0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BCW30LT1

BCW30LT1

  • 厂商:

    MOTOROLA

  • 封装:

  • 描述:

    BCW30LT1 - General Purpose Transistors - Motorola, Inc

  • 数据手册
  • 价格&库存
BCW30LT1 数据手册
MOTOROLA SEMICONDUCTOR TECHNICAL DATA Order this document by BCW29LT1/D General Purpose Transistors PNP Silicon COLLECTOR 3 1 BASE 2 EMITTER BCW29LT1 BCW30LT1 3 1 MAXIMUM RATINGS Rating Collector–Emitter Voltage Collector–Base Voltage Emitter–Base Voltage Collector Current – Continuous Symbol VCEO VCBO VEBO IC Value –32 –32 –5.0 –100 Unit Vdc Vdc Vdc mAdc 2 CASE 318 – 08, STYLE 6 SOT– 23 (TO – 236AB) THERMAL CHARACTERISTICS Characteristic Total Device Dissipation FR-5 Board (1) TA = 25°C Derate above 25°C Thermal Resistance, Junction to Ambient Total Device Dissipation Alumina Substrate, (2) TA = 25°C Derate above 25°C Thermal Resistance, Junction to Ambient Junction and Storage Temperature Symbol PD Max 225 1.8 RθJA PD 556 300 2.4 RθJA TJ, Tstg 417 – 55 to +150 Unit mW mW/°C °C/W mW mW/°C °C/W °C DEVICE MARKING BCW29LT1 = C1; BCW30LT1 = C2 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Max Unit OFF CHARACTERISTICS Collector–Emitter Breakdown Voltage (IC = –2.0 mAdc, IE = 0) Collector–Emitter Breakdown Voltage (IC = –100 µAdc, VEB = 0) Collector–Base Breakdown Voltage (IC = –10 µAdc, IC = 0) Emitter–Base Breakdown Voltage (IE = –10 µAdc, IC = 0) Collector Cutoff Current (VCB = –32 Vdc, IE = 0) (VCB = –32 Vdc, IE = 0, TA = 100°C) 1. FR– 5 = 1.0 0.75 2. Alumina = 0.4 0.3 V(BR)CEO V(BR)CES V(BR)CBO V(BR)EBO ICBO — — –100 –10 nAdc µAdc –32 –32 –32 –5.0 — — — — Vdc Vdc Vdc Vdc   0.062 in.   0.024 in. 99.5% alumina. Thermal Clad is a trademark of the Bergquist Company Motorola Small–Signal Transistors, FETs and Diodes Device Data © Motorola, Inc. 1996 1 BCW29LT1 BCW30LT1 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Max Unit ON CHARACTERISTICS DC Current Gain (IC = –2.0 mAdc, VCE = –5.0 Vdc) Collector–Emitter Saturation Voltage (IC = –10 mAdc, IB = –0.5 mAdc) Base–Emitter On Voltage (IC = –2.0 mAdc, VCE = –5.0 Vdc) hFE BCW29 BCW30 VCE(sat) — VBE(on) –0.6 –0.75 –0.3 Vdc 120 215 260 500 — — Vdc SMALL–SIGNAL CHARACTERISTICS Output Capacitance (IE = 0, VCB = –10 Vdc, f = 1.0 MHz) Noise Figure (IC = –0.2 mAdc, VCE = –5.0 Vdc, RS = 2.0 kΩ, f = 1.0 kHz, BW = 200 Hz) Cobo — NF — 10 7.0 dB pF 2 Motorola Small–Signal Transistors, FETs and Diodes Device Data BCW29LT1 BCW30LT1 TYPICAL NOISE CHARACTERISTICS (VCE = – 5.0 Vdc, TA = 25°C) 10 7.0 en, NOISE VOLTAGE (nV) 5.0 IC = 10 µA 30 µA 3.0 2.0 1.0 mA 100 µA 300 µA BANDWIDTH = 1.0 Hz RS ≈ 0 In, NOISE CURRENT (pA) 1.0 7.0 5.0 3.0 2.0 1.0 0.7 0.5 0.3 0.2 1.0 10 20 50 100 200 500 1.0 k f, FREQUENCY (Hz) 2.0 k 5.0 k 10 k 0.1 10 20 50 100 200 500 1.0 k 2.0 k f, FREQUENCY (Hz) 5.0 k 10 k 300 µA 100 µA 30 µA 10 µA IC = 1.0 mA BANDWIDTH = 1.0 Hz RS ≈ ∞ Figure 1. Noise Voltage Figure 2. Noise Current NOISE FIGURE CONTOURS (VCE = – 5.0 Vdc, TA = 25°C) 1.0 M 500 k 200 k 100 k 50 k 20 k 10 k 5.0 k 2.0 k 1.0 k 500 200 100 10 20 30 50 70 100 200 300 IC, COLLECTOR CURRENT (µA) 0.5 dB 1.0 dB 2.0 dB 3.0 dB 5.0 dB 500 700 1.0 k 1.0 M 500 k 200 k 100 k 50 k 20 k 10 k 5.0 k 2.0 k 1.0 k 500 200 100 10 20 30 50 70 100 200 300 IC, COLLECTOR CURRENT (µA) BANDWIDTH = 1.0 Hz RS , SOURCE RESISTANCE (OHMS) RS , SOURCE RESISTANCE (OHMS) BANDWIDTH = 1.0 Hz 0.5 dB 1.0 dB 2.0 dB 3.0 dB 5.0 dB 500 700 1.0 k Figure 3. Narrow Band, 100 Hz Figure 4. Narrow Band, 1.0 kHz RS , SOURCE RESISTANCE (OHMS) 1.0 M 500 k 200 k 100 k 50 k 20 k 10 k 5.0 k 2.0 k 1.0 k 500 200 100 10 20 30 50 70 100 10 Hz to 15.7 kHz Noise Figure