FDD8870 / FDU8870
N-Channel PowerTrench® MOSFET
30V, 160A, 3.9m Ω
General Description
Features
This N-Channel MOSFET has been designed specifically to
improve the overall efficiency of DC/DC converters using
either synchronous or conventional switching PWM
controllers. It has been optimized for low gate charge, low
r DS(ON) and fast switching speed.
• r DS(ON) = 3.9mΩ, V GS = 10 V, ID = 35A
• r DS(ON) = 4.4mΩ, V GS = 4.5V, I D = 35A
• High performance trench technology for extremely low
r DS(ON)
• Low gate charge
Applications
• High power and current handling capability
• DC/DC converters
D
D
G
S
I-PAK
(TO-251AA)
D-PAK
TO-252
(TO-252)
G
S
G D S
MOSFET Maximum Ratings T C = 25°C unless otherwise noted
Symbol
V DSS
Drain to Source Voltage
Parameter
Ratings
30
Units
V
V GS
Gate to Source Voltage
±20
V
Continuous (T C = 25 o C, V GS = 10V) (Note 1)
160
A
Continuous (T C = 25 o C, V GS = 4.5V) (Note 1)
150
A
Continuous (T amb = 25 o C, VGS = 10 V, with Rθ JA = 52 o C/W)
21
A
Drain Current
ID
Pulsed
E AS
Figure 4
A
690
mJ
Single Pulse Avalanche Energy (Note 2)
PD
TJ, T STG
Power dissipation
160
W
Derate above 25 o C
1.07
W/ o C
-55 to 175
oC
Operating and Storage Temperature
Thermal Characteristics
Rθ JC
Thermal Resistance Junction to Case TO-252, TO-251
0.94
o C/W
Rθ JA
Thermal Resistance Junction to Ambient TO-252, TO-251
100
o C/W
Rθ JA
Thermal Resistance Junction to Ambient TO-252, 1in 2 copper pad area
52
o C/W
Package Marking and Ordering Information
Device Marking
FDD8870
Device
FDD8870
Package
TO-252AA
Reel Size
13”
Tape Width
12mm
Quantity
2500 units
FDU8870
FDU8870
TO-251AA
Tube
N/A
75 units
©2004 Fairchild Semiconductor Corporation
FDD8870 / FDU8870 Rev. C
FDD8870 / FDU8870
September 2004
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
30
-
-
-
V
-
1
-
-
250
-
-
±100
nA
-
2.5
V
Off Characteristics
B VDSS
Drain to Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate to Source Leakage Current
ID = 250µA, V GS = 0V
V DS = 24V
V GS = 0V
T C = 150 o C
V GS = ±20V
µA
On Characteristics
V GS(TH)
rDS(ON)
Gate to Source Threshold Voltage
Drain to Source On Resistance
V GS = VDS , I D = 250µA
1.2
ID = 35A, V GS = 10V
-
0.0032 0.0039
ID = 35A, V GS = 4.5V
-
0.0036 0.0044
ID = 35A, V GS = 10V,
T J = 175 o C
-
0.0051 0.0063
Ω
Dynamic Characteristics
CISS
Input Capacitance
COSS
Output Capacitance
-
5160
-
pF
-
990
-
CRSS
Reverse Transfer Capacitance
pF
-
590
-
RG
Gate Resistance
pF
V GS = 0.5V, f = 1MHz
-
2.1
-
Qg(TOT)
Ω
Total Gate Charge at 10V
V GS = 0V to 10V
-
91
118
nC
Qg(5)
Total Gate Charge at 5V
V GS = 0V to 5V
-
48
62
nC
Qg(TH)
Threshold Gate Charge
V GS = 0V to 1V
-
5
6.5
nC
Qgs
Gate to Source Gate Charge
-
14
-
nC
Qgs2
Gate Charge Threshold to Plateau
-
9
-
nC
Qgd
Gate to Drain “Miller” Charge
-
18
-
nC
Switching Characteristics
V DS = 15V, V GS = 0V,
f = 1MHz
V DD = 15V
ID = 35A
Ig = 1.0mA
(V GS = 10V)
tO N
Turn-On Time
-
-
139
ns
td(ON)
Turn-On Delay Time
-
9
-
ns
tr
Rise Time
-
83
-
ns
td(OFF)
Turn-Off Delay Time
-
83
-
ns
tf
Fall Time
-
42
-
ns
tOFF
Turn-Off Time
-
-
189
ns
ISD = 35A
-
-
1.25
V
ISD = 15A
-
-
1.0
V
V DD = 15V, I D = 35A
V GS = 10V, R GS = 3.3Ω
Drain-Source Diode Characteristics
V SD
Source to Drain Diode Voltage
trr
Reverse Recovery Time
ISD = 35A, dI SD /dt = 100A/µs
-
-
37
ns
QRR
Reverse Recovered Charge
ISD = 35A, dI SD /dt = 100A/µs
-
-
21
nC
Notes:
1: Package current limitation is 35A.
