0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
K32L3A60VPJ1AT

K32L3A60VPJ1AT

  • 厂商:

    NXP(恩智浦)

  • 封装:

    VFBGA176

  • 描述:

    IC MCU 32B 1.25MB FLASH 176VFBGA

  • 数据手册
  • 价格&库存
K32L3A60VPJ1AT 数据手册
NXP Semiconductors Data Sheet: Technical Data Document Number: K32L3A Rev. 1, 09/2019 K32L3A 72 MHz Arm® Cortex®-M0+/M4F Dual Core Microcontroller with up to 1280 KB Flash and 384 KB SRAM K32L3A60VPJ1AT The K32L3A family of devices is an ultra-low-power, dual core solution ideal for applications that require a high performance Cortex-M4F processor to run the application and an efficient Cortex-M0+ to run low power operations such as sensor data collection and perform low level operations that don't need the full power of the M4 core. 176 VFBGA 9 x 9 x 1 mm Pitch 0.5 mm Core Processor • Arm Cortex-M4F core up to 72 MHz (high-speed run up to 72 MHz) for application code • Arm Cortex-M0+ core up to 72 MHz (high-speed run up to 72 MHz) for low power operations Memories • 1.25 MB program flash memory, 1 MB on the M4F domain and 256 KB on the M0+ domain • 384 KB SRAM, 256 KB on the M4F domain and 128 KB on the M0+ domain • 48 KB ROM with built-in bootloader • 32 B system register file and 32 B RTC register file • External bus interface (FlexBUS) for off-chip memory expansion Clocks • Low-Power Frequency-Locked Loop (LPFLL) • Range 1: 48 MHz • Range 2: 72 MHz • Internal Resistance-Capacitance Oscillators (IRCs) • Fast-Speed IRC (48, 52, 56, 60 MHz) • Slow-Speed IRC (8 MHz or 2 MHz) • Low Power Oscillator (LPO - 1 kHz) • Real Time Clock Oscillator (RTCOSC) • System Clock Generation System • Dual Direct Memory Access (DMA) controllers with asynchronous capability • M4F: 16 channels, 64 inputs per channel • M0+: 8 channels, 32 inputs per channel Timers • 2 x 6 ch., 2 x 2 ch. Timer PWM Modules (TPM) • 2 x 4 ch. Low Power Programmable Interrupt Timer (LPIT) • 3 Low Power Timer (LPTMR) • Real Time Clock (RTC) • One 56-bit Time stamp Security and Integrity • 80-bit unique identification number per chip • Advanced Flash security and access control • 16-bit or 32-bit Hardware CRC with programmable generator polynomial • Low-power Cryptographic Acceleration Unit (CAU3) supporting AES128/196/256, DES/ 3DES, SHA 256, RSA and ECC PK-256/ Curve25519 • True Random Number Generator • Up to 4 active anti-tamper detection pins Analog • 1 x 12-bit single ended low-power ADC • 2 x Low power comparator (LPCMP) each containing a 6-bit DAC and programmable reference input • 1 x 12-bit low power digital-to-analog converter (LPDAC) • 1 x 1.2V/2.1V dual-range VREF Peripherals • 1 x Universal Serial Bus (USB) 2.0 Full Speed (FS) controller with integrated hardware transceiver, 5 V regulator and 2 KB USB RAM NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. • Two internal Watchdog and one external Watchdog Monitor • Low-leakage wakeup unit • JTAG and Serial Wire Debug, version 2.0, programming and debug interface with multi-drop capability • Trace Features for M4F • Cross Trigger Interface • Embedded Trace Macrocell • Trace Port Interface Unit • Trace Features for M0+ • Cross Trigger Interface • Micro Trace Buffer • Breakpoint and Watchpoint Unit • Nested Vectored Interrupt Controller • Memory Protection Unit • Extended Resource Domain Controller • 1 x 32 ch. FlexIO supporting emulation of UART, I2C, SPI, I2S, Camera IF, LCD RGB, PWM/Waveform generation • 4 x low power UART (LPUART) • 4 x low power I2C (LPI2C) modules supporting up to 1 Mbps • 4 x 16-bit low power SPI (LPSPI) supporting up to 24 Mbps • 1 x EMVSIM module supporting supporting ISO-7816 protocol • 1 x Serial Audio Interface (SAI) with support for I2S and AC'97 • 1 x Secure Digital Hardware Controller (uSDHC) I/O Power Management • 104 General-purpose input/output pins (GPIO) • Bypass mode: 1.71 V to 3.6 V Packages • Buck DC-DC converter: 2.1 V to 3.6 V • 176 VFBGA 9mm x 9mm x 0.86mm, 0.5mm • Core voltage bypass: 1.14 V to 1.45 V direct supply to core, pitch, -40 °C to 105 °C bypassing internal regulator • Independent VDDIO1 and VDDIO2 supply: 1.71 V to 3.6 V • Independent VBAT(RTC): 1.71 V to 3.6 V Related resources Type Description Selector Guide The NXP Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector. Reference Manual The Reference Manual contains a comprehensive description of the structure and function (operation) of a device. Data Sheet The Data Sheet includes electrical characteristics and signal connections. Chip Errata The chip mask set Errata provides additional or corrective information for a particular device mask set. Package drawing Package dimensions are provided in package drawings. 2 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Table of Contents 1 Ordering information............................................................. 5 2 Overview............................................................................... 5 2.1 System features............................................................. 6 2.1.1 Arm Cortex-M0+ core...................................... 7 2.1.2 Arm Cortex-M4 core........................................ 7 2.1.3 NVIC................................................................ 7 2.1.4 AWIC............................................................... 8 2.1.5 Memory............................................................9 2.1.6 Reset and boot................................................ 10 2.1.7 ROM bootloader.............................................. 12 2.1.8 Clock options................................................... 13 2.1.9 Security............................................................18 2.1.10 Power management........................................ 18 2.1.11 LLWU...............................................................24 2.1.12 Debug controller.............................................. 28 2.1.13 INTMUX........................................................... 28 2.1.14 FlexBus............................................................28 2.1.15 Watch dog....................................................... 29 2.1.16 EWM................................................................ 29 2.1.17 XRDC.............................................................. 30 2.1.18 MU................................................................... 31 2.1.19 SEMA42.......................................................... 31 2.1.20 TRGMUX......................................................... 32 2.2 Peripheral features........................................................ 33 2.2.1 MSMC..............................................................33 2.2.2 CRC................................................................. 33 2.2.3 LPDAC.............................................................34 2.2.4 eDMA and DMAMUX.......................................34 2.2.5 EMV SIM......................................................... 36 2.2.6 FlexIO.............................................................. 37 2.2.7 LPADC.............................................................37 2.2.8 LPCMP............................................................ 38 2.2.9 LPI2C...............................................................39 2.2.10 LPIT................................................................. 40 2.2.11 LPSPI.............................................................. 41 2.2.12 LPTMR............................................................ 42 2.2.13 LPUART.......................................................... 42 2.2.14 RTC................................................................. 43 2.2.15 I2S................................................................... 44 2.2.16 uSDHC............................................................ 44 2.2.17 TPM................................................................. 45 2.2.18 TRNG.............................................................. 46 2.2.19 USB................................................................. 46 2.2.20 VREF............................................................... 47 2.2.21 TSTMR............................................................ 47 2.2.22 CAU3............................................................... 48 2.3 Memory map.................................................................. 48 3 Pinouts.................................................................................. 51 3.1 K32 subfamily pinout..................................................... 51 3.2 Pin properties.................................................................59 K32L3A, Rev. 1, 09/2019 3.3 Module signal description Tables.................................. 69 3.3.1 Core modules.................................................. 69 3.3.2 System modules.............................................. 70 3.3.3 Memories and memory interfaces................... 71 3.3.4 Clock modules................................................. 72 3.3.5 Communication interfaces............................... 72 3.3.6 Analog............................................................. 79 3.3.7 Human-machine interfaces (HMI)....................79 3.3.8 Timer modules................................................. 80 3.3.9 Security modules............................................. 82 3.4 Pinouts diagram............................................................. 82 3.5 Package dimensions......................................................83 4 Electrical characteristics........................................................84 4.1 Terminology and guidelines........................................... 84 4.1.1 Definitions........................................................ 85 4.1.2 Examples......................................................... 85 4.1.3 Typical-value conditions.................................. 86 4.1.4 Relationship between ratings and operating requirements....................................................86 4.1.5 Guidelines for ratings and operating requirements....................................................87 4.2 Ratings...........................................................................87 4.2.1 Thermal handling ratings................................. 87 4.2.2 Moisture handling ratings................................ 88 4.2.3 ESD handling ratings....................................... 88 4.2.4 Voltage and current operating ratings............. 88 4.3 General.......................................................................... 89 4.3.1 AC electrical characteristics............................ 89 4.3.2 Nonswitching electrical specifications............. 90 4.3.3 Switching specifications...................................108 4.3.4 Thermal specifications..................................... 111 4.4 Peripheral operating requirements and behaviors......... 112 4.4.1 Core modules.................................................. 112 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.4.7 4.4.8 4.4.9 System modules.............................................. 116 Clock modules................................................. 117 Memories and memory interfaces................... 120 Security and integrity modules........................ 126 Analog............................................................. 126 Timers..............................................................137 Communication interfaces............................... 137 DC-DC Converter Recommended Electrical Characteristics................................................. 153 5 Design considerations...........................................................154 5.1 Hardware design considerations................................... 154 5.1.1 Printed circuit board recommendations........... 154 5.1.2 Power delivery system.....................................154 5.1.3 Analog design.................................................. 155 5.1.4 Digital design................................................... 156 5.1.5 Crystal oscillator.............................................. 159 5.2 Software considerations................................................ 159 3 NXP Semiconductors 6 Part identification.....................................................................160 6.1 Part number format..........................................................160 4 NXP Semiconductors 7 Revision History...................................................................... 160 K32L3A, Rev. 1, 09/2019 Ordering information 1 Ordering information The following table summarizes the part numbers of the devices covered by this document. Table 1. Ordering information Product Part Number K32L3A60VPJ1AT Memory Marking K32L3A60VPJ1AT Flash (MB) 1.25 Package SRAM (KB) Pin Count 384 176 Package VFBGA 2 Overview The following figure shows the system diagram of this device K32L3A, Rev. 1, 09/2019 5 NXP Semiconductors Overview LPCMP1 PORTE SRAM 128 KB w/ 6-bit DAC TRGMUX1 LPSPI3 LPIT1 4CH LLWU1 LPI2C3 LPTPM3 WDOG1 PCC1 LPUART3 TSTMR1 TRNG LPTMR2 GPIO S0 RAMC AIPS1 S1 S2 AXBS1 M0 Cortex M0+ IOPORT MPU NVIC AWIC1 BP/WP SysTick DV/SQ I/D Cache (4 KB) AHB-AP CM0+ I/D Flash MDM M1 S1 S3 ROMC FlexBus ROM 48 KB SRAM 256 KB M0 MPU DSP NVIC FPB SysTick ITM AWIC0 DWT SCS DAP-AP ETM CTI TPIU RDC xRDC Core Regulator MU MSMC SMC0 SMC1 IO Regulator TRGMUX0 FlexIO 32 CH I2S LLWU0 VBAT Register File 32B RTC w/ Tamper Pin System Register File 32B DMAMUX0 64 CH DMA0 16CH M2 AXBS0 SPM SEMA42 (72 MHz –HSRun, 48 MHz –Run) PCC0 48/52/56/60 MHz CTI Cortex M4+FPU I/D Cache (4 KB) FIRC LPFLL Multi_Core Unit BUS Interconnect SCG SIRC 2/8 MHz 1 MB RAMC Clock RTC OSC 32 kHz MTB CM4F I/D Flash S0 M3 DMAMUX1 32 CH 256 KB SWJ-DP S3 DMA1 8 CH CAU3 (72 MHz –HSRun, 48 MHz –Run) SCB M1 M2 DCDC USB Regulator USB2.0 Device SDHC w/ LS/FS PHY M3 M5 S4 USB SRAM 2 KB M4 S2 CRC LPADC 12 Bit GPIO LPI2C0~2 LPIT0 4CH EWM LPDAC LPDAC 12-bit 12 Bit PORTA~D LPSPI0~2 LPTPM0~2 WDOG0 LPDAC VREF 12-bit 1.2/2.1V LPUART0~2 LPTMR0~1 EMVSIM TSTMR0 AIPS LPDAC LPCMP0 w/12-bit 6-bit DAC Note: When a core needs access the other AXBS domain resources, the corresponding MUx_CCR[CLKE] bit must be set. AXBS keeps active even if another core enters low power mode (and CPO). Figure 1. System diagram The crossbar switch connects bus masters and slaves using a crossbar switch structure. This structure allows up to four bus masters to access different bus slaves simultaneously for AXBS1 and up to six for AXBS0, while providing arbitration among the bus masters when they access the same slave. 6 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview 2.1 System features The following sections describe the high-level system features. 2.1.1 Arm Cortex-M0+ core The enhanced Arm Cortex M0+ is the member of the Cortex-M series of processors targeting microcontroller cores focused on very cost sensitive, low power applications. It has a single 32-bit AMBA AHB-Lite interface and includes an NVIC component. It also has hardware debug functionality including support for simple program trace capability. The processor supports the Arm v6-M instruction set (Thumb) architecture including all but three 16-bit Thumb opcodes (52 total) plus seven 32-bit instructions. It is upward compatible with other Cortex-M profile processors. This device supports hardware divider (MMDVSQ) when CM0+ core is working. 2.1.2 Arm Cortex-M4 core The Cortex M4 processor is based on the Armv7 Architecture and Thumb®-2 ISA and is upward compatible with the Cortex M3, Cortex M1, and Cortex M0 architectures. Cortex M4 improvements include an Armv7 Thumb-2 DSP (ported from the Armv7-A/R profile architectures) providing 32-bit instructions with SIMD (single instruction multiple data) DSP style multiply-accumulates and saturating arithmetic. 2.1.3 NVIC The Armv7-M exception model and nested-vectored interrupt controller (NVIC) implement a relocatable vector table supporting many external interrupts, a single non-maskable interrupt (NMI), and priority levels. The NVIC replaces shadow registers with equivalent system and simplified programmability. The NVIC contains the address of the function to execute for a particular handler. The address is fetched via the instruction port allowing parallel register stacking and look-up. The first sixteen entries are allocated to Arm internal sources with the others mapping to MCU-defined interrupts. K32L3A, Rev. 1, 09/2019 7 NXP Semiconductors Overview 2.1.4 AWIC The primary function of the Asynchronous Wake-up Interrupt Controller (AWIC) is to detect asynchronous wake-up events in stop modes and signal to clock control logic to resume system clocking. After clock restart, the NVIC observes the pending interrupt and performs the normal interrupt or event processing. The device uses the following internal and external inputs to the AWIC module. AWIC0 is AWIC in CM4F domain while AWIC1 is AWIC in CM0+ domain. Table 2. AWIC0 Stop and VLPS wakeup sources Wake-up source Description System resets All available system resets sources are describted in SMC0 under MSMC chapter SPM All available interrupt in SPM, such as low/high voltage detect interrupt, low voltage detect/warnning interrupt, and etc. Pin PTA, PTB, PTC, PTD, PTE pin interrupts LPUART0~3 Functional when using clock source which is active in Stop and VLPS modes LPI2C0~3 Address match wakeup LPSPI0~3 Slave mode interrupt I2S Functional when using an external bit clock or external master clock EMVSIM Any enabled interrupt can be a source as long as the module remains clocked. USB Controller Wakeup Secure Digital Hardware Controller (SDHC) Wakeup FlexIO Functional when using clock source which is active in Stop and VLPS modes LPTMR0~2 Functional when using clock source which is active in Stop, VLPS and LLS/VLLS modes TPM0~3 Functional when using clock source which is active in Stop and VLPS modes RTC Functional in Stop, VLPS, LLS and VLLSx modes LPIT0/1 Any enabled interrupt can be a source as long as the module remains clocked. Tamper detect Interrupt NMI NMI is routed to CM4F or CM0+ automatically, only boot core has NMI LPCMP0/1 Interrupt in normal or trigger mode LPDAC Any enabled interrupt can be a source as long as the module remains clocked. Table continues on the next page... 8 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview Table 2. AWIC0 Stop and VLPS wakeup sources (continued) Wake-up source Description LPADC The LPADC is functional when using internal clock source LLWU0 Any enabled interrupt can be a source as long as the module remains clocked. MUA Any enabled interrupt can be a source as long as the module remains clocked. WDOG0 Watchdog0 Interrupt Table 3. AWIC1 Stop and VLPS wakeup sources Wake-up source Description System resets All available system resets sources are describted in SMC1 under MSMC chapter PortE PTE pin interrupts LPUART3 Functional when using clock source which is active in Stop and VLPS modes LPI2C03 Address match wakeup LPSPI3 Any enabled interrupt can be a source as long as the module remains clocked. LPTMR2 Functional when using clock source which is active in Stop, VLPS and LLS/VLLS modes TPM3 Functional when using clock source which is active in Stop and VLPS modes RTC Functional in Stop,VLPS,LLS and VLLSx modes LPIT1 Any enabled interrupt can be a source as long as the module remains clocked. NMI NMI is routed to CM4F or CM0+ automatically, only boot core has NMI LPCMP1 Interrupt in normal or trigger mode TRNG TRNG has no stop wakeup capability LLWU1 Any enabled interrupt can be a source as long as the module remains clocked. MUB Any enabled interrupt can be a source as long as the module remains clocked. WDOG1 Watchdog1 Interrupt INTMUX0~7 All other wakeup sources availabe in AWIC0 can be selected through INTMUXn. Please refer to the INTMUXn description. 2.1.5 Memory This device has the following features: K32L3A, Rev. 1, 09/2019 9 NXP Semiconductors Overview • 384 KB of embedded RAM accessible (read/write) at CPU clock speed with 0 wait states. • 4 KB of embedded RAM used for flash programming acceleration RAM • The non-volatile memory is divided into two arrays • 2 blocks of program flash, providing 1 MB consisting of 4 KB sectors for CM4 • 1 block of program flash, providing 256 KB consisting of 2 KB sectors for CM0+ The primary program flash memory contains an IFR space that stores default protection settings and security information. The protection setting can protect 64 regions of the primary program flash memory and 16 regions of the secondary program flash memory from unintended erase or program operations. The security circuitry prevents unauthorized access to RAM or flash contents from debug port. • System register file This device contains a 32-byte register file that is powered in all power modes. Also, it retains contents during low power modes and is reset only during a poweron reset. • VBAT register file This device includes a 32-byte register file. The register file is powered by the VBAT domain and is powered in all modes as long as power is applied to the VBAT supply. The VBAT register file is only reset during the VBAT Power-on Reset (PORVBAT) sequence. 2.1.6 Reset and boot The following table lists all the reset sources supported by this device. NOTE In the following table, Y means the specific module, except for the registers, bits or conditions mentioned in the footnote, is reset by the corresponding Reset source. N means the 10 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview specific module is not reset by the corresponding Reset source. Table 4. Reset source Reset sources Descriptions Modules SPM SIM MSM C LLWU Reset pin is negated RTC1 LPTMR Others POR reset Power-on reset (POR) Y Y Y Y Y N Y Y System reset Low leakage wakeup (LLWU) reset N2 Y3 N N Y4 N N Y5 External pin reset (RESET_b) N2 Y3 Y6 Y Y N N Y Computer operating properly (COP) watchdog reset N2 Y3 Y6 Y Y N N Y Stop mode acknowledge error (SACKERR) N2 Y3 Y6 Y Y N N Y Software reset (SW) N2 Y3 Y6 Y Y N N Y Lockup reset (LOCKUP) N2 Y3 Y6 Y Y N N Y MDM DAP system reset N2 Y3 Y6 Y Y N N Y N Y3 Y6 Y Y N N Y Debug reset Debug reset 1. The VBAT POR asserts on a VBAT POR reset source. It affects only the modules withinthe VBAT power domain: RTC and VBAT Register File. These modules are not affected by the other reset types. 2. Except SPM_CORESC[ACKISO], SPM_CORESC[VSEL] and SPM_CORESC[VSEL_OFFSET] 3. The SIM_SDID, SIM_RREPCR1, SIM_RREPCR2, SIM_RREPSR1, SIM_RREPSR2, SIM_FCFG2, SIM_UIDH, SIM_UIDM, SIM_UIDL, registers are not affected by the reset to exit from VLLS2 or VLLS3 modes. 4. Only if RESET_b is used to wake from VLLS mode. 5. The FTFE, LPCAC and LPLMEM modules cannot be reset when chip is waken up from VLLS2 or VLLS3 modes by LLWU. 6. Except SMCx_PMCTRL and SMCx_PMSTAT of the MSMC. The CM0+ core adds support for a programmable Vector Table Offset Register (VTOR) to relocate the exception vector table after reset. This device supports booting from: • internal flash • ROM The Flash Option (FOPT) register in the Flash Memory module (FTFE_FOPT) allows the user to customize the operation of the MCU at boot time. The register contains read-only bits that are loaded from the NVM's option byte in the IFR spaces. Below is boot flow chart for this device. K32L3A, Rev. 1, 09/2019 11 NXP Semiconductors Overview START Boot Sequence Core option is read and stored in RESET==0 SCG is enabled FOPT[BOOTCORESEL] Required clocks are enabled Enable selected boot core Release device reset Flash controller is initialized complete flash initialization Set up Stack Pointer Flash option is read and stored in FTFE_FOPT Release RESET Set up Program Counter Enable boot core clock Set up Link Register Is BOOT_MODE/ BOOT_CLK ==11? Yes No Modify clock divider Yes Is NMI = 0 ? FOPT [BOOT_PIN] ==0? No No Yes 10/11 FTFE_FOPT [BOOT_SRC] ==? 00 Processor boot from ROM Processor boots from Flash Figure 2. Boot sequence Blank chips default to boot from ROM and remap the vector table to ROM base address, otherwise, it remaps to flash address. If booting from ROM, the device executes in boot loader mode. 2.1.7 ROM bootloader The Kinetis bootloader is the program residing in the on-chip read-only memory (ROM) of a Kinetis microcontroller device. There is hardware logic in place at boot time that either starts execution of an embedded image available on the internal flash memory, or starts the execution of the Kinetis Bootloader from on-chip ROM. Features supported by the Kinetis Bootloader in Kinetis ROM: • Supports USB, LPI2C, LPSPI, and LPUART peripheral interfaces 12 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview • • • • • • • • • • • • • Automatic detection of the active peripheral Ability to disable any peripheral LPUART peripheral implements autobaud Common packet-based protocol for all peripherals Packet error detection and retransmission Flash-resident configuration options Fully supports internal flash security, including ability to mass erase or unlock security via the backdoor key Protection of RAM used by the bootloader while it is running Provides command to read properties of the device, such as flash and RAM size Multiple options for executing the bootloader either at system start-up or under application control at runtime Supports internal flash Supports encrypted image download ROM boots from either M4 (Default) or M0+ by configuring to FOPT IFR (record Index 0x84) 2.1.8 Clock options This chip provides a wide range of sources to generate the internal clocks. These sources include internal reference clock (IRC) oscillators, external oscillators, external clock sources, ceramic resonators, and frequency-locked loop (FLL). These sources can be configured to provide the required performance and optimize the power consumption. The IRC oscillators include the fast internal reference clock (FIRC) oscillator, the slow internal reference clock (SIRC) oscillator, and the low power oscillator (LPO). The fast internal resistor capacitor (FIRC) oscillator generates a clock ranging between 48 MHz and 60 MHz. The slow internal resistor capacitor (SIRC) oscillator generates clock at either 8 MHz or 2 MHz. It can serve as the low power, low speed system clock under very low power run (VLPR) mode or very low power wait (VLPW) mode. It can also be provided as clock source for other on-chip modules. The SIRC cannot be used in any VLLS modes. The LPO generates a 1 kHz clock and default to be off in VLLS0 but can be enabled by configuring bits of SPM_CORELPCNFG[LPOEN] and SPM_CORELPCNFG[ALLREFEN]. K32L3A, Rev. 1, 09/2019 13 NXP Semiconductors Overview The frequency-locked loop (FLL) can generate a clock with the frequency of 48 MHz or 72 MHz without the need of a reference (a reference clock may only be needed to trim this clock). The FLL can be used as the system clock or clock source for other onchip modules. The RTC oscillator supports low speed crystals (32.768 kHz) and can also support external clock on the EXTAL32 pin for use with the RTC. For more details on the clock operations and configurations, see Reference Manual. Flash 11 Fast IRC 48~60MHz 10 01 PREDIV LPFLL 48~72MHz CM4F SRAM 0101 0100 00 SCG_LPFLLTCFG[TRIMDIV] Slow IRC ROM SCG SCG_LPFLLTCFG[TRIMSRC] 0011 DIVCORE 8MHz/2MHz CORE_CLK CG 0010 CORE_CLK CG Other CG PCC0 DIVSLOW LPFLLDIV1 LPFLLDIV2 LPFLLDIV3 SIRC_CLK SIRCDIV1 SIRCDIV2 FIRC_CLK SIRCDIV3 FIRCDIV1 FIRCDIV2 FIRCDIV3 SYS_CLK CG CG DIVEXT LPFLL_CLK PLAT_CLK (Gated) PLAT_CLK CG SCG_xCCR[SCS] (x=R, V, H) DIVBUS BUS_CLK(Gated) PCC0_xxx[CGC] SLOW_CLK(Gated) BUS_CLK LPFLL_DIV1_CLK LPFLL_DIV2_CLK LPFLL_DIV3_CLK SIRC_DIV1_CLK LPFLL_DIVx_CLK SIRC_DIVx_CLK FIRC_DIVx_CLK SIRC_DIV2_CLK SIRC_DIV3_CLK Peripherals FIRC_DIV1_CLK FIRC_DIV2_CLK FIRC_DIV3_CLK PCC0_xxx[PCS] SCG_CLKOUTCNFG [CLKOUTSEL] SYS_CLK (Gated) SLOW_CLK 0100 0000 0001 0011 0010 0101 Other * SCG CLKOUT SPM LPO1kHz CLKOUT/FB_CLKOUT* LPO_CLK CM0+ RTC EXTAL32 RTC OSC XTAL32 SRAM RTC_CLKOUT RTCOSC_CLK PCC1 SYS_CLK (Gated) PLAT_CLK (Gated) PCC1_xxx[CGC] BUS_CLK(Gated) SLOW_CLK(Gated) Peripherals LPFLL_DIVx_CLK SIRC_DIVx_CLK FIRC_DIVx_CLK * FB_CLKOUT can be from DIVEXT divider only when SCG_CLKOUTCFNG[CLKOUTSEL]=0000 and PCC_FLEXBUS[CGC]=1. * One clock divider in PCC0 available for LPADC0 conversion clock. PCC1_xxx[PCS] Figure 3. Generic clocking architecture diagram In order to provide flexibility, many peripherals can select from multiple clock sources for operation. This enables the peripheral to select a clock that will always be available during operation in various operational modes. The following table summarizes the clocks associated with each module. 