0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FS32R274KCK2VMM

FS32R274KCK2VMM

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LFBGA257

  • 描述:

    IC MCU 32BIT 2MB FLASH 257MAPBGA

  • 数据手册
  • 价格&库存
FS32R274KCK2VMM 数据手册
NXP Semiconductors Data Sheet: Technical Data Document Number S32R274 Rev. 6, 06/2021 S32R274 S32R274/S32R264 Series Data Sheet Supports S32R274K, S32R274J, S32R264K and S32R264J Features • On-chip modules available within the device include the following features: • Safety core: Power Architecture® e200Z4 32-bit CPU with checker core • Dual issue computation cores: Power Architecture® e200Z7 32-bit CPU • 2 MB on-chip code flash (FMC flash) with ECC • 1.5 MB on-chip SRAM with ECC • RADAR processing – Signal Processing Toolbox (SPT) for RADAR signal processing acceleration – Cross Timing Engine (CTE) for precise timing generation and triggering – Waveform generation module (WGM) for chirp ramp generation – 4x 12-bit ΣΔ-ADC with 10 MSps – One DAC with 10 MSps – MIPICSI2 interface to connect external ADCs • Memory Protection – Each core memory protection unit provides 24 entries – Data and instruction bus system memory protection unit (SMPU) with 16 region descriptors each – Register protection • Clock Generation – 40 MHz external crystal (XOSC) – 16 MHz Internal oscillator (IRCOSC) – Dual system PLL with one frequency modulated phase-locked loop (FMPLL) – Low-jitter PLL to ΣΔ-ADC and DAC clock generation (not supported on SC66760x devices) • Functional Safety – Enables up to ASIL-D applications – FCCU for fault collection and fault handling – MEMU for memory error management – Safe eDMA controller – Self-Test Control Unit (STCU2) – Error Injection Module (EIM) – On-chip voltage monitoring – Clock Monitor Unit (CMU) • Security – Cryptographic Security Engine (CSE2) – Supports censorship and life-cycle management • Timers – Two Periodic Interval Timers (PIT) with 32-bit counter resolution – Three System Timer Module (STM) – Three Software Watchdog Timers (SWT) – Two eTimer modules with 6 channels each – One FlexPWM module for 12 PWM signals • Communication Interfaces – Two Serial Peripheral interface (SPI) modules – One LINFlexD module – Two inter-IC communication interface (I2C) modules – One dual-channel FlexRay module with 128 message buffers – Three FlexCAN modules with configurable buffers CAN FD optionally supported on 2 FlexCAN modules – One ENET MAC supporting MII/RMII/RGMII interface – ZipWire high-speed serial communication • Debug Functionality – 4-pin JTAG interface and Nexus/Aurora interface for serial high-speed tracing – e200Z7 core and e200Z4 core: Nexus development interface (NDI) per IEEE-ISTO 5001-2012 Class 3+ NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. • Two analog-to-digital converters (SAR ADC) – Each ADC supports up to 16 input channels – Cross Trigger Unit (CTU) • On-chip voltage DC/DC regulator for core clock (VREG) • Two Temperature Sensors (TSENS) S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 2 NXP Semiconductors Table of Contents 1 2 Introduction........................................................................................ 4 8.4 Data retention vs program/erase cycles...................................39 1.1 Family comparison..................................................................4 8.5 Flash memory AC timing specifications.................................39 1.2 Feature list............................................................................... 5 8.6 Flash memory read wait-state and address-pipeline control 1.3 Block diagram......................................................................... 9 Ordering parts.....................................................................................9 2.1 3 4 5 6 8 9 Communication modules................................................................... 41 9.1 Ethernet switching specifications............................................41 Part identification............................................................................... 10 9.2 FlexRay timing parameters..................................................... 46 3.1 Description.............................................................................. 10 9.3 LVDS Fast Asynchronous Transmission (LFAST) electrical 3.2 Fields....................................................................................... 10 characteristics.......................................................................... 49 General............................................................................................... 11 9.4 Serial Peripheral Interface (SPI) timing specifications........... 53 4.1 Absolute maximum ratings..................................................... 11 9.5 LINFlexD timing specifications..............................................58 4.2 Operating conditions............................................................... 13 9.6 I2C timing .............................................................................. 58 4.3 Supply current characteristics................................................. 15 10 Debug modules...................................................................................59 4.4 Voltage regulator electrical characteristics............................. 16 10.1 JTAG/CJTAG interface timing .............................................. 59 4.5 Electromagnetic Compatibility (EMC) specifications............ 20 10.2 Nexus Aurora debug port timing.............................................62 4.6 Electrostatic discharge (ESD) characteristics......................... 20 11 WKUP/NMI timing specifications.....................................................63 I/O Parameters....................................................................................21 12 External interrupt timing (IRQ pin)................................................... 64 5.1 I/O pad DC electrical characteristics ......................................21 13 Temperature sensor electrical characteristics.....................................64 5.2 I/O pad AC specifications....................................................... 22 14 Radar module..................................................................................... 65 5.3 Aurora LVDS driver electrical characteristics........................ 23 14.1 MIPICSI2 D-PHY electrical and timing specifications.......... 65 5.4 Reset pad electrical characteristics..........................................24 14.2 MIPICSI2 Disclaimer..............................................................68 Peripheral operating requirements and behaviours............................ 26 15 Thermal Specifications.......................................................................70 6.1 7 Determining valid orderable parts...........................................9 settings.....................................................................................40 Clocks and PLL Specifications............................................... 26 15.1 Thermal characteristics........................................................... 70 Analog modules................................................................................. 29 16 Packaging........................................................................................... 72 7.1 ADC electrical characteristics.................................................29 17 Reset sequence................................................................................... 72 7.2 Sigma Delta ADC electrical characteristics............................ 33 17.1 Reset sequence duration.......................................................... 73 7.3 DAC electrical specifications..................................................36 17.2 Reset sequence description......................................................73 Memory modules............................................................................... 37 18 Power sequencing requirements.........................................................75 8.1 Flash memory program and erase specifications.................... 37 19 Pinouts................................................................................................76 8.2 Flash memory Array Integrity and Margin Read specifications...........................................................................38 8.3 19.1 Package pinouts and signal descriptions................................. 