 1000 DCE MODE INVERT = 1 0.73 FULL, R = 50Ω NO LOAD, R = 1.95kΩ 0.67 0.66 0.65 10,000 0 50 100 150 200 250 DATA RATE (kbps) DATA RATE (kbps) _______________________________________________________________________________________ MXL1544/MAX3175 toc02 120 10 5 +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 Typical Operating Characteristics (continued) (TA = +25°C, unless otherwise noted.) V.28 MODE SUPPLY CURRENT (IDD) vs. DATA RATE MXL1544/MAX3175 toc05 V.28 MODE SUPPLY CURRENT (IEE) vs. DATA RATE DCE MODE INVERT = 0 MXL1544/MAX3175 toc06 25 35 30 25 IEE (mA) 20 15 10 DCE MODE INVERT = 0 20 IDD (mA) 15 FULL LOAD, RL = 3kΩ, CL = 2500pF 10 FULL LOAD, RL = 3kΩ, CL = 2500pF NO LOAD 0 50 100 150 200 250 5 NO LOAD 0 0 50 100 150 DATA RATE (kbps) 200 250 5 0 DATA RATE (kbps) V.11 LOADED DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURE MXL1544/MAX3175 toc07 V.10 LOADED OUTPUT VOLTAGE vs. TEMPERATURE 8 6 OUTPUT VOLTAGE (V) 4 2 0 -2 -4 -6 -8 -10 VOUTDCE MODE RL = 450Ω VOUT+ MXL1544/MAX3175 toc08 5 DIFFERENTIAL OUTPUT VOLTAGE (V) 4 3 2 1 0 -1 -2 -3 -4 -5 0 10 20 30 40 50 60 VOUTDCE MODE INVERT = 1 RL = 50Ω VOUT+ 10 70 0 10 20 30 40 50 60 70 TEMPERATURE (°C) TEMPERATURE (°C) V.28 LOADED OUTPUT VOLTAGE vs. TEMPERATURE MXL1544/MAX3175 toc09 V.11 RECEIVER INPUT CURRENT vs. INPUT VOLTAGE MXL1544/MAX3175 toc10 10 8 6 OUTPUT VOLTAGE (V) 4 2 0 -2 -4 -6 -8 -10 0 DCE MODE RL = 3kΩ 300 200 INPUT CURRENT (µA) 100 0 -100 -200 -300 VOUT+ VOUT- 10 20 30 40 50 60 70 -10 -5 0 INPUT VOLTAGE (V) 5 10 TEMPERATURE (°C) 6 _______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Control Transceivers Typical Operating Characteristics (continued) (TA = +25°C, unless otherwise noted.) V.28 RECEIVER INPUT CURRENT vs. INPUT VOLTAGE MXL1544/MAX3175 toc11 MXL1544/MAX3175 V.28 SLEW RATE vs. LOAD CAPACITANCE 16 14 SLEW RATE (V/µs) 12 10 8 6 4 2 0 SLEWSLEW+ MXL1544/MAX3175 toc12 5 4 3 INPUT CURRENT (mA) 2 1 0 -1 -2 -3 -4 -5 -15 -10 -5 0 5 10 18 15 0 1000 2000 3000 4000 5000 INPUT VOLTAGE (V) CAPACITANCE (pF) V.10 TRANSMITTER RISE AND FALL TIME vs. LOAD CAPACITANCE RISE MXL1544/MAX3175 toc13 MXL1544 LOOPBACK SCOPE PHOTO V.11 MODE (UNLOADED) MXL1544/MAX3175 toc14 3.5 3.0 RISE/FALL TIME (µs) 2.5 2.0 1.5 1.0 0.5 0 0 500 1000 1500 2000 2500 TIN 5V/div FALL TOUT/ RIN 5V/div ROUT 5V/div 3000 4µs/div CAPACITANCE (pF) MXL1544 LOOPBACK SCOPE PHOTO V.28 MODE (LOADED) MXL1544/MAX3175 toc15 MXL1544 LOOPBACK SCOPE PHOTO V.10 MODE (LOADED) MXL1544/MAX3175 toc16 TIN 5V/div TIN 5V/div TOUT/ RIN 5V/div TOUT/ RIN 5V/div ROUT 5V/div ROUT 5V/div 4µs/div 4µs/div _______________________________________________________________________________________ 7 +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 Pin Description PIN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 NAME VCC VDD T1IN T2IN T3IN R1OUT R2OUT R3OUT T4IN R4OUT M0 M1 M2 DCE/DTE INVERT T4OUTA/R4INA R3INB R3INA R2INB R2INA T3OUTB/R1INB T3OUTA/R1INA T2OUTB T2OUTA T1OUTB T1OUTA GND VEE FUNCTION +5V Supply Voltage (±5%). Bypass with a 1µF capacitor to ground. Positive Supply Generated