14 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview Table 5. Clock assignments Module Name Bus Interface Clock PCC Clock Gate Peripherial Functional Clock Clock Domain1 I/O Interface Clocks Core Modules Arm Cortex-M0+ Core CORE_CLK — — SCG — Arm Cortex-M4 Core CORE_CLK — — SCG — CM0+ TRACE SYS_CLK Yes SYS_CLK SCG — CM4F TRACE SYS_CLK Yes SYS_CLK, PCC0 SIRC_DIV1_CLK, FIRC_DIV1_CLK, LPFLL_DIV1_CLK TRACE_CLK_OU T JTAG NA — TCK — JTAG_TCLK SWCK SCG2 SWD_CLK SWD PLAT_CLK — Platform Modules CM0+ Crossbar PLAT_CLK — NA SCG — CM4F Crossbar PLAT_CLK — NA SCG — xRDC PLAT_CLK Yes — PCC0,PCC1 — SEMA42 PLAT_CLK Yes — PCC0,PCC1 — System Modules MSMC_SMC0 SLOW_CLK Yes — PCC0 — MSMC_SMC1 SLOW_CLK Yes — PCC1 — INTMUX BUS_CLK — SCG — DMA0 SYS_CLK Yes — PCC0 — DMA1 SYS_CLK Yes — PCC1 — DMA MUX0 BUS CLK Yes — PCC0 — DMA MUX1 BUS CLK Yes — PCC1 — LPO clock. PCC02 — LPO SCG2 — — — EWM LLWU0 SLOW_CLK SLOW_CLK Yes Yes LLWU1 SLOW_CLK Yes LPO SCG2 MU SLOW_CLK Yes — PCC0,PCC1 SPM SLOW_CLK Yes — TRGMUX0 SLOW_CLK Yes — SCG — TRGMUX1 SLOW_CLK Yes — SCG — — — WDOG0 SLOW_CLK Yes LIRC, or LPO clock. PCC02 WDOG1 SLOW_CLK Yes LIRC, or LPO clock. PCC12 — SCG — Memories Flash Controller (FMC) PLAT_CLK — — Table continues on the next page... K32L3A, Rev. 1, 09/2019 15 NXP Semiconductors Overview Table 5. Clock assignments (continued) Module Name Bus Interface Clock PCC Clock Gate Peripherial Functional Clock Clock Domain1 I/O Interface Clocks Flash Memory (FTFE) SLOW_CLK — — SCG — FlexBus PLAT_CLK Yes — PCC02 FB_CLKOUT/ CLKOUT CM4F SRAM PLAT_CLK — PLAT_CLK SCG — CM0+ SRAM PLAT_CLK — PLAT_CLK SCG — CAU3 SYS_CLK Yes — PCC1 — CRC BUS_CLK Yes — PCC0 — TRNG BUS_CLK Yes — PCC1 — Security and Integrity Timers LPIT0 SLOW_CLK Yes SIRC_DIV3_CLK, PCC0 FIRC_DIV3_CLK, LPFLL_DIV3_CLK — LPIT1 SLOW_CLK Yes SIRC_DIV3_CLK, PCC1 FIRC_DIV3_CLK, LPFLL_DIV3_CLK — RTC SLOW_CLK Yes RTCOSC, LPO SCG2 RTC_CLKOUT — — LPTMR0/1 SLOW_CLK — SIRC_DIV3_CLK, LPO, RTCOSC SCG2 LPTMR2 SLOW_CLK — SIRC_DIV3_CLK, LPO, RTCOSC SCG2 LPTPM0~2 BUS_CLK Yes SIRC_DIV2_CLK, PCC02 FIRC_DIV2_CLK, LPFLL_DIV2_CLK TPM0~32_CLKIN LPTPM3 BUS_CLK Yes SIRC_DIV2_CLK, PCC12 FIRC_DIV2_CLK, LPFLL_DIV2_CLK TPM3_CLKIN TSTMR SLOW_CLK Auto SIRC_1MHZ_CLK SCG — Communication Interfaces EMVSIM BUS_CLK Yes SIRC_DIV2_CLK, PCC0 FIRC_DIV2_CLK, LPFLL_DIV2_CLK , RTCOSC EMVSIM_CLK FlexIO BUS_CLK Yes SIRC_DIV2_CLK, PCC0 FIRC_DIV2_CLK, LPFLL_DIV2_CLK — LPI2C0~2 BUS_CLK Yes SIRC_DIV2_CLK, PCC0 FIRC_DIV2_CLK, LPFLL_DIV2_CLK LPI2C0~2_SCL LPI2C3 BUS_CLK Yes SIRC_DIV2_CLK, PCC1 FIRC_DIV2_CLK, LPFLL_DIV2_CLK LPI2C3_SCL Table continues on the next page... 16 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview Table 5. Clock assignments (continued) Module Name Bus Interface Clock PCC Clock Gate Peripherial Functional Clock Clock Domain1 I/O Interface Clocks I2S BUS_CLK Yes SIRC_DIV2_CLK, PCC03 FIRC_DIV2_CLK, LPFLL_DIV2_CLK , SAI_MCLK SAI_TX_BCLK, SAI_RX_BCLK, SAI_MCLK uSDHC SYS_CLK Yes SIRC_DIV1_CLK, PCC0 FIRC_DIV1_CLK, LPFLL_DIV1_CLK , SDHC_DCLK SDHC_DCLK LPSPI0~2 BUS_CLK Yes SIRC_DIV2_CLK, PCC0 FIRC_DIV2_CLK, LPFLL_DIV2_CLK LPSPI0~2_SCK LPSPI3 BUS_CLK Yes SIRC_DIV2_CLK, PCC1 FIRC_DIV2_CLK, LPFLL_DIV2_CLK LPSPI3_SCK LPUART0~2 BUS_CLK Yes SIRC_DIV2_CLK, PCC0 FIRC_DIV2_CLK, LPFLL_DIV2_CLK — LPUART3 BUS_CLK Yes SIRC_DIV2_CLK, PCC1 FIRC_DIV2_CLK, LPFLL_DIV2_CLK — USB SYS_CLK Yes SIRC_DIV1_CLK, PCC02 FIRC_DIV1_CLK, LPFLL_DIV1_CLK — USB SRAM SIRC_DIV1_CLK, Yes FIRC_DIV1_CLK, LPFLL_DIV1_CLK , SYS_CLK PCC02 — — Human-Machine Interfaces PORTA~D SLOW_CLK Yes SLOW_CLK, LPO PCC0 — PORTE SLOW_CLK Yes SLOW_CLK, LPO PCC1 — RGPIOA~D PLAT_CLK Yes — PCC0 — RGPIOE PLAT_CLK Yes — PCC1 — Analog LPADC BUS_CLK Yes SIRC_DIV2_CLK, PCC0 FIRC_DIV2_CLK, LPFLL_DIV2_CLK , LPADC Internal Clock. — LPCMP0 SLOW_CLK — — SCG — LPCMP1 SLOW_CLK — — SCG — LPDAC BUS_CLK Yes — PCC0 — VREF SLOW_CLK Yes — PCC0 — 1. PPC0 controls CM4F domain,and PPC1 controls CM0+ domain. 2. It is bus interface clock domain. 3. SAI_MCLK doesn't blong to PCC clock domain. K32L3A, Rev. 1, 09/2019 17 NXP Semiconductors Overview 2.1.9 Security Security state can be enabled via programming Flash IFR SEC0 (index 0x80). After enabling device security, the SWJ (SWD and JTAG) port cannot access the memory resources of the MCU, and ROM boot loader is also limited to access flash and not allowed to read out flash information via ROM boot loader commands. Access interface Secure state Unsecure operation SWJ (SWD and JTAG) port Cannot access memory source by SWD The debugger can write 1 to the System interface Reset Request field and Flash Mass Erase in Progress field of the MDM-AP Control register to trigger a mass erase (Erase All Blocks Unsecure) command ROM boot loader Interface (LPUART/ LPI2C/LPSPI/USB) Limit access to the flash, cannot read out flash content Send “FlashEraseAllUnsecure" command or attempt to unlock flash security using the backdoor key This device features 80-bit unique identification number, which is programmed in factory and loaded to SIM register after power-on reset. 2.1.10 Power management These devices include on-chip LDO regulators and an on-chip DCDC converter to condition the main power supply voltage and allow for flexibility in power configurations. Three operating modes are supported: Bypass, LDO only, and DCDC (buck mode). The SPM provides Stop (STOP), Very Low Power Stop (VLPS), Low Leakage Stop (LLS), and Very Low Leakage Stop (VLLS) configurations in Arm’s Deep Sleep operational mode. In these modes, the MCU core and most of the peripherals are disabled. Depending on the requirements of the application, different portions of the analog, logic, and memory can be retained or disabled to conserve power. The Nested Vectored Interrupt Controller (NVIC), the Asynchronous Wake-up Interrupt Controller (AWIC), and the Low Leakage Wake-Up Controller (LLWU) are used to wake up the MCU from low power states. The NVIC is used to wake up the MCU core from WAIT and VLPW modes. The AWIC is used to wake up the MCU core from STOP and VLPS modes. The LLWU is used to wake up the MCU core from LLS and VLLS modes. 18 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview For additional information regarding operational modes, power management, the NVIC, AWIC, or the LLWU, please refer to the Reference Manual. The following table shows module operations in different low power modes: Table 7. Module operation in low power modes Modules VLPR VLPW STOP VLPS LLS VLLS2/3 VLLS0/1 Core modules NVIC FF FF SR SR SR OFF OFF System modules MSMC FF FF FF FF SR/FF1 OFF/FF2 OFF/FF2 LLWUx FF FF FF FF FF FF FF Core regulator (1.2 V) Optional3 Optional3 Optional3 Optional3 Optional3 Optional3 Optional3 AUXREG 1.8 V Optional3 Optional3 Optional3 Optional3 Optional3 Optional3 Optional3 HVD/LVD Optional4 Optional4 Optional4 Optional4 Optional4 Optional4 Optional4 POR (Brown-Out) FF FF FF FF FF FF Optional5 DMA FF FF Async Async SR OFF OFF Watchdog FF FF Optional on with available clock source Optional on SR with available clock source OFF OFF FF FF Optional6 Clocks 1 kHz LPO FF FF FF FF SCG 8 MHz SIRC 8 MHz SIRC static – static – SIRC static SIRC, FIRC, optional LPFLL optional OFF OFF Core clock FF OFF OFF OFF OFF OFF OFF Plat clock FF FF OFF OFF OFF OFF OFF Bus clock FF FF OFF OFF OFF OFF OFF Slow clock FF FF OFF OFF OFF OFF OFF Memory Flash 1 MHz No program LP LP LP SR The registers OFF are retained SRAM LP LP SR Optional7 Optional7 Optional7 OFF LPLMEM (Cache) FF FF SR SR Optional retention Optional7 OFF LPCAC (Cache) FF FF SR SR Optional retention Optional7 OFF System Register File FF FF FF FF FF FF FF VBAT Register File Optional8 Optional8 Optional8 Optional8 Optional8 Optional8 Optional8 Communication Interface Table continues on the next page... K32L3A, Rev. 1, 09/2019 19 NXP Semiconductors Overview Table 7. Module operation in low power modes (continued) Modules VLPR VLPW STOP VLPS LLS VLLS2/3 VLLS0/1 USB static static static static static OFF OFF USB Reg Optional Optional Optional Optional Optional Optional Optional LPUARTx 1 Mbit/s 1 Mbit/s Async Async static OFF OFF LPSPIx Master 2 Mbit/s Master 2 Mbit/s OFF OFF Slave 1 Mbit/s Slave 1 Mbit/s Static, slave Static, slave static mode mode receive receive LPI2Cx 1 Mbit/s 1 Mbit/s Async Async static OFF OFF I2S FF FF Async Async static OFF OFF EMVSIM FF FF Static, card detect wakeup Static, card detect wakeup static OFF OFF Timer modules LPTPMx FF FF Async Async static OFF OFF LPIT FF FF Async Async static OFF OFF LPTMRx FF FF Async Async Async FF FF Optional8 RTC FF FF Async Async Async Optional8 TSTMR FF FF static static static OFF OFF Security modules CAU3 FF FF static static static OFF OFF CRC FF FF static static static OFF OFF Optional8 Digital Tamper FF FF Async Async Async Optional8 TRNG FF FF static static static OFF OFF OFF OFF Analog LPADC FF FF LPADC LPADC SR internal clock internal clock LPCMP0 FF FF FF FF or Low power Nano mode Compare FF or Low FF power Nano mode Compare FF9 LPCMP1 FF FF FF FF or Low power Nano mode Compare FF or Low Optional10 power Nano mode Compare Optional10 6-bit DAC FF FF static static static OFF OFF 12-bit LPDAC FF FF static static static OFF OFF VREF FF FF static static static OFF OFF HMI GPIO FF FF Static output, Static output, Static, pins wake up wake up latched input input OFF, pins latched OFF, pins latched FlexIO FF FF Async OFF OFF 20 NXP Semiconductors Async SR K32L3A, Rev. 1, 09/2019 Overview 1. SR for reset related control and FF for power model related control 2. OFF for reset related control and FF for power model related control 3. It depends on MCU arbitration and SPM LPSEL/BGEN bit. 4. It depends on MCU arbitration and SPM LVDEN/BGEN/ALLREFN bit 5. It depends on MCU arbitration and SPM POREN bit. 6. It depends on MCU arbitration and SPM LPOEN/ALLREFN bit. 7. It depends on the configurations, see the next table for details. 8. Requires the VBAT supply to be properly powered. 9. It depends on SPM_CORELPCNFG[ALLREFEN] =1. 10. It depends on SPM_CORESC[VDDIOOVRIDE] = 1, SPM_CORELPCNFG[ALLREFEN] =1, and VDDIO2. The following tables list all power mode combinations and corresponding power behaviors. Table 8. MCU power mode combinations CM4F power mode1 CM0+ power mode2 Max CM4F core clock frequency Max CM0+ core clock frequency MCU power mode3 RUN RUN 48MHz 48MHz RUN RUN HSRUN 72MHz 72MHz HSRUN RUN VLPR 48MHz 48MHz RUN RUN VLPW 48MHz OFF RUN RUN VLPS 48MHz OFF RUN RUN STOP/PSTOP 48MHz OFF RUN RUN LLS 48MHz OFF RUN RUN VLLS 48MHz OFF RUN HSRUN RUN 72MHz 72MHz HSRUN HSRUN HSRUN 72MHz 72MHz HSRUN HSRUN VLPR 72MHz 72MHz HSRUN HSRUN VLPW 72MHz OFF HSRUN HSRUN VLPS 72MHz OFF HSRUN HSRUN STOP/PSTOP 72MHz OFF HSRUN HSRUN LLS 72MHz OFF HSRUN HSRUN VLLS 72MHz OFF HSRUN VLPR RUN 48MHz 48MHz RUN VLPR HSRUN 72MHz 72MHz HSRUN VLPR VLPR 8MHz 8MHz VLP VLPR VLPW 8MHz OFF VLP VLPR VLPS 8MHz OFF VLP VLPR STOP/PSTOP 48MHz OFF RUN VLPR LLS 8MHz OFF VLP VLPR VLLS 8MHz OFF VLP VLPW RUN OFF 48MHz RUN VLPW HSRUN OFF 72MHz HSRUN VLPW VLPR OFF 8MHz VLP Table continues on the next page... K32L3A, Rev. 1, 09/2019 21 NXP Semiconductors Overview Table 8. MCU power mode combinations (continued) CM4F power mode1 CM0+ power mode2 Max CM4F core clock frequency Max CM0+ core clock frequency MCU power mode3 VLPW VLPW OFF OFF VLP VLPW VLPS OFF OFF VLP VLPW STOP/PSTOP OFF OFF RUN VLPW LLS OFF OFF VLP VLPW VLLS OFF OFF VLP VLPS RUN OFF 48MHz RUN VLPS HSRUN OFF 72MHz HSRUN VLPS VLPR OFF 8MHz VLP VLPS VLPW OFF OFF VLP VLPS VLPS OFF OFF VLP VLPS STOP/PSTOP OFF OFF RUN VLPS LLS OFF OFF VLP VLPS VLLS OFF OFF VLP STOP/PSTOP RUN OFF 48MHz RUN STOP/PSTOP HSRUN OFF 72MHz HSRUN STOP/PSTOP VLPR OFF 8MHz RUN STOP/PSTOP VLPW OFF OFF RUN STOP/PSTOP VLPS OFF OFF RUN STOP/PSTOP STOP/PSTOP OFF OFF RUN STOP/PSTOP LLS OFF OFF RUN STOP/PSTOP VLLS OFF OFF RUN LLS RUN OFF 48MHz RUN LLS HSRUN OFF 72MHz HSRUN LLS VLPR OFF 8MHz VLP LLS VLPW OFF OFF VLP LLS VLPS OFF OFF VLP LLS STOP/PSTOP OFF OFF RUN LLS LLS OFF OFF LLS LLS VLLS OFF OFF LLS VLLS RUN OFF 48MHz RUN VLLS HSRUN OFF 72MHz HSRUN VLLS VLPR OFF 8MHz VLP VLLS VLPW OFF OFF VLP VLLS VLPS OFF OFF VLP VLLS STOP/PSTOP OFF OFF RUN VLLS LLS OFF OFF LLS VLLS VLLS OFF OFF VLLS 22 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview 1. It is configured by SMC0_PMCTRL register of MSMC. 2. It is configured by SMC1_PMCTRL register of MSMC. 3. It can be read out from SMCx_PMCSTAT register of MSMC. Please note the PMSTAT[7:0] bits in both SMC0_PMCSTAT and SMC1_PMCSTAT registers refer to MCU power mode so their value are identical. The STOPSTAT[31:24] bits in SMCx_PMCSTAT register reflect separate CM4F or CM0+ clock status, so can be different. Table 9. Note FF Full functionality. In VLPR and VLPW, the system frequency is limited, but if a module does not have a limitation in its functionality, it is still listed as FF. Async Fully functional with alternate clock source, provided the selected clock source remains enabled SR Module state is retained but not functional. LP Module operates in a lower power state. Off Module is powered off and in reset state upon wake-up The following table provides the modules that can wake MCU from low power modes. Modules VLPW STOP VLPS LLS VLLS3 VLLS1 VLLS0 RTC Y Y Y Y1 Y1 Y1 Y2 LPTMRx Y Y Y Y1 Y1 Y1 Y3 LPTPMx Y Y Y N N N N LPITx Y Y Y N N N N LLWUx Y Y Y Y Y Y Y LPSPIx Y Y Y N N N N LPI2Cx Y Y Y N N N N FlexIO Y Y Y N N N N LPUARTx Y Y Y N N N N USB Y Y N N N N N ADC Y Y Y N N N N Y1 Y1 N LPCMPx Y Y Y Y1 LVD/HVD Y Y Y Y Y Y Y Y4 Y4 Y4 GPIO(except Y NMI,RESET) Y Y Y4 NMI Y Y Y Y Y Y Y RESET Y Y Y Y Y Y Y 1. 2. 3. 4. Need to configure this module as wakeup source of LLWU Need to set EXTAL32 as RTC clock source and configure this module as wakeup source for LLWU LPTMRs use EXTAL32 or LPO in VLLS0. Only that pins available to configure to wakeup source of LLWU K32L3A, Rev. 1, 09/2019 23 NXP Semiconductors Overview Any RESET VLPW HSRUN 4 5 12 VLPR WAIT 1 3 RUN STOP 6 7 2 VLPS 10 8 9 LLS VLLS 11 Figure 4. Power mode state transition diagram 2.1.11 LLWU The LLWU module is used to wake MCU from low leakage power mode (LLS and VLLSx) and functional only on entry into a low-leakage power mode. After recovery from LLS, the LLWU is immediately disabled. After recovery from VLLSx, the LLWU continues to detect wake-up events until the user has acknowledged the wake-up event. The following is internal peripheral and external pin inputs as wakeup sources for the Coretex-M4 core (CPU0). 24 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview Table 11. Wakeup Sources for LLWU0 inputs LLWU0 pin Module source or pin name LLWU_P0 PTA1 LLWU_P1 PTA2 LLWU_P2 PTA22 LLWU_P3 PTA30 LLWU_P4 PTB1 LLWU_P5 PTB2 LLWU_P6 PTB4 LLWU_P7 PTB6 LLWU_P8 PTB7 LLWU_P9 PTB8 LLWU_P10 PTB16 LLWU_P11 PTB20 LLWU_P12 PTB22 LLWU_P13 PTB25 LLWU_P14 PTB28 LLWU_P15 PTC7 LLWU_P16 PTC9 LLWU_P17 PTC11 LLWU_P18 PTC12 LLWU_P19 PTD8 LLWU_P20 PTD10 LLWU_P21 PTE11 LLWU_P22 PTE31 LLWU_P23 PTE81 LLWU_P24 PTE91 LLWU_P25 PTE101 LLWU_P26 PTE121 LLWU_P27 Reserved2 LLWU_P28 Reserved3 LLWU_P29 USB0 VREGIN LLWU_P30 USB0_DP4 LLWU_P31 USB0_DM4 LLWU_M0IF LPTMR0, LPTMR1, LPTMR2 (sharing M0IF)5 LLWU_M1IF LPCMP06 LLWU_M2IF LPCMP17 LLWU_M3IF Reserved8 LLWU_M4IF Reserved9 LLWU_M5IF Tamper Detect10 Table continues on the next page... K32L3A, Rev. 1, 09/2019 25 NXP Semiconductors Overview Table 11. Wakeup Sources for LLWU0 inputs (continued) LLWU0 pin Module source or pin name LLWU_M6IF RTC Alarm10 LLWU_M7IF RTC Seconds10 LLWU_M0DR LPTMR0 Asynchronous DMA LLWU_M1DR LPTMR1 Asynchronous DMA LLWU_M2DR LPTMR2 Asynchronous DMA LLWU_M3DR Reserved11 LLWU_M4DR LPTMR0 Trigger LLWU_M5DR LPTMR1 Trigger LLWU_M6DR LPTMR2 Trigger LLWU_M7DR Reserved12 1. 2. 3. 4. 5. Set SPM_CORESC[VDDIOOVRIDE] for all PTE pins to wakeup from VLLS0/1 The corresponding LLWU0_PE[23: 22], LLWU0_PF[27], LLWU0_PDC2[27], and LLWU0_PMC[27] are reserved. The corresponding LLWU0_PE[25: 24], LLWU0_PF[28], LLWU0_PDC2[28], and LLWU0_PMC[28] are reserved. Set SPM_CORESC[USBOVRIDE] to wakeup from VLLS0 or VLLS1. Requires the peripheral and the peripheral interrupt to be enabled. The LLWU's WUME bit enables the internal module flag as a wakeup input. After wakeup, the flags are cleared based on the peripheral clearing mechanism. 6. Set SPM_CORELPCNFG[ALLREFEN] to wakeup from VLLS0/1. 7. Set SPM_CORESC[VDDIOOVRIDE] and SPM_CORELPCNFG[ALLREFEN] to wakeup from VLLS0/1. 8. The corresponding LLWU0_ME[3] is reserved. 9. The corresponding LLWU0_ME[4] is reserved. 10. Set SPM_CORESC[VDDIOOVRIDE] to wakeup from VLLS0 or VLLS1. 11. The corresponding LLWU0_DE[3] is reserved. 12. The corresponding LLWU0_DE[7] is reserved. The following is internal peripheral and external pin inputs as wakeup sources for the Coretex-M0+ core (CPU1). Table 12. Wakeup Sources for LLWU1 inputs LLWU1 pin Module source or pin name LLWU_P0 PTA1 LLWU_P1 PTA2 LLWU_P2 PTA22 LLWU_P3 PTA30 LLWU_P4 PTB1 LLWU_P5 PTB2 LLWU_P6 PTB4 LLWU_P7 PTB6 LLWU_P8 PTB7 LLWU_P9 PTB8 LLWU_P10 PTB16 LLWU_P11 PTB20 Table continues on the next page... 26 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview Table 12. Wakeup Sources for LLWU1 inputs (continued) LLWU1 pin Module source or pin name LLWU_P12 PTB22 LLWU_P13 PTB25 LLWU_P14 PTB28 LLWU_P15 PTC7 LLWU_P16 PTC9 LLWU_P17 PTC11 LLWU_P18 PTC12 LLWU_P19 PTD8 LLWU_P20 PTD10 LLWU_P21 PTE1 LLWU_P22 PTE3 LLWU_P23 PTE8 LLWU_P24 PTE9 LLWU_P25 PTE10 LLWU_P26 PTE12 LLWU_P27 Reserved1 LLWU_P28 Reserved2 LLWU_P29 USB0 VREGIN LLWU_P30 USB0_DP-1 LLWU_P31 USB0_DM-1 LLWU_M0IF LPTMR0, LPTMR1, LPTMR2 (sharing M0IF)3 LLWU_M1IF LPCMP0 LLWU_M2IF LPCMP1 LLWU_M3IF RESERVED4 LLWU_M4IF Reserved5 LLWU_M5IF Tamper Detect-1 LLWU_M6IF RTC Alarm-1 LLWU_M7IF RTC Seconds-1 LLWU_M0DR LPTMR0 Asynchronous DMA LLWU_M1DR LPTMR1 Asynchronous DMA LLWU_M2DR LPTMR2 Asynchronous DMA LLWU_M3DR Reserved6 LLWU_M4DR LPTMR0 Trigger LLWU_M5DR LPTMR1 Trigger LLWU_M6DR LPTMR2 Trigger LLWU_M7DR Reserved7 1. The corresponding LLWU1_PE[23:22], LLWU1_PF[27], LLWU1_PDC2[27], and LLWU1_PMC[27] are reserved. 2. The corresponding LLWU1_PE[25:24], LLWU1_PF[28], LLWU1_PDC2[28], and LLWU1_PMC[28] are reserved. K32L3A, Rev. 1, 09/2019 27 NXP Semiconductors Overview 3. Requires the peripheral and the peripheral interrupt to be enabled. The LLWU's WUME bit enables the internal module flag as a wakeup input. After wakeup, the flags are cleared based on the peripheral clearing mechanism. 4. The corresponding LLWU1_ME[3] is reserved. 5. The corresponding LLWU1_ME[4] is reserved. 6. The corresponding LLWU1_DE[3] is reserved. 7. The corresponding LLWU1_DE[7] is reserved. 2.1.12 Debug controller This device supports standard Arm 2-pin SWD and JTAG debug port. It provides register and memory accessibility from the external debugger interface, basic run/halt control plus 4 breakpoints and 2 watchpoints. It also supports trace function with the Micro Trace Buffer (MTB), which provides a simple execution trace capability for the Cortex-M0+ processor. 2.1.13 INTMUX The Interrupt Multiplexer (INTMUX) routes the interrupt sources to the interrupt outputs. It provides interrupt status registers to monitor interrupt pending status and vector numbers and implements the ability to logical AND or OR enabled interrupts on a given channel. The INTMUX has the following features: • Supports 4 multiplex channels • Each channel receives 32 interrupt sources and has one interrupt output • Each interrupt source can be enabled or disabled • Each channel supports logic AND or logic OR of all enabled interrupt sources 2.1.14 FlexBus The FlexBus multifunction external bus interface controller is a hardware module. The FlexBus has the following features: • 6 independent, user-programmable chip-select signals (FB_CS5 – FB_CS0) • 8-bit, 16-bit, and 32-bit transfers • Programmable burst and burst-inhibited transfers selectable for each chip-select and transfer direction • Programmable address-setup time with reference to the assertion of a chip-select 28 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview • Programmable address-hold time with reference to the deassertion of a chip-select and transfer direction • Extended address latch enable option to assist with glueless connections to synchronous and asynchronous memory devices 2.1.15 Watch dog The Watchdog Timer (WDOG) keeps a watch on the system functioning and resets it in case of its failure. The WDOG has the following features: • Clock source input independent from CPU/bus clock. Choice from LPO, SIRC, external system clock or bus clock. • Unlock sequence for allowing updates to write-once WDOG control/configuration bits. • All WDOG control/configuration bits are writable once only within 128 bus clock cycles of being unlocked. • Programmable time-out period specified in terms of number of WDOG clock cycles. • Ability to test WDOG timer and reset with a flag indicating watchdog test. • Windowed refresh option. • Robust refresh mechanism. • Count of WDOG resets as they occur. • Configurable interrupt on time-out to provide debug breadcrumbs. This is followed by a reset after 128 bus clock cycles. 2.1.16 EWM The External Watchdog Monitor (EWM) is a redundant watchdog system which is used to monitor external circuits, as well as the MCU software flow. This provides a back-up mechanism to the internal watchdog that resets the MCU's CPU and peripherals. The EWM has the following features: • Independent LPO_CLK clock source • Programmable time-out period specified in terms of number of EWM LPO_CLK clock cycles. • Windowed refresh option K32L3A, Rev. 1, 09/2019 29 NXP Semiconductors Overview • Provides robust check that program flow is faster than expected. • Programmable window. • Refresh outside window leads to assertion of EWM_OUT_b. • Robust refresh mechanism • Write values of 0xB4 and 0x2C to EWM Refresh Register within 15 peripheral bus clock cycles. • One output port, EWM_OUT_b, when asserted is used to reset or place the external circuit into safe mode. • One Input port, EWM_in, allows an external circuit to control the assertion of the EWM_OUT_b signal. 2.1.17 XRDC The Extended Resource Domain Controller (XRDC) provides an integrated, scalable architectural framework for access control, system memory protection and peripheral isolation. The XRDC has the following features: • Assignment of chip resources to processing "domains" • Processor cores, non-core bus masters, slave memories and slave peripherals • Each processing domain is assigned a unique domain identifier (domainID, DID) • DomainID is a new attribute associated with every system bus transaction • Used in conjunction with user/privileged, secure/nonsecure attributes • Access rights to slave targets defined in region descriptor registers for memories and access control registers for peripherals • Supports sharing of memory and peripherals with optional inclusion of hardware semaphores to dynamically determine access rights • Built upon a 4-level hierarchical access control model • PrivSecure > PrivNonsecure > UserSecure > UserNonsecure 30 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview • Encoded into a 3-bit per-domain access control policy (ACP) used throughout the XRDC • Certain processors do not support the PrivNonsecure state. For these cores, the model simplifies to a 3-state definition: PrivSecure > UserSecure > UserNonsecure • Programming model and hardware implementation is distributed across multiple submodules • Supports a broad, highly-configurable architecture definition • Memory region descriptors support a format leveraged from earlier System Memory Protection Units (SMPU) 2.1.18 MU The Messaging Unit module enables two processors within the SoC to communicate and coordinate by passing messages (e.g. data, status and control) through the MU interface. The MU also provides the ability for one processor to signal the other processor using interrupts. The MU has the following features: • Messaging control by interrupts or by polling • Symmetrical processor interfaces with each side supporting the following: • Three general-purpose flags reflected to the other side • Four general-purpose interrupt requests reflected to the other side • Four receive registers with maskable interrupt • Four transmit registers with maskable interrupt • The Processor B can take the Processor A out of low-power modes by asserting one of the interrupts to the Processor A and vice versa 2.1.19 SEMA42 The SEMA42 is a memory-mapped module that provides robust hardware support needed in multi-core systems for implementing semaphores and provides a simple mechanism to achieve "lock and unlock" operations via a single write access. The hardware semaphore module provides hardware-enforced gates as well as other useful system functions related to the gating mechanisms. K32L3A, Rev. 1, 09/2019 31 NXP Semiconductors Overview The SEMA42 has the following features: • Supports 16 hardware-enforced gates in a multi-processor configuration, where up to 15 processors can be supported; cpX is meant to represent core processor X • Gates appear as an 16-entry byte-size array with read and write accesses. • Processors lock gates by writing "processor_number+1" to the appropriate gate and must read back the gate value to verify the lock operation was successful. • Once locked, the gate is unlocked by a write of zeroes from the locking processor. • The number of implemented gates is specified by a hardware configuration define. • Each hardware gate appears as a 16-state, 4-bit state machine. • 16-state implementation if gate = 0x0, then state = unlocked if gate = 0x1, then state = locked by processor (master) 0 if gate = 0x2, then state = locked by processor (master) 1 … if gate = 0xF, then state = locked by processor (master) 14 • Uses the logical bus master number as a reference attribute plus the specified data patterns to validate all write operations. • Once locked, the gate can (and must) be unlocked by a write of zeroes from the locking processor. • Secure reset mechanisms are supported to clear the contents of individual gates, as well as a clear_all capability. • Memory-mapped IPS slave peripheral platform module • Interface to the IPS bus for programming-model accesses 2.1.20 TRGMUX The trigger multiplexer (TRGMUX) module allows software to configure the trigger inputs for various peripherals. 32 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview The TRGMUX module allows software to select the trigger source for peripherals. Each peripheral has its own dedicated TRGMUX register. 2.2 Peripheral features The following sections describe the features of each peripherals of the chip. 2.2.1 MSMC The Multi-System Mode Controller (MSMC) is responsible for sequencing the MCU into and out of all stop and run power modes. Specifically, it monitors events to trigger transitions between power modes while controlling the power, clocks, and memories of the MCU to achieve the power consumption and functionality of that mode. Additionally, the MSMC will arbitrate between multiple cores in the MCU to provide each with the most optimal power mode without negatively impacting the functionality of other cores. 2.2.2 CRC This device contains one cyclic redundancy check (CRC) module which can generate 16/32-bit CRC code for error detection. The CRC module provides a programmable polynomial and other parameters required to implement a 16-bit or 32-bit CRC standard. The 16/32-bit code is calculated for 32 bits of data at a time. The CRC module has the following features: • Hardware CRC generator circuit using a 16-bit or 32-bit programmable shift register • Programmable initial seed value and polynomial • Option to transpose input data or output data (the CRC result) bitwise or bytewise. This option is required for certain CRC standards. A bytewise transpose operation is not possible when accessing the CRC data register via 8-bit accesses. In this case, the user's software must perform the bytewise transpose function. • Option for inversion of final CRC result • 32-bit CPU register programming interface K32L3A, Rev. 1, 09/2019 33 NXP Semiconductors Overview 2.2.3 LPDAC The 12-bit low power digital-to-analog converter (LPDAC) is a low-power, generalpurpose DAC. The output of the DAC can be placed on an external pin or set as one of the inputs to the analog comparator or ADC. LPDAC module has the following features: • On-chip programmable reference generator output. The voltage output range is from 1⁄4096 Vin to Vin, and the step is 1⁄4096 Vin, where Vin is the input reference voltage. • Vin can be selected from two reference sources. • 16-word depth FIFO supported with configurable watermark. • Multiple operation modes. • Buffer mode • FIFO mode • Swing back mode • Software trigger and hardware trigger supported. • Selectable performance levels: low power mode and high power mode. • Interrupt and DMA support. 