0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADC1610S125

ADC1610S125

  • 厂商:

    NXP(恩智浦)

  • 封装:

  • 描述:

    ADC1610S125 - Single 16-bit ADC 125 Msps CMOS or LVDS DDR digital outputs - NXP Semiconductors

  • 数据手册
  • 价格&库存
ADC1610S125 数据手册
ADC1610S125 Single 16-bit ADC 125 Msps CMOS or LVDS DDR digital outputs Rev. 01 — 28 May 2009 Objective data sheet 1. General description The ADC1610S is a single channel 16-bit Analog-to-Digital Converter (ADC) optimized for high dynamic performances and low power consumption at a sample rate of 125 Msps. Pipelined architecture and output error correction ensure the ADC1610S is accurate enough to guarantee zero missing codes over the entire operating range. Supplied from a single 3 V source, it can handle output logic levels from 1.8 V to 3.3 V in CMOS mode, because of a separate digital output supply. It supports the Low Voltage Differential Signalling (LVDS) Double Data Rate (DDR) output standard. An integrated Serial Peripheral Interface (SPI) allows the user to easily configure the ADC. The device also includes a programmable gain amplifier with a flexible input voltage range. With excellent dynamic performance from the baseband to input frequencies of 170 MHz or more, the ADC1610S is ideal for use in communications, imaging and medical applications. 2. Features I I I I I I SNR, 73 dB SFDR, 90 dBc Sample rate, 125 Msps 16-bit pipelined ADC core Single 3 V supply Flexible input voltage range: 1 V to 2 V (p-p) with 6 dB programmable fine gain I CMOS or LVDS DDR digital outputs I INL ±4 LSB, DNL ±0.95 LSB (typical) I I I I I I Input bandwidth, 600 MHz Power dissipation, 570 mW SPI Interface Duty cycle stabilizer Fast OuT-of-Range (OTR) detection Offset binary, 2’s complement, gray code I Power-down and Sleep modes I HVQFN40 package 3. Applications I Wireless and wired broadband communications I Spectral analysis I Portable instrumentation I Ultrasound equipment I Imaging systems NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 4. Ordering information Table 1. Ordering information fs (Msps) Package Name ADC1610S125HN/C1 125 Description Version SOT618-1 HVQFN40 plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body 6 × 6 × 0.85 mm Type number 5. Block diagram SCLK/DFS SDIO/ODS ADC1610S ERROR CORRECTION AND DIGITAL PROCESSING PGA SPI INTERFACE OTR CMOS: DAV or LVDS/DDR: DAVP DAVM CMOS: D15 to D0 or LVDS/DDR: D15P, D15M to D0P, D0M INP T/H INPUT STAGE INM ADC CORE 16-BIT PIPELINED OUTPUT DRIVERS CLOCK INPUT STAGE AND DUTY CYCLE CONTROL SYSTEM REFERENCE AND POWER MANAGEMENT CS PWD/OE VCM VREF SENSE AGND CLKM CLKP VDDO REFB VDDA REFT 005aaa104 Fig 1. Block diagram ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 2 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 6. Pinning information 6.1 Pinning 36 SCLK/DFS 37 SDIO/DCS 31 D0_D1_M 30 D2_D3_P 29 D2_D3_M 28 D4_D5_P 27 D4_D5_M 26 D6_D7_P 25 D6_D7_M 24 D8_D9_P 23 D8_D9_M 22 D10_D11_P 21 D10_D11_M VDDA 11 CLKP 12 CLKM 13 DEC 14 PWD/OE 15 OTR 16 D14_D15_M 17 D14_D15_P 18 D12_D13_M 19 D12_D13_P 20 005aaa106 36 SCLK/DFS 37 SDIO/DCS 39 SENSE 33 VDDO 40 VREF 35 DAV 32 D0 31 D1 terminal 1 index area REFB REFT AGND VCM VDDA AGND INM INP AGND 1 2 3 4 5 6 7 8 9 34 n.c. 38 CS terminal 1 index area REFB 30 D2 29 D3 28 D4 27 D5 26 D6 25 D7 24 D8 23 D9 22 D10 21 D11 REFT AGND VCM VDDA AGND INM INP AGND 1 2 3 4 5 6 7 8 9 ADC1610S HVQFN40 ADC1610S HVQFN40 VDDA 10 VDDA 10 VDDA 11 CLKP 12 CLKM 13 DEC 14 PWD/OE 15 OTR 16 D15 17 D14 18 D13 19 D12 20 005aaa105 Transparent top view Transparent top view Fig 2. Pin configuration with CMOS digital outputs selected Fig 3. Pin configuration with LVDS/DDR digital outputs selected 6.2 Pin description Table 2. Symbol REFB REFT AGND VCM VDDA AGND INM INP AGND VDDA VDDA CLKP CLKM DEC PWD/OE OTR ADC1610S125_1 Pin description (CMOS digital outputs) Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Type [1] O O G O P G I I G P P I I O I O Description bottom reference top reference analog ground common-mode output voltage analog power supply analog ground complementary analog input analog input analog ground analog power supply analog power supply clock input complementary clock input regulator decoupling node power-down, active HIGH; output enable, active LOW out-of-range © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 32 D0_D1_P 39 SENSE 34 DAVM 33 VDDO 35 DAVP 40 VREF 38 CS 3 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps Pin description (CMOS digital outputs) Pin 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Type [1] O O O O O O O O O O O O O O O O P O I I/O I I I/O Description data output bit 15 (MSB) data output bit 14 data output bit 13 data output bit 12 data output bit 11 data output bit10 data output bit 9 data output bit 8 data output bit 7 data output bit 6 data output bit 5 data output bit 4 data output bit 3 data output bit 2 data output bit 1 data output bit 0 (LSB) output power supply not connected data valid output clock SPI clock / data format select SPI data IO / output data standard SPI chip select reference programming pin voltage reference input/output Table 2. Symbol D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 VDDO n.c. DAV SCLK/DFS SDIO/ODS CS SENSE VREF [1] P: power supply; G: ground; I: input; O: output; I/O: input/output. Table 3. Symbol Pin description (LVDS/DDR) digital outputs) Pin [1] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Type [2] O O O O O O O O O O O O O O O Description differential output data D14 and D15 multiplexed, complement differential output data D14 and D15 multiplexed, true differential output data D12 and D13 multiplexed, complement differential output