by MXL1543. Bypass with a 1µF capacitor to ground. Transmitter 1 TTL-Compatible Input Transmitter 2 TTL-Compatible Input Transmitter 3 TTL-Compatible Input Receiver 1 CMOS Output Receiver 2 CMOS Output Receiver 3 CMOS Output Transmitter 4 TTL-Compatible Input Receiver 4 CMOS Output TTL-Compatible Mode Select Pin with Internal Pullup to VCC TTL-Compatible Mode Select Pin with Internal Pullup to VCC TTL-Compatible Mode Select Pin with Internal Pullup to VCC TTL-Compatible Input with Internal Pullup to VCC. Logic level high selects DCE interface. TTL Input with Internal Pullup to VCC. INVERT = HIGH reverses action of DCE/DTE for Channel 4. Transmitter Output/Inverting Receiver Input Noninverting Receiver Input Inverting Receiver Input Noninverting Receiver Input Inverting Receiver Input Noninverting Transmitter Output/Noninverting Receiver Input Inverting Transmitter Output/Inverting Receiver Input Noninverting Transmitter Output Inverting Transmitter Output Noninverting Transmitter Output Inverting Transmitter Output Ground Negative Supply Generated by MXL1543. Bypass with a 1µF capacitor to ground. 8 _______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Control Transceivers Test Circuits MXL1544/MAX3175 D R VOD A VO R VOC CL RL Figure 1. V.11 DC Test Circuit Figure 3. V.10/V.28 Driver Test Circuit 100pF D B 100Ω A A 15pF B R D A R 15pF 100pF Figure 2. V.11 AC Test Circuit Figure 4. V.10/V.28 Receiver Test Circuit Detailed Description The MXL1544/MAX3175 are four-driver/four-receiver multiprotocol transceivers that operate from a single +5V supply and the charge pump from the MXL1543. The MXL1544/MAX3175, along with the MXL1543 and MXL1344A, form a complete software-selectable DTE or DCE interface port that supports the V.28 (RS-232), V.10/V.11 (RS-449, V.36, EIA-530, EIA-530A, X.21, RS423), and V.35 protocols. The MXL1544 or MAX3175 usually carries the control signals. The MXL1543 carries the high-speed clock and data signals, and the MXL1344A provides termination for the clock and data signals. The MXL1544/MAX3175 feature a 0.5µA no-cable mode, true fail-safe operation, and thermal shutdown circuitry. Thermal shutdown protects the drivers against excessive power dissipation. When activated, the thermal shutdown circuitry places the driver outputs into a high-impedance state. The MAX3175 deglitching feature reduces errors in unterminated equipment. The state of the mode-select pins M0, M1, and M2 determines which serial-interface protocol is selected (Table 1). The state of the DCE/DTE input determines whether the transceivers will be configured as a DTE serial port or a DCE serial port. When the DCE/DTE input is logic HIGH, driver T3 is activated and receiver R1 is disabled. When the DCE/DTE input is logic LOW, driver T3 is disabled and receiver R1 is activated. The INVERT pin state changes the DCE/DTE functionality regarding T4 and R4 only. M0, M1, M2, INVERT, and DCE/DTE are internally pulled up to VCC to ensure logic HIGH if left unconnected. _______________________________________________________________________________________ 