2: Starting TJ = 25°C, L = 1.77mH, I A S = 28A, VD D = 27V, VGS = 10V.
©2004 Fairchild Semiconductor Corporation
FDD8870 / FDU8870 Rev. C
FDD8870 / FDU8870
Electrical Characteristics TC = 25°C unless otherwise noted
FDD8870 / FDU8870
Typical Characteristics TC = 25°C unless otherwise noted
175
1.0
150
ID , DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
CURRENT LIMITED
BY PACKAGE
125
100
75
50
0.2
25
0
0
25
50
75
100
150
125
0
175
25
50
75
TC , CASE TEMPERATURE (oC)
100
125
150
175
TC, CASE TEMPERATURE ( o C)
Figure 1. Normalized Power Dissipation vs Case
Temperature
Figure 2. Maximum Continuous Drain Current vs
Case Temperature
2
Zθ JC , NORMALIZED
THERMAL IMPEDANCE
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1 /t 2
PEAK TJ = P DM x Z θJC x RθJC + TC
SINGLE PULSE
0.01
10 -5
10-4
10 -3
10 -2
10-1
10 0
101
t, RECTANGULAR PULSE DURATION (s)
Figure 3. Normalized Maximum Transient Thermal Impedance
2000
1000
ID M, PEAK CURRENT (A)
TC = 25 o C
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
CURRENT AS FOLLOWS:
VGS = 4.5V
175 - TC
I = I25
150
100
30
10 -5
10 -4
10 -3
10-2
10-1
100
101
t, PULSE WIDTH (s)
Figure 4. Peak Current Capability
©2004 Fairchild Semiconductor Corporation
FDD8870 / FDU8870 Rev. C
FDD8870 / FDU8870
Typical Characteristics TC = 25°C unless otherwise noted
1000
100
IA S, AVALANCHE CURRENT (A)
ID , DRAIN CURRENT (A)
10µs
100
100µs
10
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1ms
10ms
1
SINGLE PULSE
TJ = MAX RATED
TC = 25 o C
DC
STARTING TJ = 25o C
10
If R = 0
tA V = (L)(IA S)/(1.3*RATED BV DSS - V D D)
If R ≠ 0
t A V = (L/R)ln[(IA S*R)/(1.3*RATED BVDSS - VD D ) +1]
0.1
1
1
10
VDS , DRAIN TO SOURCE VOLTAGE (V)
60
Figure 5. Forward Bias Safe Operating Area
0.1
100
Figure 6. Unclamped Inductive Switching
Capability
100
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
V GS = 5V
80
I D, DRAIN CURRENT (A)
80
I D , DRAIN CURRENT (A)
1
10
t AV , TIME IN AVALANCHE (ms)
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
100
TJ = 175 o C
60
TJ = 25o C
40
TJ =
VGS = 4V
VGS = 10V
60
VGS = 3V
40
V GS = 2.5V
TC = 25o C
PULSE DURATION = 80 µs
DUTY CYCLE = 0.5% MAX
20
20
-55o C
0
0
1.5
2.0
2.5
V GS, GATE TO SOURCE VOLTAGE (V)
0
3.0
0.2
0.4
0.6
V D S, DRAIN TO SOURCE VOLTAGE (V)
Figure 7. Transfer Characteristics
Figure 8. Saturation Characteristics
88
1.6
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
ID = 35A
rDS (ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
STARTING TJ = 150o C
6
4
I D = 1A
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
1.4
1.2
1.0
0.8
VGS = 10V, ID = 35A
2
2
4
6
8
10
V GS , GATE TO SOURCE VOLTAGE (V)
Figure 9. Drain to Source On Resistance vs Gate
Voltage and Drain Current
©2004 Fairchild Semiconductor Corporation
0.6
-80
-40
0
40
80
120
160
TJ , JUNCTION TEMPERATURE (o C)
200
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
FDD8870 / FDU8870 Rev. C
FDD8870 / FDU8870
Typical Characteristics TC = 25°C unless otherwise noted
1.2
1.2
ID = 250µA
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
NORMALIZED GATE
THRESHOLD VOLTAGE
VGS = V D S, ID = 250µA
1.0
0.8
0.6
0.4
-80
-40
0
40
80
120
160
1.1
1.0
0.9
-80
200
-40
TJ, JUNCTION TEMPERATURE ( o C)
Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature
80
120
160
200
10
CRSS = CGD
VGS , GATE TO SOURCE VOLTAGE (V)
CISS = CGS + C GD
C, CAPACITANCE (pF)
40
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
10000
COSS ≅ CDS + CGD
1000
VD D = 15V