2.2.4 eDMA and DMAMUX The eDMA controller module enables fast transfers of data, which provides an efficient way to move blocks of data with minimal processor interaction. The eDMA1 controller in this device implements eight channels which can be routed from up to 32 DMA request sources through DMAMUX1 module for CM0+ core. The eDMA0 module implements 16 channels which can be routed from up to 64 DMA request sources through DMAMUX0 module for CM4 core. Some of the peripheral request sources have asynchronous eDMA capability which can be used to wake MCU from Stop mode. The peripherals which have such capability include FlexIO, LPUART0, LPUART1, LPUART2, LPUART3, LPSPI0, LPSPI1, LPSPI2, LPSPI3, LPI2C0, LPI2C1, LPI2C2, LPI2C3, LPCMP0, LPCMP1, TPM0, TPM1, TPM2, TPM3, 34 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview LPTMR0, LPTMR1, LPTMR2, LLWU0, LLWU1, I2S, PORTA-PORTE, ADC0, and LPDAC0. The DMA0 channel 0 to 3 can be periodically triggered by LPIT0 while DMA1 channel 0 to 3 by LPIT1 via DMA MUX. eDMA module has the following features: • All data movement via dual-address transfers: read from source, write to destination • Programmable source and destination addresses and transfer size • Support for enhanced addressing modes • 16-channel implementation that performs complex data transfers with minimal intervention from a host processor • Internal data buffer, used as temporary storage to support 16- and 32-byte transfers • Connections to the crossbar switch for bus mastering the data movement • Transfer control descriptor (TCD) organized to support two-deep, nested transfer operations • 32-byte TCD stored in local memory for each channel • An inner data transfer loop defined by a minor byte transfer count • An outer data transfer loop defined by a major iteration count • Channel activation via one of three methods: • Explicit software initiation • Initiation via a channel-to-channel linking mechanism for continuous transfers • Peripheral-paced hardware requests, one per channel • Fixed-priority and round-robin channel arbitration • Channel completion reported via programmable interrupt requests • One interrupt per channel, which can be asserted at completion of major iteration count • Programmable error terminations per channel and logically summed together to form one error interrupt to the interrupt controller K32L3A, Rev. 1, 09/2019 35 NXP Semiconductors Overview • Programmable support for scatter/gather DMA processing • Support for complex data structures DMAMUX module has the following features: • Up to 64 peripheral slots can be routed to 16 channels for DMAMUX0 and up to 32 peripheral slots can be routed to 8 channels for DMAMUX1. • 16 independently selectable DMA channel routers for DMAMUX0 and 8 for DMAMUX1. • Each channel router can be assigned to one of the possible peripheral DMA slots. • On every memory map configuration change for a any channel, this module signals to the DMA Controller to reset the internal state machine for that channel and it can accept a new request based on the new configuration. 2.2.5 EMV SIM The EMV SIM (Euro/Mastercard/Visa Serial Interface Module) is designed to facilitate communication to Smart Cards compatible to the EMV ver4.3 standard (Book 1) and Smart Cards compatible with ISO/IEC 7816-3 Standard. EMV-SIM module has the following features: • Supports Smart Cards based on the EMV Standard v4.3 and ISO 7816-3 standard • Independent clock for SIM logic (transmitter + receiver) and independent clock for register read-write interface • 16 byte deep FIFO for transmitter and receiver • Automatic NACK generation on parity error and receiver FIFO overflow error • Support for both Inverse and Direct conventions • Re-transmission of byte upon Smart Card NACK request with programmable threshold of re-transmissions • Auto detection of Initial Character in receiver and setting of data format (inverse or direct) • NACK detection in receiver • Independent timers to measure character wait time, block wait time and block guard time • Two general purpose counters available for use by software application with programmable clock selection for the counters • DMA support available to transfer data to/from FIFOs. Programmable option available to select interrupt or DMA feature 36 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview • Programmable Prescaler to generate the desired frequency for Card Clock and Baud Rate Divisor to generate the internal ETU clocks for transmitter and receiver for any F/D ratio • Deep sleep wake-up via Smart Card presence detect interrupt • Manual control of all Smart Card interface signals • Automatic power down of port logic on Smart Card presence detect • Support for 8-bit LRC and 16-bit CRC generation for bytes sent out from transmitter and checking incoming message checksum for receiver 2.2.6 FlexIO The FlexIO is a highly configurable module providing a wide range of protocols including, but not limited to LPUART, I2C, SPI, I2S, Camera IF, LCD RGB, PWM/ Waveform generation. The module supports programmable baud rates independent of bus clock frequency, with automatic start/stop bit generation. It also supports to work in VLPR, VLPW, Stop, and VLPS modes when clock source remains enabled. The FlexIO module has the following features: • • • • • • • Array of 32-bit shift registers with transmit, receive and data match modes Double buffered shifter operation for continuous data transfer Shifter concatenation to support large transfer sizes Automatic start/stop bit generation 1, 2, 4, 8, 16 or 32 multi-bit shift widths for parallel interface support Interrupt, DMA or polled transmit/receive operation Programmable baud rates independent of bus clock frequency, with support for asynchronous operation during stop modes • Highly flexible 16-bit timers with support for a variety of internal or external trigger, reset, enable and disable conditions • Programmable logic mode for integrating external digital logic functions on-chip or combining pin/shifter/timer functions to generate complex outputs • Programmable state machine for offloading basic system control functions from CPU with support for up to 8 states, 8 outputs and 3 selectable inputs per state 2.2.7 LPADC This device contains one low power ADC module. This LPADC module supports hardware triggers from TRGMUX. It supports wakeup of MCU in low power mode when using internal clock source or external crystal clock. K32L3A, Rev. 1, 09/2019 37 NXP Semiconductors Overview LPADC module has the following features: • Linear successive approximation algorithm • single-ended operation with 12-bit resolution • Channel support for up to 64 analog input channels for conversion of external pins and from internal sources • Measurement of on-chip analog sources such as DAC, temperature sensor or bandgap • Configurable analog input sample time • Configurable speed options to accommodate operation in low power modes of the device. • Trigger detect with up to 4 trigger sources with priority level configuration. Software or hardware trigger option for each. • 15 command buffers allow independent options selection and channel sequence scanning. • Automatic compare for less-than, greater-than, within range, or out-of-range with "store on true" and "repeat until true" options • 16-entry conversion result data FIFO with configurable watermark and overflow detection • Interrupt, DMA or polled operation 2.2.8 LPCMP The device contains two low power comparator modules which provide circuits for comparing two analog input voltages. Each comprises a comparator (CMP), a DAC and an analog mux (ANMUX). The CMP circuit operates across the full range of the supply voltage. The DAC is a 64tap resistor ladder network that provides a selectable voltage reference for applications requiring a voltage reference. The Analog MUX (ANMUX) provides a circuit for selecting an analog input signal from eight channels. The LPCMP has the following features: • Two 8-to-1 channel MUXes to select input signal from eight channels • Multiple operation modes to produce a wide range of outputs such as: • Sampled 38 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview • Windowed, which is ideal for certain PWM zero-crossing-detection applications • Digitally Filtered • Selectable performance levels: nano mode, normal mode, high speed mode • Programmable hysteresis control • Selectable inversion on comparator output • External hysteresis can be used at the same time that the output filter is used for internal functions • Interrupt and DMA support • Includes a 6-bit resolution DAC • Selectable supply reference source for DAC • Configurable low power mode or high speed mode for DAC 2.2.9 LPI2C This device contains four LPI2C modules, which supports an efficient interface to an I2C bus as a master and/or a slave. The LPI2C can continue operating in stop modes provided an appropriate clock is available and is designed for low CPU overhead with DMA offloading of FIFO register accesses. The LPI2C implements logic support for standard-mode, fast-mode, fast-mode plus and ultra-fast modes of operation. The LPI2C module also complies with the System Management Bus (SMBus) Specification, version 2. The LPI2C modules have the following features: • Standard, Fast, Fast+ and Ultra Fast modes are supported • High speed mode (HS) in slave mode • High speed mode (HS) in master mode, if SCL pin implements current source pull-up (device-specific) • Multi-master support, including synchronization and arbitration. Multi-master means any number of master nodes can be present. Additionally, master and slave roles may be changed between messages (after a STOP is sent). • Clock stretching: Sometimes multiple I2C nodes may be driving the lines at the same time. If any I2C node is driving a line low, then that line will be low. I2C nodes that are starting to transmit a logical one (by letting the line float high) can K32L3A, Rev. 1, 09/2019 39 NXP Semiconductors Overview detect that the line is low, and thereby know that another I2C node is active at the same time. • When node detection is used on the SCL line, it is called clock stretching, and clock stretching is used as a I2C flow control mechanism for multiple laves. • When node detection is used on the SDA line, it is called arbitration, and arbitration ensures that there is only one I2C node transmitter at a time. • General call, 7-bit and 10-bit addressing • Software reset, START byte and Device ID (also require software support) The LPI2C master supports: • • • • • • • • • Command/transmit FIFO of 4words. Receive FIFO of 4words. Command FIFO will wait for idle I2C bus before initiating transfer Command FIFO can initiate (repeated) START and STOP conditions and one or more master-receiver transfers STOP condition can be generated from command FIFO, or generated automatically when the transmit FIFO is empty Host request input to control the start time of an I2C bus transfer Flexible receive data match can generate interrupt on data match and/or discard unwanted data Flag and optional interrupt to signal Repeated START condition, STOP condition, loss of arbitration, unexpected NACK, and command word errors Supports configurable bus idle timeout and pin-stuck-low timeout The LPI2C slave supports: • Separate I2C slave registers to minimize software overhead because of master/slave switching • Support for 7-bit or 10-bit addressing, address range, SMBus alert and general call address • Transmit data register that supports interrupt or DMA requests • Receive data register that supports interrupt or DMA requests • Software-controllable ACK or NACK, with optional clock stretching on ACK/ NACK bit • Configurable clock stretching, to avoid transmit FIFO underrun and receive FIFO overrun errors • Flag and optional interrupt at end of packet, STOP condition, or bit error detection 40 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview 2.2.10 LPIT This device contains two LPIT modules which are multi-channel timer modules generating independent pre-trigger and trigger outputs. These timer channels can operate individually or can be chained together. The LPIT can operate in low power modes if configured to do so. The pre-trigger and trigger outputs can be used to trigger other modules on the device. Each timer channel can be configured to run independently and made to work in either compare or capture modes. The timer channels operate on an asynchronous clock, which is independent from the register read/write access clock. Clock synchronization between the clock domains ensures normal operations. 2.2.11 LPSPI This device contains four low power Serial Peripheral Interface (SPI) module that supports an efficient interface to an SPI bus as a master and/or a slave. The LPSPI can continue operating in stop modes provided an appropriate clock is available and is designed for low CPU overhead with DMA offloading of FIFO register accesses. The LPSPI supports: • • • • • • • • • • • • Word size = 32 bits Configurable clock polarity and clock phase Master operation supporting up to 4 peripheral chip select Slave operation Command/transmit FIFO of 4 words Receive FIFO of 4 words Flexible timing parameters in master mode, including SCK frequency and delays between PCS and SCK edges Support for full duplex transfers supporting 1-bit transmit and receive on each clock edge Support for half duplex transfers supporting 1-bit transmit or receive on each clock edge Support for half duplex transfers supporting 2-bit or 4-bit transmit or receive on each clock edge (master only) Host request input can be used to control the start time of an SPI bus transfer (master only) Receive data match logic supporting wakeup on data match K32L3A, Rev. 1, 09/2019 41 NXP Semiconductors Overview 2.2.12 LPTMR This device contains three low-power timer (LPTMR) which can be configured to operate as a time counter with optional prescaler, or as a pulse counter with optional glitch filter, across all power modes, including the low-leakage modes. It can also continue operating through most system reset events, allowing it to be used as a time of day counter. The LPTMR module has the following features: • 32-bit time counter or pulse counter with compare • Optional interrupt can generate asynchronous wakeup from any low-power mode • Hardware trigger output • Counter supports free-running mode or reset on compare • Configurable clock source for prescaler/glitch filter • Configurable input source for pulse counter • Rising-edge or falling-edge 2.2.13 LPUART This product contains four Low-Power UART modules, their clock sources are selectable from LPFLL, SIRC, FIRC and SOSC, and can work in Stop and VLPS modes. They also support 4x to 32x data oversampling rate to meet different applications. The LPUART module has the following features: • Full-duplex, standard non-return-to-zero (NRZ) format • Programmable baud rates (13-bit modulo divider) with configurable oversampling ratio from 4x to 32x • Transmit and receive baud rate can operate asynchronous to the bus clock: • Baud rate can be configured independently of the bus clock frequency • Supports operation in Stop modes • Interrupt, DMA or polled operation: • Transmit data register empty and transmission complete • Receive data register full • Receive overrun, parity error, framing error, and noise error • Idle receiver detect • Active edge on receive pin 42 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview • • • • • • • • • • • • Break detect supporting LIN • Receive data match Hardware parity generation and checking Programmable 7-bit, 8-bit, 9-bit or 10-bit character length Programmable 1-bit or 2-bit stop bits Three receiver wakeup methods: • Idle line wakeup • Address mark wakeup • Receive data match Automatic address matching to reduce ISR overhead: • Address mark matching • Idle line address matching • Address match start, address match end Optional 13-bit break character generation / 11-bit break character detection Configurable idle length detection supporting 1, 2, 4, 8, 16, 32, 64 or 128 idle characters Selectable transmitter output and receiver input polarity Hardware flow control support for request to send (RTS) and clear to send (CTS) signals Selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse width Independent FIFO structure for transmit and receive • Separate configurable watermark for receive and transmit requests • Option for receiver to assert request after a configurable number of idle characters if receive FIFO is not empty 2.2.14 RTC The RTC is an always powered-on block that remains active in all low power modes. The time counter within the RTC is clocked by a 32.768 kHz clock sourced from an external crystal using the oscillator or clock directly from EXTAL32 pin. RTC is reset on power-on reset, and a software reset bit in RTC can also initialize all RTC registers. During chip power-down, RTC is powered from the backup power supply (VBAT), electrically isolated from the rest of the chip, continues to increment the time counter (if enabled) and retain the state of the RTC registers. The RTC registers are not accessible. The RTC module has the following features: K32L3A, Rev. 1, 09/2019 43 NXP Semiconductors Overview • Independent power supply, POR, and 32.768 kHz crystal oscillator • 32-bit seconds counter with roll-over protection and 32-bit alarm • 16-bit prescaler with compensation that can correct errors between 0.12 ppm and 3906 ppm • Option to increment prescaler using a 1 kHz LPO (prescaler increments by 32 every clock edge) • Register write protection • Lock register requires VBAT POR or software reset to enable write access • Access control registers require system reset to enable read and/or write access • Configurable 1, 2, 4, 8, 16, 32, 64 or 128 Hz square wave output with optional interrupt • 64-bit monotonic counter with roll-over protection • Up to 4 tamper input pins with optional interrupt and seconds timestamp when interrupt asserts 2.2.15 I2S This device contains one Inter-IC Sound (I2S) module which provides a synchronous audio interface (SAI) that supports fullduplex serial interfaces with frame synchronization such as I2S, AC97, TDM, and codec/DSP interfaces. I2S module has the following features: • • • • • • • • • • Transmitter with independent bit clock and frame sync supporting 2 data lines Receiver with independent bit clock and frame sync supporting 2 data lines Each data line can support a maximum Frame size of 32 words Word size of between 8-bits and 32-bits Word size configured separately for first word and remaining words in frame Asynchronous 8 × 32-bit FIFO for each transmit and receive data line Supports graceful restart after FIFO error Supports automatic restart after FIFO error without software intervention Supports packing of 8-bit and 16-bit data into each 32-bit FIFO word Supports combining multiple data line FIFOs into single data line FIFO 44 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview 2.2.16 uSDHC The Ultra Secured Digital Host Controller (uSDHC) provides the interface between the host system and the SD/SDIO/MMC cards. The uSDHC module has the following features: • Conforms to the SD Host Controller Standard Specification version 2.0 • Compatible with the MMC System Specification version 4.2/4.3/4.4/4.41 • Compatible with the SD Memory Card Specification version 2.0 and supports the Extended Capacity SD Memory Card • Compatible with the SDIO Card Specification version 2.0 • Designed to work with SD Memory, miniSD Memory, SDIO, miniSDIO, SD Combo, MMC, MMC plus, and MMC RS cards • Card bus clock frequency up to 48 MHz • Supports 1-bit / 4-bit SD and SDIO modes, 1-bit / 4-bit / 8-bit MMC modes • Supports single block/multi-block read and write • Supports block sizes of 1 ~ 4096 bytes • Supports the write protection switch for write operations • Supports both synchronous and asynchronous abort • Supports pause during the data transfer at block gap • Supports SDIO Read Wait and Suspend Resume operations • Supports Auto CMD12 for multi-block transfer • Host can initiate non-data transfer command while data transfer is in progress • Allows cards to interrupt the host in 1-bit and 4-bit SDIO modes, also supports interrupt period • Embodies a fully configurable 128x32-bit FIFO for read/write data • Supports internal DMA capabilities • Support voltage selection by configuring vendor specific register bit • Supports Advanced DMA to perform linked memory access 2.2.17 TPM This device contains four low power TPM modules (TPM) which support input capture, output compare, and the generation of PWM signals to control electric motor and power management applications. TPM0 and TPM2 have six channels while TPM1 and TPM3 have two channels. The TPM modules have the following features: • TPM clock mode is selectable K32L3A, Rev. 1, 09/2019 45 NXP Semiconductors Overview • Can increment on every edge of the asynchronous counter clock • Can increment on rising edge of an external clock input synchronized to the asynchronous counter clock • Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128 • TPM includes a 16-bit counter • It can be a free-running counter or modulo counter • The counting can be up or up-down • Includes 6 channels that can be configured for input capture, output compare, edgealigned PWM mode, or center-aligned PWM mode • In input capture mode the capture can occur on rising edges, falling edges or both edges • In output compare mode the output signal can be set, cleared, pulsed, or toggled on match • All channels can be configured for edge-aligned PWM mode or center-aligned PWM mode • Support the generation of an interrupt and/or DMA request per channel • Support the generation of an interrupt and/or DMA request when the counter overflows • Support selectable trigger input to optionally reset or cause the counter to start incrementing. • The counter can also optionally stop incrementing on counter overflow • Support the generation of hardware triggers when the counter overflows and per channel 2.2.18 TRNG The Standalone True Random Number Generator (SA-TRNG) is a hardware accelerator module that generates a 128-bit entropy as needed by an entropy-consuming module or by other post-processing functions. 46 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview 2.2.19 USB This device contains one USB module which implements a USB2.0 full-speed compliant peripheral and interfaces to the on-chip USBFS transceiver. It implements keep-alive feature to avoid re-enumerating when exiting from low power modes and enables FIRC48M to allow crystal-less USB operation. The USBFS has the following features: • USB 1.1 and 2.0 compatible FS device • 16 bidirectional endpoints • DMA or FIFO data stream interfaces • Low-power consumption • IRC48M with clock-recovery is supported to eliminate the 48 MHz crystal. It is used for USB device-only implementation. • Keep-alive feature is supported to power down system bus and CPU. USB can respond to IN with NAK and wake up for SETUP/OUT. 2.2.20 VREF The VREF can be used in applications to provide a reference voltage to external devices, or used internally in the device as a reference to analog peripherals (such as the ADC, LPDAC, or LPCMP). The Voltage Reference (VREF) can supply an accurate voltage output that can be trimmed in 0.5 mV steps (for 1.2 V output) or 1.5 mV steps (for 2.1 V output). The voltage reference has 3 operating modes that provide different levels of supply rejection and power consumption. The VREF supports the following features: A 100 nF capacitor must always be connected between VERF output (VREFO) pin and VSSA if the VREF is used. This capacitor must be as close to VREFO pin as possible. 