9 +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 Switching Time Waveforms 5V D 0 V0 B-A -V0 A V0 B tSKEW tSKEW 50% tr 1.5V tPLH 90% 10% VDIFF = V(B) - V(A) 1/2 V0 f = 1MHz: tr ≤ 10ns: tf ≤ 10ns 1.5V tPHL 90% tf 50% 10% Figure 5. V.11, V.35 Driver Propagation Delays V0D2 B-A -V0D2 V0H R V0L 0 tPLH 1.5V f = 1MHz: tr ≤ 10ns: tf ≤ 10ns INPUT 0 tPHL OUTPUT 1.5V Figure 6. V.11, V.35 Receiver Propagation Delays 3V D 0 V0 3V A -V0 tf 0 -3V -3V tr 0 1.5V tPHL 0 tPLH 3V Figure 7. V.10, V.28 Driver Propagation Delays VIH A VIL V0H R V0L 1.3V tPHL 0.8V 1.7V tPLH 2.4V Figure 8. V.10, V.28 Receiver Propagation Delays 10 ______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Control Transceivers The MXL1544/MAX3175s ’ m ode can be selected through software control of the M0, M1, M2, INVERT, and DCE/DTE inputs. Alternatively, the mode can be selected by shorting the appropriate combination of mode control inputs to GND (the inputs left floating will be internally pulled up to VCC - logic HIGH). If the M0, M1, and M2 mode inputs are all unconnected, the MXL1544/MAX3175 will enter no-cable mode. +250mV and -250mV with input impedance characteristic shown in Figure 11. The MXL1544/MAX3175 V.10 mode receiver has a differential threshold between -250mV and +250mV. To ensure that the receiver has proper fail-safe operation see the Fail-Safe section. To aid in rejecting system noise, the MXL1544/MAX3175 V.10 receiver has a typical hysteresis of 25mV. Switch S3 in Figure 12 is open in V.10 mode to disable the V.28 5kΩ termination at the receiver input. Switch S4 is closed and switch S5 is open to internally ground the receiver B input. MXL1544/MAX3175 Fail-Safe The MXL1544/MAX3175 guarantee a logic HIGH receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. The V.11 receiver threshold is set between -200mV and 0mV to guarantee fail-safe operation. If the differential receiver input voltage (B - A) is ≥ 0mV, ROUT is logic HIGH. In the case of a terminated bus with all transmitters disabled, the receiver’s differential input voltage is pulled to 0 by the termination. With the receiver thresholds of the MXL1544/MAX3175, this results in ROUT logic HIGH. The V.10 receiver threshold is set between -250mV and 0mV. If the V.10 receiver input voltage is less than or equal to -250mV, ROUT is logic HIGH. The V.28 receiver threshold is set between 0.8V and 2.0V. If the receiver input voltage is less than or equal to 0.8V, ROUT is logic HIGH. In the case of a terminated bus with transmitters disabled, the receiver’s input voltage is pulled to 0 by the termination. V.11 (RS-422) Interface As shown in Figure 13, the V.11 protocol is a fully balanced differential interface. The V.11 driver generates a minimum of ±2V between nodes A and B when 100Ω minimum resistance is presented at the load. The V.11 receiver is sensitive to differential signals of ±200mV at receiver inputs A’ and B’. The V.11 receiver input must comply with the impedance curve of Figure 11 and reject common-mode signals developed