data D12 and D13 multiplexed, true differential output data D10 and D11multiplexed, complement differential output data D10 and D11 multiplexed, true differential output data D8 and D9 multiplexed, complement differential output data D8 and D9 multiplexed, true differential output data D6 and D7 multiplexed, complement differential output data D6 and D7 multiplexed, true differential output data D4 and D5 multiplexed, complement differential output data D4 and D5 multiplexed, true differential output data D2 and D3 multiplexed, complement differential output data D2 and D3 multiplexed, true differential output data D0 and D1 multiplexed, complement © NXP B.V. 2009. All rights reserved. D14_D15_M D14_D15_P D12_D13_M D12_D13_P D10_D11_M D10_D11_P D8_D9_M D8_D9_P D6_D7_M D6_D7_P D4_D5_M D4_D5_P D2_D3_M D2_D3_P D0_D1_M ADC1610S125_1 Objective data sheet Rev. 01 — 28 May 2009 4 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps Pin description …continued (LVDS/DDR) digital outputs) Pin [1] 32 34 35 Type [2] O O O Description differential output data D0 and D1 multiplexed, true data valid output clock, complement data valid output clock, true Table 3. Symbol D0_D1_P DAVM DAVP [1] [2] Pins 1 to 16 and pins 36 to 40 are the same for both CMOS and LVDS DDR outputs (see Table 2) P: power supply; G: ground; I: input; O: output; I/O: input/output. 7. Limiting values Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol VDDA VDDO ∆VCC Tstg Tamb Tj Parameter analog supply voltage output supply voltage supply voltage difference storage temperature ambient temperature junction temperature VDDA − VDDO Conditions Min −55 −40 Max +125 +85 Unit V V V °C °C °C 8. Thermal characteristics Table 5. Symbol Rth(j-a) Rth(j-c) [1] Thermal characteristics Parameter thermal resistance from junction to ambient thermal resistance from junction to case Conditions [1] [1] Typ Unit K/W K/W In compliance with JEDEC test board, in free air. ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 5 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 9. Static characteristics Table 6. Static characteristics Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; min. and max. values are across the full temperature range Tamb = −40 °C to +85 °C at VDDA = 3 V, VDDO = 1.8 V; VINP − VINM = −1 dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified. Symbol Supplies VDDA VDDO IDDA IDDO analog supply voltage output supply voltage analog supply current output supply current CMOS mode LVDS DDR mode fclk = 125 Msps; fi =70 MHz CMOS mode; fclk = 125 Msps; fi =70 MHz LVDS DDR mode: fclk = 125 Msps; fi =70 MHz P power dissipation Power-down mode Sleep mode Clock inputs: pins CLKP and CLKM AC coupled; LVPECL, LVDS and sine wave Vi(clk)dif LVCMOS VI VIL input voltage LOW-level input voltage LOW-medium level medium-HIGH level VIH IIL IIH VIL VIH IIL IIH CI HIGH-level input voltage LOW-level input current HIGH-level input current LOW-level input voltage HIGH-level input voltage LOW-level input current HIGH-level input current input capacitance 0.3VDDA −10 0 0.7VDDA −10 −50 0 0.3VDDA 0.6VDDA VDDA 4 0.7VDDA V +10 V µA µA V Logic Inputs: pin PWD/OE differential clock input voltage peak-to-peak 0.2 0.8 V 2.85 1.65 2.85 3.0 1.8 3.0 185 20 45 570 2 40 3.4 3.6 3.6 V V V mA mA mA mW mW mW Parameter Conditions Min Typ Max Unit Serial Peripheral Interface: pins CS, SDIO/ODS, SCLK/DFS 0.3VDDA V VDDA +10 +50 V µA µA pF Digital Outputs: CMOS mode - pins D13 to D0, OTR, DAV Output levels, VDDO = 3V VOL VOH IOL IOH CO ADC1610S125_1 LOW-level output voltage HIGH-level output voltage LOW-level output current HIGH-level output current output capacitance IOL = IOH = 3-state; output level = 0 V 3-state; output level = VDDA high impedance; OE = HIGH AGND 0.8VDDO - 3 0.2VDDO V VDDO V µA µA pF © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 6 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps Table 6. Static characteristics …continued Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; min. and max. values are across the full temperature range Tamb = −40 °C to +85 °C at VDDA = 3 V, VDDO = 1.8 V; VINP − VINM = −1 dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified. Symbol VOL VOH Parameter LOW-level output voltage HIGH-level output voltage Conditions IOL = IOH = Min AGND 0.8VDDO Typ Max Unit Output levels, VDDO = 1.8 V 0.2VDDO V VDDO V Digital Outputs, LVDS mode - pins D13P, D13M to D0P, D0M, DAVP and DAVM Output levels, VDDO = 3 V only, Rload = 100 Ω VO(offset) VO(dif) CO II RI CI VI(cm) Bi VI(dif) VO(cm) IO(cm) VVREF Accuracy INL DNL Eoffset EG Supply PSRR power supply rejection ratio 100 mV (p-p) on VDDA 35 dBc integral non-linearity differential non-linearity offset error gain error guaranteed no missing codes ±4 ±0.95 ±2 ±0.5 LSB LSB mV %FS output offset voltage differential output voltage output capacitance Input current input resistance input capacitance common-mode input voltage input bandwidth differential input voltage common-mode output voltage common-mode output current voltage on pin VREF output input peak-to-peak VINP = VINM output buffer current set to 3.5 mA output buffer current set to 3.5 mA −5 0.9 1 0.5 1.2 350 5 1.5 600 0.5VDDA 0.5 to 1 +5 2 2 1 V mV pF µA Ω pF V MHz V V µA V V Analog inputs: pins INP and INM Common mode output voltage: pin VCM I/O reference voltage: pin VREF ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 7 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 10. Dynamic characteristics 10.1 Dynamic characteristics Table 7. Dynamic characteristics Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; min. and max. values are across the full temperature range Tamb = −40 °C to +85 °C at VDDA = 3 V, VDDO = 1.8 V; VINP − VINM = −1 dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified. Symbol α2H Parameter second harmonic level Conditions fi = 3 MHz fi = 30 MHz fi = 70 MHz fi = 170 MHz α3H third harmonic level fi = 3 MHz fi = 30 MHz fi = 70 MHz fi = 170 MHz THD total harmonic distortion fi = 3 MHz fi = 30 MHz fi = 70 MHz fi = 170 MHz ENOB effective number of bits fi = 3 MHz fi = 30 MHz fi = 70 MHz fi = 170 MHz SNR signal-to-noise ratio fi = 3 MHz fi = 30 MHz fi = 70 MHz fi = 170 MHz at −20 dBFS fi = 3 MHz fi = 30 MHz fi = 70 MHz fi = 170 MHz SFDR spurious-free dynamic range fi = 3 MHz fi = 30 MHz fi = 70 MHz fi = 170 MHz IMD Intermodulation distortion fi = 3 MHz fi = 30 MHz fi = 70 MHz fi = 170 MHz 74 73.5 73.4 73.3 90 89 88 87 93 92 91 90 dBFS dBFS dBFS dBFS dBc dBc dBc dBc dBc dBc dBc dBc Min Typ 95 92 89 88 90 89 88 87 87 86 83 79 11.8 11.7 11.6 11.5 73 72.2 71.6 71 Max Unit dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc bits bits bits bits dBFS dBFS dBFS dBFS Analog signal processing ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 8 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 10.2 Clock and digital output timing Table 8. Dynamic characteristics Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; min. and max. values are across the full temperature range Tamb = −40 °C to +85 °C at VDDA = 3 V, VDDO = 1.8 V; VINP − VINM = −1 dBFS; unless otherwise specified. Symbol fclk tlat(data) δclk td(s) twake tPD tsu th tr tf tPD Parameter clock frequency data latency time clock duty cycle sampling delay time wake-up time propagation delay set-up time hold time rise time fall time propagation delay DATA DAV DATA DATA DAV [1] [1] [1] Conditions Min 60 - Typ 14 50 50 0.8 3.9 4.2 4.3 3.5 3.9 4.2 Max 125 70 55 2.4 2.4 2.4 - Unit MHz clk/cy % % ns ns ns ns ns ns ns ns ns ns ns Clock timing input: pins CLKP and CLKM DCS_EN = 1 DCS_EN = 0 30 45 - CMOS mode timing output: pins D13 to D0 and DAV DATA DAV 0.5 0.5 0.5 - LVDS DDR mode timing output: pins D13P, D13M to D0P, D0M, DAVP and DAVM Measured between 20 % to 80 % of VDDO; rise time measured from −50 mV to +50 mV; fall time measured from +50mV to −50mV. 10.3 SPI timings Table 9. Characteristics Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF. Min. and max. values are across the full temperature range Tamb = −40 °C to +85 °C at VDDA = 3V, VDDO = 1.8 V Symbol SPI timings tw(SCLK) tw(SCLKH) tw(SCLKL) tsu th fclk(max) SCLK pulse width SCLK HIGH pulse width SCLK LOW pulse width set-up time hold time maximum clock frequency data to SCLKH CS to SCLKH data to SCLKH CS to SCLKH 40 16 16 5 5 2 2 25 ns ns ns ns ns ns ns MHz Parameter Conditions Min Typ Max Unit ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 9 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 11. Application information 11.1 Device control The ADC1610S can be controlled via the SPI (SPI control mode) or directly via the I/O pins (PIN control mode). 11.1.1 SPI and PIN control modes The device enters PIN control mode at power-up, and remains in this mode as long as pin CS is held HIGH. In PIN control mode, the SPI pins SDIO, CS and SCLK are used as static control pins. SPI settings are ignored. SPI control mode is enabled by forcing pin CS LOW. It is not possible to toggle between PIN control and SPI control modes. Once SPI control mode has been enabled, the device will remain in this mode until it is powered down. The transition from PIN control mode to SPI control mode is illustrated in Figure 4. CS PIN control mode Data Format offset binary SPI control mode SCLK/DFS Data Format 2's complement LVDS DDR SDIO/ODS CMOS R/W W1 W0 A12 005aaa039 Fig 4. Control mode selection. When the device enters SPI control mode, the output data standard (CMOS or LVD DDR) is not determined by the state of the relevant SPI control bit (LVDS/CMOS; see Table 21), but by the level on pin SDIO at the instant a transition is triggered by a falling edge on CS (SDIO = LOW = CMOS). 11.1.2 Operating mode selection The active ADC1610S operating mode (Power-up, Power-down or Sleep) can be selected via the SPI interface (see Table 18) or using pins PWD and OE in PIN control mode, as described in Table 10. Table 10. PWD/OE 0 1/3VDDA 2/3VDDA VDDA Operating mode selection via pin PWD/OE Operating mode Power-down Sleep Power-up Power-up Output high-Z yes yes yes no 11.1.3 Selecting the output data standard The output data standard (CMOS or LVDS DDR) can be selected via the SPI interface (see Table 21) or using pin ODS in PIN control mode. LVDS DDR is selected when ODS is HIGH, otherwise CMOS is selected. ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 10 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 11.1.4 Selecting the output data format The output data format can be selected via the SPI interface (offset binary, 2’s complement or gray code; see Table 21) or using pin DFS in PIN control mode (offset binary or 2’s complement). Offset binary is selected when DFS is LOW. When DFS is HIGH, 2’s complement is selected. 11.2 Analog inputs 11.2.1 Input stage The analog input of the ADC1610S supports a differential or a single-ended input drive. Optimal performance is achieved using differential inputs with the common-mode input voltage (VI(cm)) on pins INP and INM set to 0.5VDDA. The full scale analog input voltage range is configurable between 1 V (p-p) and 2 V (p-p) via a programmable internal reference (see Section 11.3 and Table 20 further details). The equivalent circuit of the sample and hold input stage, including ESD protection and circuit and package parasitics, is shown in Figure 5. Package ESD Parasitics Switch INP 8 Ron = 14 Ω 4 pF internal clock Sampling Capacitor INM 7 Ron = 14 Ω Switch 4 pF internal clock Sampling Capacitor 005aaa043 Fig 5. Input sampling circuit The sample phase occurs when the internal clock (derived from the clock signal on pin CLKP/CLKM) is HIGH. The voltage is then held on the sampling capacitors. When the clock signal goes LOW, the stage enters the hold phase and the voltage information is transmitted to the ADC core. 11.2.2 Anti-kickback circuitry Anti-kickback circuitry (R-C filter in Figure 6 is needed to counteract the effects of charge injection generated by the sampling capacitance. ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 11 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps The RC filter is also used to filter noise from the signal before it reaches the sampling stage. The value of the capacitor should be chosen to maximize noise attenuation without degrading the settling time excessively. R INP C R INM 005aaa073 Fig 6. Anti-kickback circuit The component values are determined by the input frequency and should be selected so as not to affect the input bandwidth. Table 11. 3 MHz 70 MHz 170 MHz RC coupling versus input frequency - recommended values R 25 ohms 12 ohms 12 ohms C 12 pF 8 pF 8 pF Input frequency 11.2.3 Transformer The configuration of the transformer circuit is determined by the input frequency. The configuration shown in Figure 7 would be suitable for a baseband application. ADT1-1WT 100 nF Analog lnput 100 nF 25 Ω 25 Ω INP 12 pF 100 nF 25 Ω 25 Ω 100 nF INM VCM 100 nF 100 nF 005aaa044 Fig 7. Single transformer configuration suitable for baseband applications The configuration shown in Figure 8 is recommended for high frequency applications. In both cases, the choice of transformer will be a compromise between cost and performance. ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 12 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps ADT1-1WT 100 nF 50 Ω ADT1-1WT 50 Ω 12 Ω INP Analog lnput 8.2 pF 50 Ω 50 Ω 12 Ω INM VCM 100 nF 100 nF 100 nF 005aaa045 Fig 8. Dual transformer configuration suitable for high frequency application 11.3 System reference and power management 11.3.1 Internal/external references The ADC1610S has a stable and accurate built-in internal reference voltage. This reference voltage can be set internally, externally or via the SPI (programmable in 1 dB steps between 0 dB and −6 dB via control bits INTREF when bit INTREF_EN = 1; see Table 20). The equivalent reference circuit is shown in Figure 9. REFT REFERENCE AMP REFB VREF BUFFER BANDGAP REFERENCE ADC CORE SENSE SELECTION LOGIC 005aaa046 Fig 9. Single transformer configuration suitable for baseband applications If bit INTREF_EN is set to 0, the reference voltage will be determined either internally or externally as detailed in Table 12. ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 13 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps Reference selection SPI bit INTREF_EN 0 0 0 1 SENSE pin AGND VREF pin 330 pF capacitor to AGND full scale (p-p) 2V 1V 1 V to 2 V 1 V to 2 V Table 12. Selection internal internal external pin VREF connected to pin SENSE and via a 330 pF capacitor to AGND VDDA external voltage between 0.5 V and 1 V[1] internal via SPI [1] pin VREF connected to pin SENSE and via 330 pF capacitor to AGND The voltage on pin VREF is doubled internally to generate the internal reference voltage. Figure 10 to Figure 13 illustrate how to connect the SENSE and VREF pins to select the required reference voltage source. VREF REFT 330 pF VREF REFT 330 pF SENSE REFB SENSE REFB 005aaa047 005aaa048 Fig 10. Internal reference, 2 V (p-p) full scale Fig 11. Internal reference, 1 V (p-p) full scale VREF REFT VREF 0.1 µF REFT 330 pF SPI SETTINGS INTREF_EN = 1, active INTREF = XXX SENSE REFB V SENSE REFB 005aaa049 VDDA 005aaa050 Fig 12. Internal reference via SPI, 1 V to 2 V (p-p) full scale Fig 13. External reference, 1 V to 2 V (p-p) full scale ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 14 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 11.3.2 Gain control The gain is programmable between 0 dB to −6 dB in 1 dB steps via the SPI (see Table 20). This makes it possible to improve the Spurious-Free Dynamic Range (SFDR) of the ADC1610S. The corresponding full scale input voltage range varies between 2 V (p-p) and 1 V (p-p), as shown in Table 13: Table 13. INTREF 000 001 010 011 100 101 110 111 Reference SPI Gain Control Gain 0 dB −1 dB −2 dB −3 dB −4 dB −5 dB −6 dB reserved full scale (p-p) 2V 1.78 V 1.59 V 1.42 V 1.26 V 1.12 V 1V x 11.3.3 Common-mode output voltage (VO(cm)) A 0.1 µF filter capacitor should be connected between pin VCM and ground to ensure a low-noise common-mode output voltage. When AC-coupled, pin VCM can then be used to set the common-mode reference for the analog inputs, for instance via a transformer middle point. PACKAGE ESD PARASITICS COMMON MODE REFERENCE 1.5 V VCM 0.1 µF ADC CORE 005aaa051 Fig 14. Equivalent schematic of the common-mode reference circuit 11.3.4 Biasing The common-mode input voltage (VI(cm)) on pins INP and INM should be set externally to 0.5VDDA for optimal performance and should always be between 0.9 V and 2 V. The graph in Figure 15 illustrates how the SFDR and SNR characteristics vary with changes in the common-mode input voltage. ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 15 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps dB SFDR (x MHz) SNR (x MHz) 0.9 V 2V VI(cm) 005aaa052 Fig 15. SFDR and SNR performances versus VI(cm) 11.4 Clock input 11.4.1 Drive modes The ADC1610S can be driven differentially (SINE, LVPECL or LVDS) without the performance being affected by the choice of configuration. It can also be driven by a single-ended LVCMOS signal connected to pin CLKP (CLKM should be connected to ground via a capacitor) or CLKM (CLKP should be connected to ground via a capacitor). LVCMOS Clock lnput CLKP CLKM LVCMOS Clock lnput CLKP CLKM 005aaa053 Fig 16. LVCMOS Single-ended clock input CLKP Sine Clock lnput Sine Clock lnput CLKP CLKM CLKM 005aaa054 Fig 17. Sine differential clock input ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 16 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps CLKP LVDS Clock lnput CLKM 005aaa055 Fig 18. LVDS differential clock input 11.4.2 Equivalent input circuit The equivalent circuit of the input clock buffer is shown in Figure 19. The common-mode voltage of the differential input stage is set via internal 5 kΩ resistors. PACKAGE ESD PARASITICS CLKP Vcm(clk) SE_SEL SE_SEL 5k 5k CLKM 005aaa056 Fig 19. Equivalent input circuit Single-ended or differential clock inputs can be selected via the SPI interface (see Table 19). If single-ended is enabled, the input pin (CLKM or CLKP) is selected via control bit SE_SEL. If single-ended is implemented without setting SE_SEL to the appropriate value, the unused pin should be connected to ground via a capacitor. 11.4.3 Duty cycle stabilizer The duty cycle stabilizer can improve the overall performances of the ADC by compensating the duty cycle of the input clock signal. When the duty cycle stabilizer is active (bit DCS_EN = 1; see Table 19), the circuit can handle signals with duty cycles of between 30 % and 70 % (typical). When the duty cycle stabilizer is disabled (DCS_EN = 0), the input clock signal should have a duty cycle of between 45 % and 55 %. ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 17 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 11.4.4 Clock input divider The ADC1610S contains an input clock divider that divides the incoming clock by a factor of 2 (when bit CLKDIV = 1; see Table 19). This feature allows the user to deliver a higher clock frequency with better jitter performance, leading to a better SNR result once acquisition has been performed. 11.5 Digital outputs 11.5.1 Digital output buffers: CMOS mode The digital output buffers can be configured as CMOS by setting bit LVDS/CMOS to 0 (see Table 21). Each digital output has a dedicated output buffer. The equivalent circuit of the CMOS digital output buffer is shown in Figure 20. The buffer is powered by a separate AGND/VDDO to ensure 1.8 V to 3.4 V compatibility and is isolated from the ADC core. Each buffer can be loaded by a maximum of 10 pF. VDDO PARASITICS ESD PACKAGE LOGIC DRIVER 50 Ω Dx AGND 005aaa112 Fig 20. CMOS digital output buffer The output resistance is 50 Ω and is the combination of the an internal resistor and the equivalent output resistance of the buffer. There is no need for an external damping resistor. The drive strength of both data and DAV buffers can be programmed via the SPI in order to adjust the rise and fall times of the output digital signals (see Table 28): 11.5.2 Digital output buffers: LVDS DDR mode The digital output buffers can be configured as LVDS DDR by setting bit LVDS/CMOS to 1 (see Table 21). ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 18 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 3.5 mA typ − + VCCO DnP/Dn + 1P DnM/Dn + 1M 100 Ω RECEIVER + − AGND 005aaa123 Fig 21. LVDS DDR digital output buffer - externally terminated Each output should be terminated externally with a 100 Ω resistor (typical) at the receiver side (Figure 21) or internally via SPI control bits LVDS_INTTER (see Figure 22 and Table 30). 3.5 mA typ − + VCCO DxP/Dx + 1P 100 Ω DxM/Dx + 1M RECEIVER + − AGND 005aaa124 Fig 22. LVDS DDR digital output buffer - internally terminated The default LVDS DDR output buffer current is set to 3.5 mA. It can be programmed via the SPI (bits DAVI and DATAI; see Table 29) in order to adjust the output logic voltage levels. 11.5.3 DAta Valid (DAV) output clock A DSV output clock signal is provided that can be used to capture the data delivered by the ADC1610S. Detailed timing diagrams for CMOS and LVDS DDR modes are provided in Figure 23 and Figure 24 respectively. 11.5.4 Out-of-Range (OTR) An out-of-range signal is provided on pin OTR. By default, pin OTR goes HIGH fourteen clock cycles after an OTR event has occurred. The OTR response can be speeded up by enabling Fast OTR (bit FASTOTR = 1; see Table 27). When Fast OTR is enabled, OTR goes HIGH four clock cycles after the OTR event. The Fast OTR detection threshold (below full scale) can be programmed via bits FASTOTR_DET. ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 19 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 11.5.5 Digital offset By default, the ADC1610S delivers output code that corresponds to the analog input. However it is possible to add a digital offset to the output code via the SPI (bits DIG_OFFSET; see Table 23). 11.5.6 Test patterns For test purposes, the ADC1610S can be configured to transmit one of a number of predefined test patterns (via bits TESTPAT_SEL; see Table 24). A custom test pattern can be defined by the user (TESTPAT_USER; see Table 25 and Table 26) and is selected when TESTPAT_SEL = 101. The selected test pattern will be transmitted regardless of the analog input. 11.5.7 Output codes versus input voltage Table 14. VINP − VINM < −1 −1 −0.99996948 −0.99993896 −0.99990845 −0.99987793 .... −0.00006104 −0.00003052 0 +0.00003052 +0.00006104 .... +0.99987793 +0.99990845 +0.99993896 +0.99996948 +1 > +1 Output codes Offset binary 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0010 0000 0000 0000 0011 0000 0000 0000 0100 .... 