2.2.21 TSTMR The Time Stamp Timer (TSTMR) is a 56-bit clock cycle counter, reset by system reset. The TSTMR has the following features: • Free-running Time Stamp Timer K32L3A, Rev. 1, 09/2019 47 NXP Semiconductors Overview 2.2.22 CAU3 The Version 3 Cryptographic Acceleration Unit (CAU3) is a bus mastering IP module that provides hardware acceleration of a variety of cryptographic symmetric key and secure hash algorithms including DES, 3DES, AES-{128,192,256}, SHA-{1,256} as well as acceleration of basic public key cryptography including Elliptical Curve Cryptography (ECC). The execution of these algorithms is controlled by optimized firmware developed by NXP that executes on the CAU3 module. The CAU3 has the following features: • • • • • • Symmetric key functions: DES, 3DES, AES-{128,192,256} Secure hash functions: SHA-1, SHA-256 Supoort secure hash acceleration AES-CBC, AES-CCM RSA and ECC acceleration Programmable task completion signaling: interrupt, event completion, DMA request • Significantly improved performance and power efficiency • Common, portable CAU3 library written in C • Arm embedded TLS library reference design 2.3 Memory map This device contains various memories and memory-mapped peripherals which are located in a 4 GB memory space. The following figure shows the system memory and peripheral locations 48 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Overview 0x4000_0000 0x0000_0000 CM4 Flash (1MB) 0x000F_FFFF 0x0100_0000 0x0103_FFFF MSCM 0x4000_2000 Reserved 0x4000_3000 SYSPM 0x4000_4000 CM4 corssbar switch 0x4000_5000 Reserved 0x4000_8000 DMA0 controleer 0x4000_9000 DMA0 controller transfer control descriptor 0x4000_A000 Reserved 0x4000_C000 FlexBus 0x4000_D000 Reserved 0x4001_4000 xRDC MGR Reserved 0x4001_5000 xRDC MDAC CM0+ Flash (256 KB) 0x4001_7000 0x4001_6000 0x4001_8000 0x0800_0000 0x0000_0000 Code space 0x0103_FFFF Reserved CM4 ITCM RAM 0x0880_0000 0x4002_0000 ROM 0x0800_0000 Data space 0x0800_FFFF 0x0880_0000 0x0880_BFFF 0x0900_0000 0x0901_FFFF Reserved 0x0901_FFFF Boot ROM 0x2000_0000 Reserved 0x2002_FFFF 0x1FFF_FFFF 0x2000_0000 FlexBus Execution Alias Data space 0x4002_4000 0x4000_0000 0x4802_0FFF CM4 AIPS0 Reserved 0x4100_0000 0x4800_0000 FlexBus (External Memory) Internal private peripheral bus External private peripheral bus 0x4002_C000 0x4002_D000 CM0+ AIPS0 (see next figures for peripherals) 0x4002_F000 Reserved 0x4003_0000 FlexRAM 0x4002_E000 0x4003_1000 0x4003_2000 Reserved USB SRAM 0x4801_07FF 0x4802_0000 Reserved Rapid GPIO (PTA/B/C/D) 0x4802_0FFF 0xE000_0000 0x4002_A000 0x4003_3000 0x4801_0000 Reserved 0xFFFF_FFFF 0x4002_6000 0x4002_B000 0x4007_FFFF 0x4800_0FFF Reserved 0xE004_0000 0x4002_5000 0x4002_9000 0x4107_FFFF Public peripheral 0xE003_FFFF CM4 DTCM SRAM 0x4002_7000 Reserved 0x4000_0000 0xAFFF_FFFF 0x4002_3000 0x4002_8000 0x2002_FFFF 0xA000_0000 0x4002_1000 0x4002_2000 CM0+ TCM SRAM Data space Reserved 0x1000_0000 0x0900_0000 0x4001_B000 0x4001_C000 0x0800_FFFF 0x0880_BFFF 0xE000_0000 0xE000_0FFF 0xE000_1000 0xE000_1FFF 0xE000_2000 0xE000_2FFF 0xE000_EFFF 0xE004_0000 0xE004_0FFF 0xE004_1000 0xE004_1FFF 0xE004_4FFF 0xE008_0000 0xE008_0FFF 0x4003_5000 0x4003_6000 0x4003_7000 0x4003_9000 Instrumentation Trace Macrocell Data Watchpoint and trace Flash patch and breakpoint System control space 0x4003_A000 0x4003_B000 0x4003_C000 0x4003_D000 0x4003_E000 0x4003_F000 0x4004_0000 0x4004_1000 ITrace port interface unit 0x4004_2000 Embedded trace macrocell 0x4004_4000 Reserved 0xE004_4000 0x4003_4000 0x4003_8000 Reserved 0xE000_F000 Reserved 0x4000_1000 Cross trigger interface Miscellaneous control module 0x4004_3000 0x4004_5000 0x4004_6000 0x4004_7000 0x4004_8000 0x4004_9000 0x4004_A000 0x4004_B000 0x4004_C000 0x4004_D000 xRDC PAC xRDC MRC Reserved SEMA42 Reserved MSMC_SMC0 DMAMUX0 EWM FTFE LLWU0 MU-A SIM SIM-DGO SPM RGMUX0 WDOG0 PCC0 SCG System register file VBAT register file CRC0 LPIT0 RTC LPTMR0 LPTMR1 TSTMRA TPM0 TPM1 TPM2 EMVSIM0 FlexIO0 LPI2C0 LPI2C1 LPI2C2 I2S0 uSDHC0 LPSPI0 LPSPI1 LPSPI2 LPUART0 LPUART1 LPUART2 USB0 PORTA PORTB PORTC PORTD LPADC0 LPCMP0 DAC0 VREF Figure 5. Memory map (CM4) K32L3A, Rev. 1, 09/2019 49 NXP Semiconductors Overview 0x0000_0000 CM4 Flash (1MB) 0x4100_0000 0x4100_8000 0x000F_FFFF 0x0100_0000 0x0103_FFFF Reserved 0x4100_9000 CM0+ Flash (256 KB) 0x4100_A000 0x4100_F000 0x4001_0000 0x0800_0000 0x0000_0000 Code space 0x0103_FFFF Reserved 0x0800_0000 Data space 0x0800_FFFF 0x0880_0000 0x0880_BFFF 0x0901_FFFF 0x1FFF_FFFF 0x2000_0000 0x0880_0000 0x0880_BFFF 0x0900_0000 0x0901_FFFF Boot ROM 0x2000_0000 0x2002_FFFF ROM 0x4102_1000 CM0+ TCM SRAM FlexBus Execution Alias Data space CM4 DTCM SRAM 0x4000_0000 0x4007_FFFF CM4 AIPS0 (See previous figure for peripherals) Reserved 0x4100_0000 0x4802_0FFF 0x4800_0000 0x4800_0FFF Reserved 0x4102_5000 0x4102_6000 FlexBus (External Memory) External private peripheral bus 0x4102_A000 0x4102_B000 0x4102_C000 0x4102_E000 Reserved 0x4103_0000 FlexRAM 0x4103_1000 0x4102_F000 0x4103_2000 Reserved 0x4801_0000 USB SRAM 0x4801_07FF 0x4103_3000 0x4103_4000 0x4103_5000 0x4103_6000 Reserved Internal private peripheral bus 0x4102_9000 CM0+ AIPS0 0x4103_7000 0xE000_0000 0xF0FF_FFFF 0x4102_3000 0x4102_D000 0x4107_FFFF Public peripheral 0xF000_0000 0x4102_2000 0x4102_8000 0x4000_0000 0xE003_FFFF 0x4102_0000 0x4102_7000 Reserved 0xAFFF_FFFF 0x4101_C000 Data space 0x2002_FFFF 0xA000_0000 0x4101_B000 0x4102_4000 Reserved 0x1000_0000 0x0800_FFFF Reserved Reserved 0x0900_0000 CM4 ITCM RAM 0x4103_8000 0xE000_E010 0xE000_E00F 0xE000_E100 0xE000_ECFF 0xE000_ED00 0xE000_ED8F Reserved DMA1 controleer DMA1 controller transfer control descriptor Reserved IO port alias Reserved SEMA42 Reserved MSMC_SMC1 DMAMUX1 INTMUX0 LLWU1 MU-B TRGMUX1 WDOG1 PCC1 CAU3 TRNG LPIT1 LPTMR2 TSTMRB TPM3 LPI2C3 Reserved Reserved Reserved Reserved Reserved Reserved LPSPI3 LPUART3 PORTE LPCMP1 SysTick NVIC System control block MPU-ARM 0xE000_ED90 Debug 0xE000_EFFF Reserved 0xE00F_F000 0xE00F_FFFF 0xF000_0000 0xF000_0FFF 0xF000_1000 0xF000_1FFF 0xF000_2000 0xF000_2FFF 0xF000_3000 0xF000_3FFF 0xF000_4000 0xF000_4FFF Core ROM space MTB DWT Customer ROM table MCM MMDVSQ Reserved 0xF000_6000 0xF000_6FFF CTI Reserved 0xF800_0000 0xF800_0FFF IO port Figure 6. Memory map (CM0+) 50 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts 3 Pinouts 3.1 K32 subfamily pinout Table 13. K32 Pinout 176 VFBGA Pin Name DEFAUL T ALT0 ALT1 C1 PTB3 LPADC0 _SE0 LPADC0 _SE0 PTB3 C2 D2 PTB4/ LPADC0 LLWU_P _SE1 6 PTB5 ALT2 ALT3 ALT4 — E1 PTB6/ DISABLE LLWU_P D 7 — E2 PTB7/ LPADC0 LLWU_P _SE2 8 F5 PTB8/ DISABLE LLWU_P D 9 PTB5 ALT6 LPSPI0_ LPUART I2S0_TX FB_AD10 TPM0_C PCS3 1_TX _FS H1 LPADC0 PTB4/ LPSPI0_ LPUART I2S0_TX _SE1 LLWU_P SCK 1_CTS _BCLK 6 DISABLE D ALT5 ALT7 — FB_AD9 TPM0_C H2 — LPSPI0_ LPUART I2S0_MC FB_AD8 SOUT 1_RTS LK TPM0_C H3 — PTB6/ LPSPI0_ LPI2C1_ I2S0_RX LLWU_P PCS2 SDA _BCLK 7 FB_AD7 TPM0_C H4 — LPADC0 PTB7/ LPSPI0_ LPI2C1_ I2S0_RX _SE2 LLWU_P SIN SDAS _FS 8 FB_AD6 TPM0_C H5 — FB_AD5 — LPTMR0 _ALT1 LPADC0 PTB9/ LPSPI0_ LPI2C1_ I2S0_RX FB_RW_ _SE3 SPM_LP PCS1 SCL D1 b REQ — FXIO0_D 0 — PTB8/ LPSPI0_ LPI2C1_ I2S0_RX LLWU_P PCS0 SCLS D0 9 F4 PTB9 LPADC0 _SE3 D5 VSS VSS VSS — — — — — — — C9 VDDIO1 VDDIO1 VDDIO1 — — — — — — — G6 PTB11 DISABLE D — PTB11 LPUART LPI2C1_ 2_RX SDAS LPI2C0_ FB_AD27 SDA — FXIO0_D 1 G4 PTB12 DISABLE D — PTB12 LPUART LPI2C1_ 2_TX SCLS LPI2C0_ FB_AD26 TPM3_C FXIO0_D SCL LKIN 2 G3 PTB13 DISABLE D — PTB13 LPUART LPI2C1_ 2_CTS SDA LPI2C0_ FB_AD25 TPM3_C FXIO0_D SDAS H0 3 G2 PTB14 DISABLE D — PTB14 LPUART LPI2C1_ 2_RTS SCL LPI2C0_ FB_AD24 TPM3_C FXIO0_D SCLS H1 4 G1 PTB15 DISABLE D — PTB15 — LPI2C1_ HREQ LPI2C3_ FB_CS5_ TPM0_C FXIO0_D SCL b/ LKIN 5 FB_TSIZ 1/ FB_BE23 _16_b Table continues on the next page... K32L3A, Rev. 1, 09/2019 51 NXP Semiconductors Pinouts Table 13. K32 Pinout (continued) 176 VFBGA H5 Pin Name DEFAUL T PTB16/ DISABLE LLWU_P D 10 ALT0 ALT1 ALT2 — PTB16/ LLWU_P 10 — — ALT3 ALT4 ALT5 ALT6 ALT7 LPUART LPI2C3_ FB_CS4_ 3_CTS SDA b/ FB_TSIZ 0/ FB_BE31 _24_b — FXIO0_D 6 LPUART LPI2C3_ FB_TBST 3_RTS SCLS _b/ FB_CS2_ b/ FB_BE15 _8_b — FXIO0_D 7 K5 PTB17 DISABLE D — PTB17 H2 PTB18 DISABLE D — PTB18 LPSPI1_ LPUART LPI2C3_ FB_CS3_ FB_TA_b FXIO0_D PCS1 2_RX SDAS b/ 8 FB_BE7_ 0_b K4 PTB19 DISABLE D — PTB19 LPSPI1_ LPUART PCS3 2_TX — FB_ALE/ TPM1_C FXIO0_D FB_CS1_ LKIN 9 b/ FB_TS_b PTB20/ DISABLE LLWU_P D 11 — PTB20/ LPSPI1_ LPUART LLWU_P SCK 2_CTS 11 — FB_CS0_ TPM1_C FXIO0_D b H0 10 J1 J2 L1 PTB21 DISABLE D — PTB22/ DISABLE LLWU_P D 12 — PTB21 LPSPI1_ LPUART LPI2C2_ SOUT 2_RTS HREQ FB_AD4 TPM1_C FXIO0_D H1 11 PTB22/ LPSPI1_ LPUART LPI2C2_ LLWU_P PCS2 0_CTS SDA 12 FB_AD3 TPM2_C FXIO0_D LKIN 12 J4 VSS VSS VSS — — — — — — — J3 VDDIO1 VDDIO1 VDDIO1 — — — — — — — L2 PTB24 DISABLE D — PTB24 PTB25/ DISABLE LLWU_P D 13 — L6 L4 M4 PTB26 LPSPI1_ LPUART LPI2C2_ SIN 0_RTS SCL FB_AD2 EWM_IN FXIO0_D 13 PTB25/ LPSPI1_ LPUART LPI2C2_ LLWU_P PCS0 0_RX SDAS 13 FB_AD1 EWM_O FXIO0_D UT_b 14 FB_AD0 LPCMP0 _OUT — DISABLE D — PTB26 USB0_S LPUART LPI2C2_ OF_OUT 0_TX SCLS PTB28/ DISABLE LLWU_P D 14 — PTB28/ LLWU_P 14 — LPUART I2S0_TX 3_RX D0 FB_A16 — FXIO0_D 15 LPUART I2S0_TX 3_TX _FS FB_A17 — FXIO0_D 16 L3 PTB29 DISABLE D — PTB29 — M5 PTB30 DISABLE D — PTB30 — — I2S0_TX _BCLK FB_A18 — — M7 PTB31 DISABLE D — PTB31 — — I2S0_RX D0 FB_A19 — — Table continues on the next page... 52 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts Table 13. K32 Pinout (continued) 176 VFBGA Pin Name DEFAUL T ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 N1 PTC0 DISABLE D — PTC0 — — I2S0_RX _FS FB_A20 — — M2 PTC1 DISABLE D — PTC1 — — I2S0_RX _BCLK FB_A21 — — N3 VSS VSS VSS — — — — — — — J10 VDDIO1 VDDIO1 VDDIO1 — — — — — — — N2 PTC7/ LPCMP0 LPCMP0 PTC7/ LPSPI0_ LPUART LPI2C1_ LLWU_P _IN0 _IN0 LLWU_P PCS3 0_RX HREQ 15 15 P3 R1 R2 — TPM0_C LPTMR1 H0 _ALT1 LPSPI0_ LPUART LPI2C0_ SCK 0_TX HREQ — TPM0_C H1 PTC9/ LPADC0 LPADC0 PTC9/ LPSPI0_ LPUART LPI2C0_ LLWU_P _SE4/ _SE4/ LLWU_P SOUT 0_CTS SDA 16 LPCMP0 LPCMP0 16 _IN2 _IN2 — TPM0_C LPTMR0 H2 _ALT2 — TPM0_C H3 PTC8 PTC10 LPCMP0 LPCMP0 _IN1 _IN1 LPADC0 _SE5 LPADC0 _SE5 PTC8 PTC10 LPSPI0_ LPUART LPI2C0_ PCS2 0_RTS SCL — — T1 PTC11/ LPADC0 LLWU_P _SE6 17 LPADC0 PTC11/ LPSPI0_ LPI2C1_ _SE6 LLWU_P SIN SDA 17 LPI2C0_ SDAS — TPM0_C EWM_IN H4 R3 PTC12/ LPADC0 LLWU_P _SE7 18 LPADC0 PTC12/ LPSPI0_ LPI2C1_ _SE7 LLWU_P PCS0 SCL 18 LPI2C0_ SCLS — TPM0_C H5 EWM_O UT_b U1 VDD_DC VDD_DC VDD_DC DC DC DC — — — — — — — U2 LP LP LP — — — — — — — U3 GND GND GND — — — — — — — T4 LN LN LN — — — — — — — T3 VOUT_A VOUT_A VOUT_A UX UX UX — — — — — — — T5 VOUT_C VOUT_C VOUT_C ORE ORE ORE — — — — — — — R9 VDDIO1 VDDIO1 VDDIO1 — — — — — — — P9 VSS VSS VSS — — — — — — — — — — — — — — — N15 VDD_CO VDD_CO VDD_CO RE RE RE P6 PTC27 DISABLE D — PTC27 — — — — TPM0_C H4 U5 PTC28 DISABLE D — PTC28 — LPSPI0_ PCS1 — — TPM0_C FXIO0_D H3 17 N6 PTC29 DISABLE D — PTC29 LPUART LPSPI0_ 1_RX PCS3 — — TPM0_C FXIO0_D H2 18 Table continues on the next page... K32L3A, Rev. 1, 09/2019 53 NXP Semiconductors Pinouts Table 13. K32 Pinout (continued) 176 VFBGA Pin Name DEFAUL T ALT0 ALT1 ALT4 ALT5 R7 PTC30 DISABLE D — PTC30 — — R5 VDDIO1 VDDIO1 VDDIO1 — — — — — — — R13 VSS VSS VSS — — — — — — — T7 PTD0 DISABLE D — PTD0 LPUART LPSPI0_ 1_CTS SOUT — — TPM0_C FXIO0_D H0 20 P7 PTD1 DISABLE D — PTD1 LPUART LPSPI0_ 1_RTS PCS2 — — EWM_IN FXIO0_D 21 U7 PTD2 DISABLE D — PTD2 SDHC0_ LPSPI0_ D7 SIN — — EWM_O FXIO0_D UT_b 22 T8 PTD3 DISABLE D — PTD3 SDHC0_ LPSPI0_ EMVSIM D6 PCS0 0_CLK — TPM2_C FXIO0_D LKIN 23 N8 PTD4 DISABLE D — PTD4 SDHC0_ LPSPI2_ EMVSIM D5 PCS1 0_RST — — FXIO0_D 24 N10 PTD5 LPADC0 _SE8 LPADC0 _SE8 PTD5 SDHC0_ LPSPI2_ EMVSIM D4 PCS3 0_VCCE N — — FXIO0_D 25 U9 PTD6 LPADC0 _SE9 LPADC0 _SE9 PTD6 SDHC0_ LPSPI2_ EMVSIM TRACE_ TPM2_C FXIO0_D D1 SCK 0_IO D3 H5 26 P10 PTD7 LPADC0 _SE10 LPADC0 _SE10 PTD7 SDHC0_ LPSPI2_ EMVSIM TRACE_ TPM2_C FXIO0_D D0 SOUT 0_PD D2 H4 27 T9 U11 P11 PTD8/ LPADC0 LLWU_P _SE11 19 PTD9 LPADC0 _SE12 PTD10/ LPADC0 LLWU_P _SE13 20 ALT2 ALT3 LPUART LPSPI0_ 1_TX SCK ALT6 ALT7 TPM0_C FXIO0_D H1 19 LPADC0 PTD8/ SDHC0_ LPSPI2_ LPI2C1_ TRACE_ TPM2_C FXIO0_D _SE11 LLWU_P DCLK PCS2 SDAS D1 H3 28 19 LPADC0 _SE12 PTD9 SDHC0_ LPSPI2_ LPI2C1_ TRACE_ TPM2_C FXIO0_D CMD SIN SCLS D0 H2 29 LPADC0 PTD10/ SDHC0_ LPSPI2_ LPI2C1_ TRACE_ TPM2_C FXIO0_D _SE13 LLWU_P D3 PCS0 SDA CLKOUT H1 30 20 R11 PTD11 LPADC0 _SE14 LPADC0 _SE14 PTD11 SDHC0_ USB0_S LPI2C1_ CLKOUT TPM2_C FXIO0_D D2 OF_OUT SCL H0 31 P5 VDDIO1 VDDIO1 VDDIO1 — — — — — — — P13 VSS VSS VSS — — — — — — — N4 USB0_V SS USB0_V SS USB0_V SS — — — — — — — T11 USB0_D P USB0_D P USB0_D P — — — — — — — T12 USB0_D M USB0_D M USB0_D M — — — — — — — T13 VOUT33 VOUT33 VOUT33 — — — — — — — U13 VREGIN VREGIN VREGIN — — — — — — — U15 VDDA VDDA VDDA — — — — — — — U16 VREFH VREFH VREFH — — — — — — — Table continues on the next page... 54 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts Table 13. K32 Pinout (continued) 176 VFBGA T15 U17 T16 T17 R14 R16 P12 N12 Pin Name DEFAUL T ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 VREF_O UT/ LPADC0 _SE15/ LPCMP0 _IN5/ LPCMP1 _IN5 — — — — — — — VREFL — — — — — — — VSSA — — — — — — — DAC0_O UT/ LPADC0 _SE16/ LPCMP0 _IN3/ LPCMP1 _IN3 — — — — — — — PTE0 — — — — EWM_IN — LPADC0 PTE1/ SDHC0_ LPI2C0_ LPSPI3_ _SE18 LLWU_P D1 SDAS PCS1 21 — EWM_O UT_b LPTMR1 _ALT2 LPADC0 _SE19 SDHC0_ LPI2C0_ LPSPI3_ D0 SCLS PCS3 — LPCMP1 _OUT — PTE3/ LPADC0 LPADC0 PTE3/ SDHC0_ LPI2C0_ LPSPI3_ LLWU_P _SE20/ _SE20/ LLWU_P D7 SDA SCK 22 LPCMP1 LPCMP1 22 _IN0 _IN0 — TPM0_C LPTMR0 LKIN _ALT3 VREF_O VREF_O UT UT/ LPADC0 _SE15/ LPCMP0 _IN5/ LPCMP1 _IN5 VREFL VREFL VSSA VSSA DAC0_O DAC0_O UT UT/ LPADC0 _SE16/ LPCMP0 _IN3/ LPCMP1 _IN3 PTE0 LPCMP1 LPCMP1 _IN4 _IN4 PTE1/ LPADC0 LLWU_P _SE18 21 PTE2 LPADC0 _SE19 PTE2 M11 PTE4 LPADC0 LPADC0 _SE21/ _SE21/ LPCMP1 LPCMP1 _IN1 _IN1 PTE4 SDHC0_ LPI2C0_ LPSPI3_ CLKOUT TPM1_C D6 SCL SOUT LKIN — R17 PTE5 LPCMP1 LPCMP1 _IN2 _IN2 PTE5 SDHC0_ LPI2C0_ LPSPI3_ DCLK HREQ PCS2 J8 VDD_CO VDD_CO VDD_CO RE RE RE — LPCMP1 _OUT — — — — — — — — VSS — — — — — — — VDDIO2 — — — — — — — K10 VSS VSS D13 VDDIO2 VDDIO2 P16 PTE8/ LPADC0 LLWU_P _SE22 23 LPADC0 PTE8/ SDHC0_ LPUART LPSPI3_ _SE22 LLWU_P D5 3_RX SIN 23 — TPM1_C LPTMR2 H0 _ALT1 N16 PTE9/ LPADC0 LLWU_P _SE23 24 LPADC0 PTE9/ SDHC0_ LPUART LPSPI3_ _SE23 LLWU_P CMD 3_TX PCS0 24 — TPM1_C FXIO0_D H1 0 Table continues on the next page... K32L3A, Rev. 1, 09/2019 55 NXP Semiconductors Pinouts Table 13. K32 Pinout (continued) 176 VFBGA M13 M14 L12 Pin Name DEFAUL T PTE10/ DISABLE LLWU_P D 25 PTE11 ALT0 ALT1 — DISABLE D — PTE12/ DISABLE LLWU_P D 26 — ALT2 ALT3 ALT4 PTE10/ SDHC0_ LPUART LPI2C3_ LLWU_P D4 3_CTS SDA 25 PTE11 SDHC0_ LPUART LPI2C3_ D3 3_RTS SCL PTE12/ SDHC0_ LLWU_P D2 26 ALT5 ALT6 ALT7 — TPM3_C LPTMR2 H0 _ALT3 — TPM3_C FXIO0_D H1 1 — LPI2C3_ SDAS — TPM3_C FXIO0_D LKIN 2 N17 PTE13 DISABLE D — PTE13 I2S0_TX _BCLK — LPI2C3_ SCLS — TPM3_C FXIO0_D H0 3 L16 PTE14 DISABLE D — PTE14 I2S0_TX _FS — LPI2C3_ HREQ — TPM3_C FXIO0_D H1 4 L17 PTE15 DISABLE D — PTE15 I2S0_TX D0 — — — TPM3_C FXIO0_D LKIN 5 L14 PTE16 DISABLE D — PTE16 I2S0_RX _BCLK — — — TPM2_C FXIO0_D H0 6 L15 PTE17 DISABLE D — PTE17 I2S0_RX _FS — — — TPM2_C FXIO0_D H1 7 K13 PTE18 DISABLE D — PTE18 I2S0_RX D0 — — — TPM2_C FXIO0_D H2 8 K16 PTE19 DISABLE D — PTE19 I2S0_MC LK — — — TPM2_C FXIO0_D H3 9 J17 PTE21 DISABLE D — PTE21 I2S0_TX USB0_S D1 OF_OUT — — TPM2_C FXIO0_D H4 10 J16 PTE22 DISABLE D — PTE22 I2S0_RX LPI2C3_ D1 HREQ — — TPM2_C FXIO0_D H5 11 J14 VSS VSS VSS — — — — — — — J15 VDDIO2 VDDIO2 VDDIO2 — — — — — — — H14 PTE27 DISABLE D — PTE27 LPUART LPI2C3_ 3_CTS SDAS — — — FXIO0_D 28 G14 PTE28 DISABLE D — PTE28 LPUART LPI2C3_ 3_RTS SCLS — — — FXIO0_D 29 G15 PTE29 DISABLE D — PTE29 LPUART LPI2C3_ 3_RX SDA — — — FXIO0_D 30 G17 PTE30 DISABLE D — PTE30 LPUART LPI2C3_ 3_TX SCL — — TPM2_C FXIO0_D LKIN 31 H13 TAMPER TAMPER TAMPER 3/ 3/ 3/ RTC_CL RTC_CL RTC_CL KOUT KOUT KOUT — — — — — — — G12 TAMPER TAMPER TAMPER 2/ 2/ 2/ RTC_CL RTC_CL RTC_CL KOUT KOUT KOUT — — — — — — — Table continues on the next page... 56 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts Table 13. K32 Pinout (continued) 176 VFBGA Pin Name DEFAUL T ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 F13 TAMPER TAMPER TAMPER 1/ 1/ 1/ RTC_CL RTC_CL RTC_CL KOUT KOUT KOUT — — — — — — — F14 TAMPER TAMPER TAMPER 0/ 0/ 0/ RTC_WA RTC_WA RTC_WA KEUP_b KEUP_b KEUP_b — — — — — — — G16 VBAT VBAT VBAT — — — — — — — E17 XTAL32 XTAL32 XTAL32 — — — — — — — E16 — — — — — — — E15 EXTAL32 EXTAL32 EXTAL32 VSS VSS VSS — — — — — — — C17 NC1 NC NC — — — — — — — B17 NC1 NC NC — — — — — — — A16 VSS VSS VSS — — — — — — — A15 NC1 NC NC — — — — — — — B13 NC1 NC NC — — — — — — — A11 NC1 NC NC — — — — — — — B11 NC1 NC NC — — — — — — — C11 NC1 NC NC — — — — — — — D12 RESET_ b RESET_ b RESET_ b — — — — — — — B10 PTA0 NMI_b — PTA0 — — — — — NMI_b E12 PTA1/ JTAG_T LLWU_P CLK/ 0 SWD_CL K — PTA1/ LPUART LPI2C0_ LPUART LLWU_P 0_CTS SDAS 1_CTS 0 — — JTAG_T CLK/ SWD_CL K F11 PTA2/ LLWU_P 1 JTAG_T DI — PTA2/ LPUART LPI2C0_ LPUART LLWU_P 0_RX SDA 1_RX 1 — — JTAG_T DI D11 PTA3 JTAG_T DO/ SWD_S WO — PTA3 LPUART LPI2C0_ LPUART 0_TX SCL 1_TX — TPM0_C LKIN JTAG_T DO/ SWD_S WO B9 PTA4 JTAG_T MS/ SWD_DI O — PTA4 LPUART LPI2C0_ LPUART 0_RTS SCLS 1_RTS — LPCMP0 _OUT JTAG_T MS/ SWD_DI O H9 VDD_CO VDD_CO VDD_CO RE RE RE — — — — — — — E14 VSS VSS VSS — — — — — — — K9 VDDIO1 VDDIO1 VDDIO1 — — — — — — — Table continues on the next page... K32L3A, Rev. 1, 09/2019 57 NXP Semiconductors Pinouts Table 13. K32 Pinout (continued) 176 VFBGA Pin Name DEFAUL T ALT0 ALT1 E10 PTA9 DISABLE D — PTA9 A9 PTA10 DISABLE D — E8 PTA14 DISABLE D A7 PTA15 A17 ALT4 ALT5 ALT6 ALT7 LPI2C2_ LPSPI3_ SDAS SCK — FB_A23 — — PTA10 LPI2C2_ LPSPI3_ SCLS SOUT — FB_A22 — — — PTA14 LPI2C2_ SDA — — FB_AD23 LPCMP0 _OUT — DISABLE D — PTA15 LPI2C2_ SCL — — FB_AD22 — — VSS VSS VSS — — — — — — — E4 VDDIO1 VDDIO1 VDDIO1 — — — — — — — F7 PTA17 DISABLE D — PTA17 LPI2C2_ LPSPI3_ EMVSIM FB_AD21 HREQ PCS1 0_CLK — — D8 PTA18 DISABLE D — PTA18 LPSPI2_ LPSPI3_ EMVSIM FB_AD20 PCS1 PCS3 0_RST — — D7 PTA19 DISABLE D — PTA19 LPSPI2_ LPSPI3_ EMVSIM FB_AD19 TPM2_C PCS3 SCK 0_VCCE H5 N — C7 PTA20 DISABLE D — PTA20 LPSPI2_ LPSPI1_ EMVSIM FB_AD18 TPM2_C SCK PCS1 0_IO H4 — B7 PTA21 DISABLE D — PTA21 LPSPI2_ SOUT — EMVSIM FB_AD17 TPM2_C 0_PD H3 — PTA22/ DISABLE LLWU_P D 2 — PTA22/ LPSPI2_ LLWU_P PCS2 2 — LPI2C2_ FB_AD16 TPM2_C HREQ H2 — B6 ALT2 ALT3 E6 PTA23 DISABLE D — PTA23 LPSPI2_ LPSPI1_ LPI2C2_ FB_AD15 TPM2_C SIN PCS3 SDA H1 — D6 PTA24 DISABLE D — PTA24 LPSPI2_ LPSPI1_ LPI2C2_ FB_OE_b TPM2_C PCS0 SCK SCL H0 — B5 PTA25 DISABLE D — PTA25 LPUART LPSPI3_ LPI2C2_ FB_AD31 1_RX SOUT SDAS — — A5 PTA26 DISABLE D — PTA26 LPUART LPSPI3_ LPI2C2_ FB_AD30 1_TX PCS2 SCLS — — A3 PTA27 DISABLE D — PTA27 LPUART LPSPI3_ 1_CTS SIN — FB_AD29 — — A2 PTA28 DISABLE D — PTA28 LPUART LPSPI3_ 1_RTS PCS0 — FB_AD28 — — A13 VSS VSS VSS — — — — — — — E3 VDDIO1 VDDIO1 VDDIO1 — — — — — — — A1 PTA30/ DISABLE LLWU_P D 3 C4 PTA31 DISABLE D — — PTA30/ LPUART LPSPI1_ LLWU_P 2_CTS SOUT 3 PTA31 LPUART LPSPI1_ 2_RTS PCS2 — FB_AD14 TPM1_C LPTMR2 H0 _ALT2 — FB_AD13 TPM1_C H1 — Table continues on the next page... 58 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts Table 13. K32 Pinout (continued) 176 VFBGA Pin Name DEFAUL T ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 B3 PTB0 DISABLE D — PTB0 C3 PTB1/ DISABLE LLWU_P D 4 — PTB1/ LPUART LPSPI1_ I2S0_TX FB_AD12 LLWU_P 2_RX PCS0 D1 4 B1 PTB2/ DISABLE LLWU_P D 5 — PTB2/ LPSPI0_ LPUART I2S0_TX FB_AD11 TPM0_C LLWU_P PCS1 1_RX D0 H0 5 LPUART LPSPI1_ USB0_S CLKOUT TPM1_C 2_TX SIN OF_OUT LKIN — ALT7 — LPTMR1 _ALT3 — B14 VSS VSS VSS — — — — — — — B15 VSS VSS VSS — — — — — — — B16 VSS VSS VSS — — — — — — — C5 VSS VSS VSS — — — — — — — C13 VSS VSS VSS — — — — — — — C15 VSS VSS VSS — — — — — — — C16 VSS VSS VSS — — — — — — — D9 VSS VSS VSS — — — — — — — D15 VSS VSS VSS — — — — — — — F16 VSS VSS VSS — — — — — — — H8 VSS VSS VSS — — — — — — — H10 VSS VSS VSS — — — — — — — VSS VSS VSS — — — — — — — — — — — — — — — — — — — — — — — — — — — — K8 N14 R15 VDD_CO VDD_CO VDD_CO RE RE RE VSSA VSSA VSSA T2 VDD_DC VDD_DC VDD_DC DC DC DC B2 PTA30/ DISABLE LLWU_P D 3 — PTA30/ LPUART LPSPI1_ LLWU_P 2_CTS SOUT 3 — FB_AD14 TPM1_C LPTMR2 H0 _ALT2 1. The NC pins must be floating. K32L3A, Rev. 1, 09/2019 59 NXP Semiconductors Pinouts 3.2 Pin properties The following table lists the pin properties. 176 VFBGA Pin Name Drive strength Default status after POR Pullup/ Pulldown enable after POR Pullup/ pulldown selection after POR Slew rate after POR Passive pin filter after POR Open drain enable at reset Open drain enable control Pin interrupt Fast capability Fast high drive Table 14. Pin properties C1 PTB3 ND Hi-Z N PD FS N N Y Y N N C2 PTB4/ ND LLWU_ P6 Hi-Z N PD FS N N Y Y N N D2 PTB5 ND Hi-Z N PD FS N N Y Y N N E1 PTB6/ ND LLWU_ P7 Hi-Z N PD FS N N Y Y N N E2 PTB7/ ND LLWU_ P8 Hi-Z N PD FS N N Y Y N N F5 PTB8/ ND LLWU_ P9 Hi-Z N PD FS N N Y Y N N F4 PTB9 ND Hi-Z N PD FS N N Y Y N N D5 VSS — — — — — — — — — — — C9 VDDIO1 — — — — — — — — — — — G6 PTB11 ND Hi-Z N PD FS N N Y Y N N G4 PTB12 ND Hi-Z N PD FS N N Y Y N N G3 PTB13 ND Hi-Z N PD FS N N Y Y N N G2 PTB14 ND Hi-Z N PD FS N N Y Y N N G1 PTB15 ND Hi-Z N PD FS N N Y Y N N H5 PTB16/ ND LLWU_ P10 Hi-Z N PD FS N N Y Y N N K5 PTB17 ND Hi-Z N PD FS N N Y Y N N H2 PTB18 ND Hi-Z N PD FS N N Y Y N N Table continues on the next page... 60 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts 176 VFBGA Pin Name Drive strength Default status after POR Pullup/ Pulldown enable after POR Pullup/ pulldown selection after POR Slew rate after POR Passive pin filter after POR Open drain enable at reset Open drain enable control Pin interrupt Fast capability Fast high drive Table 14. Pin properties (continued) K4 PTB19 ND Hi-Z N PD FS N N Y Y N N J1 PTB20/ ND LLWU_ P11 Hi-Z N PD FS N N Y Y N N J2 PTB21 ND Hi-Z N PD FS N N Y Y N N L1 PTB22/ ND LLWU_ P12 Hi-Z N PD FS N N Y Y N N J41 VSS — — — — — — — — — — — J3 VDDIO1 — — — — — — — — — — — L2 PTB24 ND Hi-Z N PD FS N N Y Y N N L6 PTB25/ ND LLWU_ P13 Hi-Z N PD FS N N Y Y N N L4 PTB26 ND Hi-Z N PD FS N N Y Y N N M4 PTB28/ ND LLWU_ P14 Hi-Z N PD FS N N Y Y N N L3 PTB29 ND Hi-Z N PD FS N N Y Y N N M5 PTB30 ND Hi-Z N PD FS N N Y Y N N M7 PTB31 ND Hi-Z N PD FS N N Y Y N N N1 PTC0 ND Hi-Z N PD FS N N Y Y N N M2 PTC1 ND Hi-Z N PD FS N N Y Y N N N31 VSS — — — — — — — — — — — J10 VDDIO1 — — — — — — — — — — — N2 PTC7/ HD LLWU_ P15 Hi-Z N PD FS N N Y Y N Y P3 PTC8 Hi-Z N PD FS N N Y Y N Y HD Table continues on the next page... K32L3A, Rev. 1, 09/2019 61 NXP Semiconductors Pinouts Pullup/ Pulldown enable after POR Pullup/ pulldown selection after POR Slew rate after POR Passive pin filter after POR Open drain enable at reset Open drain enable control Pin interrupt Fast capability Fast high drive Hi-Z N PD FS N N Y Y N Y R2 PTC10 HD Hi-Z N PD FS N N Y Y N Y T1 PTC11/ HD LLWU_ P17 Hi-Z N PD FS N N Y Y N Y R3 PTC12/ HD LLWU_ P18 Hi-Z N PD FS N N Y Y N Y U1 VDD_D — CDC — — — — — — — — — — U2 LP — — — — — — — — — — — U3 GND — — — — — — — — — — — T4 LN — — — — — — — — — — — T3 VOUT_ — AUX — — — — — — — — — — T5 VOUT_ — CORE — — — — — — — — — — R9 VDDIO1 — — — — — — — — — — — P9 VSS — — — — — — — — — — — N15 VDD_C — ORE — — — — — — — — — — — PTC26 ND Hi-Z N PD FS N N Y Y N N P6 PTC27 ND Hi-Z N PD FS N N Y Y N N U5 PTC28 ND Hi-Z N PD FS N N Y Y N N N6 PTC29 ND Hi-Z N PD FS N N Y Y N N R7 PTC30 ND Hi-Z N PD FS N N Y Y N N R5 VDDIO1 — — — — — — — — — — — R13 VSS — — — — — — — — — — Drive strength PTC9/ HD LLWU_ P16 Pin Name R1 176 VFBGA Default status after POR Table 14. Pin properties (continued) — Table continues on the next page... 62 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts 176 VFBGA Pin Name Drive strength Default status after POR Pullup/ Pulldown enable after POR Pullup/ pulldown selection after POR Slew rate after POR Passive pin filter after POR Open drain enable at reset Open drain enable control Pin interrupt Fast capability Fast high drive Table 14. Pin properties (continued) T7 PTD0 ND Hi-Z N PD FS N N Y Y N N P7 PTD1 ND Hi-Z N PD FS N N Y Y N N U7 PTD2 ND Hi-Z N PD FS N N Y Y Y N T8 PTD3 ND Hi-Z N PD FS N N Y Y Y N N8 PTD4 ND Hi-Z N PD FS N N Y Y Y N N10 PTD5 ND Hi-Z N PD FS N N Y Y Y N U9 PTD6 ND Hi-Z N PD FS N N Y Y Y N P10 PTD7 ND Hi-Z N PD FS N N Y Y Y N T9 PTD8/ HD LLWU_ P19 Hi-Z N PD FS N N Y Y N Y U11 PTD9 HD Hi-Z N PD FS N N Y Y N Y P11 PTD10/ HD LLWU_ P20 Hi-Z N PD FS N N Y Y N Y R11 PTD11 Hi-Z N PD FS N N Y Y N Y P5 VDDIO1 — — — — — — — — — — — P131 VSS — — — — — — — — — — — N4 USB0_ VSS — — — — — — — — — — — T11 USB0_ DP — — — — — — — — — — — T12 USB0_ DM — — — — — — — — — — — T13 VOUT3 — 3 — — — — — — — — — — U13 VREGI N — — — — — — — — — — — U15 VDDA — — — — — — — — — — — U16 VREFH — — — — — — — — — — — HD Table continues on the next page... K32L3A, Rev. 1, 09/2019 63 NXP Semiconductors Pinouts Default status after POR Pullup/ Pulldown enable after POR Pullup/ pulldown selection after POR Slew rate after POR Passive pin filter after POR Open drain enable at reset Open drain enable control Pin interrupt Fast capability Fast high drive VREF_ OUT — — — — — — — — — — — U17 VREFL — — — — — — — — — — — T16 VSSA — — — — — — — — — — — T17 DAC0_ OUT — — — — — — — — — — — R14 PTE0 ND Hi-Z N PD FS N N Y Y N N R16 PTE1/ ND LLWU_ P21 Hi-Z N PD FS N N Y Y Y N P12 PTE2 ND Hi-Z N PD FS N N Y Y Y N N12 PTE3/ ND LLWU_ P22 Hi-Z N PD FS N N Y Y Y N M11 PTE4 ND Hi-Z N PD FS N N Y Y Y N R17 PTE5 ND Hi-Z N PD FS N N Y Y Y N J8 VDD_C — ORE — — — — — — — — — — K101 VSS — — — — — — — — — — — D13 VDDIO2 — — — — — — — — — — — P16 PTE8/ ND LLWU_ P23 Hi-Z N PD FS N N Y Y Y N N16 PTE9/ ND LLWU_ P24 Hi-Z N PD FS N N Y Y Y N M13 PTE10/ HD LLWU_ P25 Hi-Z N PD FS N N Y Y N Y M14 PTE11 Hi-Z N PD FS N N Y Y N Y Pin Name T15 176 VFBGA Drive strength Table 14. Pin properties (continued) HD Table continues on the next page... 64 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts Pullup/ Pulldown enable after POR Pullup/ pulldown selection after POR Slew rate after POR Passive pin filter after POR Open drain enable at reset Open drain enable control Pin interrupt Fast capability Fast high drive Hi-Z N PD FS N N Y Y Y N N17 PTE13 ND Hi-Z N PD FS N N Y Y N N L16 PTE14 ND Hi-Z N PD FS N N Y Y N N L17 PTE15 ND Hi-Z N PD FS N N Y Y N N L14 PTE16 ND Hi-Z N PD FS N N Y Y N N L15 PTE17 ND Hi-Z N PD FS N N Y Y N N K13 PTE18 ND Hi-Z N PD FS N N Y Y N N K16 PTE19 ND Hi-Z N PD FS N N Y Y N N J17 PTE21 ND Hi-Z N PD FS N N Y Y N N J16 PTE22 ND Hi-Z N PD FS N N Y Y N N J141 VSS — — — — — — — — — — — J15 VDDIO2 — — — — — — — — — — — H14 PTE27 ND Hi-Z N PD FS N N Y Y N N G14 PTE28 ND Hi-Z N PD FS N N Y Y N N G15 PTE29 ND Hi-Z N PD FS N N Y Y N N G17 PTE30 ND Hi-Z N PD FS N N Y Y N N H13 TAMPE ND R3 Hi-Z N PU FS N N N N N N G12 TAMPE ND R2 Hi-Z N PU FS N N N N N N F13 TAMPE ND R1/ RTC_C LKOUT Hi-Z N PU FS N N N N N N Drive strength PTE12/ ND LLWU_ P26 Pin Name L12 176 VFBGA Default status after POR Table 14. Pin properties (continued) Table continues on the next page... K32L3A, Rev. 1, 09/2019 65 NXP Semiconductors Pinouts Pullup/ Pulldown enable after POR Pullup/ pulldown selection after POR Slew rate after POR Passive pin filter after POR Open drain enable at reset Open drain enable control Pin interrupt Fast capability Fast high drive Hi-Z N PU FS N N N N N N G16 VBAT — — — — — — — — — — — E17 XTAL32 — — — — — — — — — — — E16 EXTAL3 — 2 — — — — — — — — — — E15 VSS — — — — — — — — — — — C17 NC2 — — — — — — — — — — — B17 NC2 — — — — — — — — — — — A16 VSS — — — — — — — — — — — A15 NC2 — — — — — — — — — — — B13 NC2 — — — — — — — — — — — A11 NC2 — — — — — — — — — — — B11 NC2 — — — — — — — — — — — C11 NC2 — — — — — — — — — — — D12 RESET ND _b H N PU — Y — — — — — B10 PTA0 ND H Y PU FS N N Y Y N N E12 PTA1/ ND LLWU_ P0 L Y PD FS N N Y Y N N F11 PTA2/ ND LLWU_ P1 H Y PU FS N N Y Y N N D11 PTA3 ND H Y PU FS N N Y Y N N B9 PTA4 ND H Y PU FS N N Y Y N N Drive strength TAMPE ND R0/ RTC_W AKEUP _b Pin Name F14 176 VFBGA Default status after POR Table 14. Pin properties (continued) Table continues on the next page... 66 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts Pullup/ Pulldown enable after POR Pullup/ pulldown selection after POR Slew rate after POR Passive pin filter after POR Open drain enable at reset Open drain enable control Pin interrupt Fast capability Fast high drive — — — — — — — — — — E14 VSS — — — — — — — — — — — K9 VDDIO1 — — — — — — — — — — — E10 PTA9 ND Hi-Z N PD FS N N Y Y N N A9 PTA10 ND Hi-Z N PD FS N N Y Y N N E8 PTA14 ND Hi-Z N PD FS N N Y Y N N A7 PTA15 ND Hi-Z N PD FS N N Y Y N N A171 VSS — — — — — — — — — — — E4 VDDIO1 — — — — — — — — — — — F7 PTA17 ND Hi-Z N PD FS N N Y Y N N D8 PTA18 ND Hi-Z N PD FS N N Y Y N N D7 PTA19 ND Hi-Z N PD FS N N Y Y N N C7 PTA20 ND Hi-Z N PD FS N N Y Y N N B7 PTA21 ND Hi-Z N PD FS N N Y Y N N B6 PTA22/ ND LLWU_ P2 Hi-Z N PD FS N N Y Y N N E6 PTA23 ND Hi-Z N PD FS N N Y Y N N D6 PTA24 ND Hi-Z N PD FS N N Y Y N N B5 PTA25 ND Hi-Z N PD FS N N Y Y N N A5 PTA26 ND Hi-Z N PD FS N N Y Y N N A3 PTA27 ND Hi-Z N PD FS N N Y Y N N A2 PTA28 ND Hi-Z N PD FS N N Y Y N N A131 VSS — — — — — — — — — — — E3 VDDIO1 — — — — — — — — — — — A1 PTA30/ ND LLWU_ P3 Hi-Z N PD FS N N Y Y N N Drive strength VDD_C — ORE Pin Name H9 176 VFBGA Default status after POR Table 14. Pin properties (continued) Table continues on the next page... K32L3A, Rev. 1, 09/2019 67 NXP Semiconductors Pinouts 176 VFBGA Pin Name Drive strength Default status after POR Pullup/ Pulldown enable after POR Pullup/ pulldown selection after POR Slew rate after POR Passive pin filter after POR Open drain enable at reset Open drain enable control Pin interrupt Fast capability Fast high drive Table 14. Pin properties (continued) C4 PTA31 ND Hi-Z N PD FS N N Y Y N N B3 PTB0 ND Hi-Z N PD FS N N Y Y Y N C3 PTB1/ ND LLWU_ P4 Hi-Z N PD FS N N Y Y N N B1 PTB2/ ND LLWU_ P5 Hi-Z N PD FS N N Y Y N N B14 VSS — — — — — — — — — — — B15 VSS — — — — — — — — — — — B16 VSS — — — — — — — — — — — C51 VSS — — — — — — — — — — — C131 VSS — — — — — — — — — — — C151 VSS — — — — — — — — — — — C161 VSS — — — — — — — — — — — D9 VSS — — — — — — — — — — — D15 VSS — — — — — — — — — — — F161 VSS — — — — — — — — — — — H81 VSS — — — — — — — — — — — H101 VSS — — — — — — — — — — — K8 VSS — — — — — — — — — — — N14 VDD_C — ORE — — — — — — — — — — R151 VSSA — — — — — — — — — — — T2 VDD_D — CDC — — — — — — — — — — B2 PTA30/ ND LLWU_ P3 Hi-Z N PD FS N N Y Y N N 1. Optional, can be left as NC. 68 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts 2. The NC pins must be floating. Properties Abbreviation Descriptions Driver strength ND Normal drive HD High drive Hi-Z High impendence H High level L Low level Y Enabled N Disabled PU Pullup PD Pulldown FS Fast slew rate SS Slow slew rate N Disabled Y Enabled N Disabled1 Y Enabled Pin interrupt Y Yes Fast capability N Not support fast capability Y Support fast capability N Not support fast high drive Y Support fast high drive Default status after POR Pullup/ pulldown Enable after POR Pullup/ pulldown selection after POR Slew rate after POR Passive Pin Filter after POR Open drain Fast high drive 1. When an LPI2C module is enabled and a pin is functional for LPI2C, this pin is (pseudo-) open drain enabled. When an LPUART module is enabled and a pin is functional for LPUART, this pin is (pseudo-) open drain configurable. 3.3 Module signal description Tables The following sections correlate the chip-level signal name with the signal name used in the module's chapter. They also briefly describe the signal function and direction. 