across the cable (referenced from C to C’ in Figure 13) of up to ±7V. The MXL1544/MAX3175 V.11 mode receiver has a differential threshold between -200mV and +200mV. To ensure that the receiver has proper fail-safe operation; see the Fail-Safe section. To aid in rejecting system noise, the MXL1544/MAX3175 V.11 receiver has a typical hysteresis of 15mV. Switch S3 in Figure 14 is open in V.11 mode to disable the V.28 5kΩ termination at the inverting receiver input. Because the control signals are slow (60kbps), 100Ω termination resistance is generally not required for the MXL1544/MAX3175. The receiver inputs must also be compliant with the impedance curve shown in Figure 11. Applications Information Cable-Selectable Mode A cable-selectable, multiprotocol DTE/DCE interface is shown in Figure 9. The mode control lines M0, M1, and DCE/DTE are wired to the DB-25 connector. To select the serial interface mode, the appropriate combination of M0, M1, M2, and DCE/DTE are grounded within the cable wiring. The control lines that are not grounded are pulled high by the internal pullups on the MXL1543. The serial interface protocol of the MXL1544/MAX3175 is now selected based on the cable that is connected to the DB-25 interface. V.28 (RS-232) Interface The V.28 interface is an unbalanced single-ended interface (Figure 10). The V.28 generator provides a minimum of ±5V across the 3kΩ load impedance between A’ and C’. The V.28 receiver has single-ended input. The MXL1544/MAX3175 V.28 mode receiver has a threshold between +0.8V and +2.0V. To aid in rejecting system noise, the MXL1544/MAX3175 V.28 receiver has a typical hysteresis of 50mV. Switch S3 in Figure 15 is closed in V.28 mode to enable the 5kΩ V.28 termination at the receiver inputs. V.10 (RS-423) Interface The V.10 interface (Figure 10) is an unbalanced singleended interface capable of driving a 450Ω load. The V.10 driver generates a minimum VO voltage of ±4V across A’ and C’ when unloaded and a minimum voltage of 0.9 ✕ V O when loaded with 450 Ω . The V.10 receiver has a single-ended input and does not reject common-mode differences between C and C’. The V.10 receiver input trip threshold is defined between No-Cable Mode The MXL1544/MAX3175 will enter no-cable mode when the mode-select pins are left unconnected or connected HIGH (M0 = M1 = M2 = 1). In this mode, the multiprotocol drivers and receivers are disabled and the 11 ______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 C6 C7 C8 100pF 100pF 100pF 3 VCC 5V 14 3 C3 4.7µF 1 C1 1µF C4 1µF DTE_TXD/DCE_RXD DTE_SCTE/DCE_RXC 5 6 7 DTE_TXC/DCE_TXC DTE_RXC/DCE_SCTE DTE_RXD/DCE_TXD 8 9 10 D1 D2 D3 R1 R2 R3 20 19 18 17 16 15 2 4 CHARGE PUMP 28 27 26 25 24 23 22 21 C2 1µF 2 C5 4.7µF VEE 54 C13 1µF VCC 8 11 12 13 MXL1344A LATCH DCE/DTE M2 21 M1 C12 1µF 67 9 10 16 15 18 17 19 20 22 23 24 1 VCC M0 DTE 2 TXD A 14 TXD B 24 SCTE A 11 SCTE B 15 12 17 9 3 16 7 DCE RXD A RXD B RXC A RXC B TXC A TXC B TXC A TXC B RXC A SCTE A RXC B SCTE B RXD A TXD A RXD B TXD B SG 11 NC M0 MXL1543 12 M1 13 M2 14 DCE/DTE 1 SHIELD DB-25 