76 20 Revision History.................................................................................76 Flash memory module life specifications................................38 S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 3 Introduction 1 Introduction 1.1 Family comparison The following table provides a comparison of the devices: S32R274, S32R264, and MPC5775K . This information is intended to provide an understanding of the range of functionality offered by this family. For full details of all of the family derivatives please contact your marketing representative. Table 1. S32R274 and S32R264 Family Comparison Feature S32R274K S32R274J CPUs S32R264K S32R264J MPC5775K 266 MHz (z7 cores) / 133 MHz (z4) 266 MHz (z7 cores) / 133 MHz (z4) e200z420 lock-step 2x e200z7260 SIMD Maximum Operating Frequency SPE2 + EFP2 (z7) 240 MHz (z7 cores) / 180 MHz (z4) 266 MHz (z7 cores) / 133 MHz (z4) 240 MHz (z7 cores) / 180 MHz (z4) Flash 2 MB with ECC 4 MB with ECC EEPROM support 64 KB (emulation) 96 KB (emulation) RAM 1.5 MB with ECC ECC end-to-end MPU Core MPU: 24 entries per core, System MPU: 2x16 entries eDMA safe eDMA with 32 channels, 64 triggers Control ADC SD-ADC 2x 12-bit SAR ADC, 1 MSps input mux for 16 external channels 4 channels, 10 MSps – SPT 1x CTE 1x WGM 1x CTU – 1x 4x 12-bit SAR ADC, 1 MSps, input mux for 37 external channels 8 channels, 10 MSps 2x SWT 3x STM 3x PIT 2x CRC 2x SEMA42 1x LINFlexD 1x 4x CAN 3x FlexCAN including 2x FlexCAN-FD 4x FlexCAN + 1x MCAN-FD Table continues on the next page... S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 4 NXP Semiconductors Introduction Table 1. S32R274 and S32R264 Family Comparison (continued) Feature S32R274K S32R274J S32R264K S32R264J MPC5775K SPI 2x 4x I2C 2x 3x Zipwire 1x LFAST+SIPI, 320 MHz FlexRay 1x dual channel Ethernet 10/100 and >100 Mbps, RMII/MII/RGMII I/F, AVB support 10/100 Mbps, RMII/MII I/F, AVB support FlexPWM 1x, 12 PWM channels 2x, 12 PWM channels each eTimer 2x, 6 channels each 3x, 6 channels each External ADC interface 1x 4 lanes MIPICSI2 Rx, 1 Gbps/lane 1x PDI (16-bit data, clock, sync) IRCOSC 16 MHz XOSC 40 MHz FMPLL dual system PLL, 1x FM modulated DAC –1 1x 12-bit 10 MSps SIUL2 1x BAM 1x INTC 1x SSCM 1x FCCU/FOSU 1x MEMU 1x STCU2 1x –1 1x 12-bit 2 MSps CSE 1x - PASS/TDM 1x - MC_ME 1x MC_CGM 1x MC_RGM 1x TSENS 2x Debug JTAGC, JTAGM, CJTAG, with class3+ Nexus, Aurora only Safety level ISO26262 SEooC ASIL-B to ASIL-D Temp. range (Tj) -40 to 150˚C 1. DAC is not supported in S32R264x devices. Hence, ignore its occurrences in this document for S32R264K and S32R264J. 1.2 Feature list On-chip modules available within the device include the following features: • Safety core: Power Architecture® e200Z4 32-bit CPU with checker core S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 5 Introduction • • • • • 2 cycle delayed lockstep Harvard architecture with 64-bit bus for data and instructions Dual issue: up to two instructions per clock cycle 8 KB instruction cache and 4 KB data cache 64 KB data local memory • with background load/store: backdoor access • 0-wait state for all read and 32/64-bit write accesses • Low number of wait states for backdoor accesses • Support for decorated storage • Variable Length Encoding (VLE) compliant for higher code density • Single precision floating point operations • Computation cores: Power Architecture® e200Z7 32-bit CPU • Dual issue: up to two instructions per clock cycle • Harvard architecture with 64-bit bus for data instructions • 16 KB instruction cache and 16 KB data cache • 64 KB data local memory • with background load/store: backdoor access • 0-wait state for all read and 32/64-bit write accesses • Low number of wait states for backdoor accesses • Support for decorated storage • Using variable length encoding (VLE) for higher code density • 4-way integer processing unit (SPE2) • 2-way single-precision Floating Point Unit (EFPU2) • 2 MB on-chip code flash (FMC flash) with ECC • Three ports (one per CPU) shared between code and data flash with 4 × 256 bit buffer for code and data flash including prefetch functions • Data flash is part of the code flash module • Including 64 KB EEPROM emulation • 1.5 MB on-chip SRAM with ECC • Decorated memory controller to support atomic read-modify-write operations • Single- and double-bit error visibility is supported • Up to four ports (one per CPU and SPT) and up to 8 banks allow simultaneous accesses from different masters to different banks • RADAR processing • Signal Processing Toolbox (SPT) for RADAR signal processing acceleration • Cross Timing Engine (CTE) for precise timing generation and triggering • Waveform generation module (WGM) for chirp ramp generation • 4x 12-bit ΣΔ-ADC with 10 MSps (not supported on S32R264 devices) • One DAC with 10 MSps (not supported on S32R264 devices) • MIPICSI2 interface to connect external ADCs S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 6 NXP Semiconductors Introduction • • • • • • • Four data lanes, with up to 1 Gbps per lane and in total • One clock lane Memory Protection • Each core memory protection unit provides 24 entries • Data and instruction bus system memory protection Unit (SMPU) with 16 region descriptors each • Register protection Clock Generation • 40 MHz external crystal (XOSC) • 16 MHz Internal oscillator (IRCOSC) • Dual system PLL with one frequency modulated phase-locked loop (FMPLL) • Low-jitter PLL to ΣΔ-ADC and DAC clock generation Functional Safety • Enables up to ASIL-D applications • End to end ECC ensuring full protection of all data accesses throughout the system, from each of the systems masters through the crossbar and into the memories and peripherals • FCCU for fault collection and fault handling • MEMU for memory error management • Safe eDMA controller • User selectable Memory BIST (MBIST) can be enabled to run out of various reset conditions or during runtime • Self-Test Control Unit (STCU2) • Error Injection Module (EIM) • On-chip voltage monitoring • Clock Monitor Unit (CMU) to support monitoring of critical clocks Security • Cryptographic Security Engine (CSE2) enabling advanced security management • Supports censorship and life-cycle management via Password and Device Security (PASS) module • Diary control for tamper detection (TDM) Support Modules • Global Interrupt controller (INTC) capable of routing interrupts to any CPU • Semaphore unit to manage access to shared resources • Two CRC computation units with four polynomials • 32-channel eDMA controller with multiple transfer request sources using DMAMUX • Boot Assist Module (BAM) supports internal flash programming via a serial link (LIN / CAN) Timers • Two Periodic Interval Timers (PIT) with 32-bit counter resolution S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 7 Introduction • • • • • • Three System Timer Module (STM) • Three Software Watchdog Timers (SWT) • Two eTimer modules with 6 channels each • One FlexPWM module for 12 PWM signals Communication Interfaces • Two Serial Peripheral interface (SPI) module • Two inter-IC communication interface (I2C) modules • One LINFlexD module • One dual-channel FlexRay module with 128 message buffers • Three FlexCAN modules with configurable buffers • CAN FD optionally supported on 2 FlexCAN modules • One ENET MAC supporting MII/RMII/RGMII interface • Supports 10/100 Mbps (MII/RMII/RGMII) and >100 Mbps (RGMII) • Supports IEEE1588 timestamps and PTP • Zipwire high-speed serial communication • Supports LFAST and SIPI protocol • Fast interprocessor communication with 320 Mbps gross data rate • DMA based access to memory resources Debug Functionality • 4-pin JTAG interface and Nexus/Aurora interface for serial high-speed tracing • e200Z7 core and e200Z4 core: Nexus development interface (NDI) per IEEEISTO 5001-2012 Class 3+ • All platform bus masters except CSE can be monitored via Nexus/Aurora • Device/board boundary Scan testing supported with per Joint Test Action Group (JTAG) (IEEE 1149.1) and 1149.7 (cJTAG) • On-chip control for Nexus development interface by JTAGM module Two analog-to-digital converters (SAR ADC) • Each ADC supports up to 16 input channels • Cross Trigger Unit to enable synchronization of ADC conversions with eTimer On-chip voltage