3.3.1 Core modules Table 15. JTAG Arm signal descriptions Chip signal name Module signal name Description I/O JTAG_TMS TMS Test mode select Input JTAG_TCLK TCK Test clock Input Table continues on the next page... K32L3A, Rev. 1, 09/2019 69 NXP Semiconductors Pinouts Table 15. JTAG Arm signal descriptions (continued) Chip signal name Module signal name Description JTAG_TDI TDI Test data in JTAG_TDO TDO Test data out I/O Input Output Table 16. SWD signal descriptions Chip signal name Module signal name Description I/O SWD_DIO SWD_DIO Serial wire data input/output. The SWD_DIO pin is used by an external debug tool for communication and device control. This pin is pulled up internally. SWD_CLK SWD_CLK Serial wire clock. This pin is the clock for debug logic when in the Serial Wire Debug mode. This pin is pulled down internally. SWD_SWO SWD_SWO Trace output over a single pin Input / Output Input Output Table 17. TPIU signal descriptions Chip signal name Module signal name Description I/O TRACE_CLKOUT TRACECLK Trace clock output from the Arm CoreSight debug block O TRACE_D[3:2] TRACEDATA Trace output data from the Arm CoreSight debug block used for 5pin interface O TRACE_D[1:0] TRACEDATA Trace output data from the Arm CoreSight debug block used for both 5-pin and 3-pin interfaces O 3.3.2 System modules Table 18. System signal descriptions Chip signal name Module signal name NMI_b — Description I/O Non-maskable interrupt I NOTE: Driving the NMI signal low forces a non-maskable interrupt, if the NMI function is selected on the corresponding pin. RESET_b — Reset bi-directional signal I/O VDD_CORE — MCU power I VDDIO1 — I/O rings power I VDDIO2 — I/O rings power I VSS — MCU ground I Table continues on the next page... 70 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts Table 18. System signal descriptions (continued) Chip signal name Module signal name Description I/O VSSA — Analog ground I Table 19. EWM signal descriptions Chip signal name Module signal name EWM_IN EWM_in EWM_OUT_b EWM_out Description I/O EWM input for safety status of external safety circuits. The polarity of EWM_in is programmable using the EWM_CTRL[ASSIN] bit. The default polarity is active-low. I EWM reset out signal O Table 20. LLWU0 signal descriptions Chip signal name LLWU_Pn (n=[31:0] Module signal name Description I/O LLWU_Pn (n=[31:0] External Pin Wakeup inputs I 3.3.3 Memories and memory interfaces Table 21. FlexBus signal descriptions Chip signal name Module signal name FB_CLKOUT FB_CLK FB_A[23:16] FB_A[23:16] FB_AD[31:0] FB_ADn Description I/O FlexBus Clock Output O This is the address and data bus I/O This is the address and data bus, FB_AD. I/O The number of byte lanes carrying the data is determined by the port size associated with the matching chip-select. The full 32-bit address is driven on the first clock of a bus cycle (address phase). After the first clock, the data is driven on the bus (data phase). During the data phase, the address is driven on the pins not used for data. For example, in 16-bit mode, the lower address is driven on FB_AD15–FB_AD0, and in 8-bit mode, the lower address is driven on FB_AD23–FB_AD0. FB_CSn_b (n=[5:0]) FB_CSn (n=[5:0]) General Purpose Chip-Selects—Indicate which external memory or peripheral is selected. A particular chip-select is asserted when the transfer address is within the external memory's or peripheral's address space, as defined in CSAR[BA] and CSMR[BAM]. O Table continues on the next page... K32L3A, Rev. 1, 09/2019 71 NXP Semiconductors Pinouts Table 21. FlexBus signal descriptions (continued) Chip signal name Module signal name Description I/O FB_BE31_24_b FB_BE23_16_b FB_BE15_8_b FB_BE7_0_b FB_BE_31_24, FB_BE_23_16, FB_BE_15_8, FB_BE_7_0 Byte Enables—Indicate that data is to be latched or driven onto a specific byte lane of the data bus. CSCR[BEM] determines if these signals are asserted on reads and writes or on writes only. O FB_OE_b FB_OE Output Enable—Sent to the external memory or peripheral to enable a read transfer. This signal is asserted during read accesses only when a chip-select matches the current address decode. O FB_RW_b FB_RW Read/Write—Indicates whether the current bus operation is a read operation (FB_R/W high) or a write operation (FB_R/W low). O FB_TS_b FB_TS Transfer Start—Indicates that the chip has begun a bus transaction and that the address and attributes are valid. O FB_ALE FB_ALE Address Latch Enable—Indicates when the address is being driven on the FB_A bus (inverse of FB_TS). O FB_TSIZn (n=[1:0]) For external SRAM or flash devices, the FB_BE outputs should be connected to individual byte strobe signals. FB_TSIZn (n=[1:0]) Transfer Size—Indicates (along with FB_TBST) the data transfer size of the current bus operation. The interface supports 8-, 16-, and 32-bit operand transfers and allows accesses to 8-, 16-, and 32-bit data ports. FB_TA_b FB_TA FB_TBST_b FB_TBST O Transfer Acknowledge—Indicates that the external data transfer is complete. When FB_TA is asserted during a read transfer, FlexBus latches the data and then terminates the transfer. When FB_TA is asserted during a write transfer, the transfer is terminated. I Transfer Burst—Indicates that a burst transfer is in progress as driven by the chip. A burst transfer can be 2 to 16 beats depending on FB_TSIZ1–FB_TSIZ0 and the port size. O 3.3.4 Clock modules Table 22. RTC OSC signal descriptions Chip signal name Module signal name EXTAL32 EXTAL32 XTAL32 XTAL32 72 NXP Semiconductors Description I/O 32.768 kHz oscillator input I 32.768 kHz oscillator output O K32L3A, Rev. 1, 09/2019 Pinouts 3.3.5 Communication interfaces Table 23. EMVSIM signal descriptions Chip signal name Module signal name EMVSIM0_CLK EMVSIM0_RST EMVSIM0_VCCEN Description I/O EMVSIM_SCLK Card Clock. Clock to Smart Card. O EMVSIM_SRST Card Reset. Reset signal to Smart Card O EMVSIM_VCC_EN Card Power Enable. This signal controls the power to Smart Card O EMVSIM0_IO EMVSIM_IO Card Data Line. Bi-directional data line. EMVSIM0_PD EMVSIM_PD Card Presence Detect. Signal indicating presence or removal of card I/O I Table 24. USB FS signal descriptions Chip signal name Module signal name Description I/O USB0_DM USB0_DP usb_dm USB D- analog data signal on the USB bus. I/O usb_dp USB D+ analog data signal on the USB bus. I/O USB_SOF_OUT — USB start of frame signal. Can be used to make the USB start of frame available for external synchronization. O USB0_VSS — VSS for USB0 — Table 25. USB VREG signal descriptions Chip signal name Module signal name VOUT33 reg33_out VREGIN vreg_in1 Description I/O Regulator output voltage O Unregulated power supply I Table 26. LPSPI0 signal descriptions Chip signal name Module signal name Description I/O SPI0_SCK SCK Serial clock. Input in slave mode, output in master mode. I/O SPI0_PCS0 PCS[0] Peripheral Chip Select. Input in slave mode, output in master mode. I/O SPI0_PCS1 PCS[1] Peripheral Chip Select or Host Request. Host Request pin is selected when HREN=1 and HRSEL=0. Input in either slave mode or when used as Host Request, output in master mode. I/O SPI0_PCS2 PCS[2] Peripheral Chip Select or data pin 2 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. I/O Table continues on the next page... K32L3A, Rev. 1, 09/2019 73 NXP Semiconductors Pinouts Table 26. LPSPI0 signal descriptions (continued) Chip signal name Module signal name Description I/O SPI0_PCS3 PCS[3] Peripheral Chip Select or data pin 3 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. I/O SPI0_SOUT SOUT Serial Data Output. Can be configured as serial data input signal. Used as data pin 0 in quad-data and dual-data transfers. I/O SPI0_SIN SIN Serial Data Input. Can be configured as serial data output signal. Used as data pin 1 in quad-data and dual-data transfers. I/O Table 27. LPSPI1 signal descriptions Chip signal name Module signal name Description I/O SPI1_SCK SCK Serial clock. Input in slave mode, output in master mode. I/O SPI1_PCS0 PCS[0] Peripheral Chip Select. Input in slave mode, output in master mode. I/O SPI1_PCS1 PCS[1] Peripheral Chip Select or Host Request. Host Request pin is selected when HREN=1 and HRSEL=0. Input in either slave mode or when used as Host Request, output in master mode. I/O SPI1_PCS2 PCS[2] Peripheral Chip Select or data pin 2 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. I/O SPI1_PCS3 PCS[3] Peripheral Chip Select or data pin 3 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. I/O SPI1_SOUT SOUT Serial Data Output. Can be configured as serial data input signal. Used as data pin 0 in quad-data and dual-data transfers. I/O SPI1_SIN SIN Serial Data Input. Can be configured as serial data output signal. Used as data pin 1 in quad-data and dual-data transfers. I/O Table 28. LPSPI2 signal descriptions Chip signal name Module signal name Description I/O SPI2_SCK SCK Serial clock. Input in slave mode, output in master mode. I/O SPI2_PCS0 PCS[0] Peripheral Chip Select. Input in slave mode, output in master mode. I/O SPI2_PCS1 PCS[1] Peripheral Chip Select or Host Request. Host Request pin is selected when HREN=1 and HRSEL=0. Input in either slave mode or when used as Host Request, output in master mode. I/O SPI2_PCS2 PCS[2] Peripheral Chip Select or data pin 2 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. I/O Table continues on the next page... 74 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts Table 28. LPSPI2 signal descriptions (continued) Chip signal name Module signal name Description I/O SPI2_PCS3 PCS[3] Peripheral Chip Select or data pin 3 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. I/O SPI2_SOUT SOUT Serial Data Output. Can be configured as serial data input signal. Used as data pin 0 in quad-data and dual-data transfers. I/O SPI2_SIN SIN Serial Data Input. Can be configured as serial data output signal. Used as data pin 1 in quad-data and dual-data transfers. I/O Table 29. LPSPI3 signal descriptions Chip signal name Module signal name Description I/O SPI3_SCK SCK Serial clock. Input in slave mode, output in master mode. I/O SPI3_PCS0 PCS[0] Peripheral Chip Select. Input in slave mode, output in master mode. I/O SPI3_PCS1 PCS[1] Peripheral Chip Select or Host Request. Host Request pin is selected when HREN=1 and HRSEL=0. Input in either slave mode or when used as Host Request, output in master mode. I/O SPI3_PCS2 PCS[2] Peripheral Chip Select or data pin 2 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. I/O SPI3_PCS3 PCS[3] Peripheral Chip Select or data pin 3 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. I/O SPI3_SOUT SOUT Serial Data Output. Can be configured as serial data input signal. Used as data pin 0 in quad-data and dual-data transfers. I/O SPI3_SIN SIN Serial Data Input. Can be configured as serial data output signal. Used as data pin 1 in quad-data and dual-data transfers. I/O Table 30. LPI2C0 signal descriptions Chip signal name Module signal name Description I/O I2C0_SCL SCL LPI2C clock line. In 4-wire mode, this is the SCL input pin. I/O I2C0_SDA SDA LPI2C data line. In 4-wire mode, this is the SDA input pin. I/O LPI2C0_HREQ HREQ Host request, can initiate an LPI2C master transfer if asserted and the I2C bus is idle. LPI2C0_SCLS SCLS Secondary I2C clock line. In 4-wire mode, this is the SCLS output pin. If LPI2C master/slave are configured to use separate pins, this the LPI2C slave SCL pin. I/O LPI2C0_SDAS SDAS Secondary I2C data line. In 4-wire mode, this is the SDAS output pin. If LPI2C master/slave are configured to use separate pins, this the LPI2C slave SDA pin. I/O K32L3A, Rev. 1, 09/2019 I 75 NXP Semiconductors Pinouts Table 31. LPI2C1 signal descriptions Chip signal name Module signal name Description I/O I2C1_SCL SCL LPI2C clock line. In 4-wire mode, this is the SCL input pin. I/O LPI2C data line. In 4-wire mode, this is the SDA input pin. I/O I2C1_SDA SDA LPI2C1_HREQ HREQ Host request, can initiate an LPI2C master transfer if asserted and the I2C bus is idle. I LPI2C1_SCLS SCLS Secondary I2C clock line. In 4-wire mode, this is the SCLS output pin. If LPI2C master/slave are configured to use separate pins, this the LPI2C slave SCL pin. I/O LPI2C1_SDAS SDAS Secondary I2C data line. In 4-wire mode, this is the SDAS output pin. If LPI2C master/slave are configured to use separate pins, this the LPI2C slave SDA pin. I/O Table 32. LPI2C2 signal descriptions Chip signal name Module signal name Description I/O I2C2_SCL SCL LPI2C clock line. In 4-wire mode, this is the SCL input pin. I/O I2C2_SDA SDA LPI2C data line. In 4-wire mode, this is the SDA input pin. I/O LPI2C2_HREQ HREQ Host request, can initiate an LPI2C master transfer if asserted and the I2C bus is idle. I LPI2C2_SCLS SCLS Secondary I2C clock line. In 4-wire mode, this is the SCLS output pin. If LPI2C master/slave are configured to use separate pins, this the LPI2C slave SCL pin. I/O LPI2C2_SDAS SDAS Secondary I2C data line. In 4-wire mode, this is the SDAS output pin. If LPI2C master/slave are configured to use separate pins, this the LPI2C slave SDA pin. I/O Table 33. LPI2C3 signal descriptions Chip signal name Module signal name Description I/O I2C3_SCL SCL LPI2C clock line. In 4-wire mode, this is the SCL input pin. I/O I2C3_SDA SDA LPI2C data line. In 4-wire mode, this is the SDA input pin. I/O LPI2C3_HREQ HREQ Host request, can initiate an LPI2C master transfer if asserted and the I2C bus is idle. I LPI2C3_SCLS SCLS Secondary I2C clock line. In 4-wire mode, this is the SCLS output pin. If LPI2C master/slave are configured to use separate pins, this the LPI2C slave SCL pin. I/O LPI2C3_SDAS SDAS Secondary I2C data line. In 4-wire mode, this is the SDAS output pin. If LPI2C master/slave are configured to use separate pins, this the LPI2C slave SDA pin. I/O 76 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts Table 34. LPUART0 signal descriptions Chip signal name Module signal name Description I/O LPUART0_CTS CTS Clear to Send. I LPUART0_RTS RTS Request to send. O LPUART0_TX TXD Transmit data. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or transmit direction is configured for receive data. I/O LPUART0_RX RXD Receive data. I Table 35. LPUART1 signal descriptions Chip signal name Module signal name Description I/O LPUART1_CTS CTS Clear to Send. I LPUART1_RTS RTS Request to send. O LPUART1_TX TXD Transmit data. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or transmit direction is configured for receive data. I/O LPUART1_RX RXD Receive data. I Table 36. LPUART2 signal descriptions Chip signal name Module signal name Description I/O LPUART2_CTS CTS Clear to Send. I LPUART2_RTS RTS Request to send. O LPUART2_TX TXD Transmit data. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or transmit direction is configured for receive data. I/O LPUART2_RX RXD Receive data. I Table 37. LPUART3 signal descriptions Chip signal name Module signal name Description I/O LPUART3_CTS CTS Clear to Send. I LPUART3_RTS RTS Request to send. O LPUART3_TX TXD Transmit data. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or transmit direction is configured for receive data. I/O LPUART3_RX RXD Receive data. K32L3A, Rev. 1, 09/2019 I 77 NXP Semiconductors Pinouts Table 38. SDHC signal descriptions Chip signal name Module signal name Description I/O SDHC0_DCLK CLK Clock for MMC/SD/SDIO card O SDHC0_CMD CMD CMD line connect to card I/O SDHC0_D0 DAT0 DAT0 line in all modes. Also used to detect busy state I/O SDHC0_D1 DAT1 DAT1 line in 4/8-bit mode.Also used to detect interrupt in 1/4-bit mode I/O SDHC0_D2 DAT2 DAT2 line or Read Wait in 4-bit mode. Read Wait in 1-bit mode I/O SDHC0_D3 DAT3 DAT3 line in 4/8-bit mode or configured as card detection pin. May be configured as card detection pin in 1-bit mode I/O SDHC0_D4 DAT4 DAT4 line in 8-bit mode. Not used in other modes I/O SDHC0_D5 DAT5 DAT5 line in 8-bit mode. Not used in other modes I/O SDHC0_D6 DAT6 DAT6 line in 8-bit mode. Not used in other modes I/O SDHC0_D7 DATA7 DAT7 line in 8-bit mode.Not used in other modes I/O Table 39. I2S0 signal descriptions Chip signal name Module signal name Description I/O I2S0_TX_BCLK SAI_TX_BCLK Transmit Bit Clock. The bit clock is an input when externally generated and an output when internally generated. I/O I2S0_TX_FS SAI_TX_SYNC Transmit Frame Sync. The frame sync is an input sampled synchronously by the bit clock when externally generated and an output generated synchronously by the bit clock when internally generated. I/O SAI_TX_DATA[1:0] Transmit Data. The transmit data is generated synchronously by the bit clock and is tristated whenever not transmitting a word. O I2S0_TX_Dn n=[1:0] I2S0_RX_BCLK SAI_RX_BCLK Receive Bit Clock. The bit clock is an input when externally generated and an output when internally generated. I/O I2S0_RX_FS SAI_RX_SYNC Receive Frame Sync. The frame sync is an input sampled synchronously by the bit clock when externally generated and an output generated synchronously by the bit clock when internally generated. I/O I2S0_RX_Dn I2S0_MCLK SAI_RX_DATA[1:0] Receive Data. The receive data is sampled synchronously by the bit clock. MCLK_EN Audio Master Clock. I I Table 40. FlexIO signal descriptions Chip signal name Module signal name FXIO0_Dn (n=[31:0] FXIO_Dn (n=[31:0] 78 NXP Semiconductors Description I/O Bidirectional FlexIO Shifter and Timer pin inputs/outputs I/O K32L3A, Rev. 1, 09/2019 Pinouts 3.3.6 Analog Table 41. LPADC0 signal descriptions Chip signal name Module signal name Description I/O LPADC0_SE[23:0] CHnA (n=[23:0] A-side Analog Channel Inputs I VDDA VDDA Analog Power Supply I VSSA VSSA Analog Ground I Table 42. LPCMP0 signal descriptions Chip signal name Module signal name Description I/O LPCMP0_IN[5:0] IN[5:0] Analog voltage inputs I LPCMP0_OUT CMPO Comparator output O Table 43. LPCMP1 signal descriptions Chip signal name Module signal name Description I/O LPCMP1_IN[5:0] IN[5:0] Analog voltage inputs I LPCMP1_OUT CMPO Comparator output O Table 44. LPDAC0 signal descriptions Chip signal name Module signal name DAC0_OUT — Description I/O DAC output O Table 45. VREF signal descriptions Chip signal name Module signal name VREF_OUT VREF_OUT K32L3A, Rev. 1, 09/2019 Description I/O Internally-generated Voltage Reference output O 79 NXP Semiconductors Pinouts 3.3.7 Human-machine interfaces (HMI) Table 46. GPIO signal descriptions Chip signal name Module signal name Description I/O PTA[31:0]1 PORTA31–PORTA0 General-purpose input/output I/O PTB[31:0]1 PORTB31–PORTB0 General-purpose input/output I/O PTC[31:0]1 PORTC31–PORTC0 General-purpose input/output I/O PTD[31:0]1 PORTD31–PORTD0 General-purpose input/output I/O PTE[31:0]1 PORTE31–PORTE0 General-purpose input/output I/O 1. The available GPIO pins depends on the specific package. See the signal multiplexing section for which exact GPIO signals are available. 3.3.8 Timer modules Table 47. LPTMR0 signal descriptions Chip signal name LPTMR0_ALT[3:1] Module signal name Description I/O LPTMR_ALTn,n=[3:1 Pulse Counter Input - The LPTMR can select one of the input pins ] to be used in Pulse Counter mode. I Table 48. LPTMR1 signal descriptions Chip signal name LPTMR1_ALT[3:1] Module signal name Description I/O LPTMR_ALTn,n=[3:1 Pulse Counter Input - The LPTMR can select one of the input pins ] to be used in Pulse Counter mode. I Table 49. LPTMR2 signal descriptions Chip signal name LPTMR2_ALT[3:1] Module signal name Description I/O LPTMR_ALTn,n=[3:1 Pulse Counter Input - The LPTMR can select one of the input pins ] to be used in Pulse Counter mode. I Table 50. TPM0 signal descriptions Chip signal name TPM0_CH[5:0] Module signal name Description I/O TPM_CHn (n=[5:0]) TPM channel. A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input. I/O Table continues on the next page... 80 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts Table 50. TPM0 signal descriptions (continued) Chip signal name Module signal name Description I/O TPM0_CLKIN TPM_EXTCLK External clock. TPM external clock can be selected to increment the counter on every rising edge synchronized to the counter clock. I Table 51. TPM1 signal descriptions Chip signal name TPM1_CH[1:0] Module signal name Description I/O TPM_CHn (n=[1:0]) TPM channel. A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input. TPM1_CLKIN TPM_EXTCLK External clock. TPM external clock can be selected to increment the counter on every rising edge synchronized to the counter clock. I/O I Table 52. TPM2 signal descriptions Chip signal name TPM2_CH[5:0] Module signal name Description I/O TPM_CHn (n=[5:0]) TPM channel. A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input. TPM2_CLKIN TPM_EXTCLK External clock. TPM external clock can be selected to increment the counter on every rising edge synchronized to the counter clock. I/O I Table 53. TPM3 signal descriptions Chip signal name TPM3_CH[1:0] Module signal name Description I/O TPM_CHn (n=[1:0]) TPM channel. A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input. TPM3_CLKIN TPM_EXTCLK External clock. TPM external clock can be selected to increment the counter on every rising edge synchronized to the counter clock. I/O I Table 54. RTC signal descriptions Chip signal name Module signal name EXTAL32 EXTAL32 Description 32.768 kHz oscillator input I/O I Table continues on the next page... K32L3A, Rev. 1, 09/2019 81 NXP Semiconductors Pinouts Table 54. RTC signal descriptions (continued) Chip signal name Module signal name XTAL32 XTAL32 Description I/O 32.768 kHz oscillator output O RTC_CLKOUT RTC_CLKOUT Prescaler square-wave output or 32kHz crystal clock O RTC_WAKEUP_b RTC_WAKEUP Active low wakeup for external device O 3.3.9 Security modules Table 55. Tamper detect signal descriptions Chip signal name TAMPER[3:0] 1 Module signal name Description RTC_TAMPER[3:0] Tamper pin input I/O I 1. The TAMPER signals have dedicated pins and are not included in the JTAG boundary scan. TAMPER0 is an exception because it is priority muxed with the RTC_WAKEUP_b function. If TAMPER0 is enabled as either an input or output, the RTC_WAKEUP_b function is disabled. The RTC_WAKEUP_b pin can be configured to assert on a Tamper Detect, if the RTC enables the DryIce tamper detect interrupt. 3.4 Pinouts diagram The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. 82 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Pinouts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 PTA30/ LLWU_P3 PTA28 PTA27 NC PTA26 NC PTA15 NC PTA10 NC NC NC VSS NC B PTB2/ LL WU_P5 PTA30/ LLWU_P3 NC PTA22/ L PTA25 PTA21 LWU_P2 NC PTA4 PTA0 NC NC NC C PTB3 NC D NC E PTB0 PTB4/ LL PTB1/ LL PTA31 WU_P6 WU_P4 PTB5 NC NC PTB6/LL PTB7/LL VDDIO1 VDDIO1 WU_P7 WU_P8 VSS NC PTA20 NC VDDIO1 NC NC VSS PTA24 PTA19 PTA18 VSS NC PTA3 NC PTA23 NC PTA14 NC PTA9 NC 16 17A NC VSS VSS A VSS VSS VSS NC B VSS NC VSS VSS NC C RESET_b VDDIO2 NC VSS NC NC D PTA1/ NC LLWU_P0 VSS VSS EXTAL32 XTAL32 E NC NC F PTE30 G NC H PTE21 J F NC NC NC PTB9 PTB8/ LL WU_P9 NC PTA17 NC NC NC PTA2/ LL WU_P1 G PTB15 PTB14 PTB13 PTB12 NC PTB11 NC NC NC NC NC VSS NC NC TAMPER3 H NC J K L M NC NC VDD_CO RE NC VDDIO1 NC NC NC VSS PTB19 PTB17 NC NC VSS VDDIO1 VSS NC NC PTE18 NC NC PTE19 NC K PTB26 NC PTB25/LL NC WU_P13 NC NC NC NC PTE12/LL WU_P26 NC PTE16 PTE17 PTE14 PTE15 L NC NC NC M VDDIO1 VSS NC NC NC PTB29 0 PTB16/ LLWU_P10 PTB28/LL WU_P14 PTB30 NC PTB31 NC NC NC PTE4 NC NT PTE3/ LL WU_P22 N PTC0 PTC7/ LL WU_P15 VSS USB0_V SS NT PTC29 NT PTD4 NT PTD5 P NC NC PTC8 NC VDDIO1 PTC27 PTD1 NC VSS PTD7 R T U PTE29 VBAT NC PTB21 NC PTE28 VSS LLWU_P11 PTC1 NC NC NC NC TAMPER2 VSS NC NC PTB22/LL PTB24 WU_P12 TAMPER1/ TAMPER0 RTC_CLKOUT RTC_WAKEUP VDD_CO RE PTB18 PTB20 NC 15 PTC12/LL NC PTC9/ LL PTC10 WU_P18 WU_P16 PTC11/LLVDD_DC VOUT_ LN AUX WU_P17 DC VDDIO1 NC PTC30 NC VDDIO1 NC VOUT_C ORE NC PTD0 PTD3 PTD8/ LL WU_P19 NC PTE10/LL WU_P25 PTE11 NT PTD10/LL PTE2 WU_P20 PTD11 PTE27 VSS NC VSS USB0_D USB0_D VOUT33 P M NC NC VDDIO2 PTE22 VDD_CO VDD_CO PTE9/ LL PTE13 RE RE WU_P24 N NC PTE8/ LL WU_P23 NC P PTE0 VSSA PTE1/ LL WU_P21 PTE5 R NC VREF_O UT VSSA DAC0_O UT T U NC VDD_DC DC LP GND NC PTC28 NC PTD2 NC PTD6 NC PTD9 NC VREGIN NC VDDA VREFH VREFL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Figure 7. VFBGA Pinout Diagram 3.5 Package dimensions The following figures show the dimensions of the package options for the devices supported by this document. K32L3A, Rev. 1, 09/2019 83 NXP Semiconductors Electrical characteristics Figure 8. 176 VFBGA package dimension 4 Electrical characteristics 4.1 Terminology and guidelines 84 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics 4.1.1 Definitions Key terms are defined in the following table: Term Rating Definition A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip Operating behavior A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions Typical value A specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed. K32L3A, Rev. 1, 09/2019 85 NXP Semiconductors Electrical characteristics 4.1.2 Examples EX AM PL E Operating rating: EX AM PL E Operating requirement: EX AM PL E Operating behavior that includes a typical value: 4.1.3 Typical-value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDDIOx Supply voltage 3.3 V 86 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics 4.1.4 Relationship between ratings and operating requirements .) ) ) ing rat e Op in. (m g tin ra in. t (m ax t (m n me rat e Op ing ire qu re ing rat e Op .) en rem re i qu rat e Op ing g tin ra ax (m Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) g lin nd Ha n.) mi g( in rat g( ng li nd Ha in rat .) x ma Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ ∞ Handling (power off) 4.1.5 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 4.2 Ratings 4.2.1 Thermal handling ratings Table 56. Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. K32L3A, Rev. 1, 09/2019 87 NXP Semiconductors Electrical characteristics 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.2.2 Moisture handling ratings Table 57. Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.2.3 ESD handling ratings Table 58. ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model –2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model –500 +500 V 2 Latch-up current at ambient temperature of 105 °C –100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 4.2.4 Voltage and current operating ratings Table 59. Voltage and current operating ratings Symbol Description Min. Max. Unit VDD_DCDC MCU regulator input -0.3 3.6 V VDDIOx Digital supply voltage -0.3 3.6 V Internal digital logic supply voltage -0.3 1.47 V VDDIO - 0.3 VDDIO + 0.3 V -0.3 3.6 V — 120 mA VDD_CORE VDDA Analog supply voltage VBAT RTC supply voltage IDD Digital supply current VIO IO pin input voltage -0.3 VDDIOx + 0.3 V Instantaneous maximum current single pin limit (applies to all port pins) -25 25 mA ID Note 1 Table continues on the next page... 88 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 59. Voltage and current operating ratings (continued) Symbol Description Min. Max. Unit VUSB_DP USB_DP input voltage -0.3 3.63 V VUSB_DM USB_DM input voltage -0.3 3.63 V USB regulator input -0.3 6 V VREGIN Note 1. The VDDIO here is the Maximum of VDDIO1 and VDDIO2. 4.2.4.1 Required Power-On-Reset (POR) Sequencing • VDDIO1 and VDD_CORE VDDIO1 Operating 1.71 V - 3.6 V VDD_CORE 1.14 V - 1.32 V 1.14 V 1V 0V 700 µs Max. 700 µs Max. VDD_CORE can be powered up either with or after VDDIO1. VDD_CORE on power up at any time must not exceed VDDIO1 voltage VDD_CORE must rise from 1.0 V to 1.14 V at the rate of 242 V/s (140 mV/580 µs) or faster. VDDA = Max (VDDIO1, VDDIO2) Figure 9. VDD_CORE/ VDDIO1 Powering sequence 4.3 General 4.3.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. K32L3A, Rev. 1, 09/2019 89 NXP Semiconductors Electrical characteristics Input Signal High Low VIH 80% 50% 20% Midpoint1 VIL Fall Time Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 10. Input signal measurement reference All digital I/O switching characteristics, unless otherwise specified, assume that the output pins have the following characteristics. • CL=30 pF loads • Slew rate disabled • Normal drive strength 4.3.2 Nonswitching electrical specifications 4.3.2.1 Voltage and current operating requirements NOTE The term ‘VDDIO’ in the following table refers to the associated supply rail (either VDDIO1 or VDDIO2) of an input or output. Table 60. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD_DCDC(R Supply of DCDC and AUXREG. UN) 2.1 3.6 V VDD_CORE(R Core and digital logic supply voltage for RUN UN) mode 1.14 1.32 V VDD_CORE(H Core and digital logic supply voltage for HSRUN SRUN) mode 1.33 1.47 V VDDIO1 Supply for Ports A, B, C, D and CORELDO 1.71 3.6 V VDDIO2 Supply for Port E 1.71 3.6 V Analog supply voltage 1.71 3.6 V VDDIO-to-VDDA differential voltage –100 100 mV –0.1 0.1 V VDDA VDDIO – VDDA VSS – VSSA VSS-to-VSSA differential voltage VIH Notes 1 2 Input high voltage Table continues on the next page... 90 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 60. Voltage and current operating requirements (continued) Symbol VIL Description Min. Max. Unit • 2.7 V ≤ VDDIO ≤ 3.6 V 0.7 × VDDIO — V • 1.71 V ≤ VDDIO ≤ 2.7 V 0.75 × VDDIO — V • 2.7 V ≤ VDDIO ≤ 3.6 V — 0.35 × VDDIO V • 1.71 V ≤ VDDIO ≤ 2.7 V — 0.3 × VDDIO V 0.06 × VDDIO — V -5 — mA -25 — mA Input low voltage VHYS Input hysteresis IICIO IO pin negative DC injection current — single pin • VIN < VSS-0.3V IICcont Notes Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins • Negative current injection 3 VODPU Open drain pullup voltage level VDDIO VDDIO V VRAM VDD_CORE voltage required to retain RAM 1.14 — V 4 1. The cores will still execute code in RUN if the core voltage is greater than 1.32 V. However full chip functionality is not guaranteed when in RUN mode and the core voltage is greater than 1.32 V. The core voltage must only be elevated to greater than 1.32 V when transitioning to HSRUN mode. 2. The VDDIO here is the Maximum of VDDIO1 and VDDIO2 3. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to the corresponding VDDIO supply. If VIN greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|. 4. Open drain outputs must be pulled to whichever supply voltage corresponds to that IO, either VDDIO1 or VDDIO2 as appropriate. 4.3.2.2 HVD, LVD and POR operating requirements Table 61. VDDIO1 supply HVD, LVD and POR Operating Ratings Characteristic Symbol Min Typ Max Unit High Voltage Detect (High Trip Point) VHVDH — 3.72 — V High Voltage Detect (Low Trip Point) VHVDL — 3.46 — V POR re-arm voltage VPOR 0.8 1.1 1.5 V Falling low-voltage detect threshold -- high range (LVDV=01) VLVDH 2.48 2.56 2.64 V VLVW1 2.62 2.70 2.78 VLVW2 2.72 2.80 2.88 Low-voltage warning thresholds -- high range Level 1 falling (LVWV=00) Level 2 falling (LVWV=01) V Table continues on the next page... K32L3A, Rev. 1, 09/2019 91 NXP Semiconductors Electrical characteristics Table 61. VDDIO1 supply HVD, LVD and POR Operating Ratings (continued) Characteristic Symbol Min Typ Max Unit Low-voltage inhibit reset/recover hysteresis -- high range VHYS — 60 — mV Falling low-voltage detect threshold -- low range (LVDV=00) VLVDL 1.54 1.60 1.66 V VLVW1 1.74 1.80 1.86 VLVW2 1.84 1.90 1.96 Low-voltage inhibit reset/recover hysteresis -- low range VHYS — 40 — mV Bandgap voltage reference voltage VBG 0.97 1.00 1.03 V Low-voltage warning thresholds -- low range Level 1 falling (LVWV=00) Level 2 falling (LVWV=01) V NOTE There is no LVD circuit for VDDIO2 domain Table 62. Low Voltage Detect of VDD_CORE supply Characteristic Symbol Low Voltage Detect of VDD_CORE supply1 VLVD_VDD_CORE Min 0.95 Typ 1 Max 1.08 Unit V 1. There is no High Voltage Detect on VDD_CORE 4.3.2.3 Voltage and current operating behaviors NOTE The term 'VDDIO' in the following table refers to the associated supply rail (either VDDIO1 or VDDIO2) of an input or output. Table 63. Voltage and current operating behaviors Symbol VOH Description Min. Typ. Max. Unit Output high voltage — Normal drive pad • 2.7 V ≤ VDDIO ≤ 3.6 V, IOH = –5 mA • 1.71 V ≤ VDDIO ≤ 2.7 V, IOH = –2.5 mA Notes 1 VDDIO – 0.5 — V — V VDDIO – 0.5 VOH Output high voltage — High drive pad • 2.7 V ≤ VDDIO ≤ 3.6 V, IOH = –20 mA • 1.71 V ≤ VDDIO ≤ 2.7 V, IOH = –10 mA 1 VDDIO – 0.5 — V — V VDDIO – 0.5 Table continues on the next page... 92 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 63. Voltage and current operating behaviors (continued) Symbol Description Min. IOHT Output high current total for all ports VOL Output low voltage — Normal drive pad VOL Typ. — Max. Unit 100 mA Notes 1 • 2.7 V ≤ VDDIO ≤ 3.6 V, IOL = 5 mA — 0.5 V • 1.71 V ≤ VDDIO ≤ 2.7 V, IOL = 2.5 mA — 0.5 V Output low voltage — High drive pad 1 • 2.7 V ≤ VDDIO ≤ 3.6 V, IOL = 20 mA — 0.5 V • 1.71 V ≤ VDDIO ≤ 2.7 V, IOL = 10 mA — 0.5 V Output low current total for all ports — 100 mA IIN Input leakage current (per pin) for full temperature range — 1 μA 2 IIN Input leakage current (per pin) at 25 °C — 0.025 μA 2 IIN Input leakage current (total all pins) for full temperature range — 41 μA 2 IOZ Hi-Z (off-state) leakage current (per pin) — 1 μA RPU Internal pullup resistors 20 50 kΩ IOLT 3 1. PTC[12:7], PTD[11:8], and PTE[11:10] I/O have both high drive and normal drive capability selected by the associated PORTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. PTD[7:2], PTE[12,9:8,5:1], PTB[2,0] are also fast pins. 2. Measured at VDDIO = 3.6 V 3. Measured at VDDIO supply voltage = VDDIO min and Vinput = VSS 4.3.2.4 Power mode transition operating behaviors All specifications in the following table assume this clock configuration with only CPU0 in Run mode and CPU1 disabled: • CPU and system clocks = 48 MHz • Bus and flash clock = 24 MHz • SCG configured in FIRC mode; peripheral functional clocks from FIRCDIV3_CLK and USB clock from FIRCDIV1_CLK Table 64. Power mode transition operating behaviors Symbol tPOR Description After a POR event, amount of time from the point VDDIO1 reaches 1.71 V and VDD_CORE reaches 1.14 V to execution of the first instruction across the operating temperature range of the chip. Min. Typ. Max. Unit Notes — 300 — μs 1 Table continues on the next page... K32L3A, Rev. 1, 09/2019 93 NXP Semiconductors Electrical characteristics Table 64. Power mode transition operating behaviors (continued) Symbol Description • VLLS0/VLLS1 → RUN Min. Typ. Max. Unit — 272 353.6 μs — 13.1 17.0 μs — 7.2 9.4 μs — 3.5 4.6 μs — 3.5 4.6 μs Notes • VLLS2/VLLS3 → RUN • LLS → RUN • VLPS → RUN • STOP → RUN 1. Normal boot (FTFE_FOPT[BOOT_MODE]=1 and FTFE_FOPT[BOOT_CLK]=1). 4.3.2.5 Power consumption operating behaviors 4.3.2.5.1 Power consumption operating behaviors in regulator mode The current parameters in the table below are derived from • code executing a while(1) loop from flash, unless otherwise noted • Core and system clocks running at 48 MHz, bus and flash clocks running at 24 MHz • LPFLL at 48 MHz • VDD_DCDC connected to VDDIO1 and VDDIO2 • Core 0 is CM4 core and core 1 is CM0+ core Table 65. Power consumption operating behaviors in regulator mode Symbol IDD_DCDC Description Active core in RUN Inactive core in STOP while (1) loop All peripheral clocks disabled Execution from flash Temp (°C) 25 70 85 105 Active core LDO (VDD_DCDC=3V) DCDC (VDD_DCDC=3.3V ) Typ. Max Typ. Max 0 5.865 6.452 3.492 3.842 1 3.410 3.751 2.503 2.753 0&1 7.397 8.136 4.122 4.535 0 6.088 6.697 3.629 3.992 1 3.592 3.951 2.619 2.881 0&1 7.675 8.443 4.289 4.718 0 6.406 7.046 3.786 4.164 1 3.813 4.195 2.736 3.009 0&1 8.069 8.876 4.475 4.923 0 7.086 7.794 3.068 4.612 Unit Notes mA Table continues on the next page... 94 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 65. Power consumption operating behaviors in regulator mode (continued) Symbol IDD_DCDC Description Active core in RUN Inactive core in STOP while (1) loop All peripheral clocks enabled Execution from flash Temp (°C) 25 70 85 105 IDD_DCDC Active core in RUN Inactive core in STOP while (1) loop Compute Operation Execution from flash 25 70 85 105 IDD_DCDC Active core in RUN Inactive core in STOP Coremark benchmark code Compute Operation Execution from flash 25 70 85 105 Active core LDO (VDD_DCDC=3V) DCDC (VDD_DCDC=3.3V ) Typ. Max Typ. Max 1 4.343 4.777 3.068 3.375 0&1 8.899 9.789 4.948 5.443 0 7.536 8.290 4.177 4.595 1 4.767 5.244 3.042 3.347 0&1 10.275 11.302 5.322 5.854 0 7.770 8.547 4.324 4.756 1 4.955 5.450 3.169 3.486 0&1 10.579 11.637 5.519 6.071 0 8.094 8.903 4.480 4.928 1 5.202 5.722 3.527 3.880 0&1 10.991 12.090 5.715 6.287 0 8.784 9.663 4.903 5.393 1 5.762 6.338 3.643 4.007 0&1 11.881 13.070 6.223 6.845 0 5.246 5.771 3.199 3.519 1 2.822 3.104 2.230 2.453 0&1 6.663 7.329 3.779 4.157 0 5.459 6.005 3.335 3.669 1 2.988 3.286 2.336 2.569 0&1 6.941 7.636 3.940 4.334 0 5.776 6.354 3.487 3.836 1 3.219 3.541 2.452 2.697 0&1 7.330 8.063 4.122 4.534 0 6.451 7.096 3.884 4.272 1 3.743 4.118 2.784 3.063 0&1 8.160 8.976 4.594 5.053 0 5.345 5.879 3.499 3.849 1 4.728 5.200 3.000 3.299 0&1 8.872 9.759 4.874 5.362 0 5.578 6.135 3.630 3.993 1 4.815 5.296 3.110 3.421 0&1 8.986 9.885 5.050 5.555 0 6.211 6.832 3.742 4.116 1 5.062 5.568 3.107 3.417 0&1 9.542 10.496 5.0616 5.568 0 6.711 7.382 4.119 4.531 Unit Notes mA mA mA Table continues on the next page... K32L3A, Rev. 1, 09/2019 95 NXP Semiconductors Electrical characteristics Table 65. Power consumption operating behaviors in regulator mode (continued) Symbol IDD_DCDC Description Active core in high speed RUN Inactive core in STOP while (1) loop. All peripheral clocks disabled. Execution from flash Core VDD = 1.4 V. Core clock = 72 MHz Temp (°C) 25 70 85 105 IDD_DCDC Active core in high speed RUN Inactive core in STOP while (1) loop All peripheral clocks enabled Execution from flash Core Vdd = 1.4V Core clock = 72MHz 25 70 85 105 IDD_DCDC Active core in high speed RUN Inactive core in STOP, Compute Operation Execution from flash Core Vdd = 1.4V Core clock = 72MHz 25 70 85 105 Active core LDO (VDD_DCDC=3V) DCDC (VDD_DCDC=3.3V ) Typ. Max Typ. Max 1 5.657 6.222 3.444 3.789 0&1 10.212 11.234 5.654 6.219 0 10.218 11.240 5.975 6.573 1 5.338 5.872 3.562 3.919 0&1 12.814 14.096 7.210 7.931 0 10.563 11.620 6.183 6.801 1 5.660 6.226 3.732 4.105 0&1 13.199 14.518 7.438 8.182 0 11.073 12.181 6.425 7.068 1 6.118 6.730 3.947 4.342 0&1 13.691 15.060 7.685 8.454 0 12.068 13.275 7.053 7.759 1 7.087 7.796 4.534 4.988 0&1 14.687 16.156 8.338 9.172 0 12.819 14.101 7.215 7.937 1 7.439 8.183 4.512 4.963 0&1 17.301 19.031 9.420 10.362 0 13.214 14.535 7.448 8.193 1 7.792 8.571 4.712 5.183 0&1 17.755 19.531 9.703 10.673 0 13.736 15.109 7.705 8.476 1 8.270 9.097 4.932 5.425 0&1 18.249 20.073 9.975 10.972 0 14.777 16.255 8.373 9.211 1 9.285 10.214 5.554 6.109 0&1 19.331 21.264 10.688 11.757 0 9.474 10.422 5.592 6.152 1 4.635 5.098 3.205 3.525 0&1 11.935 13.128 6.752 7.428 0 9.829 10.812 5.795 6.374 1 4.966 5.463 3.373 3.711 0&1 12.315 13.546 6.980 7.678 0 10.319 11.350 6.032 6.635 1 5.394 5.933 3.584 3.942 0&1 12.807 14.087 7.226 7.949 0 11.309 12.440 6.655 7.320 Unit Notes mA mA mA Table continues on the next page... 96 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 65. Power consumption operating behaviors in regulator mode (continued) Symbol IDD_DCDC Description Active core in high speed RUN Inactive core in STOP Coremark benchmark code; Execution from flash Core Vdd = 1.4V Core clock = 72MHz Temp (°C) 25 70 85 105 IDD_DCDC Active core in WAIT Inactive core in STOP All peripheral clocks disabled 25 70 85 105 IDD_DCDC Active core in WAIT Inactive core in STOP All peripheral clocks enabled 25 70 85 105 Active core LDO (VDD_DCDC=3V) DCDC (VDD_DCDC=3.3V ) Typ. Max Typ. Max 1 6.363 6.999 4.165 4.582 0&1 13.813 15.194 7.859 8.645 0 10.232 11.255 5.963 6.559 1 8.033 8.836 4.699 5.169 0&1 15.751 17.326 8.647 9.512 0 10.347 11.382 6.265 6.892 1 7.881 8.836 4.683 5.152 0&1 16.036 17.640 9.005 9.905 0 10.878 11.965 6.352 6.987 1 8.394 9.234 5.074 5.581 0&1 16.714 18.386 8.937 9.830 0 12.123 13.335 6.979 7.677 1 9.735 10.709 5.552 6.108 0&1 17.831 19.614 9.812 10.793 0 2.732 3.005 2.103 2.461 1 2.388 2.626 1.103 2.31 0&1 3.231 3.554 2.43 2.675 0 2.938 3.232 2.359 2.595 1 2.553 2.809 2.214 2.436 0&1 3.487 3.836 2.579 2.837 0 3.234 3.557 2.506 2.756 1 2.784 3.063 2.326 2.558 0&1 3.853 4.239 2.746 3.020 0 3.903 4.332 2.893 3.211 1 3.740 3.667 2.653 2.945 0&1 4.672 5.186 3.203 3.556 0 4.398 4.838 2.902 3.193 1 3.740 4.114 2.637 3.901 0&1 6.100 6.710 3.587 3.946 0 4.610 5.071 3.034 3.337 1 3.921 4.313 2.754 3.029 0&1 6.382 7.021 3.754 4.129 0 4.917 5.409 3.175 3.493 1 4.168 4.585 2.876 3.163 0&1 6.770 7.447 2.935 4.328 0 5.587 6.201 3.578 3.972 Unit Notes mA mA mA Table continues on the next page... K32L3A, Rev. 1, 09/2019 97 NXP Semiconductors Electrical characteristics Table 65. Power consumption operating behaviors in regulator mode (continued) Symbol IDD_DCDC IDD_DCDC Description Both cores in PSTOP2 Flash disabled Active core in VLPR Inactive core in VLPS while (1) loop All peripheral clocks disabled Execution from flash Slow IRC = 8 MHz Core = 8 MHz, bus = 4 MHz Flash = 1 MHz Temp (°C) Typ. Max 1 4.722 5.242 3.223 3.578 0&1 7.625 8.464 4.423 4.909 25 -- 1.469 2.423 -- -- 70 -- 1.724 2.879 -- -- 85 -- 2.110 3.481 -- -- 105 -- 2.968 4.779 -- -- 25 0 0.813 0.894 -- -- 1 0.448 0.493 -- -- 0&1 1.017 1.118 -- -- 0 0.870 0.957 -- -- 1 0.498 0.548 -- -- 0&1 1.076 1.184 -- -- 0 0.941 1.036 -- -- 1 0.570 0.628 -- -- 0&1 1.149 1.264 -- -- 0 1.113 1.224 -- -- 1 0.741 0.815 -- -- 0&1 1.324 1.457 -- -- 0 1.039 1.143 -- -- 1 0.638 0.996 -- -- 0&1 1.406 1.5466 -- -- 0 1.097 1.206 -- -- 70 25 70 85 105 IDD_DCDC Active core in VLPR Inactive core in VLPS while (1) loop Compute Operation Execution from flash Slow IRC = 8 MHz Core = 8 MHz, bus = 4 MHz Flash = 1 MHz DCDC (VDD_DCDC=3.3V ) Max 105 Active core in VLPR Inactive core in VLPS while (1) loop All peripheral clocks enabled Execution from flash Slow IRC = 8 MHz Core = 8 MHz, bus = 4 MHz Flash = 1 MHz LDO (VDD_DCDC=3V) Typ. 85 IDD_DCDC Active core 25 70 1 0.690 1.132 -- -- 0&1 1.467 1.613 -- -- 0 1.174 1.291 -- -- 1 0.763 1.244 -- -- 0&1 1.539 1.692 -- -- 0 1.344 1.479 -- -- 1 0.932 1.482 -- -- 0&1 1.714 1.886 -- -- 0 0.785 0.864 -- -- 1 0.425 0.663 -- -- 0&1 0.988 1.086 -- -- 0 0.838 0.921 -- -- 1 0.473 0.776 -- -- 0&1 1.048 1.153 -- -- Unit Notes mA mA mA mA Table continues on the next page... 98 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 65. Power consumption operating behaviors in regulator mode (continued) Symbol Description Temp (°C) 85 105 IDD_DCDC Active core in VLPR Inactive core in VLPS Coremark benchmark code Compute Operation Execution from flash Slow IRC = 8 MHz Core = 8 MHz, bus = 4 MHz Flash = 1 MHz 25 70 85 105 IDD_DCDC Active core in VLPW Inactive core in VLPS All peripheral clocks disabled Flash disabled Slow IRC = 8 MHz Core = 8 MHz, bus = 4 MHz Flash = 1 MHz 25 70 85 105 4.3.2.5.2 Active core LDO (VDD_DCDC=3V) DCDC (VDD_DCDC=3.3V ) Typ. Max Typ. Max 0 0.916 1.008 -- -- 1 0.543 0.886 -- -- 0&1 1.124 1.236 -- -- 0 1.084 1.192 -- -- 1 0.711 1.131 -- -- 0&1 1.294 1.423 -- -- 0 0.898 0.988 -- -- 1 0.753 1.175 -- -- 0&1 1.321 1.453 -- -- 0 0.900 0.990 -- -- 1 0.751 1.231 -- -- 0&1 1.457 1.602 -- -- 0 0.976 1.074 -- -- 1 0.848 1.382 -- -- 0&1 1.569 1.726 -- -- 0 1.154 1.270 -- -- 1 1.054 1.676 -- -- 0&1 1.704 1.875 -- -- 0 0.349 0.384 -- -- 1 0.306 0.477 -- -- 0&1 0.411 0.453 -- -- 0 0.397 0.437 -- -- 1 0.354 0.580 -- -- 0&1 0.456 0.502 -- -- 0 0.470 0.517 -- -- 1 0.424 0.692 -- -- 0&1 0.530 0.583 -- -- 0 0.637 0.732 -- -- 1 0.593 0.942 -- -- 0&1 0.704 0.809 -- -- Unit Notes mA mA Power consumption operating behaviors in bypass mode The current parameters in the table below are derived from • code executing a while(1) • loop from flash, unless otherwise noted K32L3A, Rev. 1, 09/2019 99 NXP Semiconductors Electrical characteristics • Core and system clocks running at 48 MHz, bus and flash clocks running at 24 MHz • LPFLL at 48MHz • Core 0 is the CM4 core and core 1 is the CM0+ core Table 66. Power consumption operating behaviors in bypass mode Symbol Description IDD Active core in RUN Inactive core in STOP while (1) loop All peripheral clocks disabled Execution from flash Temp (°C) Active core 25 70 85 105 IDD Active core in RUN Inactive core in STOP while (1) loop All peripheral clocks enabled Execution from flash 25 70 85 105 IDD Active core in RUN Inactive core in STOP while (1) loop Compute Operation Execution from flash 25 70 85 Core VDDIO1 VDDIO2 Unit Typ. Max Typ. Max Typ. Max 0 5.060 5.566 0.194 0.214 0.0000161 0.0000177 1 2.860 3.1460 0.194 0.214 0.0000148 0.0000163 0&1 6.365 7.002 0.194 0.214 0.0000162 0.0000179 0 5.275 5.803 0.200 0.220 0.000209 0.000230 1 3.020 3.322 0.200 0.220 0.000210 0.000231 0&1 6.605 7.266 0.200 0.220 0.000209 0.000230 0 5.460 6.006 0.204 0.225 0.000476 0.000524 1 3.205 3.526 0.204 0.225 0.000474 0.000522 0&1 6.870 7.557 0.204 0.225 0.000476 0.000524 0 5.970 6.567 0.214 0.235 0.00138 0.00151 1 3.620 3.982 0.214 0.236 0.00137 0.00151 0&1 7.475 8.223 0.214 0.235 0.00137 0.00151 0 6.485 7.134 0.194 0.214 0.0000153 0.0000168 1 4.090 4.499 0.194 0.214 0.0000151 0.0000166 0&1 8.685 9.554 0.194 0.213 0.0000154 0.0000170 0 6.665 7.332 0.200 0.220 0.000210 0.000231 1 4.260 4.686 0.200 0.220 0.000209 0.000230 0&1 8.915 9.807 0.200 0.220 0.000210 0.000231 0 6.885 7.574 0.204 0.225 0.000474 0.000521 1 4.430 4.873 0.204 0.225 0.000473 0.000520 0&1 9.180 10.098 0.204 0.225 0.000473 0.000520 0 7.355 8.091 0.214 0.235 0.00137 0.00151 1 4.870 5.357 0.214 0.236 0.00137 0.00151 0&1 9.755 10.731 0.214 0.235 0.00138 0.00151 0 4.570 5.027 0.138 0.152 0.0000151 0.0000166 1 2.360 2.596 0.138 0.152 0.0000151 0.0000166 0&1 5.795 6.374 0.138 0.152 0.0000169 0.0000186 0 4.770 5.247 0.144 0.158 0.000211 0.000232 1 2.525 2.778 0.144 0.158 0.000210 0.000231 0&1 6.035 6.639 0.144 0.158 0.000209 0.000230 0 4.965 5.462 0.147 0.162 0.000472 0.000520 1 2.700 2.970 0.147 0.162 0.000471 0.000518 mA mA mA Table continues on the next page... 100 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 66. Power consumption operating behaviors in bypass mode (continued) Symbol Description Temp (°C) 105 IDD Active core in RUN Inactive core in STOP Coremark benchmark code Compute Operation Execution from flash 25 70 85 105 IDD Active core in high speed RUN Inactive core in STOP while (1) loop All peripheral clocks disabled Execution from flash Core Vdd = 1.4V Core clock = 72MHz 25 Active core 105 Active core in high speed RUN Inactive core in STOP while (1) loop All peripheral clocks enabled Execution from flash Core Vdd = 1.4V Core clock = 72MHz 25 70 85 Unit Typ. Max Typ. Max 0&1 6.290 6.919 0.147 0.162 0.000471 0.000519 0 5.495 6.045 0.157 0.173 0.00137 0.00150 1 3.130 3.443 0.157 0.173 0.00137 0.00151 0&1 6.910 7.601 0.1567 0.173 0.00138 0.00151 0 5.210 5.731 0.138 0.152 0.0000155 0.0000171 1 3.820 4.202 0.138 0.152 0.0000145 0.0000160 0&1 8.330 9.163 0.138 0.152 0.0000142 0.0000156 0 5.645 6.210 0.144 0.158 0.000210 0.00023152 1 4.000 4.400 0.144 0.158 0.000210 0.000231 0&1 8.730 9.603 0.144 0.158 0.000208 0.000229 0 5.810 6.391 0.147 0.162 0.000470 0.000517 1 4.080 4.488 0.147 0.162 0.000470 0.000517 0&1 9.095 10.005 0.147 0.162 0.000472 0.000519 0 6.450 7.095 0.157 0.173 0.00138 0.00151 1 4.620 5.082 0.157 0.173 0.00137 0.00151 0&1 9.710 10.681 0.157 0.173 0.00138 0.00152 0 9.205 10.126 0.534 0.587 0.0000155 0.0000170 1 4.815 5.297 0.200 0.220 0.0000148 0.0000163 11.660 12.826 0.534 0.587 0.0000157 0.0000173 0 9.545 10.500 0.544 0.598 0.000210 0.000231 1 5.160 5.676 0.207 0.228 0.000211 0.000232 12.025 13.228 0.544 0.598 0.000211 0.000232 0 9.880 10.868 0.549 0.604 0.000470 0.000517 1 5.515 6.067 0.211 0.232 0.000468 0.000515 0&1 12.360 13.596 0.549 0.603 0.000474 0.000521 0 10.720 11.792 0.560 0.616 0.00134 0.00147 6.355 1 IDD VDDIO2 Max 0&1 85 VDDIO1 Typ. 0&1 70 Core 6.991 0.221 0.243 0.00133 0.00146 0&1 13.200 14.520 0.560 0.616 0.00134 0.00147 0 11.670 12.837 0.534 0.587 0.0000161 0.0000178 1 6.850 7.535 0.200 0.220 0.0000154 0.0000169 0&1 15.885 17.474 0.534 0.587 0.0000159 0.0000175 0 12.040 13.244 0.544 0.598 0.000212 0.000233 1 7.210 7.931 0.207 0.227 0.000211 0.000232 0&1 16.255 17.881 0.544 0.598 0.000212 0.000233 0 12.385 13.624 0.549 0.603 0.000470 0.000517 1 7.580 8.338 0.211 0.232 0.000472 0.000520 16.615 18.277 0.549 0.603 0.000472 0.000519 0&1 mA mA mA Table continues on the next page... K32L3A, Rev. 1, 09/2019 101 NXP Semiconductors Electrical characteristics Table 66. Power consumption operating behaviors in bypass mode (continued) Symbol Description Temp (°C) Active core 105 0 1 0&1 IDD Active core in high speed RUN Inactive core in STOP while (1) loop Compute Operation Execution from flash Core Vdd = 1.4V Core clock = 72MHz 25 Active core in high speed RUN Inactive core in STOP Coremark benchmark code Compute Operation Execution from flash Core Vdd = 1.4V Core clock = 72MHz 25 105 Active core in WAIT Inactive core in STOP All peripheral clocks disabled 25 70 85 105 Max 13.250 14.575 0.560 0.616 0.00134 0.00147 8.460 9.306 0.221 0.243 0.00134 0.00147 0.616 0.00135 0.00148 0.525 0.0000150 0.0000165 1 4.180 4.598 0.145 0.159 0.0000155 0.0000171 10.885 11.974 0.478 0.526 0.0000162 0.0000178 0 8.885 9.774 0.487 0.536 0.000209 0.000230 1 4.525 4.978 0.150 0.165 0.000210 0.000232 11.245 12.370 0.488 0.536 0.000211 0.000232 9.220 10.142 0.492 0.541 0.000469 0.000516 4.880 0 5.368 0.154 0.169 0.000467 0.000514 0&1 11.585 12.744 0.492 0.541 0.000470 0.000517 0 10.080 11.088 0.503 0.553 0.00134 0.00147 1 5.725 6.298 0.164 0.180 0.00134 0.00147 12.450 13.695 0.503 0.553 0.00134 0.00147 0 9.725 10.698 0.478 0.526 0.0000153 0.0000168 1 6.955 7.651 0.144 0.159 0.0000156 0.0000171 14.710 16.181 0.478 0.525 0.0000167 0.0000183 0 9.235 10.159 0.487 0.536 0.000210 0.000231 1 7.840 8.624 0.150 0.165 0.000210 0.000231 15.015 16.517 0.487 0.536 0.000214 0.000235 0 9.375 10.313 0.492 0.541 0.000469 0.000516 1 7.690 8.459 0.154 0.169 0.000466 0.000513 0&1 15.305 16.836 0.492 0.541 0.000474 0.000521 0 11.035 12.139 0.503 0.553 0.00135 0.00148 1 9.015 9.917 0.164 0.180 0.00134 0.00147 0&1 IDD Typ. 0.478 0&1 85 Max 0.560 0&1 70 Typ. 9.400 0&1 IDD Unit 8.545 1 105 Max VDDIO2 17.495 19.245 0&1 85 Typ. VDDIO1 0 0&1 70 Core 15.620 17.182 0.503 0.553 0.00135 0.00148 0 2.225 2.448 0.194 0.214 0.0000152 0.0000167 1 1.900 2.090 0.194 0.214 0.0000149 0.0000164 0&1 2.680 2.948 0.194 0.214 0.0000163 0.0000179 0 2.435 2.679 0.200 0.220 0.000208 0.000229 1 2.060 2.27 0.200 0.220 0.000207 0.000227 0&1 2.935 3.229 0.200 0.220 0.000209 0.000230 0 2.645 2.910 0.204 0.225 0.000467 0.000513 1 2.225 2.448 0.204 0.225 0.000466 0.000513 0&1 3.200 3.520 0.204 0.225 0.000465 0.000511 0 3.190 3.541 0.214 0.238 0.00137 0.00151 mA mA mA Table continues on the next page... 102 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 66. Power consumption operating behaviors in bypass mode (continued) Symbol Description IDD Active core in WAIT Inactive core in STOP All peripheral clocks disabled Flash disabled Temp (°C) IDD Active core in VLPR Inactive core in VLPS while (1) loop All peripheral clocks disabled Execution from flash Slow IRC = 8 MHz Core = 8 MHz, bus = 4 MHz Flash = 1 MHz Active core in VLPR Inactive core in VLPS while (1) loop All peripheral clocks enabled Execution from flash Slow IRC = 8 MHz Core = 8 MHz, bus = 4 MHz Flash = 1 MHz VDDIO2 Unit Typ. Max Typ. Max 1 2.665 2.958 0.214 0.238 0.00137 0.00152 0&1 3.880 4.307 0.214 0.238 0.00137 0.00152 0 3.755 4.131 0.194 0.214 0.0000149 0.0000164 1 3.155 3.471 0.194 0.214 0.0000158 0.0000173 0&1 5.245 5.770 0.194 0.214 0.0000158 0.0000173 0 3.955 4.351 0.200 0.220 0.000209 0.000229 1 3.320 3.652 0.200 0.220 0.000210 0.000231 0&1 5.500 6.050 0.200 0.2200 0.000210 0.000231 0 4.155 4.571 0.204 0.225 0.000465 0.000512 1 3.500 3.850 0.204 0.225 0.000468 0.000515 0&1 5.745 6.320 0.204 0.225 0.000468 0.000514 0 4.690 5.206 0.214 0.238 0.00137 0.00152 1 3.940 4.373 0.214 0.238 0.00137 0.00152 0&1 6.405 7.110 0.214 0.237 0.00137 0.00152 25 -- 0.695 1.147 0.518 0.855 0.0000153 0.0000252 70 -- 0.961 1.605 0.547 0.913 0.000208 0.000347 85 -- 1.235 2.038 0.568 0.938 0.000466 0.000768 105 -- 1.950 3.140 0.621 1.000 0.00137 0.00221 25 0 0.765 0.842 0.0562 0.0618 0.0000131 0.0000144 1 0.397 0.437 0.0562 0.0618 0.0000145 0.0000159 0&1 0.967 1.064 0.0562 0.0618 0.0000142 0.0000157 0 0.820 0.902 0.0597 0.0657 0.000209 0.000229 1 0.449 0.494 0.0597 0.0657 0.000207 0.000228 0&1 1.025 1.128 0.0597 0.0657 0.000208 0.000228 0 0.874 0.961 0.063 0.0693 0.000471 0.000518 1 0.503 0.553 0.0630 0.0693 0.000468 0.000515 0&1 1.080 1.188 0.0631 0.0694 0.000468 0.000515 0 1.014 1.115 0.0726 0.0799 0.00136 0.00150 1 0.644 0.708 0.0727 0.0799 0.00136 0.00150 0&1 1.220 1.342 0.0727 0.0799 0.00136 0.00150 0 0.990 1.089 0.0562 0.0618 0.0000143 0.0000157 1 0.590 0.920 0.0562 0.0876 0.0000147 0.0000229 0&1 1.350 1.485 0.0562 0.0618 0.0000150 0.0000165 0 1.049 1.154 0.0597 0.0657 1 0.000207 0.000227 1 0.643 1.055 0.0597 0.0980 0.000208 0.000342 0&1 1.410 1.551 0.0597 0.0657 0.000209 0.000230 25 70 70 85 105 IDD VDDIO1 Max 105 Both cores in PSTOP2 Flash disabled Core Typ. 85 IDD Active core 25 70 mA mA mA mA Table continues on the next page... K32L3A, Rev. 1, 09/2019 103 NXP Semiconductors Electrical characteristics Table 66. Power consumption operating behaviors in bypass mode (continued) Symbol Description Temp (°C) Active core 85 105 IDD Active core in VLPR Inactive core in VLPS while (1) loop Compute Operation Execution from flash Slow IRC = 8 MHz Core = 8 MHz, bus = 4 MHz Flash = 1 MHz 25 70 85 105 IDD Active core in VLPR Inactive core in VLPS Coremark benchmark code Compute Operation Execution from flash Slow IRC = 8 MHz Core = 8 MHz, bus = 4 MHz Flash = 1 MHz 25 70 85 105 IDD Active core in VLPW Inactive core in VLPS All peripheral clocks disabled Flash disabled Slow IRC = 8 MHz Core = 8 MHz, bus = 4 MHz Flash = 1 MHz 25 70 Core Typ. Max 0 1.100 1.210 1 0.697 0&1 0 VDDIO1 Typ. Max VDDIO2 Unit Typ. Max 0.0630 0.0693 0.000466 0.000513 1.136 0.063 0.103 0.000463 0.000754 1.465 1.612 0.0630 0.0693 0.000465 0.000511 1.245 1.370 0.0726 0.0799 0.00136 0.00150 1 0.837 1.331 0.073 0.116 0.00136 0.00216 0&1 1.605 1.766 0.0727 0.0800 0.00137 0.00150 0 0.740 0.813 0.0539 0.0593 0.0000151 0.0000166 1 0.374 0.583 0.0539 0.0841 0.0000145 0.0000226 0&1 0.944 1.038 0.0539 0.0593 0.0000155 0.0000170 0 0.794 0.874 0.0574 0.0632 0.000208 0.000228 1 0.427 0.700 0.0574 0.0941 0.000208 0.000341 0&1 0.998 1.098 0.0574 0.0632 0.000208 0.000229 0 0.848 0.932 0.0607 0.0667 0.000464 0.000511 1 0.480 0.782 0.0607 0.0989 0.000465 0.000758 0&1 1.057 1.163 0.0607 0.0668 0.000465 0.000511 0 0.991 1.090 0.0703 0.0773 0.00136 0.00150 1 0.621 0.987 0.070 0.112 0.00137 0.00218 0&1 1.200 1.320 0.0703 0.0773 0.00136 0.00150 0 0.833 0.916 0.0539 0.0593 0.0000145 0.0000160 1 0.700 1.092 0.0539 0.0841 0.0000151 0.0000235 0&1 1.390 1.529 0.0539 0.0593 0.0000158 0.0000173 0 0.8597 0.9457 0.0574 0.0631 70 470 15 565 0.0002069 0.0002276 1 0.736 1.206 0.0574 0.0942 0.000207 0.000340 0&1 1.395 1.535 0.0574 0.0631 0.000207 0.000228 0 0.907 0.998 0.0607 0.0667 8 0.000467 0.000513 1 0.774 1.261 0.0607 0.0990 0.000468 0.000762 0&1 1.450 1.595 0.0607 0.0668 0.000464 0.000511 0 1.100 1.210 0.0703 0.0774 0.00136 0.00150 1 0.982 1.562 0.070 0.112 0.00137 0.00217 0&1 1.670 1.837 0.0704 0.0774 0.00137 0.00150 0 0.298 0.328 0.0562 0.0618 0.0000149 0.0000164 1 0.253 0.395 0.0562 0.0877 0.0000161 0.0000252 0&1 0.359 0.394 0.0562 0.0618 0.0000154 0.0000169 0 0.349 0.384 0.0597 0.0657 0.000207 0.000228 1 0.304 0.499 0.0597 0.0979 0.000206 0.000339 0&1 0.410 0.451 0.0598 0.0657 0.000207 0.000227 mA mA mA Table continues on the next page... 104 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 66. Power consumption operating behaviors in bypass mode (continued) Symbol Description Temp (°C) Active core 85 105 4.3.2.5.3 Core VDDIO1 Typ. Max Typ. 0 0.402 0.442 1 0.357 0&1 Max VDDIO2 Unit Typ. Max 0.0630 0.0693 0.000466 0.000513 0.581 0.063 0.103 0.000465 0.000759 0.463 0.509 0.0630 0.0693 0.000465 0.000511 0 0.544 0.626 0.0727 0.0836 0.00137 0.00158 1 0.497 0.791 0.073 0.116 0.00137 0.00217 0&1 0.604 0.695 0.0727 0.0836 0.00137 0.00158 Power consumption operating behaviors in low power mode NOTE Data for this table was collected in bypass mode except where otherwise noted. Table 67. Power consumption operating behaviors in low power mode Symbol IDD_STOP IDD_VLPS Description1 Both cores are in STOP mode Core = 1.2V, VDDIO1 = VDDIO2 = 3V Both cores are in Very Low Power STOP mode Core = 1.2V, VDDIO1 = VDDIO2 = 3V IDD_LLS_NO_RA Both cores are in Low Leakage M STOP mode, no RAM retained, Core = 1.2V, VDDIO1 = VDDIO2 = 3 V IDD_LLS_ALL_R Both cores are in Low Leakage AM STOP mode, all RAM retained, Core = 1.2V, VDDIO1 = VDDIO2 = 3V Core VDDIO1 VDDIO2 Typ. Max Typ. Max Typ. Max 25 °C 12.52 20.66 1.45 2.38 0.015 0.024 70 °C 118.01 197.07 4.05 6.76 0.21 0.35 85 °C 227.41 375.22 6.85 11.30 0.46 0.76 105 °C 517.64 833.40 15.76 25.37 1.36 2.19 25 °C 6.05 9.43 1.45 2.26 0.014 0.023 70 °C 56.41 92.51 4.11 6.73 0.21 0.34 85 °C 109.56 178.58 7.03 11.45 0.47 0.76 105 °C 252.07 400.78 16.38 26.04 1.36 2.15 25 °C 0.54 0.69 1.42 1.78 0.014 0.017 70 °C 4.74 6.64 3.80 5.31 0.19 0.27 85 °C 9.19 12.68 6.48 8.94 0.44 0.60 105 °C 21.43 29.36 14.65 20.07 1.29 1.76 25 °C 2.29 3.6 1.48 1.8 0.014 0.020 70 °C 21.6 39.6 3.88 5.6 0.190 0.274 85 °C 42.2 74.2 6.64 9.9 0.440 0.657 105 °C 95.9 169.9 15.1 21.1 1.28 1.79 Unit No tes µA µA µA µA Table continues on the next page... K32L3A, Rev. 1, 09/2019 105 NXP Semiconductors Electrical characteristics Table 67. Power consumption operating behaviors in low power mode (continued) Symbol IDD_VLLS3 IDD_VLLS1 Description1 Core Both cores are in VLLS3 mode; core = 1.2 V, VDDIO1 = VDDIO2 = 3 V2 Both cores are in VLLS1 mode Core = 1.2V, VDDIO1 = VDDIO2 = 3V3 VDDIO1 VDDIO2 Unit Typ. Max Typ. Max Typ. Max 25 °C 2.38 3.00 1.28 1.61 0.015 0.018 70 °C 20.27 28.38 3.64 5.10 0.19 0.27 85 °C 39.13 54.00 6.31 8.71 0.43 0.60 105 °C 88.77 121.61 14.55 19.93 1.29 1.77 25 °C 0.41 0.52 1.06 1.33 0.014 0.018 70 °C 0.70 0.98 3.30 4.62 0.19 0.27 85 °C 0.82 1.13 5.89 8.12 0.44 0.60 105 °C 1.18 1.62 13.62 18.65 1.29 1.77 No tes µA µA 1. The 25 °C data point applies to all valid operating temperatures 25°C and below. 