CONNECTOR C9 1µF C10 1µF VCC 1 28 VCC VDD VEE GND 27 C11 1µF 25 DCE/DTE 21 M1 18 M0 4 RTS A CTS A 19 RTS B CTS B 20 DTR A DSR A 23 DTR B DSR B 8 DCD A 10 DCD B 6 DSR A 22 DSR B 5 CTS A 13 CTS B 2 DTE_RTS/DCE_CTS DTE_DTR/DCE_DSR 3 4 5 D1 D2 D3 R1 R2 R3 R4 D4 26 25 24 23 DTE_DCD/DCE_DCD DTE_DSR/DCE_DTR DTE_CTS/DCE_RTS 6 7 8 10 9 11 22 21 20 19 18 17 16 CABLE WIRING FOR MODE SELECTION PIN 18 PIN 7 RS-449. V.36 N.C. PIN 7 RS-232 MODE V.35 PIN 21 PIN 7 PIN 7 N.C. CABLE WIRING FOR DTE/DCE SELECTION MODE PIN 25 PIN 7 DTE N.C. DCE DCD A DCD B DTR A DTR B RTS A RTS B NC M0 MXL1544 MAX3175 12 M1 13 M2 14 15 DCE/DTE INVERT Figure 9. Cable-Selectable Multiprotocol DCE/DTE Port with DB-25 Connector 12 ______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 GENERATOR UNBALANCED INTERCONNECTING CABLE CABLE TERMINATION LOAD RECEIVER A A′ C C′ Figure 10. Typical V.10/V.28 Interface IZ 3.25mA GENERATOR BALANCED INTERCONNECTING CABLE LOAD CABLE RECEIVER TERMINATION A′ 100Ω MIN -10V -3V +3V VZ +10V A -3.25mA B C B′ C′ Figure 11. Receiver Input Impedance Curve Figure 13. Typical V.11 Interface A′ A R5 30kΩ R8 5kΩ R6 10kΩ S3 MXL1544 MAX3175 RECEIVER supply current is less than 10µA. The receiver outputs enter a high-impedance state in no-cable mode, which allows these output lines to be shared with other receiver outputs (the receiver outputs have an internal pullup resistor to pull the outputs HIGH if not driven). Also, in no-cable mode, the transmitter outputs enter a highimpedance state, so these output lines can be shared with other devices. Receiver Glitch Rejection To improve operation in an unterminated or otherwise noisy system, the MAX3175 features 10µs of receiver input glitch rejection. The glitch-rejection circuitry blocks the reception of high-frequency noise (tB < 5µs) while receiving a low-frequency signal (tB >15µs) allowing glitch-free operation in unterminated systems at up to 60kbps. The MXL1544 does not have this feature and can be operated at frequencies greater than 60kbps if properly terminated. R7 10kΩ B′ C′ GND S4 B R4 30kΩ S5 Figure 12. V.10 Internal Resistance Network ______________________________________________________________________________________ 13 +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 A′ A R5 30kΩ R8 5kΩ R6 10kΩ A′ A R5 30kΩ R8 5kΩ RECEIVER S3 R6 10kΩ MXL1544 MAX3175 MXL1544 MAX3175 RECEIVER S3 B′ C′ B R4 30kΩ R7 10kΩ B′ C′ B R7 10kΩ R4 30kΩ GND GND Figure 14. V.11 Internal Resistance Networks Figure 15. V.28 Termination and Internal Resistance Network DTE vs. DCE Operation Figure 16 shows a port with one DB-25 connector that can be configured for either DTE or DCE operation. The configuration requires separate cables for proper signal routing in DTE or DCE operation. Figure 16 illustrates a DCE or DTE controller-selectable interface. The DCE/DTE and INVERT inputs switch the port’s mode of operation (Table 1). The MXL1543 and MXL1544/MAX3175 can be connected for either DTE or DCE operation in one of two ways: a dedicated DTE or DCE port with an appropriate gender connector