DC/DC regulator for core clock (VREG) Two Temperature Sensors (TSENS) S32R264 feature changes with respect to S32R274 are as follows: • SD-ADC’s removed • DAC removed • SDPLL replaced with AFEPLL • Improved radiated emissions in the GLONASS band. Full EMC reports are available from NXP on request for both S32R264, and S32R274 to allow the customer to select the most suitable part for their usecase. S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 8 NXP Semiconductors Ordering parts 1.3 Block diagram FPU 64 KB DTCM 4 KB 8 KB ICache DCache Core MPU 24 Entries BIU e2eECC Core MPU 24 Entries BIU e2eECC IBus IBus IBus CSE SSCM PIT_1 PIT_0 WKPU BAM DMAMUX_0 LFAST_0 SIPI MC_CGM MC_RGM CSE TDM PASS JTAGM TDM FlexCAN_1 VREG STCU2 MEMU CRC_0 FlexCAN_0 SPI_1 LINFlexD FlexRAY eTimer_1 ENET ECC Logic / Analogs Debug Memories Peripherals already shown explicitly in the block diagram PASS Triple Ported Flash Controller (PFLASH) e2eECC SIUL2 MC_ME Core_1 Core_2 Core_0+ System memory Protection Unit SMPU_1 Core_2/ AHB Bridge_0 CSE up to 64 KB DFlash eDMA STM_0 STM_1 STM_2 SWT_1 SWT_2 INTC SWT_0 PRAM PFLASH SEMA42 AXBS_1 SMPU_1 FPU Delay/ RCCU Instr. Crossbar Switch (AMBA 2.0 v6 AHB) 64- bit Cal 1.5 MB SRAM 8 Banks ECC SMPU_0 VLE Delay/ RCCU TCM Backdoor e2eECC e200z419 Checker Core0 VLE all others DBus all others Core_1 SPT Core_0+ Quad Ported SRAM Controller (PRAM) e2eECC 32-bit DAC XOSC 32-bit SDADC[0:3] SDPLL SDVRegs FlexCAN_2 I2C_1 NAP DTS Safety Lake Nexus3+ 2 MB Flash memory SPI_2 I2C_2 MIPICSI2 eTimer_2 ADC_0 TCM_Core0/1/2 AIPS-Lite_0 e2eECC e2eECC FlexPWM_0 WGM_0 CMUs CRC_1 AIPS-Lite_1 AXBS_0 VREG LVD E200z420 Core0 NPC NAL e2eECC Nexus Data Trace AIPS-Lite_0 TSENS_0/1 Dual FMPLL FCCU BIU e2eECC Data Crossbar Switch (AMBA 2.0 v6 AHB) 64 bit XOSC 64 KB DTCM 16 KB DCache Core MPU 24 Entries System memory Protection Unit SMPU_0 IRCOSC CRC_1 CRC_1 16 KB ICache SPE2 VFPU AHB Bridge_1 e2eECC DBus e2eECC Nexus3+ e200z7260 Core1 VLE PIT_0 SWT_0 STM_0 TCM Backdoor e2eECC BIU e2eECC Nexus Data Trace SDPLL DMAMUX_1 64 KB DTCM 16 KB DCache Core MPU 24 Entries SD VREGs CTU_0 SPE2 VFPU 16 KB ICache Safety Lake Nexus Data Trace DAC FlexRay ENET Delay/ RCCU eDMA e2eECC eDMA e2eECC DMAMUX Zipwire Signal Processing Toolbox (SPT) AIPS-Lite_1 Nexus3+ e200z7260 Core2 VLE FastDMA e2eECC async PIT_1 SWT_1 STM_1 SWT_2 STM_2 TCM Backdoor e2eECC DMA SRAM (ECC) Acquisition FFT/ Processing Sequencer Local SRAM (ECC) CJTAG JTAGC INTC SPT CTE_0 MIPICSI2 FR ADC_1 4x SDADC MII/RMII/ RGMII Zipwire TCM Backdoor e2eECC 4x lanes + clock DBus 4x analog diff. input Figure 1. S32R274 block diagram NOTE S32R264 devices support AFE PLL while S32R274 devices support SDPLL. 2 Ordering parts 2.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.nxp.com and perform a part number search for the device number. S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 9 Part identification 3 Part identification 3.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 3.2 Fields This section lists the possible values for each field in the part number (not all combinations are valid): Table 2. Configuration 257MAPBGA Configuration Performance Temperature FS32R274KSK2MMM S K M FS32R274KCK2MMM C K M FS32R274VBK2MMM B V M FS32R274VCK2MMM C V M FS32R274KSK2VMM S K V FS32R274KCK2VMM C K V FS32R274VBK2VMM B V V FS32R274VCK2VMM C V V FS32R274JSK2MMM S J M FS32R264KBK0MMM B K M FS32R264KCK0MMM C K M FS32R264JBK0MMM B J M FS32R264JCK0MMM C J M Table 3. Configuration Configuration 2 MB Flash 1.5 MB RAM CSE B or S Yes Yes Yes C Yes Yes No Table 4. Performance Perf (MHz) Z7 Z7 Z4 Z4 K 240 240 120 120 Table continues on the next page... S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 10 NXP Semiconductors General Table 4. Performance (continued) Perf (MHz) Z7 Z7 Z4 Z4 V 200 200 100 100 J 266 266 133 133 Table 5. Temperature values Temperature TA oC to 125 oC M -40 V -40 oC to 105 oC 4 General 4.1 Absolute maximum ratings NOTE Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device. Table 6. Absolute maximum ratings Symbol Parameter Conditions Min Max Unit V VDD_HV_PMU 3.3 V PMU supply voltage — –0.3 4.01, 2 VDD_HV_REG3V8 REG3V8 Supply Voltage — –0.3 5.5 V VDD_HV_IO* 3.3 V Input/Output Supply Voltage, LFAST IO Supply, RGMII IO Supply and PWM IO Supply — –0.3 3.631, 2 V VSS_HV_IOx Input/output ground voltage — –0.1 0.1 V V VDD_HV_FLA 3.3 V flash supply voltage — –0.3 3.631, 2 VDD_HV_RAW AFE RAW supply voltage — –0.1 4 V VDD_HV_DAC AFE DAC supply voltage — –0.1 4 V Aurora supply voltage — –0.3 1.5 V VDD 1.25 V core supply voltage3, 4, 5 — –0.3 1.5 V VSS ground3, 4, 5 — –0.3 0.3 V — –0.1 0.1 V VDD_LV_IO* VSS_LV_OSC 1.25 V core supply Oscillator amplifier ground Table continues on the next page... S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 11 General Table 6. Absolute maximum ratings (continued) Symbol Parameter Conditions Min Max Unit VDD_LV_PLL0 System PLL supply voltage — –0.3 1.5 V VDD_LV_LFASTPLL LFAST PLL supply voltage — –0.3 1.5 V VDD_HV_ADCREF0/1 ADC_0 and ADC_1 high reference voltage — –0.3 5.5 V VSS_HV_ADCREF0/1 ADC_0 and ADC_1 ground and low reference voltage — –0.1 0.1 V VDD_HV_ADC 3.3 V ADC supply voltage — –0.3 4.0 1, 2 V VSS_HV_ADC 3.3 V ADC supply ground — –0.1 0.1 V TVDD VIN_XOSC VINA VINA_SD Supply ramp rate6 — 0.00005 0.1 V/μs Voltage on XOSC pins with respect to ground — -0.3 1.47 V Voltage on SAR ADC analog pin with respect to ground (VSS_HV_ADCREFx) — –0.3 6.0 V Powered up 8 -0.3 VDD_HV_RAW + 0.3 V Powered down -0.3 1.47 Relative to VDD_HV_IOx –0.3 VDD_HV_IOx + 0.3 V Voltage on Sigma-Delta ADC analog pin with respect to ground7 9 VIN Voltage on any digital pin with respect to ground (VSS_HV_IOx) 10 VDD_LV_DPHY MIPICSI2 DPHY voltage supply3, 4, 5 — –0.3 1.5 V VSS_LV_DPHY ground3, 4, 5 — –0.3 0.3 V mA MIPICSI2 DPHY supply IINJPAD Injected input current on any pin during overload condition11 — –10 1012 IINJSUM Absolute sum of all injected input currents during overload condition — –50 50 mA Storage temperature — –55 150 °C TSTG 1. 5.3 V for 10 hours cumulative over lifetime of device; 3.3 V +10% for time remaining. 2. Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance. 3. 1.45 V to 1.5 V allowed for 60 seconds cumulative time at maximum TJ = 150°C; remaining time as defined in note 5 and note 6. 4. 1.375 V to 1.45 V allowed for 10 hours cumulative time at maximum TJ = 150°C; remaining time as defined in note 6. 5. 1.32 V to 1.375 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.275 V at maximum TJ=150°C. 6. TVDD is relevant for all external supplies. 7. ADC inputs include an overvoltage detect function that detects any voltage higher than 1.2 V with respect to ground on either ADC input and open circuit (disconnect) the input in order to prevent damage to the ADC internal circuitry. The ADC input remains disconnected until the inputs return to the normal operating range. 8. SDADC is powered up and overvoltage protection is ON. 9. SDADC is powered up and overvoltage protection is OFF. 10. Only when VDD_HV_IOx < 3.63 V. 11. No input current injection circuitry on AFE pins. 12. The maximum value of 10 mA applies to pulse injection only. DC current injection is limited to a maximum of 5 mA. S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 12 NXP Semiconductors General 4.2 Operating conditions The following table describes the operating conditions for the device, and for which all specifications in the datasheet are valid, except where explicitly noted. The device operating conditions must not be exceeded, or the functionality of the device is not guaranteed. Table 7. Device operating conditions Symbol VDD_HV_PMU VDD_HV_REG3V8 VDD VDD_HV_IO* VDD_LV_IO_*4 Conditions Min Typ Max1 Unit 3.3V PMU Supply Voltage — 3.132 3.3 3.6 V REG3V8 Supply Voltage — 3.13 3.8 5.5 V — 1.192 1.25 1.313 V Main GPIO 3V Supply Voltage, LFAST IO Supply, RGMII IO Supply, PWM IO Supply Voltage — 3.132 3.3 3.6 V Aurora Supply Voltage — 1.19 1.25 1.31 V 1.192 — 1.31 V Parameter Core Supply Voltage VDD_LV_PLL0 System PLL Supply Voltage — VDD_LV_LFASTPLL LFAST PLL Supply Voltage — 1.19 — 1.31 V VDD_HV_FLA5 Flash Supply Voltage — 3.132 3.3 3.6 V VDD_HV_ADC SAR ADC Supply Voltage (HVD supervised) — 3.132 3.3 3.66 V VDD_HV_RAW 3.3V AFE RAW Supply Voltage — 3.13 3.3 3.6 V VDD_HV_DAC 3.3V AFE DAC Supply Voltage — 3.13 3.3 3.6 V ADC_0 and ADC_1 high