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
I D = 35A
I D = 5A
2
VGS = 0V, f = 1MHz
400
0.1
0
TJ , JUNCTION TEMPERATURE (o C)
0
1
10
V D S, DRAIN TO SOURCE VOLTAGE (V)
Figure 13. Capacitance vs Drain to Source
Voltage
©2004 Fairchild Semiconductor Corporation
30
0
20
40
60
Qg , GATE CHARGE (nC)
80
100
Figure 14. Gate Charge Waveforms for Constant
Gate Current
FDD8870 / FDU8870 Rev. C
VDS
BVDSS
tP
L
VD S
VARY t P TO OBTAIN
IAS
+
RG
REQUIRED PEAK I AS
VD D
VDD
-
VGS
DUT
tP
IAS
0V
0.01Ω
0
tA V
Figure 15. Unclamped Energy Test Circuit
Figure 16. Unclamped Energy Waveforms
VD S
VDD
Q g(TOT)
VDS
L
VGS
VGS = 10V
VGS
Qg(5)
+
Qgs2
VD D
VGS = 5V
DUT
VGS = 1V
I g(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
Figure 17. Gate Charge Test Circuit
Figure 18. Gate Charge Waveforms
VD S
t ON
t OFF
t d(ON)
td(OFF)
RL
tr
VDS
tf
90%
90%
+
VGS
VDD
-
10%
0
10%
DUT
90%
RGS
V GS
50%
50%
PULSE WIDTH
V GS
0
Figure 19. Switching Time Test Circuit
©2004 Fairchild Semiconductor Corporation
10%
Figure 20. Switching Time Waveforms
FDD8870 / FDU8870 Rev. C
FDD8870 / FDU8870
Test Circuits and Waveforms
FDD8870 / FDU8870
Thermal Resistance vs. Mounting Pad Area
(T
–T )
JM
A
P D M = ----------------------------R θJA
(EQ. 1)
In using surface mount devices such as the TO-252
package, the environment in which it is applied will have a
significant influence on the part’s current and maximum
power dissipation ratings. Precise determination of PDM is
complex and influenced by many factors:
1. Mounting pad area onto which the device is attached and
whether there is copper on one side or both sides of the
board.
125
RθJA = 33.32+ 23.84/(0.268+Area) EQ.2
RθJA = 33.32+ 154/(1.73+Area) EQ.3
100
RθJ A ( oC/W)
The maximum rated junction temperature, TJ M, and the
thermal resistance of the heat dissipating path determines
the maximum allowable device power dissipation, P DM, in an
application.
Therefore the application’s ambient
temperature, T A (o C), and thermal resistance R θJA ( o C/W)
must be reviewed to ensure that T JM is never exceeded.
Equation 1 mathematically represents the relationship and
serves as the basis for establishing the rating of the part.
75
50
25
0.01
(0.0645)
0.1
(0.645)
1
10
(6.45)
(64.5)
AREA, TOP COPPER AREA in 2 (cm 2)
Figure 21. Thermal Resistance vs Mounting
Pad Area
2. The number of copper layers and the thickness of the
board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the
duty cycle and the transient thermal response of the part,
the board and the environment they are in.
Fairchild provides thermal information to assist the
designer’s preliminary application evaluation. Figure 21
defines the Rθ JA for the device as a function of the top
copper (component side) area. This is for a horizontally
positioned FR-4 board with 1oz copper after 1000 seconds
of steady state power with no air flow. This graph provides
the necessary information for calculation of the steady state
junction temperature or power dissipation. Pulse
applications can be evaluated using the Fairchild device
Spice thermal model or manually utilizing the normalized
maximum transient thermal impedance curve.
Thermal resistances corresponding to other copper areas
can be obtained from Figure 21 or by calculation using
Equation 2 or 3. Equation 2 is used for copper area defined
in inches square and equation 3 is for area in centimeters
square. The area, in square inches or square centimeters is
the top copper area including the gate and source pads.