or a port with a connector that can be configured for DTE or DCE operation by rerouting the signals to the MXL1543 and MXL1544/MAX3175 using a dedicated DTE cable or dedicated DCE cable. The interface mode is selected by logic outputs from the controller or from jumpers to either VCC or GND on the mode select pins. A dedicated DCE port using a DB-25 female connector is shown in Figure 17. Figure 18 illustrates a dedicated DTE port using a DB-25 male connector. 14 ______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 Table 1. Mode Select Table PROTOCOL Not Used (Default V.11) RS-530A RS-530 X.21 V.35 RS-449/V.36 V.28/RS-232 No Cable Not Used (Default V.11) RS-530A RS-530 X.21 V.35 RS-449/V.36 V.28/RS-232 No Cable Not Used (Default V.11) RS-530A RS-530 X.21 V.35 RS-449/V.36 V.28/RS-232 No Cable Not Used (Default V.11) RS-530A RS-530 X.21 V.35 RS-449/V.36 V.28/RS-232 No Cable M2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 M1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 M0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 DCE/ DTE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 INVERT 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 T1 V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z T2 V.11 V.10 V.11 V.11 V.28 V.11 V.28 Z V.11 V.10 V.11 V.11 V.28 V.11 V.28 Z V.11 V.10 V.11 V.11 V.28 V.11 V.28 Z V.11 V.10 V.11 V.11 V.28 V.11 V.28 Z T3 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z R1 V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z R2 V.11 V.10 V.11 V.11 V.28 V.11 V.28 Z V.11 V.10 V.11 V.11 V.28 V.11 V.28 Z V.11 V.10 V.11 V.11 V.28 V.11 V.28 Z V.11 V.10 V.11 V.11 V.28 V.11 V.28 Z R3 V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.11 V.28 V.11 V.28 Z T4 Z Z Z Z Z Z Z Z V.10 V.10 V.10 V.10 V.28 V.10 V.28 Z V.10 V.10 V.10 V.10 V.28 V.10 V.28 Z Z Z Z Z Z Z Z Z R4 V.10 V.10 V.10 V.10 V.28 V.10 V.28 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z V.10 V.10 V.10 V.10 V.28 V.10 V.28 Z ______________________________________________________________________________________ 15 +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 C6 C7 C8 100pF 100pF 100pF 3 VCC 5V 14 3 C3 4.7µF C1 1µF C4 1µF DTE_TXD/DCE_RXD DTE_SCTE/DCE_RXC 5 6 7 DTE_TXC/DCE_TXC DTE_RXC/DCE_SCTE DTE_RXD/DCE_TXD 8 9 10 D1 D2 D3 R1 R2 R3 20 19 18 17 16 15 1 2 4 CHARGE PUMP 28 27 26 25 24 23 22 21 C2 1µF 2 C5 4.7µF VEE 54 C13 1µF VCC 8 11 12 13 MXL1344A LATCH DCE/DTE M2 M1 21 C12 1µF 67 9 10 16 15 18 17 19 20 22 23 24 1 DTE 2 TXD A 14 TXD B 24 SCTE A 11 SCTE B 15 12 17 9 3 16 7 DCE RXD A RXD B RXC A RXC B M0 TXC A TXC B TXC A TXC B RXC A SCTE A RXC B SCTE B RXD A TXD A RXD B TXD B SG 11 M0 MXL1543 12 M1 13 M2 14 DCE/DTE 1 SHIELD DB-25 CONNECTOR C9 1µF C10 1µF VCC 1 28 VCC VDD VEE GND 27 C11 1µF 2 DTE_RTS/DCE_CTS DTE_DTR/DCE_DSR 3 4 5 D1 D2 D3 R1 R2 R3 R4 D4 26 25 24 23 4 RTS A 19 RTS B 20 DTR A 23 DTR B 8 DCD A 10 DCD B 6 DSR A 22 DSR B 5 CTS A 13 CTS B 18 LL A CTS A CTS B DSR A DSR B DTE_DCD/DCE_DCD DTE_DSR/DCE_DTR DTE_CTS/DCE_RTS DTE_LL/DCE_LL 6 7 8 10 9 22 21 20 19 18 17 16 DCD A