reference voltage — 3.13 3.3 3.6 V Voltage on digital pin with respect to ground (VSS_HV_IOx) — — — VDD_HV_IOx +0.3 V Differential — — 1.2 V — — — 165 V/μs ±0.1% 40.16 40.2 40.25 kΩ External Trim Resistor Temperature Coefficient — — — 25 ppm/°C Voltage on SAR ADC analog pin with respect to ground (VSS_HV_ADCREFx) — — — VDD_HV_ADCRE V VDD_HV_ADCREF0/1 VIN VINSDPP VINSR RTRIM_TOL RTRIM_TEMPCO VINA9 VDD_LV_DPHY TA, 11 Sigma-Delta ADC Input Voltage (peak-peak)7, 8 Sigma-Delta ADC Input Slew Rate7 External Trim Resistor tolerance Fx MIPICSI2 DPHY voltage supply10 Ambient temperature at full performance 12 — 1.19 1.25 1.31 V –40 — 125 °C Table continues on the next page... S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 13 General Table 7. Device operating conditions (continued) Symbol TJ11 FXTAL Conditions Min Typ Max1 Unit Junction temperature — –40 — 150 °C XOSC Crystal Frequency13 — — 40 — MHz Parameter AFE Bypass Modes Only Single-Ended External Clock14 EXTALclk EXTAL external clock frequency 40 MHz EXTAL external clock Cycle to Cycle Jitter (RMS) — — — 2.515 ps Vinxoscclkvil EXTAL external clock input low voltage — 0 — 0.4 V Vinxoscclkvih EXTAL external clock input high voltage — 1 — 1.23 V 1 ns 53 % Vinxoscjit tr/tf Rise/fall time of EXTAL external clock input tdc Duty Cycle of EXTAL external clock input 47 50 Differential LVDS External Clock LVDSclk LVDSVinxoscclk LVDS external clock frequency 40 LVDS external clock input voltage LVDSVinxoscclk(p-p) LVDS external clock input voltage (peak-peak) 0 Voltage driven, MHz 1.36 V 0.45 0.70 1.12 V 3.0 3.5 4.0 mA 2.5 ps 1.5 ns 53 % AC coupled Differential LVDSIinxoscclk LVDSVinxoscjit tr /tf tdcLVDS LVDS external clock input current Current driven, DC coupled. LVDS external clock Jitter (RMS) 15 Rise/fall time of LVDS external clock input Duty Cycle of LVDS external clock input 20% - 80% 47 50 1. 2. 3. 4. 5. 6. Full functionality cannot be guaranteed when voltages are out of the recommended operating conditions. Min voltage takes into account the LVD variation. Max voltage takes into account HVD variation. Aurora supply must connect to core supply voltage at board level. The ground connection for the VDD_HV_FLA is shared with VSS. Supply range does not take into account HVD levels. Full range can be achieved after power-up, if HVD is disabled. See Voltage regulator electrical characteristics section for details. 7. Around common mode voltage of 0.7 V. Input voltage cannot exceed 1.4 V prior to AFE start-up completion (VREF and VREGs on and LVDs cleared). 8. SDADC input voltage full scale is 1.2 Vpp 9. On channels shared between ADC0 and 1, VDD_HV_ADCREFx is the lower of VDD_HV_ADCREF0/1. 10. VDD_LV_DPHY supply should be shorted to core supply voltage VDD on board. Refer to AN5251. Contact your NXP sales representative for details. S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 14 NXP Semiconductors General 11. While determining if the operating temperature specifications are met, either the ambient temperature or junction temperature specification can be used. It is critical that the junction temperature specification is not exceeded under any condition. 12. Full performance means full frequency. 13. Recommended Crystal 40 MHz (ESR≤30 Ω), 8 pF load capacitance. 14. External mode can be used as differential input with EXTAL and XTAL 15. The number is 3.5 ps when SD-ADC and/or DAC is not used in the device. 4.3 Supply current characteristics Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization. Table 8. Current consumption characteristics Symbol IDD_CORE Parameter Core current in run mode Conditions All cores at max frequency. 1.31 V. Tj = 150°C (240 MHz) Min Typ - - Max Unit 14801 mA 16421 All cores at max frequency. 1.31 V. Tj = 150°C (266 MHz) IDD_HV_FLA Flash operating current Tj = 150°C. VDD_HV_FLA = 3.6 V - 32 403 mA IDD_LV_AURORA Aurora operating current Tj = 150°C. VDD_LV_AURORA = 1.31 V. 4 TX lanes enabled. - - 60 mA IDD_HV_ADC ADC operating current Tj = 150°C. VDD_HV_ADC = 3.6 V. 2 ADCs operating at 80 MHz. - 2 5 mA IDD_HV_ADCREF Reference current per ADC4 Tj = 150°C. VDD_HV_ADCREFx = 3.6 V. ADC operating at 80 MHz. - - 1.5 mA - - 0.75 Reference current per temp sensor5 1. 2. 3. 4. 5. 6. IDD_HV_RAW AFE SD and regulator operating current Tj = 150°C. VDD_HV_RAW = 3.6 V. SD-PLL, AFE regulators and 4 SD enabled. - 706 75 mA IDD_HV_DAC AFE DAC operating current Tj = 150°C. VDD_HV_DAC = 3.6 V. DAC enabled. - 10 15 mA IDD_HV_PMU PMU operating current Tj = 150°C. VDD_HV_PMU = 3.6 V. Internal regulation enabled. - 2 10 mA IDD_LV_DPHY MIPICSI2 DPHY operating current in HSRX mode Tj = 150°C, VDD_LV_DPHY =1.31 V - 14.9 23.2 mA Strong dependence on use case, cache usage. Measured during flash read. Peak Flash current measured during read while write (RWW) operation. ADC0 and 1 on ADCREF0/1. Temp sensor current when PMC_CTL_TD[TSx_AOUT_EN] = 1. TS0 on ADCREF0/1. Typical number is approximately 10 mA per each SD-ADC enabled, 12 mA for SD-PLL and 15 mA for the AFE regulators. S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 15 General 4.4 Voltage regulator electrical characteristics Table 9. Voltage regulator electrical specifications Symbol Parameter Conditions Min Typ Max Unit POR-R 1.25 V VDD core POR release — 0.97 1.02 1.06 V POR-E 1.25 V VDD core POR engage — 0.93 0.98 1.02 V LVD12R Low-Voltage Detection 1.25 V release (Core VDD supply, and PLL0/1 supply LVDs) Untrimmed 1.122 1.157 1.192 V Trimmed 1.142 1.157 1.172 V Low-Voltage Detection 1.25 V engage (Core VDD supply and PLL0/1 supply LVDs) Untrimmed 1.102 1.137 1.172 V Trimmed 1.122 1.137 1.152 V HVD12R-trim High-Voltage Detection 1.25 V release (Core VDD) Trimmed 1.33 1.35 1.37 V HVD12E-trim High-Voltage Detection 1.25 V engage (Core VDD supply) Trimmed 1.36 1.38 1.40 V LVD_MIPI12R-trim Low-Voltage Detection 1.25V release (MIPICSI2 DPHY supply) — 1.130 1.157 1.184 V LVD_MIPI12E-trim Low-Voltage Detection 1.25V engage (MIPICSI2 DPHY supply) — 1.111 1.137 1.163 V POR-RVDD_HV_PMU 3.3 V PMU supply voltage POR release threshold — 2.54 2.645 2.735 V POR-EVDD_HV_PMU 3.3 V PMU supply voltage POR engage threshold — 2.50 2.60 2.695 V LVD33R 3.3V Low-Voltage Detection Release Threshold (PMC, FLASH, IO, ADC) Untrimmed 2.90 3.02 3.13 V Trimmed 3.00 3.05 3.10 V 3.3V Low-Voltage Detection Engage Threshold (PMC, FLASH, IO, ADC) Untrimmed 2.86 2.98 3.09 V Trimmed 2.96 3.01 3.06 V 3.3V High-Voltage Detection Release Threshold (ADC) Untrimmed 3.45 3.61 3.75 V Trimmed 3.47 3.53 3.58 V 3.3V High-Voltage Detection Engage Threshold (ADC) Untrimmed 3.51 3.65 3.79 V Trimmed 3.51 3.57 3.62 V UVL30R SMPS under-voltage lockout release threshold Untrimmed 2.75 2.90 3.05 V UVL25E SMPS under-voltage lockout engage threshold 2.40 2.55 2.7 V DGLITCHE Voltage Detector Deglitcher Filter Time Engage — 2.0 3.5 5 µs DGLITCHR Voltage Detector Deglitcher Filter Time Release — 5 7 12 µs RSTDGLTC VREG_POR_B Input Deglitch Filter Time — 200 320 500 ns RSTPUP VREG_POR_B Pin Pull-up Resistance — 37 75 150 kΩ REGENPUP VREG_SEL Pin Pull-up Resistance — 37 75 150 kΩ Load Current from 10 mA to 1.8 A 1.19 1.255 1.35 V LVD12R-trim LVD12E LVD12E-trim LVD33R-trim LVD33E LVD33E-trim HVD33R HVD33R-trim HVD33E HVD33E-trim VSMPS Internal switched regulator output voltage 1 Table continues on the next page... S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 16 NXP Semiconductors General Table 9. Voltage regulator electrical specifications (continued) Symbol Parameter Conditions Min Typ Max Unit FSMPS Internal switched regulator operating frequency without modulation Untrimmed 0.65 1.00 1.35 MHz Trimmed 0.93 1.00 1.07 MHz Internal switched regulator frequency modulation — — 7.5 — % — — 15 — % — — 30 — % FSMPS-M7.5 FSMPS-M15 FSMPS-M30 VREGSWPUP Internal switched regulator gate-driver pullup resistance2 — — — — — VREF_BG_T PMC bandgap reference voltage for SARADC Trimmed 1.20 1.22 1.237 V Vih (VREG_POR_B) VREG_POR_B pin High Voltage level — 0.7 x VDD_H V_PMU — VDD_H V_PMU + 0.3 V Vil (VREG_POR_B) VREG_POR_B pin Low Voltage level — -0.3 — 0.3 x VDD_H V_PMU V LVDAFER Low Voltage Detection 3.3V Release (AFE VDD_HV_DAC and VDD_HV_RAW supplies) 2.75 2.80 2.90 V LVDAFEE Low Voltage Detection 3.3V Engage (AFE VDD_HV_DAC and VDD_HV_RAW supplies) 2.68 2.77 2.86 V 1. Min/Max includes transient load conditions. Steady state voltage is within the core supply operating specifications. 