2. ALL RAM Enabled. 3. The following bits were set: CORELPCNFG_ALLREFEN, CORELPCNFG_POREN, CORELPCNFG_LPOEN, CORESC_RTCOVRIDE , CORESC_USBOVRIDE , CORESC_VDDIOOVRIDE. Table 68. VBAT domain power consumption Symbol Descriptions -40-25 °C Typ. Max. 70 °C Typ. Max. 85 °C Typ. 105 °C Max. Typ. Unit Notes Max. IDD_VBAT Average current when CPU is not accessing RTC registers at 1.8 V 0.59 0.70 1.00 1.30 1.76 2.59 3.00 4.42 Average current when CPU is not accessing RTC registers at 3.0 V 0.71 0.84 1.22 1.59 2.08 3.06 3.50 5.15 µA 1 1. VBAT current is measured in the VBAT domain, not core. Table 69. Peripheral adders — typical value Symbol Description Total at 25 °C Unit ILPIT LPIT peripheral adder measured by placing the device in VLPS mode with using an asynchronous clock source to clock the LPIT. VLPS baseline taken with the clock source enabled, so that load is not included. 0.123 µA ITPM TPM peripheral adder measured by placing the device in STOP mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. Clock source used was the SIRC configured for 2 MHz. 5.807 µA ILPTMR LPTMR periphera adder measured by placing the device in VLLS1 mode with LPTMR enabled using the LPO. 0.223 µA Table continues on the next page... 106 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 69. Peripheral adders — typical value (continued) Symbol Description Total at 25 °C Unit ILPUART LPUART peripheral adder measured by placing the device in STOP mode with the selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption (2 MHz SIRC). 3.868 µA ILPSPI LPSPI peripheral adder for master send mode. Measured by placing the device in Wait mode and using the DMA to initiate continuous transfers to a slave device. This number does not include the DMA adder. 0.293 µA 119.335 µA LPSPI peripheral adder for slave receive mode. Measured by placing the device in VLPS mode and using the DMA to initiate continuous receptions from a master device. This number does include the DMA adder. Table 70. Low power mode RAM adders — typical value Core SRAM Array Start address End address Size 25 °C 70 °C 85 °C 105 °C Unit CPU0 ITCM0 0x0800_0000 0x0800_1FFF 8 KB 0.027 0.697 0.944 2.504 µA ITCM1 0x0800_2000 0x0800_3FFF 8 KB 0.027 0.697 0.944 2.504 µA ITCM2 0x0800_4000 0x0800_7FFF 16 KB 0.053 0.991 1.454 3.688 µA ITCM3 0x0800_8000 0x0800_FFFF 32 KB 0.110 1.599 2.608 6.229 µA DTCM0 0x2000_0000 0x2000_1FFF 8 KB 0.027 0.697 0.944 2.504 µA DTCM1 0x2000_2000 0x2000_3FFF 8 KB 0.027 0.697 0.944 2.504 µA DTCM2 0x2000_4000 0x2000_7FFF 16 KB 0.053 0.991 1.454 3.688 µA DTCM3 0x2000_8000 0x2000_FFFF 32 KB 0.113 1.642 2.726 6.533 µA DTCM4 0x2001_0000 0x2001_7FFF 32 KB 0.113 1.642 2.726 6.533 µA DTCM5 0x2001_8000 0x2001_FFFF 32 KB 0.113 1.642 2.726 6.533 µA DTCM6 0x2002_0000 0x2002_7FFF 32 KB 0.113 1.642 2.726 6.533 µA DTCM7 0x2002_8000 0x2002_FFFF 32 KB 0.113 1.642 2.726 6.533 µA TCM0 0x0900_0000 0x0900_1FFF 8 KB 0.027 0.697 0.944 2.504 µA TCM1 0x0900_2000 0x0900_3FFF 8 KB 0.027 0.697 0.944 2.504 µA TCM2 0x0900_4000 0x0900_7FFF 16 KB 0.053 0.991 1.454 3.688 µA TCM3 0x0900_8000 0x0900_FFFF 32 KB 0.113 1.642 2.726 6.533 µA TCM4 0x0901_0000 0x0901_7FFF 32 KB 0.113 1.642 2.726 6.533 µA TCM5 0x0901_8000 0x0901_FFFF 32 KB 0.113 1.642 2.726 6.533 µA CPU1 K32L3A, Rev. 1, 09/2019 107 NXP Semiconductors Electrical characteristics 4.3.2.6 EMC radiated emissions operating behaviors EMC measurements to IC-level IEC standards are available from NXP on request. 4.3.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to nxp.com. 2. Perform a keyword search for “EMC design”. 4.3.2.8 Symbol CIN Capacitance attributes Table 71. Capacitance attributes Description Input capacitance Min. Max. Unit — 7 pF 4.3.3 Switching specifications 4.3.3.1 Symbol fCORE fEXT fBUS fSLOW Device clock specifications Table 72. Device clock specifications Description Core clock (DIVCORE) External clock (DIVEXT) Bus clock (DIVBUS) Slow clock (DIVSLOW) Run mode1 Min. Max. Unit — 72 MHz High speed run mode — 48 MHz Normal speed run mode — 8 MHz VLPR mode — 72 MHz High speed run mode — 48 MHz Normal speed run mode — 8 MHz VLPR mode — 72 MHz High speed run mode — 48 MHz Normal speed run mode — 8 MHz VLPR mode — 24 MHz High speed run mode — 24 MHz Normal speed run mode Table continues on the next page... 108 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 72. Device clock specifications (continued) Symbol Description Run mode1 Min. Max. Unit — 1 MHz VLPR mode fLLWU LLWU clock — 1 KHz All modes fWDOG WDOG clock — 24 MHz High speed run mode and Normal speed run mode — 1 MHz VLPR mode — 482 MHz High speed run mode and Normal speed run mode — 8 MHz VLPR mode RTC clock — 32.768 KHz All modes fTSTMR TSTMR clock — 1 MHz All modes fLPTMR LPTMR clock — 8 MHz All modes TPM clock, LPIT clock, LPSPI clock, LPI2C clock, LPUART clock, EMVSIM clock, I2S clock, FlexIO clock — 72 MHz High speed run mode — 48 MHz Normal speed run mode — 8 MHz VLPR mode — 48 MHz High speed run mode and Normal speed run mode — 0 MHz VLPR mode — 72 MHz High speed run mode — 48 MHz Normal speed run mode — 8 MHz VLPR mode fADC ADC clock fRTC fTPM, fLPIT, fLPSPI, fLPI2C, fLPUART, fEMVSIM, fI2S, fFLEXIO fUSB USB clock fCAU3, fGPIO, CAU3 clock, GPIO clock, uSDHC clock fuSDHC, fTRNG 1. Normal run mode, High speed run mode, and VLPR mode. 2. See ADC electrical specifications 4.3.3.2 General switching specifications These general-purpose specifications apply to all signals configured for GPIO, LPI2C, and LPUART signals. NOTE The term 'VDDIO' in this table refers to the associated supply rail (either VDDIO1 or VDDIO2) of an input or output. K32L3A, Rev. 1, 09/2019 109 NXP Semiconductors Electrical characteristics Table 73. General switching specifications Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path 100 — ns GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 50 — ns External RESET and NMI pin interrupt pulse width — Asynchronous path 100 — ns 2 GPIO pin interrupt pulse width — Asynchronous path 16 — ns 2 Port rise/fall time Normal drive pins • 2.7 ≤ VDDIO ≤ 3.6 V • Fast slew rate • Slow slew rate • 1.71 ≤ VDDIO ≤ 2.7 V • Fast slew rate • Slow slew rate 3 — 3 — 10.5 — 4 — 17 ns High drive pins Normal/low drive enabled • 2.7 ≤ VDDIO ≤ 3.6 V • Fast slew rate • Slow slew rate • 1.71 ≤ VDDIO ≤ 2.7 V • Fast slew rate 4 — 2.5 — 10.5 — 4 — 17 — 2 — 11 — 2.5 — 17 ns • Slow slew rate High drive enabled • 2.7 ≤ VDDIO ≤ 3.6 V • Fast slew rate • Slow slew rate • 1.71 ≤ VDDIO ≤ 2.7 V • Fast slew rate • Slow slew rate Normal drive fast pins • 2.7 ≤ VDDIO ≤ 3.6 V • Fast slew rate • Slow slew rate • 1.71 ≤ VDDIO ≤ 2.7 V • Fast slew rate • Slow slew rate 5 — 0.5 — 10 — 0.75 — 19 ns High drive fast pins Normal/low drive enabled • 2.7 ≤ VDDIO ≤ 3.6 V 110 NXP Semiconductors 6 — 0.5 ns K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 73. General switching specifications Description Min. Max. • Fast slew rate — 11 • Slow slew rate • 1.71 ≤ VDDIO ≤ 2.7 V • Fast slew rate — 1 — 19 — 2 — 13 — 4 — 21 Unit Notes • Slow slew rate High drive enabled • 2.7 ≤ VDDIO ≤ 3.6 V • Fast slew rate • Slow slew rate • 1.71 ≤ VDDIO ≤ 2.7 V • Fast slew rate • Slow slew rate 1. The synchronous and asynchronous timing must be met. 2. This is the shortest pulse that is guaranteed to be recognized. 3. For high drive pins with high drive enabled, load is 75pF; other pins load (normal/low drive) is 25pF. Fast slew rate is enabled by clearing PORTx_PCRn[SRE]. 4. High drive pins are PTC[12:7], PTD[11:8], and PTE[11:10]. High drive capability is enabled by setting PORTx_PCRn[DSE]. 5. Normal drive fast pins are PTD[7:2], PTE[12,9:8,5:1], PTB[2,0]. 6. High drive fast pins are PTC[12:7], PTD[11:8], and PTE[11:10]. High drive capability is enabled by setting PORTx_PCRn[DSE]. NOTE Only RESET_b pin has analog/passive filter. 4.3.4 Thermal specifications 4.3.4.1 Symbol Thermal operating requirements Table 74. Thermal operating requirements for VFBGA package Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C Notes 1 1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to determine TJ is: TJ = TA + RθJA × chip power dissipation. K32L3A, Rev. 1, 09/2019 111 NXP Semiconductors Electrical characteristics 4.3.4.2 Thermal attributes Table 75. Thermal attributes Board type11 Symbol Description 176 VFBGA Unit Notes JESD51-9,2s2p RθJA Junction to Ambient Thermal Resistance 35.6 °C/W 2, 3 - ΨJT Junction to Package Top Thermal Resistance 0.2 °C/W 4, 3 1. Thermal test board meets JEDEC specification for this package (JESD51-9). 2. Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment. 3. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the bard, and board construction. 4. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. The thermal characterization parameter (Psi-JT) can be used to determine the junction temperature with a measurement of the temperature at the top of the package case using the following equation: TJ = TT + Psi-JT x chip power dissipation Where TT is the thermocouple temperature at the top of the package. 4.4 Peripheral operating requirements and behaviors 4.4.1 Core modules 4.4.1.1 Debug trace timing specifications Table 76. Debug trace operating behaviors Symbol Description Tcyc Clock period Twl Low pulse width Twh Min. Max. Unit Frequency dependent MHz 2 — ns High pulse width 2 — ns Tr Clock and data rise time — 3 ns Tf Clock and data fall time — 3 ns Ts Data setup 1.5 — ns Th Data hold 1.0 — ns 112 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics 4.4.1.2 Symbol J1 SWD electricals Table 77. SWD full voltage range electricals Description Min. Max. Unit Operating voltage 1.71 3.6 V 0 25 MHz 1/J1 — ns 20 — ns SWD_CLK frequency of operation • Serial wire debug J2 SWD_CLK cycle period J3 SWD_CLK clock pulse width • Serial wire debug J4 SWD_CLK rise and fall times — 3 ns J9 SWD_DIO input data setup time to SWD_CLK rise 10 — ns J10 SWD_DIO input data hold time after SWD_CLK rise 0 — ns J11 SWD_CLK high to SWD_DIO data valid — 32 ns J12 SWD_CLK high to SWD_DIO high-Z 5 — ns J2 J3 J3 SWD_CLK (input) J4 J4 Figure 11. Serial wire clock input timing K32L3A, Rev. 1, 09/2019 113 NXP Semiconductors Electrical characteristics SWD_CLK J9 SWD_DIO J10 Input data valid J11 SWD_DIO Output data valid J12 SWD_DIO J11 SWD_DIO Output data valid Figure 12. Serial wire data timing 4.4.1.3 Symbol J1 JTAG electricals Table 78. JTAG limited voltage range electricals Description Min. Max. Operating voltage 2.7 3.6 TCLK frequency of operation Unit V MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 20 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 25 — ns J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 1 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J2 TCLK cycle period J3 TCLK clock pulse width Table continues on the next page... 114 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 78. JTAG limited voltage range electricals (continued) Symbol Description Min. Max. Unit J11 TCLK low to TDO data valid — 19 ns J12 TCLK low to TDO high-Z — 19 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns Table 79. JTAG full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 15 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 33 — ns J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 1.4 — ns J7 TCLK low to boundary scan output data valid — 27 ns J8 TCLK low to boundary scan output high-Z — 27 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1.4 — ns J11 TCLK low to TDO data valid — 26.2 ns J12 TCLK low to TDO high-Z — 26.2 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 TCLK cycle period J3 TCLK clock pulse width J2 J3 J3 TCLK (input) J4 J4 Figure 13. Test clock input timing K32L3A, Rev. 1, 09/2019 115 NXP Semiconductors Electrical characteristics TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 14. Boundary scan (JTAG) timing TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 15. Test Access Port timing 116 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics 4.4.2 System modules There are no specifications necessary for the device's system modules. 4.4.3 Clock modules 4.4.3.1 4.4.3.1.1 Clock modules Fast IRC (FIRC) specifications Table 80. Fast IRC (FIRC) specifications Symbol Description Ffirc_target IRC target frequency (nominal) Min. Notes — MHz 1 ±0.5 ±1.5 %Ffirc_targ ±0.5 ±1.5 ±0.5 ±1.0 52 56 Trim range = 10 60 Trim range = 11 Δ Open loop total deviation of FIRC frequency at high ffirc_48M_ol_hv voltage (VDDIO1=1.89V-3.6V) over full temperature Unit 48 Trim range = 01 Open loop total deviation of FIRC frequency at low voltage (VDDIO1=1.71V-1.89V) over full temperature • Regulator disable (SCG_FIRCCSR[FIRCREGOFF]=1) • Regulator enable (SCG_FIRCCSR[FIRCREGOFF]=0) Max. — Trim range = 00 Δffirc_ol_lv Typ. — et — %Ffirc_targ Regulator enable (SCG_FIRCCSR[FIRCREGOFF]=0) Δ Open loop total deviation of FIRC frequency at high ffirc_60M_ol_hv voltage (VDDIO1=1.89V-3.6V) over full temperature 2 et — ±0.5 ±1.5 2 %Ffirc_targ Regulator enable (SCG_FIRCCSR[FIRCREGOFF]=0) et Δffirc_cl Fine Trim Resolution — — ± 0.1 %Ffirc_targ Jcyc_firc Period Jitter (RMS) — 35 150 ps Tst_firc Startup time — 2 3 μs Idd_firc Current consumption: • 48 MHz — 350 400 • 52 MHz — 360 420 • 56 MHz — 380 460 • 60 MHz — 400 500 et 3 μA 1. FIRC trim range is programmable via SCG_FIRCCFG[RANGE]. K32L3A, Rev. 1, 09/2019 117 NXP Semiconductors Electrical characteristics 2. Closed loop operation of the FIRC is only usable for USB device operation; it is not usable for USB host operation. It is enabled by configuring for USB Device, selecting FIRC as USB clock source, and enabling the clock recover function (USB_CLK_RECOVER_CTRL[CLOCK_RECOVER_EN]=1, SCG_FIRCCSR[FIRCREGOFF]=0). 3. FIRC startup time is defined as the time between clock enablement and clock availability for system use. 4.4.3.1.2 Slow IRC (SIRC) specifications Table 81. Slow IRC specifications Symbol Description IDD_sirc2M IDD_sirc8M fsirc Δfsirc Δfsirc_t Min. Typ. Max. Unit Supply current in 2 MHz mode — 14 17 μA Supply current in 8 MHz mode — 25 35 μA Output frequency — 2 — MHz — 8 — — — ±3.3 %fsirc — — 3 %fsirc — — 12.5 μs — 350 — — 100 — Total deviation of trimmed frequency over voltage and temperature Total deviation of trimmed frequency over voltage and reduced temperature range from -20 ºC to 105 ºC Tsu_sirc Startup time Jcyc_sirc Period jitter (RMS) • fsirc = 2 MHz • fsirc = 8 Mhz Notes 1 ps 2 1. Selection of output frequency for Slow IRC between 2 MHz and 8 MHz is controlled by SCG_ SIRCCFG[RANGE]. 2. This specification was obtained using an NXP developed PCB. Jitter is dependent on the noise characteristics of each PCB and results will vary. 4.4.3.1.3 Low Power Oscillator (LPO) electrical specifications Table 82. Low Power Oscillator (LPO) electrical specifications Symbol Parameter Min. Typ. Max. Unit FLPO Internal low power oscillator frequency 0.9 1 1.1 kHz ILPO Current consumption — 8.85 — µA Max. Unit 4.4.3.1.4 LPFLL electrical specifications Table 83. LPFLL electrical specifications Symbol Parameter Min. Typ. Iavg Power consumption 240 μA Tstart Start-up time 3.6 μs Table continues on the next page... 118 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 83. LPFLL electrical specifications (continued) Symbol Parameter Min. Typ. Max. Unit ΔFol Frequency accuracy over temperature and voltage in open loop after process trimmed –10 — 10 % ΔFcl Frequency accuracy in closed loop –1 1 — 11 % 1. ΔFcl is dependent on reference clock accuracy. For example, if locked to crystal oscillator, ΔFcl is typically limited by trimming ability of the module itself; if locked to other clock source which has 3% accuracy, then ΔFcl can only be ±3%. 4.4.3.2 32 kHz oscillator electrical characteristics 4.4.3.2.1 32 kHz oscillator DC electrical specifications Table 84. 32kHz oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VBAT Supply voltage 1.71 — 3.6 V Internal feedback resistor — 100 — MΩ Cpara RF Parasitical capacitance of EXTAL32 and XTAL32 — 5 7 pF Vpp1 Peak-to-peak amplitude of oscillation — 0.6 — V 1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices. 4.4.3.2.2 32 kHz oscillator frequency specifications Table 85. 32 kHz Crystal and Oscillator Specifications Symbol Description Min. Typ. Max. Unit Notes fosc_lo Crystal frequency — 32.768 — kHz TA Operating temperature -40 — 105 °C 1 Total crystal frequency tolerance -500 — 500 ppm 2,3 CL Load capacitance — 12.5 — pF 2 ESR Equivalent series resistance — — 80 kOhms 2 tstart Crystal start-up — time 1000 — ms 4 Table continues on the next page... K32L3A, Rev. 1, 09/2019 119 NXP Semiconductors Electrical characteristics Table 85. 32 kHz Crystal and Oscillator Specifications (continued) Symbol Description fec_extal32 vec_xtal32 1. 2. 3. 4. 5. 6. Min. Typ. Max. Unit Notes External input — clock frequency 32.768 — kHz 5 External input 0.7 clock amplitude — VDD V 6 Full temperature range of this device. A reduced range can be chosen to meet application needs. Recommended crystal specification. Sum of crystal initial frequency tolerance, crystal frequency stability, and aging tolerances given by crystal vendor. Time from oscillator enable to clock stable. Dependent on the complete hardware configuration of the oscillator. External oscillator connected to EXTAL32K. XTAL32K must be unconnected. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock must be within the range of VSS to VDD. 4.4.4 Memories and memory interfaces 4.4.4.1 Flexbus switching specifications All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values. Table 86. Flexbus limited voltage range switching specifications Num Description Frequency of operation Min. Max. Unit — 24 MHz 1/FB_CLK — ns Address, data, and control output valid — 7 ns FB3 Address, data, and control output hold 1 — ns FB4 Data and FB_TA input setup 7.2 — ns FB5 Data and FB_TA input hold 0 — ns FB1 Clock period FB2 Notes 1 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. 120 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Read Timing Parameters S0 S1 S2 S3 S0 FB1 FB_CLK FB5 FB_A[Y] Address FB4 FB2 FB_D[X] FB3 Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn electricals_read.svg FB4 FB_BEn FB5 AA=1 FB_TA AA=0 FB_TSIZ[1:0] TSIZ S0 S1 S2 S3 S0 Figure 16. FlexBus read timing diagram K32L3A, Rev. 1, 09/2019 121 NXP Semiconductors Electrical characteristics Write Timing Parameters FB1 FB_CLK FB2 FB3 FB_A[Y] FB_D[X] Address Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 electricals_write.svg FB4 TSIZ Figure 17. FlexBus write timing diagram 4.4.4.2 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC timing This section describes the electrical information of the uSDHC, which includes SD/ eMMC4.3 (Single Data Rate) timing, eMMC4.4/4.41/4.5 (Dual Date Rate) timing 4.4.4.2.1 SD/eMMC4.3 (Single Data Rate) AC Timing The following figure depicts the timing of SD/eMMC4.3 122 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics SD4 SD2 SD1 SD5 SDx_CLK SD3 SD6 Output from uSDHC to card SDx_DATA[7:0] SD7 SD8 Input from card to uSDHC SDx_DATA[7:0] Figure 18. SD/eMMC4.3 timing The following table lists the SD/eMMC4.3 timing characteristics. Table 87. SD/eMMC4.3 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock Clock Frequency (Low Speed) fPP1 0 400 kHz Clock Frequency (SD/SDIO Full Speed/High Speed) fPP2 0 24/48 MHz Clock Frequency fPP3 (MMC Full Speed/ High Speed) 0 16/48 MHz Clock Frequency (Identification Mode) fOD 100 400 kHz SD2 Clock Low Time tWL 7 — ns SD3 Clock High Time tWH 7 — ns SD4 Clock Rise Time tTLH — 3 ns SD5 Clock Fall Time tTHL — 3 ns 3.6 ns 2.5 — ns 1.5 — ns SD1 uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD6 uSDHC Output Delay tOD -6.6 uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) SD7 uSDHC Input Setup Time tISU SD8 uSDHC Input Hold tIH Time4 1. In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V. K32L3A, Rev. 1, 09/2019 123 NXP Semiconductors Electrical characteristics 2. In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–24 MHz. In high-speed mode, clock frequency can be any value between 0–48 MHz. 3. In normal (full) speed mode for MMC card, clock frequency can be any value between 0–16 MHz. In high-speed mode, clock frequency can be any value between 0–48 MHz. 4. To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns. 4.4.4.2.2 eMMC4.4/4.41 (Dual Data Rate) AC Timing The following figure depicts the timing of eMMC4.4/4.41. SD1 SDx_CLK SD2 SD2 Output from eSDHCv3 to card SDx_DATA[7:0] ...... SD3 SD4 Input from card to eSDHCv3 SDx_DATA[7:0] ...... Figure 19. eMMC4.4/4.41 timing The following table lists the eMMC4.4/4.41 timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD). Table 88. eMMC4.4/4.41 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency (eMMC4.4/4.41 DDR) fPP 0 52 MHz SD1 Clock Frequency (SD3.0 DDR) fPP 0 50 MHz 7.1 ns uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD2 uSDHC Output Delay tOD 2.5 uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) SD3 uSDHC Input Setup Time tISU 2.6 — ns SD4 uSDHC Input Hold tLH Time 1.5 — ns 124 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics 4.4.4.3 Flash electrical specifications This section describes the electrical characteristics of the flash memory module. 4.4.4.3.1 Symbol Flash timing specifications — commands Table 89. Flash command timing specifications Description Min. Typ. Max. Unit 256 KB secondary program flash — — 2 ms 512 KB primary program flash — — 2 ms Notes Read 1s Block execution time trd1blk256k trd1blk512k Read 1s Section execution time trd1sec2k 2 KB flash — — 90 μs 1 trd1sec4k 4 KB flash — — 100 μs 1 1 tpgmchk Program Check execution time — — 95 μs tpgm8 Program Phrase execution time — 110 225 μs Erase Flash Block execution time tersblk256k tersblk512k tersscr tpgmsec1k 2 256 KB secondary program flash — 220 2500 ms 512 KB primary program flash — 435 5000 ms Erase Flash Sector execution time — 15 150 ms Program Section execution time (1KB flash) — 8 — ms 2 Generate CRC execution time (CRCRDY=0) tcrc4 4 sectors — 375 425 μs tcrc32 32 sectors — 3 3.5 ms tcrc128 128 sectors — 12 14 ms Generate CRC execution time (CRCRDY=1) tcrcr4 4 sectors — 860 985 μs tcrcr32 32 sectors — 7 8 ms tcrcr128 128 sectors — 28 32 ms trd1allx Read 1s All Blocks execution time — — 6 ms trdindex Read Index execution time — — 35 μs Program Index execution time — 110 — μs tersall Erase All Blocks execution time — 1100 13000 ms 2 tvfykey Verify Backdoor Access Key execution time — — 40 μs 1 tpgmindex 1 Swap Control execution time tswapx01 control code 0x01 — 350 — μs tswapx02 control code 0x02 — 125 250 μs tswapx04 control code 0x04 — 150 275 μs tswapx08 control code 0x08 — — 40 μs tswapx10 control code 0x10 — 125 250 μs — 1100 13000 ms tersallu Erase All Blocks Unsecure execution time 1 2 Table continues on the next page... K32L3A, Rev. 1, 09/2019 125 NXP Semiconductors Electrical characteristics Table 89. Flash command timing specifications (continued) Symbol Description Min. Typ. Max. Unit Notes Set RAM Function execution time tsetramcc Control Code 0xCC — 130 — μs tsetramff Control Code 0xFF — 85 — μs 1. Assumes 25MHz or greater flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 4.4.4.3.2 Flash high voltage current behaviors Table 90. Flash high voltage current behaviors Symbol Description IDD_PGM IDD_ERS 4.4.4.3.3 Symbol Min. Typ. Max. Unit Average current adder during high voltage flash programming operation — 3.5 7.5 mA Average current adder during high voltage flash erase operation — 1.5 4.0 mA Reliability specifications Table 91. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 50 — years tnvmretp1k Data retention after up to 1 K cycles 20 100 — years nnvmcycp Cycling endurance 10 K 50 K — cycles 2 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C. 4.4.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 126 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics 4.4.6 Analog 4.4.6.1 4.4.6.1.1 ADC electrical specifications ADC operating conditions Table 92. ADC operating conditions Min. Typ.1 Max. Unit Notes Supply voltage 1.71 — 3.6 V 2 VREFH ADC reference voltage high 1.2 — VDDA V VREFL ADC reference voltage low VSSA VSSA VSSA V VADIN Input voltage VREFL — Min. of VREFH and VDDIOx3 V CADIN Input capacitance — 4 6 pF RADIN Input series resistance — 1 5 kΩ — — 5 kΩ Symbol Description VDDA RAS fADCK Crate Analog source resistance (external) Conditions • 12-bit mode 12-bit mode ADC conversion 12-bit mode clock frequency • CFG[PWRSEL]=0b00 4 — 4 • CFG[PWRSEL]=0b01 4 — 8 • CFG[PWRSEL]=0b10 4 — 16 • CFG[PWRSEL]=0b11 4 — 32 ADC conversion 12-bit mode, no ADC rate hardware averaging • CFG[PWRSEL]=0b00 • CFG[PWRSEL]=0b01 • CFG[PWRSEL]=0b10 4 5 MHz ksps 234.771 — 235.546 234.939 — 472.322 234.853 — 248.294 234.936 — 1230.830 — — 4 • CFG[PWRSEL]=0b11 tADCSTUP Analog startup time μs 6 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2. VDDA must be equal to the higher of VDDIO1 or VDDIO2. 3. VDDIOx is either VDDIO1 or VDDIO2 and is dependent on the IO supply associated with the ADC channel pin. If VREFH is less than VDDIOx, then voltage inputs greater than VREFH but less than VDDIOx are allowed but result in a saturated conversion result. 4. If VREFH is less than VDDA, then voltage inputs greater than VREFH but less than VDDA are allowed but result in a saturated conversion result. K32L3A, Rev. 1, 09/2019 127 NXP Semiconductors Electrical characteristics 5. This resistance is external to the packaged device. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS × CAS time constant should be kept to < 1 ns. 6. The startup time is defined as the duration from when (1) CFG[PWREN] is set or (2) when a trigger event initiates command execution until the analog circuits are stable and ready to sample and convert analog input channels. When CFG[PWREN]=0b0, the delay period controlled by CFG[PUDLY] after an initial trigger detect must exceed the analog startup time of tADCSTUP to guarantee ADC operation. SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT Pad leakage due to input protection ZAS RAS ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT RADIN ADC SAR ENGINE VADIN VAS CAS RADIN INPUT PIN INPUT PIN RADIN RADIN INPUT PIN CADIN Figure 20. ADC input impedance equivalency diagram 128 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Sample Time vs Input Source Resistance Direct connect Channels 1.8V>Vdda>1.71v 2.1V>Vdda>1.8v 2.5V>Vdda>2.1v Vdda>2.5v 500 450 Sample Time (ns) 400 350 300 250 200 150 100 50 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Source Resistance, RAS (kOhms) Figure 21. Sample time vs input source resistance direct connect channels Sample Time vs Input Source Resistance Channels connected through External Mux 1.8V>Vdda>1.71v 2.1V>Vdda>1.8v 2.5V>Vdda>2.1v Vdda>2.5v 500 450 Sample Time (ns) 400 350 300 250 200 150 100 50 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Source Resistance, RAS (kOhms) Figure 22. Sample time vs input source resistance channels connected through external mux NOTE Direct connect channels are channels that are purely analog channels and do not have any digital options. These include LPADC0_SE15 and LPADC0_SE16. All other channels are MUXed channels. K32L3A, Rev. 1, 09/2019 129 NXP Semiconductors Electrical characteristics 4.4.6.1.2 ADC electrical characteristics Table 93. ADC characteristics (VREFH = 3.0 V, VREFL = VSSA) Symbol Description Conditions1 Min. Typ. 2 Max. Unit Notes IDDA_ADC Supply current CFG[PWRSEL]=0b00, fADCK = 4 MHz — 25 40 μA 3 CFG[PWRSEL]=0b01, fADCK = 12 MHz — 60 95 μA CFG[PWRSEL]=0b10, fADCK = 24 MHz — 120 190 μA CFG[PWRSEL]=0b11, fADCK = 48 MHz — 220 380 μA ADC Idle, analog pre-enabled (CFG[PWREN]=0b1) — 10 — μA MHz IDDA_ADC Supply current fADACK ADC asynchronous clock source — 2 — ΔfADACK_T Deviation of ADACK clock due to temperature — ±7% — Sample Time See Reference Manual chapter for sample times TUE Total unadjusted error • 12-bit mode — ±4 ±6.8 LSB4 5 DNL Differential nonlinearity • 12-bit mode — ±0.7 –1.1 to +1.9 LSB4 5 INL Integral nonlinearity • 12-bit mode — ±1.0 –2.7 to +1.9 LSB4 5 EFS Full-scale error • 12-bit mode — –4 –5.4 LSB4 VADIN = VREFH5 EQ Quantization error • 12-bit mode — — ±0.5 LSB4 ENOB Effective number 12-bit single-ended mode of bits • Avg = 16 • Avg = 4 EIL VTEMP25 6 — 10.7 — bits — 10.3 — bits Input leakage error IIn × RAS mV 7 Temp sensor slope Across the full temperature range of the device 1.70 1.78 1.85 mV/°C 8 Temp sensor voltage 25 °C 701 711 721 mV 8 1. All accuracy numbers assume the ADC is calibrated with VREFH = 3.0 V 2. Typical values assume VDDA = 3.0 V, Temp = 25 °C unless otherwise stated. Typical values are for reference only and are not tested in production. 