01 1111 1111 1110 01 1111 1111 1111 10 0000 0000 0000 10 0000 0000 0001 10 0000 0000 0010 .... 1111 1111 1111 1011 1111 1111 1111 1100 1111 1111 1111 1101 1111 1111 1111 1110 1111 1111 1111 1111 1111 1111 1111 1111 2’s complement 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0001 1000 0000 0000 0010 1000 0000 0000 0011 1000 0000 0000 0100 .... 1111 1111 1111 1110 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0010 .... 0111 1111 1111 1011 0111 1111 1111 1100 0111 1111 1111 1101 0111 1111 1111 1110 0111 1111 1111 1111 0111 1111 1111 1111 OTR pin 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 20 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 11.6 Timings summary 11.6.1 CMOS mode timings N N+1 td(s) N+2 tclk CLKP CLKM tPD (N − 14) (N − 13) (N − 12) (N − 11) DATA tPD tsu th DAV tclk 005aaa060 Fig 23. CMOS mode timing 11.6.2 LVDS DDR mode timing N N+1 td(s) N+2 tclk CLKP CLKM tPD Dx_Dx + 1_P Dx Dx_Dx + 1_M tsu th tsu th DAVP DAVM tclk 005aaa061 (N − 14) (N − 13) (N − 12) (N − 11) Dx + 1 Dx Dx + 1 Dx Dx + 1 Dx Dx + 1 Dx Dx + 1 tPD Fig 24. LDVS DDR mode timing ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 21 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 11.7 Serial Peripheral Interface (SPI) 11.7.1 Register description The ADC1610S serial interface is a synchronous serial communications port that allows for easy interfacing with many commonly-used microprocessors. It provides access to the registers that control the operation of the chip. This interface is configured as a 3-wire type (SDIO as bidirectional pin) Pin SCLK is the serial clock input and CS is the chip select pin. Each read/write operation is initiated by a LOW level on CS. A minimum of three bytes will be transmitted (two instruction bytes and at least one data byte). The number of data bytes is determined by the value of bits W1 and W2 (see Table 16). Table 15. Bit Description Instruction bytes for the SPI MSB 7 R/W[1] A7 [1] [2] LSB 6 W1[2] A6 5 W0[2] A5 4 A12 A4 3 A11 A3 2 A10 A2 1 A9 A1 0 A8 A0 Bit R/W indicates whether it is a read (1) or a write (0) operation. Bits W1 and W0 indicate the number of bytes to be transferred after the instruction byte (see Table 16). Table 16. W1 0 0 1 1 Number of data bytes to be transferred after the instruction bytes W0 0 1 0 1 Number of bytes transmitted 1 byte 2 bytes 3 bytes 4 bytes or more Bits A12 to A0 indicate the address of the register being accessed. In the case of a multiple byte transfer, this address is the first register to be accessed. An address counter is incriminated to access subsequent addresses. The steps involved in a data transfer are as follows: 1. A falling edge on CS in combination with a rising edge on SCLK determine the start of communications. 2. The first phase is the transfer of the 2-byte instruction. 3. The second phase is the transfer of the data which can vary in length but will always be a multiple of 8 bits. The MSB is always sent first (for instruction and data bytes). 4. A rising edge on CS indicates the end on data transmission. ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 22 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps CS SCLK SDIO R/W W1 W0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Instruction bytes Register N (data) Register N + 1 (data) 005aaa062 Fig 25. SPI mode timing 11.7.2 Default modes at start-up During circuit initialization, it does not matter which output data standard has been selected. At power-up, the device defaults to PIN control mode. A falling edge on CS will trigger a transition to SPI control mode. When the ADC1610S enters SPI control mode, the output data standard (CMOS/LVDS DDR) is determined by the level on pin SDIO (see Figure 26). Once in SPI control mode, the output data standard can be changed via bit LVDS/CMOS in Table 21. When the ADC1610S enters SPI control mode, the output data format (2’s complement or offset binary) is determined by the level on pin SCLK (grey code can only be selected via the SPI). Once in SPI control mode, the output data format can be changed via bit DATA_FORMAT in Table 21. CS SCLK (Data Format) SDIO (CMOS LVDS DDR) Offset binary, LVDS DDR default mode at startup 005aaa063 Fig 26. Default mode at start-up: SCLK LOW = offset binary; SDIO HIGH = LVDS DDR CS SCLK (Data Format) SDIO (CMOS LVDS DDR) 2's complement, CMOS default mode at startup 005aaa064 Fig 27. Default mode at start-up: SCLK HIGH = 2’s complement; SDIO LOW = CMOS ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 23 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 11.7.3 Register allocation map Table 17. Register allocation map R/W Bit definition Bit 7 R/W SW_ RST R/W R/W R/W R/W R/W R/W Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 INTREF DATA_FORMAT Bit 1 OP_MODE CLKDIV Bit 0 Default Bin 0000 0000 DCS_EN 0000 0001 0000 0000 0000 0000 0000 1110 0000 0000 TESTPAT_SEL 0000 0000 0000 0000 0000 0000 DAVI_ x2_EN DAVI FASTOTR DAV_DRV FASTOTR_DET DATA_DRV DATAI_x DATAI 2_EN BIT/BYTE_ LVDS_INTTER WISE 0000 0000 0000 1110 0000 0000 0000 0000 Addr Register name Hex 0005 Reset and operating mode 0006 Clock 0008 Internal reference 0011 Output data standard. 