2. There is a strong pull up from VREG_SWP to VDD_HV_REG3V8 which is connected when SMPS is disabled. The pullup has resistance less than 1 Kohm, therefore VREG_SWP should not be connected to ground if unused. S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 17 General Figure 2. SMPS External Components Configuration Table 10. SMPS External Components Ref Description M1 SI3443, 2SQ2315 L1 2.2 uH 3A < 100 mΩ series resistance (Ex. Bourns SRU8043-2R2Y) D1 SS8P3L 8A Schottcky Diode R1 24 kΩ C1 10 μF Ceramic C2 100 nF Ceramic C3 100 nF Ceramic (place close to inductor) C4 10 uF Ceramic (place close to inductor) C5 1 nF Ceramic C6 4 x 100 nF + 4 x 10nF Ceramic (place close to MCU supply pins) C7 4 x 10 μF Ceramic (place close to MCU supply pins) C8 100 nF Ceramic C9 1 μF Ceramic (Unless C1 is really close to the pin) S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 18 NXP Semiconductors General Figure 3. Radar AFE External Components Configuration Table 11. Radar AFE External Components Component Component Value Tolerance Placement Priority of larger cap. 1 Placement Special notes Priority of smaller cap1 C1 0.47 μF ±35% 3 — — C2 0.1 μF ±35% — 1 — C3 1.0 μF ±35% 7 — — C4 1.0 μF ±35% 2 — — C5 0.1 μF ±35% — 4 — C6 1.0 μF ±35% 8 — — C7 0.1 μF ±35% — 6 — C8 1.0 μF ±35% 6 — — C9 0.1 μF ±35% — 5 — C10 1.0 μF ±35% 4 — — C11 0.1 μF ±35% — 2 — C12 1.0 μF ±35% 5 — — C13 0.1 μF ±35% — 3 — C14 1.0 μF ±35% 10 — — C15 0.1 μF ±35% — 8 — C16 1.0 μF ±35% 9 — — C17 0.1μF ±35% — 7 — Table continues on the next page... S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 19 General Table 11. Radar AFE External Components (continued) Component Component Value Tolerance Placement Priority of larger cap. 1 Placement Special notes Priority of smaller cap1 C18 10 μF — 1 — X7R type C19 220 nF — — — Sigma Delta ADC input capacitor. See Figure 9 C20 220 nF — — — Sigma Delta ADC input capacitor. See Figure 9 R1 40.2 kΩ ±0.1% — — tempco = 25ppm/C R2 300 Ω — — — DAC Rl See Table 27 R3 300 Ω — — — DAC Rl See Table 27 Crystal 40MHz — — — Connected between XOSC_EXTAL/ XOSC_XTAL, ESR ≤ 30Ω 1. All Radar AFE external bypass capacitors should be placed as close as possible to the associated package pin. As shown in Radar AFE External Components Configuration figure, most pins have two values of bypass capacitor. Greater than 0.1 μF is referred to as the larger cap. 0.1 μF is referred to as the smaller cap. 4.5 Electromagnetic Compatibility (EMC) specifications EMC measurements to IC-level IEC standards are available from NXP on request. 4.6 Electrostatic discharge (ESD) characteristics Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard. NOTE A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Table 12. ESD ratings No. Symbol 1 VESD(HBM) Parameter Electrostatic discharge Conditions1 TA = 25 °C Class Max value2 Unit H1C 2000 V (Human Body Model) Table continues on the next page... S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 20 NXP Semiconductors I/O Parameters Table 12. ESD ratings (continued) No. Symbol Conditions1 Parameter Class Max value2 Unit C3A 5003 V conforming to AECQ100-002 2 VESD(CDM) Electrostatic discharge TA = 25 °C (Charged Device Model) conforming to AECQ100-011 750 (corners) 1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2. Data based on characterization results, not tested in production. 3. 500 V for non-AFE pins, 250 V for AFE pins. 5 I/O Parameters 5.1 I/O pad DC electrical characteristics NMI, TCK, TMS, JCOMP are treated as GPIO. Table 13. I/O pad DC electrical specifications Symbol Parameter Value Unit Min Max Vih_hys CMOS Input Buffer High Voltage (with hysteresis enabled) 0.65*VDD_HV_IO VDD_HV_IO + 0.3 V Vil_hys CMOS Input Buffer Low Voltage (with hysteresis enabled) -0.3 0.35*VDD_HV_IO V Vih CMOS Input Buffer High Voltage (with hysteresis disabled) 0.55 * VDD_HV_IO VDD_HV_IO + 0.3 V Vil CMOS Input Buffer Low Voltage (with hysteresis disabled) -0.3 0.40 * VDD_HV_IO V 0.1 * VDD_HV_IO — V Vhys CMOS Input Buffer Hysteresis VihTTL TTL Input high level voltage (All SAR_ADC input pins) 2 VDD_HV_ADCREFx + 0.3 V VilTTL TTL Input low level voltage (All SAR_ADC input pins) -0.3 0.56 V TTL Input hysteresis voltage (All SAR_ADC input pins) 0.3 — V 10 55 µA 10 55 µA VhystTTL Current1 Pull_Ioh Weak Pullup Pull_Iol Weak Pulldown Current2 Iinact_d Digital Pad Input Leakage Current (weak pull inactive) Voh Vol Ioh_f Iol_f Ioh_h Iol_h -2.5 2.5 µA Output High Voltage3 0.8 * VDD_HV_IO — V Output Low Voltage4 — 0.2 * VDD_HV_IO V 18 70 mA 21 120 mA 9 35 mA 10.5 60 mA Full drive Ioh5 Full drive Iol5 Half drive Ioh5 Half drive Iol5 (ipp_sre[1:0] = 11) (ipp_sre[1:0] = 11) (ipp_sre[1:0] = 10) (ipp_sre[1:0] = 10) S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 21 I/O Parameters 1. 2. 3. 4. 5. Measured when pad = 0 V Measured when pad = VDD_HV_IO Measured when pad is sourcing 2 mA Measured when pad is sinking 2 mA Ioh/Iol is derived from spice simulations. These values are NOT guaranteed by test. 5.1.1 RGMII pad DC electrical characteristics Table 14. RGMII pad DC electrical specifications Symbol 1. 2. 3. 4. 5. 6. Parameter Value Unit Min Max Vih CMOS Input Buffer High Voltage 0.65 x VDD_HV_IO VDD_HV_IO + 0.3 Vil CMOS Input Buffer Low Voltage V -0.3 0.35 x VDD_HV_IO V Pull_Ioh Weak Pullup Current1 10 55 µA Pull_Iol Weak Pulldown Current2 10 55 µA Iinact_d Digital Pad Input Leakage Current (weak pull inactive) -2.5 2.5 µA 0.8 x VDD_HV_IO — V — 0.2 * VDD_HV_IO V 8 26 mA 8 24 mA Voh Output High Voltage3 Vol Voltage4 Output Low Ioh5 Ioh_f Full drive Iol_f Full drive Iol6 Measured when pad = 0 V Measured when pad = VDD_HV_IO Measured when pad is sourcing 2 mA Measured when pad is sinking 2 mA Ioh_f value is measured with 0.8*VDDE applied to the pad. Iol_f is measured when 0.2*VDDE is applied to the pad. 5.2 I/O pad AC specifications AC Parameters are specified over the full operating junction temperature range of -40°C to +150°C and for the full operating range of the VDD_HV_IO supply defined in Table 7. Table 15. Functional Pad electrical characteristics Symbol Prop. Delay (ns)1 Rise/Fall Edge (ns)2 Drive Load (pF) L>H/H>L pad_sr_hv (output) Min Max Min Max 2.5/2.5 8.25/7.5 0.7/0.6 3/3 50 6.4/5 19.5/19.5 2.5/2.0 12/12 200 2.2/2.5 8/8 0.4/0.3 3.5/3.5 25 2.9/3.5 12.5/11 1.0/0.8 6.5/6.5 50 11/8 35/31 6.5/3.0 25/21 200 SIUL2_MSCR[SRC ] MSB,LSB 11 10 Table continues on the next page... S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 22 NXP Semiconductors I/O Parameters Table 15. Functional Pad electrical characteristics (continued) Prop. Delay (ns)1 Symbol Rise/Fall Edge (ns)2 Drive Load (pF) SIUL2_MSCR[SRC ] L>H/H>L pad_sr_hv Min Max Min Max 8.3/9.6 45/45 4/3.5 25/25 50 13.5/15 65/65 6.3/6.2 30/30 200 13/13 75/75 6.8/6 40/40 50 21/22 100/100 11/11 51/51 200 0.5/0.5 0.5 2/2 MSB,LSB 013 003 NA (input)4 1. 2. 3. 4. As measured from 50% of core side input to Voh/Vol of the output Measured from 20% - 80% of output voltage swing Slew rate control modes Input slope = 2ns NOTE Data based on characterization results, not tested in production. Table 16. Functional Pad AC Specifications Symbol Parameter pad_sr_hv(Cp) Value Parasitic Input Pin Capacitance Unit Min Typ Max 4.5 4.7 5.0 pF 5.3 Aurora LVDS driver electrical characteristics NOTE The Aurora interface is AC coupled, so there is no commonmode voltage specification. Table 17. Aurora LVDS driver electrical characteristics Parameter1 Symbol FTXRX Value Data rate Unit Min Typ Max — — 1.15 Gbps +/- 600 +/- 800 mV Transmitter Specifications Vdiffout Differential output voltage swing (terminated) +/- 400 Trise/Tfall Rise/Fall time (10% - 90% of swing) 60 Vdiffin Differential voltage ps Receiver Specifications +/- 100 +/- 800 mV Termination Table continues on the next page... S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 23 I/O Parameters Table 17. Aurora LVDS driver electrical characteristics (continued) Parameter1 Symbol Value Unit Min Typ Max 99 100 101 Ohms RV_L Terminating Resistance (external) CP Parasitic Capacitance (pad + bondwire + pin) 1 pF LP Parasitic Inductance 7 nH STARTUP TSTRT_BIAS Bias startup time TSTRT_TX Transmitter startup TSTRT_RX — — 5 µs — — 5 µs time2 — — 5 µs Receiver o/p duty cycle 30 70 % Receiver startup LVDS_RXOUT3 time2 1. Conditions for these values are VDD_LV_IO_AURORA = 1.19V to 1.32V, TJ = –40 / 150 °C 2. Startup time is defined as the time taken by LVDS current reference block for settling bias current after its pwr_down (power down) has been deasserted. LVDS functionality is guaranteed only after the startup time. 3. Receiver o/p duty cycle is measured with 1.25 Gbps, 50% duty cycle, max 1 ns rise/fall time, 100 mV voltage swing signal applied at the receiver input. 