DCD B DTR A DTR B RTS A RTS B LL A MXL1544 M0 MAX3175 12 M1 15 13 INVERT M2 14 DCE/DTE 11 INVERT DCE/DTE M2 M1 M0 Figure 16. Controller-Selectable Multiprotocol DCE/DTE Port with DB-25 Connector 16 ______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 C6 C7 C8 100pF 100pF 100pF 3 VCC 5V 14 3 C3 4.7µF C1 1µF C4 1µF RXD RXC 5 6 7 TXC SCTE TXD 8 9 10 D1 D2 D3 R1 R2 R3 20 19 18 17 16 15 1 2 4 CHARGE PUMP 28 27 26 25 24 23 22 21 C2 1µF 2 C5 4.7µF VEE 54 C13 1µF VCC 8 11 12 13 MXL1344A LATCH DCE/DTE M2 M1 21 C12 1µF 67 9 10 16 15 18 17 19 20 22 23 24 1 VCC M0 3 RXD A (104) 16 RXD B 17 RXC A (115) 9 RXC B 15 TXC A (114) 12 TXC B 24 SCTE A (113) 11 SCTE B 2 TXD A (103) 14 TXD B 7 SGND (102) M0 MXL1543 12 M1 13 M2 14 NC DCE/DTE 11 1 SHIELD (101) C9 1µF C10 1µF VCC 1 28 VCC VDD VEE GND 27 C11 1µF DB-25 FEMALE CONNECTOR 2 CTS DSR 3 4 5 D1 D2 D3 R1 R2 R3 R4 D4 26 25 24 23 5 CTS A (106) 13 CTS B 6 DSR A (107) 22 DSR B 8 DCD A (109) 10 DCD B 20 DTR A (108) 23 DTR B 4 RTS A (105) 19 RTS B 18 LL A (141) DCD DTR RTS LL 6 7 8 10 9 22 21 20 19 18 17 16 MXL1544 M0 MAX3175 12 M1 15 INVERT 13 M2 14 NC DCE/DTE 11 INVERT M2 M1 M0 Figure 17. Controller-Selectable DCE Port with DB-25 Connector ______________________________________________________________________________________ 17 +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 C6 C7 C8 100pF 100pF 100pF 3 VCC 5V 14 3 C3 4.7µF C1 1µF C4 1µF TXD SCTE 5 6 7 TXC RXC RXD 8 9 10 D1 D2 D3 R1 R2 R3 20 19 18 17 16 15 1 2 4 CHARGE PUMP 28 27 26 25 24 23 22 21 C2 1µF 2 C5 4.7µF VEE 54 C13 1µF VCC 8 11 12 13 MXL1344A LATCH DCE/DTE M2 M1 21 C12 1µF 67 9 10 16 15 18 17 19 20 22 23 24 1 2 TXD A (103) 14 TXD B 24 SCTE A (113) 11 SCTE B 15 12 17 9 3 16 7 M0 TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B SG 11 M0 MXL1543 12 M1 13 M2 14 DCE/DTE 1 SHIELD DB-25 MALE CONNECTOR C9 1µF C10 1µF VCC 1 28 VCC VDD VEE GND 27 C11 1µF 2 RTS DTR 3 4 5 D1 D2 D3 R1 R2 R3 R4 D4 26 25 24 23 4 RTS A (105) 19 RTS B 20 DTR A (108) 23 DTR B 8 DCD A (109) 10 DCD B 6 DSR A (107) 22 DSR B 5 CTS A (106) 13 CTS B 18 LL A (141) DCD DSR CTS LL 6 7 8 10 9 22 21 20 19 18 17 16 MXL1544 M0 MAX3175 12 15 M1 INVERT 13 M2 14 DCE/DTE 11 INVERT M2 M1 M0 Figure 18. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector 18 ______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Control Transceivers Chip Information TRANSISTOR COUNT: 2348 PROCESS: BiCMOS TOP VIEW VCC 1 VDD 2 T1IN 3 T2IN 4 T3IN 5 R1OUT 6 R2OUT 7 R3OUT 8 T4IN 9 R4OUT 10 M0 11 M1 12 M2 13 DCE/DTE 14 28 VEE 27 GND 26 T1OUTA 25 T1OUTB 24 T2OUTA Pin Configuration MXL1544/MAX3175 MXL1544 MAX3175 23 T2OUTB 22 T3OUTA/R1INA 21 T3OUTB/R1INB 20 R2INA 19 R2INB 18 R3INA 17 R3INB 16 T4OUTA/R4INA 15 INVERT SSOP ______________________________________________________________________________________ 19 +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 Package Information SSOP.EPS Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2001 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
MXL1544CAI 价格&库存

很抱歉,暂时无法提供与“MXL1544CAI”相匹配的价格&库存,您可以联系我们找货

免费人工找货