is Defined as: NF 0.5 dB 1.0 dB 2.0 dB 3.0 dB 5.0 dB 200 300 500 700 1.0 k IC, COLLECTOR CURRENT (µA) 4KTRS en = Noise Voltage of the Transistor referred to the input. (Figure 3) In = Noise Current of the Transistor referred to the input. (Figure 4) K = Boltzman’s Constant (1.38 x 10–23 j/°K) T = Temperature of the Source Resistance (°K) RS = Source Resistance (Ohms) + 20 log10 en2 ) 4KTRS ) In 2RS2 1 2 Figure 5. Wideband Motorola Small–Signal Transistors, FETs and Diodes Device Data 3 BCW29LT1 BCW30LT1 TYPICAL STATIC CHARACTERISTICS 400 TJ = 125°C 25°C h FE, DC CURRENT GAIN 200 – 55°C 100 80 60 40 0.003 0.005 BCW29LT1 VCE = 1.0 V VCE = 10 V 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 IC, COLLECTOR CURRENT (mA) 3.0 5.0 7.0 10 20 30 50 70 100 Figure 6. DC Current Gain VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) 1.0 0.8 IC = 1.0 mA 10 mA 50 mA 100 mA IC, COLLECTOR CURRENT (mA) TA = 25°C BCW29LT1 100 TA = 25°C PULSE WIDTH = 300 µs 80 DUTY CYCLE ≤ 2.0% 300 µA 60 IB = 400 µA 350 µA 250 µA 200 µA 150 µA 0.6 0.4 40 100 µA 50 µA 0.2 20 0 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 IB, BASE CURRENT (mA) 0 5.0 10 20 0 5.0 10 15 20 25 30 35 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) 40 Figure 7. Collector Saturation Region Figure 8. Collector Characteristics TJ = 25°C θV, TEMPERATURE COEFFICIENTS (mV/°C) 1.4 1.2 V, VOLTAGE (VOLTS) 1.0 0.8 1.6 *APPLIES for IC/IB ≤ hFE/2 0.8 *qVC for VCE(sat) 0 25°C to 125°C – 55°C to 25°C VBE(sat) @ IC/IB = 10 0.6 VBE(on) @ VCE = 1.0 V 0.4 0.2 VCE(sat) @ IC/IB = 10 0 0.1 0.2 0.5 1.0 2.0 5.0 10 20 IC, COLLECTOR CURRENT (mA) 50 100 0.8 25°C to 125°C 1.6 qVB for VBE 0.2 – 55°C to 25°C 2.4 0.1 0.5 1.0 2.0 5.0 10 20 IC, COLLECTOR CURRENT (mA) 50 100 Figure 9. “On” Voltages Figure 10. Temperature Coefficients 4 Motorola Small–Signal Transistors, FETs and Diodes Device Data BCW29LT1 BCW30LT1 TYPICAL DYNAMIC CHARACTERISTICS 500 300 200 100 70 50 30 20 td @ VBE(off) = 0.5 V 10 7.0 5.0 1.0 tr VCC = 3.0 V IC/IB = 10 TJ = 25°C t, TIME (ns) 1000 700 500 300 200 100 70 50 30 20 10 –1.0 ts VCC = – 3.0 V IC/IB = 10 IB1 = IB2 TJ = 25°C t, TIME (ns) tf 2.0 3.0 20 30 5.0 7.0 10 IC, COLLECTOR CURRENT (mA) 50 70 100 – 2.0 – 3.0 – 5.0 – 7.0 –10 – 20 – 30 IC, COLLECTOR CURRENT (mA) – 50 – 70 –100 Figure 11. Turn–On Time f T, CURRENT–GAIN — BANDWIDTH PRODUCT (MHz) Figure 12. Turn–Off Time 500 TJ = 25°C 300 200 VCE = 20 V 5.0 V C, CAPACITANCE (pF) 10 TJ = 25°C 7.0 Cib 5.0 3.0 2.0 Cob 100 70 50 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 1.0 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 IC, COLLECTOR CURRENT (mA) VR, REVERSE VOLTAGE (VOLTS) Figure 13. Current–Gain — Bandwidth Product Figure 14. Capacitance 20 10 hie , INPUT IMPEDANCE (k Ω ) 7.0 5.0 3.0 2.0 1.0 0.7 0.5 0.3 0.2 0.1 0.2 0.5 20 1.0 2.0 5.0 10 IC, COLLECTOR CURRENT (mA) 50 100 BCW29LT1 hfe ≈ 200 @ IC = –1.0 mA hoe, OUTPUT ADMITTANCE (m mhos) VCE = –10 Vdc f = 1.0 kHz TA = 25°C 200 100 70 50 30 20 10 7.0 5.0 3.0 2.0 0.1 0.2 0.5 20 1.0 2.0 5.0 10 IC, COLLECTOR CURRENT (mA) 50 100 VCE = 10 Vdc f = 1.0 kHz TA = 25°C BCW29LT1 hfe ≈ 200 @ IC = 1.0 mA Figure 15. Input Impedance Figure 16. Output Admittance Motorola Small–Signal Transistors, FETs and Diodes Device Data 5 BCW29LT1 BCW30LT1 r(t) TRANSIENT THERMAL RESISTANCE (NORMALIZED) 1.0 0.7 0.5 0.3 0.2 0.1 0.07 0.05 0.03 0.02 0.1 0.05 0.02 0.01 SINGLE PULSE P(pk) t1 t2 2.0 5.0 10 20 50 t, TIME (ms) 100 200 FIGURE 19 DUTY CYCLE, D = t1/t2 D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 (SEE AN–569) ZθJA(t) = r(t) • RθJA TJ(pk) – TA = P(pk) ZθJA(t) 5.0 k 10 k 20 k 50 k 100 k D = 0.5 0.2 0.01 0.01 0.02 0.05 0.1 0.2 0.5 1.0 500 1.0 k 2.0 k Figure 17. Thermal Response 104 VCC = 30 V IC, COLLECTOR CURRENT (nA) 103 102 101 100 10–1 10–2 ICEO DESIGN NOTE: USE OF THERMAL RESPONSE DATA A train of periodical power pulses can be represented by the model as shown in Figure 19. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 17 was calculated for various duty cycles. To find Z θJA(t), multiply the value obtained from Figure 17 by the steady state value RθJA. Example: The BCW29LT1 is dissipating 2.0 watts peak under the following conditions: t1 = 1.0 ms, t2 = 5.0 ms (D = 0.2) Using Figure 17 at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22. The peak rise in junction temperature is therefore ∆T = r(t) x P(pk) x RθJA = 0.22 x 2.0 x 200 = 88°C. For more information, see AN–569. ICBO AND ICEX @ VBE(off) = 3.0 V –4 0 –2 0 0 + 20 + 40 + 60 + 80 + 100 + 120 + 140 + 160 TJ, JUNCTION TEMPERATURE (°C) Figure 18. Typical Collector Leakage Current 6 Motorola Small–Signal Transistors, FETs and Diodes Device Data BCW29LT1 BCW30LT1 INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process. 0.037 0.95 0.037 0.95 0.079 2.0 0.035 0.9 0.031 0.8 inches mm SOT–23 SOT–23 POWER DISSIPATION The power dissipation of the SOT–23 is a function of the pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by T J(max), the maximum rated junction temperature of the die, RθJA, the thermal resistance from the device junction to ambient, and the operating temperature, TA . Using the values provided on the data sheet for the SOT–23 package, PD can be calculated as follows: PD = TJ(max) – TA RθJA SOLDERING PRECAUTIONS The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected. • Always preheat the device. • The delta temperature between the preheat and soldering should be 100°C or less.* • When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C. • The soldering temperature and time shall not exceed 260°C for more than 10 seconds. • When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less. • After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress. • Mechanical stress or shock should not be applied during cooling. * Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device. The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature TA of 25°C, one can calculate the power dissipation of the device which in this case is 225 milliwatts. PD = 150°C – 25°C 556°C/W = 225 milliwatts The 556°C/W for the SOT–23 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 225 milliwatts. There are other alternatives to achieving higher power dissipation from the SOT–23 package. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad™. Using a board material such as Thermal Clad, an aluminum core board, the power dissipation can be doubled using the same footprint. Motorola Small–Signal Transistors, FETs and Diodes Device Data 7 BCW29LT1 BCW30LT1 PACKAGE DIMENSIONS A L 3 BS 1 2 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. INCHES MIN MAX 0.1102 0.1197 0.0472 0.0551 0.0350 0.0440 0.0150 0.0200 0.0701 0.0807 0.0005 0.0040 0.0034 0.0070 0.0180 0.0236 0.0350 0.0401 0.0830 0.0984 0.0177 0.0236 MILLIMETERS MIN MAX 2.80 3.04 1.20 1.40 0.89 1.11 0.37 0.50 1.78 2.04 0.013 0.100 0.085 0.177 0.45 0.60 0.89 1.02 2.10 2.50 0.45 0.60 V G C D H K J DIM A B C D G H J K L S V CASE 318–08 ISSUE AE SOT–23 (TO–236AB) STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 8 ◊ Motorola Small–Signal Transistors, FETs and Diodes Device Data *BCW29LT1/D* BCW29LT1/D
BCW30LT1 价格&库存

很抱歉,暂时无法提供与“BCW30LT1”相匹配的价格&库存,您可以联系我们找货

免费人工找货