5.4 Reset pad electrical characteristics The device implements a dedicated bidirectional RESET_B pin. VDD_HV_IOx VDDMIN RESET_B VIH VIL device reset forced by RESET_B device start-up phase Figure 4. Start-up reset requirements S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 24 NXP Semiconductors I/O Parameters VRESET_B hw_rst VDD_HV_IO ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter filtered by lowpass filter WFRST unknown reset state device under hardware reset WFRST WNFRST Figure 5. Noise filtering on reset signal Table 18. RESET_B electrical characteristics Symbol Conditions1 Parameter Value Min Typ Max Unit VIH Input high level TTL (Schmitt Trigger) — 2.0 — VDD_HV_IOx + 0.4 V VIL Input low level TTL (Schmitt Trigger) — –0.4 — 0.56 V VHYS2 Input hysteresis TTL (Schmitt Trigger) — 300 — — mV IOL_R Strong pull-down current Device under power-on reset 0.2 — — mA 15 — — VDD_HV_IO = 1.2 V VOL = 0.35 x VDD_HV_IO Device under power-on reset mA VDD_HV_IO=3.0 V VOL = 0.35 x VDD_HV_IO WFRST RESET_B input filtered pulse — — — 500 ns WNFRST RESET_B input not filtered pulse — 2400 — — ns 30 — 100 µA |IWPD| Weak pull-down current absolute value VIN = VDD_HV_IOx 1. VDD_HV_IOx = 3.3 V -5%,+10%, TJ = –40 / 150°C, unless otherwise specified. 2. Data based on characterization results, not tested in production. S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 25 Peripheral operating requirements and behaviours 6 Peripheral operating requirements and behaviours 6.1 Clocks and PLL Specifications 6.1.1 40 MHz Oscillator (XOSC) electrical characteristics The device provides an oscillator/resonator driver. NOTE XTAL/EXTAL must not be directly used to drive external circuits. Table 19. XOSC electrical characteristics Symbol Parameter XOSCfout Oscillator frequency tstab Oscillator start-up time 2 ms Cycle to cycle jitter (peak – peak) 2.51 ps 55 % tjitcc Conditions Cin Input Capacitance Typ Max 40 Output Duty Cycle 2 Min 45 50 Unit MHz Extal and Xtal each 3.0 4.0 5.0 pF RinLVDS LVDS bypass mode input termination3 Between Extal and Xtal 75 100 125 ohm VCMLVDS LVDS Common Mode Voltage Vdda/2 0.60 0.70 0.80 V 1. The number is 3.5 ps when SD-ADC and/or DAC is not used in the device. 2. When using a 40 MHz crystal, the recommended load capacitance is 8 pF. Need quiet ground connection on the board and external crystal/load capacitor placement as close to the Extal and Xtal pins as possible to allow good jitter performance. 3. The termination resistance is only active when the AFE is powered (VDD_HV_RAW, VDD_HV_DAC and the AFE regulators are powered up) and the XOSC is powered down (default case once device is out of reset) or the XOSC is configured in differential bypass mode. 6.1.2 FMPLL electrical characteristics S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 26 NXP Semiconductors Clocks and PLL Specifications IRCOSC PLL_0_PHI0 PLL_0 PLL_0_PHI1 XOSC PLL_1_PHI0 PLL_1 Figure 6. PLL integration Table 20. PLL0 electrical characteristics Symbol fPLL0IN PLL0IN Parameter PLL0 input clock2, 3 PLL0 input clock duty cycle2 Conditions1 Min Typ Max Unit — 14 — 44 MHz — 40 — 60 % fPLL0VCO PLL0 VCO frequency — 600 — 1250 MHz fPLL0PHI0 PLL0 output clock PHI0 — 4.76 — 6254 MHz fPLL0PHI1 PLL0 output clock PHI1 — 20 — 156 MHz tPLL0LOCK PLL0 lock time — — — 100 µs PLL0LTJ PLL0 long term jitter fPLL0IN = 8 MHz (resonator)5 fPLL0PHI0 = 40 MHz, 1 μs ±1 ns fPLL0PHI0 = 40 MHz, 13 μs ±1 ns 5 mA IPLL0 PLL0 consumption — — 1. VDD_LV_PLL0 =1.25 V ± 5%, TJ = -40 / 150 °C unless otherwise specified. 2. PLL0IN clock retrieved directly from either IRCOSC or external XOSC clock. 3. fPLL0IN frequency must be scaled down using PLLDIG_PLL0DV[PREDIV] to ensure the reference clock to the PLL analog loop is in the range 8 MHz-20 MHz 4. The maximum clock outputs are limited by the design clock frequency requirements as per recommended operating conditions. 5. VDD_LV_PLL0 noise due to application in the range VDD_LV_PLL0 = 1.25 V±5%, with frequency below PLL bandwidth (40 KHz) will be filtered. Table 21. FMPLL1 electrical characteristics Symbol Parameter Conditions1 Min Typ Max Unit fPLL1IN PLL1 input clock2 — 38 — 78 MHz PLL1IN PLL1 input clock duty cycle2 — 35 — 65 % fPLL1VCO PLL1 VCO frequency — 600 — 1250 MHz fPLL1PHI0 PLL1 output clock PHI0 — 4.76 — 625 MHz tPLL1LOCK PLL1 lock time — — — 100 µs fPLL1MOD PLL1 modulation frequency — — — 250 kHz |δPLL1MOD| PLL1 modulation depth (when enabled) Center spread 0.25 — 2 % Down spread 0.5 — 4 % IPLL1 PLL1 consumption — — 6 mA 1. VDD_LV_PLL0 = 1.25 V ± 5%, TJ = -40 / 150°C unless otherwise specified. 2. PLL1IN clock retrieved directly from either internal PLL0 or external XOSC clock. S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 27 Clocks and PLL Specifications 6.1.3 16 MHz Internal RC Oscillator (IRCOSC) electrical specifications Table 22. Internal RC Oscillator electrical specifications Symbol Parameter Conditions Min Typ Max Unit FTarget IRC target frequency — — 16 — MHz Funtrimmed IRC frequency (untrimmed) — 9.6 — 24 MHz — -8 — 8 % — — 5 µs δFvar IRC trimmed frequency variation Tstartup 1 Startup time 1. The typical user trim step size (δfTRIM) is 0.3% of current frequency for application of positive trim and 0.26% of current frequency for application of negative trim, based on characterization results. 6.1.4 320 MHz AFE PLL electrical characteristics Table 23. 320 MHz AFE PLL parameters Symbol Parameter Conditions Min Typ Max Unit PLLfout Output Frequency — — 320 — MHz PLLfin Input Frequency — — — 40 MHz LW64 = 1 — — 150 µs tcal Calibration Time 1 LW64 = 0 500 tlock Lock Time after calibration — — 75 µs tjitcck Cycle to cycle jitter (peak – peak) — — — 10 ps — Output duty cycle — 48 50 52 % 1. The LW64 bit sets the wait time before the PLL frequency is measured after each calibration step to allow for stabilization. If LW64 is '0', wait time of 256 reference clock cycles is used. If LW64 is'1', wait time of 64 reference clock cycles is used. 6.1.5 LFAST PLL electrical characteristics The specifications in the following table apply to the interprocessor bus LFAST interface. Table 24. LFAST PLL electrical characteristics Symbol Parameter Condition Min Typ Max Unit fRF_REF PLL reference clock frequency — 10 — 26 MHz ERRREF PLL reference clock frequency error — –1 — 1 % PLL reference clock duty cycle — 45 — 55 % — — 6401 — MHz — — — 40 μs — — 300 ps DCREF fVCO tLOCK ΔPERREF PLL VCO frequency PLL phase lock2 Input reference clock jitter (peak to peak) Single period, fRF_REF = 10 MHz Table continues on the next page... S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 28 NXP Semiconductors Analog modules Table 24. LFAST PLL electrical characteristics (continued) Symbol Parameter Condition Min Typ Max –500 — 500 Random Jitter (Rj) — 84 101 ps Deterministic Jitter (Dj) — 80 96 ps Total Jitter @BER 10-9 — 1.09 1.31 bits per second Normal Mode — 6 10 mA Peak — 7 11 mA Power Down — 0.5 27 μA Long term, fRF_REF = 10 MHz ΔPEREYE IVDD_LV_LFASTPLL Output Eye Jitter (peak to peak)3 VDD_LV_LFASTPLL Supply Current Unit 1. The 640 MHz frequency is achieved with a 10 MHz or 20 MHz reference clock. With a 26 MHz reference, the VCO frequency is 624 MHz. 2. The time from the PLL enable bit register write to the start of phase locks is maximum 2 clock cycles of the peripheral bridge clock that is connected to the PLL on the device. 3. Measured at the transmitter output across a 100 Ω termination resistor on a device evaluation board. 