R θJA =
23.84
33.32 + ------------------------------------( 0.268 + Area )
(EQ. 2)
Area in Inches Squared
R θJA =
154
33.32 + ---------------------------------( 1.73 + Area)
(EQ. 3)
Area in Centimeters Squared
©2004 Fairchild Semiconductor Corporation
FDD8870 / FDU8870 Rev. C
.SUBCKT FDD8870 2 1 3 ; rev July 2003
Ca 12 8 4.2e-9
Cb 15 14 4.2e-9
Cin 6 8 4.7e-9
LDRAIN
DPLCAP
5
DRAIN
2
10
Dbody 7 5 DbodyMOD
Dbreak 5 11 DbreakMOD
Dplcap 10 5 DplcapMOD
RLDRAIN
RSLC1
51
+
RSLC2
5
51
Ebreak 11 7 17 18 32.7
Eds 14 8 5 8 1
Egs 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtemp 20 6 18 22 1
ESLC
EVTHRES
+ 19 8
+
LGATE
GATE
1
It 8 17 1
11
50
+
17
EBREAK 18
-
RDRAIN
6
8
ESG
DBREAK
EVTEMP
RGATE + 18 9
20 22
21
16
DBODY
MWEAK
6
MMED
MSTRO
RLGATE
Lgate 1 9 5e-9
Ldrain 2 5 1.0e-9
Lsource 3 7 2e-9
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
RLSOURCE
RLgate 1 9 50
RLdrain 2 5 10
RLsource 3 7 20
S1A
12
S2A
13
8
CA
15
14
13
S1B
Mmed 16 6 8 8 MmedMOD
Mstro 16 6 8 8 MstroMOD
Mweak 16 21 8 8 MweakMOD
17
18
S2B
RVTEMP
13
CB
+
+
6
8
EGS
Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 1.57e-3
Rgate 9 20 2.1
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
Rsource 8 7 RsourceMOD 1.2e-3
Rvthres 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 13 15 14 13 S2BMOD
RBREAK
VBAT
5
8
EDS
-
19
IT
14
-
+
8
22
RVTHRES
Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))}
.MODEL DbodyMOD D (IS=1.3E-11 IKF=10 N=1.01 RS=1.8e-3 TRS1=8e-4 TRS2=2e-7
+ CJO=2e-9 M=0.57 TT=1e-10 XTI=0.9)
.MODEL DbreakMOD D (RS=8e-2 TRS1=1e-3 TRS2=-8.9e-6)
.MODEL DplcapMOD D (CJO=1.6e-9 IS=1e-30 N=10 M=0.38)
.MODEL MmedMOD NMOS (VTO=1.76 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.1 T_ABS=25)
.MODEL MstroMOD NMOS (VTO=2.2 KP=650 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25)
.MODEL MweakMOD NMOS (VTO=1.47 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=21 RS=0.1 T_ABS=25)
.MODEL
.MODEL
.MODEL
.MODEL
.MODEL
.MODEL
RbreakMOD RES (TC1=8.3e-4 TC2=-4e-7)
RdrainMOD RES (TC1=2e-4 TC2=8e-6)
RSLCMOD RES (TC1=9e-4 TC2=1e-6)
RsourceMOD RES (TC1=8e-3 TC2=1e-6)
RvthresMOD RES (TC1=-2e-3 TC2=-9.5e-6)
RvtempMOD RES (TC1=-2.6e-3 TC2=2e-7)
.MODEL
.MODEL
.MODEL
.MODEL
.ENDS
S1AMOD
S1BMOD
S2AMOD
S2BMOD
VSWITCH
VSWITCH
VSWITCH
VSWITCH
(RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3)
(RON=1e-5 ROFF=0.1 VON=-3 VOFF=-4)
(RON=1e-5 ROFF=0.1 VON=-2 VOFF=-0.5)
(RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-2)
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
©2004 Fairchild Semiconductor Corporation
FDD8870 / FDU8870 Rev. C
FDD8870 / FDU8870
PSPICE Electrical Model
FDD8870 / FDU8870
SABER Electrical Model
rev July 2003
template FDD8870 n2,n1,n3 =m_temp
electrical n2,n1,n3
number m_temp=25
{
var i iscl
dp..model dbodymod = (isl=1.3e-11,ikf=10,nl=1.01,rs=1.8e-3,trs1=8e-4,trs2=2e-7,cjo=2e-9,m=0.57,tt=1e-10,xti=0.9)
dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6)
dp..model dplcapmod = (cjo=1.6e-9,isl=10e-30,nl=10,m=0.38)
m..model mmedmod = (type=_n,vto=1.76,kp=10,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=2.2,kp=650,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=1.47,kp=0.05,is=1e-30, tox=1,rs=0.1)
LDRAIN
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3)
DPLCAP 5
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3,voff=-4)
10
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-0.5)