0012 Output clock 0013 Offset 0014 Test pattern 1 0015 Test pattern 2 0016 Test pattern 2 0017 Fast OTR 0020 CMOS output 0021 LVDS DDR O/P 1 0022 LVDS DDR O/P 2 SE_SEL DIFF/SE LVDS/ CMOS INTREF_ EN OUTBUF DAVINV DAVPHASE DIG_OFFSET - R/W TESTPAT_USER R/W TESTPAT_USER R/W R/W R/W R/W - Table 18. Bit 7 Reset and operating mode control register (address 0005h) bit description Access R/W 0 1 Value Description reset digital section no reset performs a reset of the digital section operating mode 00 01 10 11 Normal (Power-up) Power-down Sleep Normal (Power-up) Symbol SW_RST 6 to 2 reserved 1 to 0 OP_MODE R/W ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 24 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps Clock control register (address 0006h)bit description Access Value R/W 0 1 Description single-ended clock input pin select CLKM CLKP differential/single ended clock input select 0 1 fully differential single-ended clock input divide by 2 0 1 disabled enabled duty cycle stabilizer 0 1 disabled enabled Table 19. Bit 4 Symbol SE_SEL 7 to 5 reserved 3 DIFF/SE R/W 2 1 reserved CLKDIV R/W 0 DCS_EN R/W Table 20. Bit 3 Internal reference control register (address 0008h) bit description Access R/W 0 1 Value Description programmable internal reference enable disable active programmable internal reference 000 001 010 011 100 101 110 111 0 dB (FS = 2 V) −1 dB (FS = 1.78 V) −2 dB (FS = 1.59 V) −3 dB (FS = 1.42 V) −4 dB (FS = 1.26 V) −5 dB (FS = 1.12 V) −6 dB (FS = 1 V) reserved Symbol INTREF_EN 7 to 4 reserved 2 to 0 INTREF R/W Table 21. Bit 4 Output data standard control register (address 0011h) bit description Access R/W 0 1 Value Description output data standard: LVDS DDR or CMOS CMOS LVDS DDR output buffers enable 0 1 output enabled output disabled (high Z) Symbol LVDS/CMOS 7 to 5 reserved 3 OUTBUF R/W 2 ADC1610S125_1 reserved © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 25 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps Output data standard control register (address 0011h) bit description …continued Access R/W 00 01 10 11 Value Description output data format offset binary 2’s complement gray code offset binary Table 21. Bit Symbol 1 to 0 DATA_FORMAT Table 22. Bit 3 Output clock register (address 0012h) bit description Access R/W 0 1 Value Description output clock data valid (DAV) polarity normal inverted DAV phase select 000 001 010 011 100 101 110 111 output clock shifted (ahead) by 3 ns output clock shifted (ahead) by 2.5 ns output clock shifted (ahead) by 2 ns output clock shifted (ahead) by 1.5 ns output clock shifted (ahead) by 1 ns output clock shifted (ahead) by 0.5 ns default value as defined in timing section output clock shifted (delayed) by 0.5 ns Symbol DAVINV 7 to 4 reserved 2 to 0 DAVPHASE R/W Table 23. Bit Offset register (address 0013h) bit description Access R/W 011111 ... 000000 ... 100000 ... 0 ... −32 LSB Value Description digital offset adjustment +31 LSB Symbol 7 to 6 reset 5 to 0 DIG_OFFSET ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 26 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps Test pattern register 1 (address 0014h) bit description Access Value R/W 000 001 010 011 100 101 110 111 Description digital test pattern select off mid scale −FS +FS toggle ‘1111..1111’/’0000..0000’ custom test pattern ‘1010..1010.’ ‘010..1010’ Table 24. Bit Symbol 7 to 3 reserved 2 to 0 TESTPAT_SEL Table 25. Bit Test pattern register 2 (address 0015h) bit description Access Value R/W Description custom digital test pattern (bits 15 to 8) Symbol 7 to 0 TESTPAT_USER Table 26. Bit Test pattern register 3 (address 0016h) bit description Access Value R/W Description custom digital test pattern (bits 7 to 0) Symbol 7 to 0 TESTPAT_USER Table 27. Bit 3 Fast OTR register (address 0017h) bit description Access Value R/W 0 1 Description fast Out-of-Range (OTR) detection disabled enabled set fast OTR detect level 000 001 010 011 100 101 110 111 −20.56 dB −16.12 dB −11.02 dB −7.82 dB −5.49 dB −3.66 dB −2.14 dB −0.86 dB Symbol FASTOTR 7 to 4 reset 2 to 0 FASTOTR_DET R/W ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 27 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps CMOS output register (address 0020h) bit description Access R/W 00 01 10 11 Value Description drive strength for DAV CMOS output buffer low medium high very high drive strength for DATA CMOS output buffer 00 01 10 11 low medium high very high Table 28. Bit Symbol 7 to 4 reserved 3 to 2 DAV_DRV 1 to 0 DATA_DRV R/W Table 29. Bit 7 to 6 5 LVDS DDR output register 1 (address 0021h) bit description Access R/W 0 1 Value Description double LVDS current for DAV LVDS buffer disabled enabled LVDS current for DAV LVDS buffer 00 01 10 11 3.5 mA 4.5 mA 1.25 mA 2.5 mA double LVDS current for DATA LVDS buffer 0 1 disabled enabled LVDS current for DATA LVDS buffer 00 01 10 11 3.5 mA 4.5 mA 1.25 mA 2.5 mA Symbol DAVI_x2_EN 4 to 3 DAVI R/W 2 DATAI_x2_EN R/W 1 to 0 DATAI R/W Table 30. Bit 3 LVDS DDR output register 2 (address 0022h) bit description Access Value Description DDR mode for LVDS output 0 1 bit wise (even data bits output on DAV rising edge / odd data bits output on DAV falling edge) byte wise (MSB data bits output on DAV rising edge / LSB data bits output on DAV falling edge) Symbol 7 to 4 reserved BIT/BYTE_WISE R/W ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 28 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps LVDS DDR output register 2 (address 0022h) bit description …continued Access Value Description R/W 000 001 010 011 100 101 110 111 internal termination for LVDS buffer (DAV and DATA) no internal termination 300 Ω 180 Ω 110 Ω 150 Ω 100 Ω 81 Ω 60 Ω Table 30. Bit Symbol 2 to 0 LVDS_INTTER 11.7.4 Serial timing interface SPI timing is shown in Figure 28. tsu CS th tsu tw(SCLKL) tw(SCLK) tw(SCLKH) th SCLK SDIO R/W W1 W0 A12 A11 D2 D1 D0 005aaa065 Fig 28. SPI timing SPI timing characteristics are detailed in Table 9. ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 29 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 12. Package outline HVQFN40: plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body 6 x 6 x 0.85 mm SOT618-1 D B A terminal 1 index area E A A1 c detail X e1 e 11 L 10 21 e 1/2 e C b 20 vMCAB wMC y1 C y Eh 1/2 e e2 1 terminal 1 index area 30 40 Dh 0 2.5 scale E(1) 6.1 5.9 Eh 4.25 3.95 e 0.5 e1 4.5 e2 4.5 L 0.5 0.3 v 0.1 w 0.05 y 0.05 y1 0.1 5 mm 31 X DIMENSIONS (mm are the original dimensions) UNIT mm A(1) max. 1 A1 0.05 0.00 b 0.30 0.18 c 0.2 D(1) 6.1 5.9 Dh 4.25 3.95 Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. OUTLINE VERSION SOT618-1 REFERENCES IEC --JEDEC MO-220 JEITA --EUROPEAN PROJECTION ISSUE DATE 01-08-08 02-10-22 Fig 29. Package outline SOT618-1 (HVQFN40) ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 30 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 13. Revision history Table 31. Revision history Release date 20090528 Data sheet status Objective data sheet Change notice Supersedes Document ID ADC1610S125_1 ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 31 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 14. Legal information 14.1 Data sheet status Document status[1][2] Objective [short] data sheet Preliminary [short] data sheet Product [short] data sheet [1] [2] [3] Product status[3] Development Qualification Production Definition This document contains data from the objective specification for product development. This document contains data from the preliminary specification. This document contains the product specification. Please consult the most recently issued document before initiating or completing a design. The term ‘short data sheet’ is explained in section “Definitions”. The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 14.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. 14.3 Disclaimers General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental 14.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 15. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com ADC1610S125_1 © NXP B.V. 2009. All rights reserved. Objective data sheet Rev. 01 — 28 May 2009 32 of 33 NXP Semiconductors ADC1610S125 Single 16-bit ADC 125 Msps 16. Contents 1 2 3 4 5 6 6.1 6.2 7 8 9 10 10.1 10.2 10.3 11 11.1 11.1.1 11.1.2 11.1.3 11.1.4 11.2 11.2.1 11.2.2 11.2.3 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.4 11.4.1 11.4.2 11.4.3 11.4.4 11.5 11.5.1 11.5.2 11.5.3 11.5.4 11.5.5 11.5.6 11.5.7 11.6 11.6.1 11.6.2 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Pinning information . . . . . . . . . . . . . . . . . . . . . . 3 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5 Thermal characteristics. . . . . . . . . . . . . . . . . . . 5 Static characteristics. . . . . . . . . . . . . . . . . . . . . 6 Dynamic characteristics . . . . . . . . . . . . . . . . . . 8 Dynamic characteristics . . . . . . . . . . . . . . . . . . 8 Clock and digital output timing . . . . . . . . . . . . . 9 SPI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Application information. . . . . . . . . . . . . . . . . . 10 Device control . . . . . . . . . . . . . . . . . . . . . . . . . 10 SPI and PIN control modes . . . . . . . . . . . . . . 10 Operating mode selection. . . . . . . . . . . . . . . . 10 Selecting the output data standard . . . . . . . . . 10 Selecting the output data format. . . . . . . . . . . 11 Analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . 11 Input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Anti-kickback circuitry . . . . . . . . . . . . . . . . . . . 11 Transformer. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 System reference and power management . . 13 Internal/external references . . . . . . . . . . . . . . 13 Gain control . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Common-mode output voltage (VO(cm)) . . . . . 15 Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Drive modes . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Equivalent input circuit . . . . . . . . . . . . . . . . . . 17 Duty cycle stabilizer . . . . . . . . . . . . . . . . . . . . 17 Clock input divider . . . . . . . . . . . . . . . . . . . . . 18 Digital outputs . . . . . . . . . . . . . . . . . . . . . . . . . 18 Digital output buffers: CMOS mode . . . . . . . . 18 Digital output buffers: LVDS DDR mode . . . . . 18 DAta Valid (DAV) output clock. . . . . . . . . . . . . 19 Out-of-Range (OTR) . . . . . . . . . . . . . . . . . . . . 19 Digital offset . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Test patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Output codes versus input voltage . . . . . . . . . 20 Timings summary . . . . . . . . . . . . . . . . . . . . . . 21 CMOS mode timings. . . . . . . . . . . . . . . . . . . . 21 LVDS DDR mode timing . . . . . . . . . . . . . . . . . 21 11.7 11.7.1 11.7.2 11.7.3 11.7.4 12 13 14 14.1 14.2 14.3 14.4 15 16 Serial Peripheral Interface (SPI). . . . . . . . . . . Register description . . . . . . . . . . . . . . . . . . . . Default modes at start-up. . . . . . . . . . . . . . . . Register allocation map . . . . . . . . . . . . . . . . . Serial timing interface. . . . . . . . . . . . . . . . . . . Package outline . . . . . . . . . . . . . . . . . . . . . . . . Revision history . . . . . . . . . . . . . . . . . . . . . . . Legal information . . . . . . . . . . . . . . . . . . . . . . Data sheet status . . . . . . . . . . . . . . . . . . . . . . Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . Contact information . . . . . . . . . . . . . . . . . . . . Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 22 23 24 29 30 31 32 32 32 32 32 32 33 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP B.V. 2009. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 28 May 2009 Document identifier: ADC1610S125_1
ADC1610S125 价格&库存

很抱歉,暂时无法提供与“ADC1610S125”相匹配的价格&库存,您可以联系我们找货

免费人工找货