7 Analog modules 7.1 ADC electrical characteristics The device provides a 12-bit Successive Approximation Register (SAR) Analog-toDigital Converter. S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 29 Analog modules Offset Error OSE Gain Error GE 4095 4094 4093 4092 4091 4090 ( 2) 1 LSB ideal =(VrefH-VrefL)/ 4096 = 3.3V/ 4096 = 0.806 mV Total Unadjusted Error TUE = +/- 6 LSB = +/- 4.84mV code out 7 ( 1) 6 5 (5) 4 (4) 3 (3) 2 1 (1) Example of an actual transfer curve (2) The ideal transfer curve (3) Differential non-linearity error (DNL) (4) Integral non-linearity error (INL) (5) Center of a step of the actual transfer curve 1 LSB (ideal) 0 1 2 3 Offset Error OSE 4 5 6 7 4089 4090 4091 4092 4093 4094 4095 Vin(A) (LSBideal) Figure 7. ADC characteristics and error definitions S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 30 NXP Semiconductors Analog modules 7.1.1 Input equivalent circuit EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source Filter RS RF Current Limiter RL CF VA Channel Selection Sampling RSW1 RAD CP1 CS CP2 RS Source Impedance RF Filter Resistance CF Filter Capacitance RL Current Limiter Resistance RSW1 Channel Selection Switch Impedance RAD Sampling Switch Impedance CP Pin Capacitance (two contributions, CP1 and CP2) CS Sampling Capacitance Figure 8. Input equivalent circuit Table 25. ADC conversion characteristics Symbol fCK fs Conditions1 Parameter Min Typ Max Unit ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK2 frequency.) — 20 80 80 MHz Sampling frequency — — — 1.00 MHz 275 — — ns tsample Sample time3 80 MHz@ 200 ohm source impedance tsampleC SAR selftest C-algorithm sample time — 300 — — ns TsampleS SAR selftest S-algorithm sample time — 1 — — µs TsampleBG Bandgap sample time — 1.87 — — µs TsampleTS Temperature sensor sample time — 3.18 — — µs 80 MHz 650 — — ns tconv Conversion time4 ,5 CS ADC input sampling capacitance — — 3 5 pF 5 ADC input pin capacitance 1 — — — 5 pF 5 ADC input pin capacitance 2 — — — 0.8 pF RSW1 Internal resistance of analog source VREF range = 3.0 to 3.6 V — — 875 Ω RAD5 Internal resistance of analog source — — — 825 Ω Integral non-linearity — –2 — 2 LSB — –1 — 1 LSB CP1 CP2 5 INL non-linearity6 DNL Differential OFS Offset error — –4 — 4 LSB GNE Gain error — –4 — 4 LSB Table continues on the next page... S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 31 Analog modules Table 25. ADC conversion characteristics (continued) Symbol TUEIS1WINJ Conditions1 Parameter Total unadjusted error for IS1WINJ TUEIS1WWINJ Total unadjusted error for IS1WWINJ Min Typ Max Unit –6 — 6 LSB –6 — 6 LSB — 250 nA –3 — 38 mA IS1WINJ (pad (single ADC channel) going to one Max leakage ADC) Max positive/negative injection 150 °C IS1WWINJ (double ADC channel) (pad going to Max leakage two ADCs) Max positive/negative injection 7 150 °C — — 300 nA |Vref_ad0 - Vref_ad1| < 150 mV –3.6 — 3.6 mA — SNR Signal-to-noise ratio 3.3 V reference voltage 67 — — dB THD Total harmonic distortion @ 50 KHz 65 — — dB SINAD Signal-to-noise and distortion Fin < 50 KHz 6.02 x ENOB + 1.76 dB ENOB Effective number of bits Fin < 50 KHz 10.5 bits — — 1. VDD_HV_ADC = 3.3 V -5%,+10%, TJ = –40 to +150°C, unless otherwise specified and analog input voltage from VAGND to VDD_HV_ADCREFx. 2. AD_CK clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC. 3. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tsample. After the end of the sample time tsample, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tsample depend on programming. 4. This parameter does not include the sample time tsample, but only the time for determining the digital result and the time to load the result register with the conversion result. 5. SeeInput equivalent circuit figure. 6. No missing codes. 7. ADC specifications are met only if injection is within these specified limits 8. Max injection current for all ADC IOs is ± 10 mA NOTE The ADC performance specifications are not guaranteed if two ADCs simultaneously sample the same shared channel. Aurora interface along with SAR-ADC would degrade SAR-ADC performance. General Purpose Input (GPI) functionality should not be used on any of the SAR-ADC channels when SARADC is functional. S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 32 NXP Semiconductors Analog modules 7.2 Sigma Delta ADC electrical characteristics Figure 9. ADC input equivalent circuit Table 26. Sigma Delta ADC Parameters Symbol Parameter Condition Min Typ Max Unit SPSSDA Sample Rate After Decimation Filtering — 10 10 MS/S Latency @ 10 MS/s, full step input to 50% output. Decimation filter delay not included — — 0.1 µs Recovery Time After overload condition — — 0.5 µs 63 67 — dBFS LSDA RTSDA SNRSDA_MM_ON, 1 Signal-to-Noise Ratio Input Frequency Range and integration Mismatch Shaper on bandwidth are from 20 KHz to 5 MHz (using full-bandwidth decimation filter coefficients). Production test frequencies 449 KHz and 4 MHz. Production test amplitude is -6 dBFS = 0.6 Vpp. Table continues on the next page... S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 33 Analog modules Table 26. Sigma Delta ADC Parameters (continued) Symbol Parameter Condition Min Typ Max Unit 62 64 — dBFS Characterized under the following conditions: • 0.6 Vpp (i.e. -6 dBFS) input signals applied at the following frequencies one at a time: 20.77 KHz, 317.7 KHz, 857.7 KHz, 1.411 MHz, 2.95 MHz, 3.897 MHz, and 4.997 MHz and the SNR in dBFS is then calculated. • SNR at 5 MHz will be reduced by 5 dB due to decimation filter roll off. • The SNR is specified to be 67 dBFS typical for input frequencies between 20 KHz and 4 MHz. Mismatch shaper on. SNDRSDA_MM_ON1 Signal-to-Noise-and- Input Frequency Range and integration Distortion Ratio bandwidth are from 20 KHz to 5 MHz. (using Mismatch Shaper on full-bandwidth decimation filter coefficients). Production test frequencies 449 KHz and 4 MHz. Production test amplitude is -6 dBFS = 0.6 Vpp. Characterized under the following conditions: • 0.6 Vpp (i.e. -6 dBFS) input signals applied at the following frequencies one at a time: 20.77 KHz, 317.7 KHz, 857.7 KHz, 1.411 MHz, 2.95 MHz, 3.897 MHz, and 4.997 MHz and the SNDR in dBFS is then calculated. • SNR at 5 MHz will be reduced by 5 dB due to decimation filter roll off. • The SNR is specified to be 64 dBFS typical for input frequencies between 20 KHz and 4 MHz. Mismatch shaper on. IFDRSDA IMDSDA_MM_ON Interference Free Dynamic Range 20 ms integration, ADC inputs tied together at the package pin. One side of the AC coupling capacitors associated with each input should remain connected to the ADC input and the other side of the capacitor should connected to ground. 90 — — dBFS Intermodulation Distortion Mismatch Shaper on Input Frequency Range and integration bandwidth are from 20 KHz to 5 MHz (using full-bandwidth decimation filter coefficients). 62 — — dBc Characterized under the following conditions: • Two distinct sets of signal pairs at the specified frequencies and at an amplitude of -8 dBFs (i.e. 0.23886 Vpeak = 0.47772 Vpp differential) are applied one signal pair at a time. • Signal pair #1 is f1 = 1 MHz and f2 = 1.1 MHz and signal pair #2 is f1 = 390.625 KHz and f2 = 546.875 KHz. • All inter modulation products are checked. Mismatch Shaper on. GM Gain Mismatching (ADCx to ADCy) -3.5 — 3.5 % OE Input Offset Error — -25 — 25 mV Table continues on the next page... S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 34 NXP Semiconductors Analog modules Table 26. Sigma Delta ADC Parameters (continued) Symbol Parameter Condition Min Typ Max Unit OEV Offset Variation t = 50 ms, T = constant, data averaged in 1 ms increments -0.07 — 0.07 mV Vcm Common Mode Voltage2 SDADC switched on — vdda/2 – 30 mV — V xtalk Crosstalk (from any ADC to the other ADCs) Processing a full scale signal. — — -40 dB Zin Input Impedance Maximum input impedance occurs for input signals at 20 KHz and minimum input impedance occurs at input frequencies greater than 1 MHz3 7.3 — 33.5 kΩ Rcm Resistance from each SDADC input to Vcm (see Figure 9) 27.3 32.2 37.0 kΩ R_SDADC Resistance from each SDADC input pin to differential amplifier input (see Figure 9) - 9.0 10.75 12.5 kΩ C_SDADC SDADC integrator capacitors (see Figure 9) - 0.636 0.684 0.732 pF Cin parasitic parasitic input capacitance from ADC input to ground 2.0 3.9 4.9 pF — 1 ns DT Analog Delay Variation (ADCx to ADCy) AA Alias Suppression ADC input frequency between 315 and 325 MHz 50 — — dB STFoob ADC out of band Signal Transfer Function peaking Out of band Signal Transfer function peaking from 20 MHz to 40 MHz 0 2 3 dB PR passband ripple From 20 KHz to 4 MHz (default decimation filter coefficients must be used) -0.5 0.0 0.5 dB Out Of Band Attenuation Default decimation filter coefficients must be used — — dB OOBA4 5 MHz 6 MHz 7 MHz 10 MHz -4.5 -10 -20 -40 -60 15 MHz 1. Derate specification by 2 dBFS for Tj less than 0°C. 2. vdda is an internally regulated and trimmed 1.45V ± 10mV voltage. 