RLDRAIN
RSLC1
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-2)
51
c.ca n12 n8 = 4.2e-9
RSLC2
c.cb n15 n14 = 4.2e-9
ISCL
c.cin n6 n8 = 4.7e-9
spe.ebreak n11 n7 n17 n18 = 32.7
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
DBREAK
50
-
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
EVTEMP
RGATE + 18 22
9
20
21
11
DBODY
16
MWEAK
6
EBREAK
+
17
18
-
MMED
MSTRO
RLGATE
CIN
DRAIN
2
8
LSOURCE
SOURCE
3
7
RSOURCE
RLSOURCE
i.it n8 n17 = 1
S1A
12
l.lgate n1 n9 = 5e-9
l.ldrain n2 n5 = 1.0e-9
l.lsource n3 n7 = 2e-9
13
8
14
13
S1B
CA
res.rlgate n1 n9 = 50
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 20
S2A
RBREAK
15
17
18
S2B
13
+
6
8
EGS
RVTEMP
CB
+
-
19
IT
14
VBAT
5
8
EDS
-
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp
+
8
22
RVTHRES
res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-4e-7
res.rdrain n50 n16 = 1.57e-3, tc1=2e-4,tc2=8e-6
res.rgate n9 n20 = 2.1
res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 1.2e-3, tc1=8e-3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-2e-3,tc2=-9.5e-6
res.rvtemp n18 n19 = 1, tc1=-2.6e-3,tc2=2e-7
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10))
}
}
©2004 Fairchild Semiconductor Corporation
FDD8870 / FDU8870 Rev. C
th
JUNCTION
REV 23 July 2003
FDD8870T
CTHERM1 TH 6 1e-3
CTHERM2 6 5 2e-3
CTHERM3 5 4 3e-3
CTHERM4 4 3 9e-3
CTHERM5 3 2 1e-2
CTHERM6 2 TL 2e-2
RTHERM1
CTHERM1
6
RTHERM1 TH 6 3e-2
RTHERM2 6 5 8e-2
RTHERM3 5 4 1.1e-1
RTHERM4 4 3 1.6e-1
RTHERM5 3 2 1.72e-1
RTHERM6 2 TL 2e-1
RTHERM2
CTHERM2
5
SABER Thermal Model
SABER thermal model FDD8870T
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 =1e-3
ctherm.ctherm2 6 5 =2e-3
ctherm.ctherm3 5 4 =3e-3
ctherm.ctherm4 4 3 =9e-3
ctherm.ctherm5 3 2 =1e-2
ctherm.ctherm6 2 tl =2e-2
rtherm.rtherm1 th 6 =3e-2
rtherm.rtherm2 6 5 =8e-2
rtherm.rtherm3 5 4 =1.1e-1
rtherm.rtherm4 4 3 =1.6e-1
rtherm.rtherm5 3 2 =1.72e-1
rtherm.rtherm6 2 tl =2e-1
}
RTHERM3
CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
©2004 Fairchild Semiconductor Corporation
CASE
FDD8870 / FDU8870 Rev. C
FDD8870 / FDU8870
PSPICE Thermal Model
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
FAST
ActiveArray™
FASTr™
Bottomless™ FPS™
CoolFET™
FRFET™
CROSSVOLT™ GlobalOptoisolator™
DOME™
GTO™
EcoSPARK™ HiSeC™
E2CMOS™
I2C™
EnSigna™
i-Lo™
FACT™
ImpliedDisconnect™
FACT Quiet Series™
ISOPLANAR™
LittleFET™
MICROCOUPLER™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC
Across the board. Around the world.™ OPTOPLANAR™
PACMAN™
The Power Franchise
POP™
Programmable Active Droop™
Power247™
POWEREDGE™
PowerSaver™
PowerTrench
QFET
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
RapidConnect™
µSerDes™
SILENT SWITCHER
SMART START™
SPM™
Stealth™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic
TINYOPTO™
TruTranslation™
UHC™
UltraFET
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT
CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
2. A critical component is any component of a life
1. Life support devices or systems are devices or
support device or system whose failure to perform can
systems which, (a) are intended for surgical implant into
be reasonably expected to cause the failure of the life
the body, or (b) support or sustain life, or (c) whose
support device or system, or to affect its safety or
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. I12