3. The input structure of the ADC is an active RC integrator which has a frequency dependent input impedance as indicated in ADC input equivalent circuit. 4. All attenuation values are relative to 0 dB in the ADC passband. S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 35 Analog modules 7.3 DAC electrical specifications NOTE • All data is measured in single ended mode. Differential mode is guaranteed by design. • Specifications guaranteed only if factory trims are not overridden. Table 27. DAC parameters Symbol NBIT Parameter Bits Condition Base bits Min Typ Max Unit — 12 — Bits PWM bits 4 (extra lsb's) SPSDAC Sample rate — — 10 — MSam ples/s DNL Linearity1 — -24 — 4 LSB Single-Ended, Rl = 300 Ω 1.2 — 1.35 V 4.0 — 4.5 mA — 20 30 65 170 nV/ sqrt(Hz ) mV Voltage1, 2, 3 Vout Output Iout Full-Scale Output Current DAC full-scale adjust bits set to 01 or 10 NDAC DAC output noise 1, 4 @250 kHz @100 kHz @10 kHz @1 kHz SOE Static Offset Error1, 2 Single-Ended 60 75 100 Differential with the full-scale adjust bits set to either 01 or 10 -30 0 30 TOE Transient Offset Error1, 2, 5 After low-pass filter and averaging — — 0.05 LSB tDV Transient Time Delay Variation 1, 2, 6 LSB step — — 1 ns MSB step 10 Oc Output compliance single-ended, only the DNL specification is guaranteed. The TOE and Tdv may be degraded. 0 — 1.35 V tempco Temperature coefficient — –1 — 1.0 LSB/K PSRR Power Supply Rejection Ratio7 Freq < 250 KHz 30 — — dB 2 1. DAC linearity, output swing, noise, TOE, and Tdv specifications are all based upon a 300 Ω DAC output load resistor and assume that the full-scale adjust bits are set to either 01 or 10. These specifications will NOT be met for other DAC output load resistor values. 2. Once all of the LVDs have cleared and the DAC is powered on, a one-time wait time of 300 ms is required before the DAC output signal is valid. 3. The full-scale DAC output is trimmed to 1.30 V ±10 mV with all DAC inputs set to 1 including both full-scale adjust bits. 4. Rl = 300 Ω, 10uF capacitor between Vdd_HV_DAC and DAC_C, ideal supply 5. Difference between ideal and real (Va+Vb/2), for all base and PWM LSBs 6. Falling edge to falling edge or rising edge to rising edge. Any transition DACn -> DACn + 1 S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 36 NXP Semiconductors Memory modules 7. DAC PSRR is 30 dB minimum for DAC output levels of 1/3 of full-scale or less. DAC PSRR is 24 dB minimum with the DAC output at full-scale. 8 Memory modules 8.1 Flash memory program and erase specifications NOTE All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations. Table 28 shows the estimated Program/Erase times. Table 28. Flash memory program and erase specifications Characteristic1 Symbol Typ2 Factory Programming3, 4 Field Update Initial Max Initial Max, Full Temp Typical End of Life5 20°C ≤TA ≤30°C -40°C ≤TJ ≤150°C -40°C ≤TJ ≤150°C Unit Lifetime Max6 ≤ 1,000 cycles ≤ 250,000 cycles tdwpgm Doubleword (64 bits) program time 43 100 150 55 500 μs tppgm Page (256 bits) program time 73 200 300 108 500 μs tqppgm Quad-page (1024 bits) program time 268 800 1,200 396 2,000 μs t16kers 16 KB Block erase time 168 290 320 250 1,000 ms t16kpgm 16 KB Block program time 34 45 50 40 1,000 ms t32kers 32 KB Block erase time 217 360 390 310 1,200 ms t32kpgm 32 KB Block program time 69 100 110 90 1,200 ms t64kers 64 KB Block erase time 315 490 590 420 1,600 ms t64kpgm 64 KB Block program time 138 180 210 170 1,600 ms t256kers 256 KB Block erase time 884 1,520 2,030 1,080 4,000 — ms t256kpgm 256 KB Block program time 552 720 880 650 4,000 — ms 1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming. 2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations. 3. Conditions: ≤ 150 cycles, nominal voltage. 4. Plant Programing times provide guidance for timeout limits used in the factory. 5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations. 6. Conditions: -40°C ≤ TJ ≤ 150°C, full spec voltage. S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 37 Memory modules 8.2 Flash memory Array Integrity and Margin Read specifications Table 29. Flash memory Array Integrity and Margin Read specifications Symbol Characteristic Min Typical Max1 Units tai16kseq Array Integrity time for sequential sequence on 16 KB block. — — 512 x Tperiod x Nread — tai32kseq Array Integrity time for sequential sequence on 32 KB block. — — 1024 x Tperiod x Nread — tai64kseq Array Integrity time for sequential sequence on 64 KB block. — — 2048 x Tperiod x Nread — tai256kseq Array Integrity time for sequential sequence on 256 KB block. — — 8192 x Tperiod x Nread — tmr16kseq Margin Read time for sequential sequence on 16 KB block. 73.81 — 110.7 μs tmr32kseq Margin Read time for sequential sequence on 32 KB block. 128.43 — 192.6 μs tmr64kseq Margin Read time for sequential sequence on 64 KB block. 237.65 — 356.5 μs tmr256kseq Margin Read time for sequential sequence on 256 KB block. 893.01 — 1,339.5 μs 2 1. Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires 6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the address pipeline set to 2, Nread would equal 4 (or 6 - 2).) 2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the equation, the results of the equation are also unit accurate. 8.3 Flash memory module life specifications Table 30. Flash memory module life specifications Symbol Array P/E cycles Data retention Characteristic Conditions Min Typical Units Number of program/erase cycles per block for 16 KB, 32 KB and 64 KB blocks.1 — 250,000 — P/E cycles Number of program/erase cycles per block for 256 KB blocks.2 — 1,000 250,000 P/E cycles Minimum data retention. Blocks with 0 - 1,000 P/E cycles. 50 — Years Blocks with 100,000 P/E cycles. 20 — Years Blocks with 250,000 P/E cycles. 10 — Years 1. Program and erase supported across standard temperature specs. 2. Program and erase supported across standard temperature specs. S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 38 NXP Semiconductors Memory modules 8.4 Data retention vs program/erase cycles Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the qualification limits. 8.5 Flash memory AC timing specifications Table 31. Flash memory AC timing specifications Symbol tpsus tesus Characteristic Min Typical Max Units Time from setting the MCR-PSUS bit until MCR-DONE bit is set to a 1. — 9.4 11.5 μs plus four system clock periods plus four system clock periods Time from setting the MCR-ESUS bit until MCR-DONE bit is set to a 1. — 16 20.8 plus four system clock periods plus four system clock periods μs Table continues on the next page... S32R274/S32R264 Series Data Sheet, Rev. 6, 06/2021 NXP Semiconductors 39 Memory modules Table 31. Flash memory AC timing specifications (continued) Symbol Characteristic Min Typical Max Units Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low. — — 100 ns tdone Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared. — — 5 ns tdones Time from 1 to 0 transition on the MCR-EHV bit aborting a program/erase until the MCR-DONE bit is set to a 1. — 16 20.8 μs plus four system clock periods plus four system clock periods Time to recover once exiting low power mode. 16 — 45 tres tdrcv plus seven system clock periods. μs plus seven system clock periods taistart Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP — — 5 ns taistop Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request. — — 80 ns Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request. 10.36 tmrstop plus fifteen system clock periods — plus four system clock periods 20.42 μs plus four system clock periods 8.6 Flash memory read wait-state and address-pipeline control settings The following table describes the recommended settings of the Flash Memory Controller's PFCR1,2,3[RWSC] and PCRC1,2,3[APC] fields at various operating frequencies, based on specified intrinsic flash memory access timed of the Flash memory. Table 32. Flash read wait state and address pipeline control guidelines Operating Frequency (fsys = SYS_CLK) RWSC APC Flash read latency on min-cache miss (# of fcpu clock periods) Flash read latency on mini-cache hit (# of fcpu clock periods) 0 MHz < fsys
FS32R274KCK2VMM 价格&库存

很抱歉,暂时无法提供与“FS32R274KCK2VMM”相匹配的价格&库存,您可以联系我们找货

免费人工找货