3. Shortest sample time (CMDHa[STS]=0x0), continuous operation (command execution set for single or multi-command sequential loop). 4. 1 LSB = (VREFH - VREFL)/2N 130 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics 5. 6. 7. 8. ADC conversion clock < 32 MHz, Max hardware averaging (CMDHa[AVGS] = 0x7) Input data is 500 Hz sine wave. ADC conversion clock < 32 MHz. IIn = leakage current. Refer to pin leakage specification in the packaged device's voltage and current operating ratings. Set CFG[STS]=0b111. ● 10.9 ENOB 10.8 10.7 ● ● 10.6 ● 10 20 30 ADC Clock Frequency (MHz) Figure 23. Typical ENOB vs. ADCK for 12-bit single-ended mode 4.4.6.2 Symbol VDDA Voltage reference electrical specifications Table 94. VREF full-range operating requirements Description Min. Max. Unit Notes Supply voltage for 1.2V output 1.71 3.6 V — Supply voltage for 2.1V output 2.4 3.6 V — Operating temperature range of the device °C — 100 nF 1, 2 TA Temperature CL Output load capacitance 1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference. 2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of the device. K32L3A, Rev. 1, 09/2019 131 NXP Semiconductors Electrical characteristics Table 95. VREF full-range operating behaviors Symbol Min. Typ. Max. Unit Notes 1.2 V range 1.19 1.195 1.2 V 1 2.1 V range 2.091 2.1 2.109 V 1 Voltage reference trim step for 1.2 V output — 0.5 — mV 1 Voltage reference trim step for 2.1 V output — 1.0 — mV 1 Ibg Bandgap only current — 60 80 µA 1 Ilp Low-power buffer current — 180 360 µA 1 Ihp High-power buffer current — 480 960 µA 1 ΔVLOAD Load regulation — current is ± 1.0 mA — ±0.2 — mV 1, 2 Tstup Buffer startup time — — 100 µs — Vvdrift Voltage drift for 1.2 V output (Vmax -Vmin across the full voltage range) — 0.5 2 mV 1 Voltage drift for 2.1 V output (Vmax -Vmin across the full voltage range) — 0.9 3.5 mV Temperature drift for 1.2 V output (Vmax -Vmin across the full temperature range) — 2 15 mV Temperature drift for 2.1 V output (Vmax -Vmin across the full temperature range) — 3.5 27 mV Vout Vstep Vtdrift Description Voltage reference output with factory trim at nominal VDDA and temperature=25 °C 3 1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register for Vout selection of 1.2 V or 2.1 V. 2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load 3. To get best performance of VREF temperature drift, VREF_SC[ICOMPEN] must be set. 4.4.6.3 CMP and 6-bit DAC electrical specifications Table 96. Comparator and 6-bit DAC electrical specifications Symbol Description Min. Typ. Max. Unit VDD1 Supply voltage 1.71 — 3.6 V IDDHS Supply current, high-speed mode (EN=1, HPMD=1) — — 180 μA IDDLS Supply current, normal mode (EN=1, HPMD=0, NPMD=0) — — 20 μA IDDNS Supply current, nano mode (EN=1, HPMD=0, NPMD=1) — — 0.390 μA VAIN Analog input voltage VSS – 0.3 — VDD V VAIO Analog input offset voltage — — 20 mV • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV — 20 — mV VH Analog comparator hysteresis2 Table continues on the next page... 132 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 96. Comparator and 6-bit DAC electrical specifications (continued) Symbol Description • CR0[HYSTCTR] = 10 Min. Typ. Max. Unit — 30 — mV • CR0[HYSTCTR] = 11 VCMPOh Output high VDD – 0.5 — — V VCMPOl Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 80 250 600 ns Analog comparator initialization delay3 — — 40 μs 6-bit DAC current adder (enabled) — 7 — μA IDAC6b INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB4 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 1. For LPCMP0 VDD = VDDIO1; for LPCMP1, VDD = VDDIO2. 2. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V. 3. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level. 4. 1 LSB = Vreference/64 0.14 0.12 Hysteresis (V) 0.1 0.08 HYSTCTRL = 0 HYSTCTRL = 1 0.06 HYSTCTRL = 2 0.04 HYSTCTRL = 3 0.02 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 Vin level (V) Figure 24. Typical hysteresis vs. Vin level (VDD = 3.3 V, HPMD = 1) K32L3A, Rev. 1, 09/2019 133 NXP Semiconductors Electrical characteristics 0.06 Hysteresis (V) 0.05 0.04 HYSTCTRL = 0 0.03 HYSTCTRL = 1 HYSTCTRL = 2 0.02 HYSTCTRL = 3 0.01 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 Vin level (V) Figure 25. Typical hysteresis vs. Vin level (VDD = 3.3 V, HPMD = 0, NPMD = 0) 0.045 0.04 Hysteresis (V) 0.035 0.03 0.025 HYSTCTRL = 0 0.02 HYSTCTRL = 1 0.015 HYSTCTRL = 2 0.01 HYSTCTRL = 3 0.005 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 Vin level (V) Figure 26. Typical hysteresis vs. Vin level (VDD = 3.3 V, HPMD = 0, NPMD = 1) 4.4.6.4 4.4.6.4.1 Symbol 12-bit DAC electrical characteristics 12-bit DAC operating requirements Table 97. 12-bit DAC operating requirements Desciption Min. Max. Unit VDDA Supply voltage 1.71 3.6 V VDACR Reference voltage 1.13 3.6 V 1 2 CL Output load capacitance — 100 pF IL Output load current — 1 mA Notes 1. The DAC reference can be selected to be VDDA or VREF_OUT. 134 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC. 4.4.6.4.2 Symbol 12-bit DAC operating behaviors Table 98. 12-bit DAC operating behaviors Description IDDA_DACL Supply current — low-power mode Min. Typ. Max. Unit — — 250 μA — — 900 μA Notes P IDDA_DACH Supply current — high-speed mode P tDACLP Full-scale settling time (0x080 to 0xF7F) — low-power mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — high-power mode — 15 30 μs 1 — 0.7 1 μs 1 tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and highspeed mode Vdacoutl DAC output voltage range low — highspeed mode, no load, DAC set to 0x000 — — 100 mV Vdacouth DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V — — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VREF_OUT — — ±1 LSB 4 — ±0.4 ±0.8 %FSR 5 Gain error — ±0.1 ±0.6 %FSR 5 Power supply rejection ratio, VDDA ≥ 2.4 V 60 — 90 dB TCO Temperature coefficient offset voltage — 3.7 — μV/C TGE Temperature coefficient gain error — 0.000421 — %FSR/C Rop Output resistance (load = 3 kΩ) — — 250 SR Slew rate -80h→ F7Fh→ 80h VOFFSET Offset error EG PSRR BW 1. 2. 3. 4. 5. 6 Ω V/μs • High power (SPHP) 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — 3dB bandwidth kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Settling within ±1 LSB The INL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV K32L3A, Rev. 1, 09/2019 135 NXP Semiconductors Electrical characteristics 6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device 8 6 4 DAC12 INL (LSB) 2 0 -2 -4 -6 -8 0 500 1000 1500 2000 2500 3000 3500 4000 Digital Code Figure 27. Typical INL error vs. digital code 136 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics 1.499 DAC12 Mid Level Code Voltage 1.4985 1.498 1.4975 1.497 1.4965 1.496 -40 55 25 85 105 125 Temperature °C Figure 28. Offset at half scale vs. temperature 4.4.7 Timers See General switching specifications. 4.4.8 Communication interfaces 4.4.8.1 EMV SIM specifications Each EMV SIM module interface consists of a total of five pins. The interface is designed to be used with synchronous Smart cards, meaning the EMV SIM module provides the clock used by the Smart card. The clock frequency is typically 372 times the Tx/Rx data rate; however, the EMV SIM module can also work with CLK frequencies of 16 times the Tx/Rx data rate. K32L3A, Rev. 1, 09/2019 137 NXP Semiconductors Electrical characteristics There is no timing relationship between the clock and the data. The clock that the EMV SIM module provides to the Smart card is used by the Smart card to recover the clock from the data in the same manner as standard UART data exchanges. All five signals of the EMV SIM module are asynchronous with each other. The smart card is initiated by the interface device; the Smart card responds with Answer to Reset. Although the EMV SIM interface has no defined requirements, the ISO/IEC 7816 defines reset and power-down sequences (for detailed information see ISO/IEC 7816). SI10 EMVSIMn_PD EMVSIMn_RST SI7 EMVSIMn_CLK SI8 EMVSIMn_IO SI9 EMVSIMn_VCCEN Figure 29. EMV SIM Clock Timing Diagram The following table defines the general timing requirements for the EMV SIM interface. Table 99. Timing Specifications, High Drive Strength ID Parameter SI EMV SIM clock frequency 1 Symbol (EMVSIMn_CLK)1 Min Max Unit Sfreq 1 5 MHz SI EMV SIM clock rise time (EMVSIMn_CLK)2 2 Srise — 0.08 × (1/Sfreq) ns SI EMV SIM clock fall time (EMVSIMn_CLK)2 3 Sfall — 0.08 × (1/Sfreq) ns Table continues on the next page... 138 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 99. Timing Specifications, High Drive Strength (continued) ID Parameter Symbol Min Max Unit SI EMV SIM input transition time (EMVSIMn_IO, 4 EMVSIMn_PD) Stran 20 25 ns Si EMV SIM I/O rise time / fall time (EMVSIMn_IO)3 5 Tr/Tf — 0.8 μs Si EMV SIM RST rise time / fall time (EMVSIMn_RST)4 6 Tr/Tf — 0.8 μs 1. 2. 3. 4. 50% duty cycle clock, With C = 50 pF With Cin = 30 pF, Cout = 30 pF, With Cin = 30 pF, 4.4.8.1.1 EMV SIM Reset Sequences Smart cards may have internal reset, or active low reset. The following subset describes the reset sequences in these two cases. 4.4.8.1.1.1 Smart Cards with Internal Reset Following figure shows the reset sequence for Smart cards with internal reset. The reset sequence comprises the following steps: • After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0) • After 200 clock cycles, EMVSIMn_IO must be asserted. • The card must send a response on EMVSIMn_IO acknowledging the reset between 400–40000 clock cycles after T0. EMVSIMn_VCCEN EMVSIMn_CLK EMVSIMn_IO RESPONSE 1 2 T0 Figure 30. Internal Reset Card Reset Sequence K32L3A, Rev. 1, 09/2019 139 NXP Semiconductors Electrical characteristics The following table defines the general timing requirements for the SIM interface. Table 100. Timing Specifications, Internal Reset Card Reset Sequence Ref Min Max Units 1 — 200 EMVSIMx_CLK clock cycles 2 400 40,000 EMVSIMx_CLK clock cycles 4.4.8.1.1.2 Smart Cards with Active Low Reset Following figure shows the reset sequence for Smart cards with active low reset. The reset sequence comprises the following steps: • After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0) • After 200 clock cycles, EMVSIMn_IO must be asserted. • EMVSIMn_RST must remain low for at least 40,000 clock cycles after T0 (no response is to be received on RX during those 40,000 clock cycles) • EMVSIMn_RST is asserted (at time T1) • EMVSIMn_RST must remain asserted for at least 40,000 clock cycles after T1, and a response must be received on EMVSIMn_IO between 400 and 40,000 clock cycles after T1. EMVSIMn_VCCEN EMVSIMn_RST EMVSIMn_CLK RESPONSE EMVSIMn_IO 2 1 3 3 T0 T1 Figure 31. Active-Low-Reset Smart Card Reset Sequence 140 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics The following table defines the general timing requirements for the EMVSIM interface.. Table 101. Timing Specifications, Internal Reset Card Reset Sequence 4.4.8.1.2 Ref No Min Max Units 1 — 200 EMVSIMx_CLK clock cycles 2 400 40,000 EMVSIMx_CLK clock cycles 3 40,000 — EMVSIMx_CLK clock cycles EMVSIM Power-Down Sequence Following figure shows the EMV SIM interface power-down AC timing diagram.Table 102 table shows the timing requirements for parameters (SI7–SI10) shown in the figure. The power-down sequence for the EMV SIM interface is as follows: • EMVSIMn_SIMPD port detects the removal of the Smart Card • EMVSIMn_RST is negated • EMVSIMn_CLK is negated • EMVSIM_IO is negated • EMVSIMx_VCCENy is negated Each of the above steps requires one OSC32KCLK period (usually 32 kHz, also known as rtcclk in below figure). Power-down may be initiated by a Smart card removal detection; or it may be launched by the processor. K32L3A, Rev. 1, 09/2019 141 NXP Semiconductors Electrical characteristics SI10 EMVSIMn_PD EMVSIMn_RST SI7 EMVSIMn_CLK SI8 EMVSIMn_IO SI9 EMVSIMn_VCCEN Figure 32. Smart Card Interface Power Down AC Timing Table 102. Timing Requirements for Power-down Sequence Ref No Parameter Symbol Min Max Units 0.9 × 1/ Frtcclk1 1.1 × 1/Frtcclk μs SI7 EMVSIM reset to SIM clock stop Srst2clk SI8 EMVSIM reset to SIM Tx data low Srst2dat 1.8 × 1/Frtcclk 2.2 × 1/Frtcclk μs SI9 EMVSIM reset to SIM voltage enable low Srst2ven 2.7 × 1/Frtcclk 3.3 × 1/Frtcclk μs SI10 EMVSIM presence detect to SIM reset low Spd2rst 0.9 × 1/Frtcclk 1.1 × 1/Frtcclk μs 1. Frtcclk is OSC32KCLK, and this clock must be enabled during the power down sequence. NOTE Same timing is also followed when auto power down is initiated. See Reference Manual for reference. 4.4.8.2 USB electrical specifications The USB electricals for the USB module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit usb.org. 142 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics NOTE The IRC48M meets the USB jitter specifications for certification in Device mode when the USB clock recovery mode is enabled. It does not meet the USB jitter specifications for certification in Host mode operation. This device does not have the USB_CLKIN signal available and therefore cannot support Host mode operation. 4.4.8.3 USB VREG electrical specifications Table 103. USB VREG electrical specifications Symbol Description Min. Typ.1 Max. Unit VREGIN Input supply voltage 2.7 — 5.5 V IDDon Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V — 125 186 μA IDDstby Quiescent current — Standby mode, load current equal zero — 1.1 10 μA IDDoff Quiescent current — Shutdown mode — 650 — nA — — 4 μA • VREGIN = 5.0 V and temperature=25 °C • Across operating voltage and temperature ILOADrun Maximum load current — Run mode — — 120 mA ILOADstby Maximum load current — Standby mode — — 1 mA 3 3.3 3.6 V 2.1 2.8 3.6 V 2.1 — 3.6 V 1.76 2.2 8.16 μF Notes VReg33out Regulator output voltage — Input supply (VREGIN) > 3.6 V • Run mode • Standby mode VReg33out Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode COUT External output capacitor ESR External output capacitor equivalent series resistance 1 — 100 mΩ ILIM Short circuit current — 290 — mA 2 1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated. 2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad. K32L3A, Rev. 1, 09/2019 143 NXP Semiconductors Electrical characteristics 4.4.8.4 LPSPI switching specifications The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins. NOTE • Slew rate disabled pads are those pins with PORTx_PCRn[SRE] bit cleared. Slew rate enabled pads are those pins with PORTx_PCRn[SRE] bit set. • To achieve high bit rate, it is recommended to use fast pins ( PTB[2,0], PTD[7:2], PTE[12,9:8,5:1] ) and/or high drive pins (PTC[12:7], PTD[11:8], PTE[11:10]). Table 104. LPSPI master mode timing on slew rate disabled pads Num. Symbol Description Max. Unit Note fperiph/2048 fperiph/2 Hz 1 2 x tperiph 2048 x tperiph ns 2 1 fop 2 tSPSCK 3 tLead Enable lead time 1/2 — tSPSCK — 4 tLag Enable lag time 1/2 — tSPSCK — 5 tWSPSCK tperiph - 30 1024 x tperiph ns — 6 tSU Data setup time (inputs) 18 — ns — 7 tHI Data hold time (inputs) 0 — ns — 8 tv Data valid (after SPSCK edge) — 15 ns — 9 tHO Data hold time (outputs) 0 — ns — 10 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 25 ns — tFO Fall time output 11 Frequency of operation Min. SPSCK period Clock (SPSCK) high or low time 1. fperiph is the LPSPI peripheral functional clock. 2. tperiph = 1/fperiph Table 105. LPSPI master mode timing on slew rate enabled pads Num. Symbol 1 fop 2 tSPSCK Description Frequency of operation SPSCK period Min. Max. Unit Note fperiph/2048 fperiph/2 Hz 1 2 x tperiph 2048 x tperiph ns 2 Table continues on the next page... 144 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 105. LPSPI master mode timing on slew rate enabled pads (continued) Num. Symbol Description Min. Max. Unit Note 3 tLead Enable lead time 1/2 — tSPSCK — 4 tLag Enable lag time 1/2 — tSPSCK — 5 tWSPSCK tperiph - 30 1024 x tperiph ns — 6 tSU Data setup time (inputs) 96 — ns — 7 tHI Data hold time (inputs) 0 — ns — 8 tv Data valid (after SPSCK edge) — 52 ns — 9 tHO Data hold time (outputs) 0 — ns — 10 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 36 ns — tFO Fall time output 11 Clock (SPSCK) high or low time 1. fperiph is the LPSPI peripheral functional clock 2. tperiph = 1/fperiph SS1 (OUTPUT) 3 2 SPSCK (CPOL=0) (OUTPUT) 11 10 11 6 7 MSB IN2 BIT 6 . . . 1 LSB IN 8 MOSI (OUTPUT) 4 5 SPSCK (CPOL=1) (OUTPUT) MISO (INPUT) 10 5 MSB OUT2 BIT 6 . . . 1 9 LSB OUT 1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 33. LPSPI master mode timing (CPHA = 0) K32L3A, Rev. 1, 09/2019 145 NXP Semiconductors Electrical characteristics SS1 (OUTPUT) 2 3 SPSCK (CPOL=0) (OUTPUT) 5 SPSCK (CPOL=1) (OUTPUT) 5 6 MISO (INPUT) 11 4 10 11 7 MSB IN2 BIT 6 . . . 1 LSB IN 9 8 MOSI (OUTPUT) 10 PORT DATA MASTER MSB OUT2 BIT 6 . . . 1 PORT DATA MASTER LSB OUT 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 34. LPSPI master mode timing (CPHA = 1) Table 106. LPSPI slave mode timing on slew rate disabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU 7 Min. Max. Unit Note 0 fperiph/4 Hz 1 4 x tperiph — ns 2 Enable lead time 1 — tperiph — Enable lag time 1 — tperiph — tperiph - 30 — ns — Data setup time (inputs) 2.5 — ns — tHI Data hold time (inputs) 3.5 — ns — 8 ta Slave access time — tperiph ns 3 9 tdis Slave MISO disable time — tperiph ns 4 10 tv Data valid (after SPSCK edge) — 31 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 25 ns — tFO Fall time output 13 1. 2. 3. 4. Description Frequency of operation SPSCK period Clock (SPSCK) high or low time fperiph is the LPSPI peripheral functional clock tperiph = 1/fperiph Time to data active from high-impedance state Hold time to high-impedance state 38 146 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics Table 107. LPSPI slave mode timing on slew rate enabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead Enable lead time 4 tLag Enable lag time 5 tWSPSCK 6 tSU 7 Frequency of operation SPSCK period Min. Max. Unit Note 0 fperiph/4 Hz 1 4 x tperiph — ns 2 1 — tperiph — 1 — tperiph — tperiph - 30 — ns — Data setup time (inputs) 2 — ns — tHI Data hold time (inputs) 7 — ns — 8 ta Slave access time — tperiph ns 3 9 tdis Slave MISO disable time — tperiph ns 4 10 tv Data valid (after SPSCK edge) — 122 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 36 ns — tFO Fall time output 13 1. 2. 3. 4. Description Clock (SPSCK) high or low time fperiph is the LPSPI peripheral functional clock tperiph = 1/fperiph Time to data active from high-impedance state Hold time to high-impedance state SS (INPUT) 2 12 13 12 13 4 SPSCK (CPOL=0) (INPUT) 5 3 SPSCK (CPOL=1) (INPUT) 5 9 8 MISO (OUTPUT) see note SLAVE MSB 6 MOSI (INPUT) 10 11 11 BIT 6 . . . 1 SLAVE LSB OUT SEE NOTE 7 MSB IN BIT 6 . . . 1 LSB IN NOTE: Not defined Figure 35. LPSPI slave mode timing (CPHA = 0) K32L3A, Rev. 1, 09/2019 147 NXP Semiconductors Electrical characteristics SS (INPUT) 4 2 3 SPSCK (CPOL=0) (INPUT) 5 SPSCK (CPOL=1) (INPUT) 5 see note 8 MOSI (INPUT) SLAVE 13 12 13 11 10 MISO (OUTPUT) 12 MSB OUT 6 9 BIT 6 . . . 1 SLAVE LSB OUT BIT 6 . . . 1 LSB IN 7 MSB IN NOTE: Not defined Figure 36. LPSPI slave mode timing (CPHA = 1) 4.4.8.5 LPI2C NOTE The LPI2C async function clock must not be faster than 24 MHz. Table 108. LPI2C specifications Symbol fSCL Description SCL clock frequency Min. Max. Unit Notes Standard mode (Sm) 0 100 kHz 1 Fast mode (Fm) 0 400 1, 2 Fast mode Plus (Fm+) 0 1000 1, 3 Ultra Fast mode (UFm) 0 5000 1, 4 High speed mode (Hs-mode) 0 3400 1, 5 1. See General switching specifications, measured at room temperature. 2. Measured with the maximum bus loading of 400pF at 3.3V VDD with pull-up Rp = 580Ω on normal drive pins or 350Ω on high drive pins, and at 1.8V VDD with Rp = 880Ω. For all other cases, select appropriate Rp per I2C Bus Specification and the pin drive capability. 3. Fm+ is only supported on high drive pin with high drive enabled. It is measured with the maximum bus loading of 400pF at 3.3V VDD with Rp = 350Ω. For all other cases, select appropriate Rp per I2C Bus Specification and the pin drive capability. 4. UFm is only supported on high drive pin with high drive enabled and push-pull output only mode. It is measured at 3.3V VDD with the maximum bus loading of 400pF. For 1.8V VDD, the maximum speed is 4Mbps. 5. Hs-mode is only supported in slave mode and on the high drive pins with high drive enabled. 148 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics 4.4.8.6 LPUART See General switching specifications. 4.4.8.7 I2S/SAI switching specifications This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures. 4.4.8.7.1 Normal Run, Wait and Stop mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes. Table 109. I2S/SAI master mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK (as an input) pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15.5 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 19 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 26 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns K32L3A, Rev. 1, 09/2019 149 NXP Semiconductors Electrical characteristics S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 37. I2S/SAI timing — master modes Table 110. I2S/SAI slave mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 10 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 33 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 10 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 28 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear 150 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 38. I2S/SAI timing — slave modes 4.4.8.7.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes. Table 111. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 62.5 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 45 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid — ns S7 I2S_TX_BCLK to I2S_TXD valid 45 ns S8 I2S_TX_BCLK to I2S_TXD invalid — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK — ns K32L3A, Rev. 1, 09/2019 — 0 151 NXP Semiconductors Electrical characteristics S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 39. I2S/SAI timing — master modes Table 112. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 30 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK — ns S18 I2S_RXD hold after I2S_RX_BCLK — ns 72 ns S19 I2S_TX_FS input assertion to I2S_TXD output — 30 valid1 — ns 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear 152 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Electrical characteristics S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 40. I2S/SAI timing — slave modes 4.4.9 DC-DC Converter Recommended Electrical Characteristics Table 113. DC-DC Converter Recommended operating conditions Characteristic DCDC Supply Voltage1, 2, 3 External Inductor Symbol Min Typ Max Unit VDDDCDC_IN 2.1 — 3.6 V L_DCDC Inductor Resistance in Buck Mode ESR 10 — μH 0.2 0.5 Ohms 1. The DC-DC converter generates 1.8 V at VOUT_AUX and 1.225 V at VOUT_CORE pins. VOUT_AUX can be used to power the VDDIOx and VDDA supplies. 2. The DCDC converter generates 1.225 V at VOUT_CORE. This can be used to power the VDD_CORE supplies. This supply must not be used to power any additional circuitry. 3. In Buck mode, DC-DC converter needs 2.1 V min to start, the supply can drop to 1.8 V (or VOUT_AUX target value + 50 mV; whichever is higher) after DC-DC converter settles. Table 114. DC-DC Converter Specifications Characteristics Conditions Symbol Min Typ Max Unit DC-DC Converter Output Power Total power output of VOUT_AUX and VOUT_CORE Pdcdc_out — — 125 mW DC-DC Converter input voltage — VDCDC_IN 2.1 — 3.6 Vdc — VOUT_AUX 1.800 — 2.075 Vdc RUN mode VOUT_CORE 1.225 1.225 1.325 Vdc HSRUN mode VOUT_CORE 1.400 1.400 1.450 Vdc — TDCDC_ON — 51 — ms DC-DC Converter output Voltage DCDC Turn on Time Table continues on the next page... K32L3A, Rev. 1, 09/2019 153 NXP Semiconductors Design considerations Table 114. DC-DC Converter Specifications (continued) Characteristics Conditions Symbol Min Typ Max Unit VOUT_AUX Output Current — IOUT_AUX — — 100 mA VOUT_CORE Output Current — IOUT_CORE — — 100 mA Switching frequency — DCDC_FREQ — 2 — MHz DCDC Conversion Efficiency — DCDC_EFF_buck — 90% — DCDC Settling Time for increasing voltage TDCDC_SETTLE_buck — 260 — ms/V DCDC Settling Time for decreasing voltage TDCDC_SETTLE_buck — 38 — ms/V 1. Based on LDO is on and output at 1.8 V and 1.2 V. DCDC set to 1.8 V and 1.235 V 5 Design considerations 5.1 Hardware design considerations This device contains protective circuitry to guard against damage due to high static voltage or electric fields. However, take normal precautions to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. 5.1.1 Printed circuit board recommendations • Place connectors or cables on one edge of the board and do not place digital circuits between connectors. • Drivers and filters for I/O functions must be placed as close to the connectors as possible. Connect TVS devices at the connector to a good ground. Connect filter capacitors at the connector to a good ground. • Physically isolate analog circuits from digital circuits if possible. • Place input filter capacitors as close to the MCU as possible. • For best EMC performance, route signals as transmission lines; use a ground plane directly under LQFP packages; and solder the exposed pad (EP) to ground directly under QFN packages. 5.1.2 Power delivery system Consider the following items in the power delivery system: • Use a plane for ground. 154 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Design considerations • Use a plane for MCU VDDIOx supply if possible. • Always route ground first, as a plane or continuous surface, and never as sequential segments. • Route power next, as a plane or traces that are parallel to ground traces. • Place bulk capacitance, 10 μF or more, at the entrance of the power plane. • Place bypass capacitors for MCU power domain as close as possible to each VDDIOx/VSS pair, including VDDA/VSSA and VREFH/VREFL. • The minimum bypass requirement is to place 0.1 μF capacitors positioned as near as possible to the package supply pins. • It is recommended to include a filter circuit with one bulk capacitor (no less than 2.2 μF) and one 0.1 μF capacitor at the VREGIN and VOUT33 pins to improve USB performance. • Take special care to minimize noise levels on the VREFH/VREFL inputs. An option is to use the internal reference voltage (output 1.2 V/2.1 V typically) as the  ADC reference. • VDDIO2 is dedicated to powering PORTE.  • VDDA must be higher or equal to the greater of VDDIO1 and VDDIO2.  5.1.3 Analog design Each ADC input must have an RC filter as shown in the following figure. The maximum value of R must be RAS max if fast sampling and high resolution are   required. The value of C must be chosen to ensure that the RC time constant is very small compared to the sample period. MCU 1 2 ADCx C 2 R 1 Input signal  Figure 41. RC circuit for ADC input  High voltage measurement circuits require voltage division, current limiting, and over-voltage protection as shown the following figure. The voltage divider formed by R1 – R4 must yield a voltage less than or equal to VREFH. The current must be  limited to less than the injection current limit. Since the ADC pins do not have diodes to VDD, external clamp diodes must be included to protect against transient overvoltages. K32L3A, Rev. 1, 09/2019 155 NXP Semiconductors 2 R C 2 Design considerations D ADCx 1 1 Analog input OSCILL EXTAL R1 R2 1 1 2 R3 R44 2 1 ADCx 3 1 MCU 2 C OSCILLAT OSCILLATOR BAT54SW EXTAL EXTAL XTAL 1 2 1 ADCx CRYST Cx VDD 2 2 C 1 2 5.1.4 Digital design 10k VDD MCU VDD 1 R 2 1 1 1 Figure 42. High voltage measurement with an ADC input CRYSTAL Analog input CRY 2 2 R5 2 1 RF 1 1 High voltage input 2 3 1 1 MCU VDD OSCILLATOR 10k Ensure that all I/O pins cannot get pulled above VDDIOx (Max I/O is VDDIOx+0.3V). SWD_DIO 1 2 C 3 5 7 MCU9 EXTAL SWD_CLK 4 EXTAL XTAL RESET_b 1 1 RF 2 1 2 1 2 6 RESET_b CAUTION 8 1 2 RESET_b 10 0.1uF VDD Do not provide power to I/O pins prior to VDDIOx, especially 0.1uF RF HDR_5X2 the RESET_b pin. 1 OSCILLAT 2 J1 1 CRYSTAL The RESET_b pin is an open-drain I/O pin that has an internal pullup resistor. An 2 C external RC circuit is recommended to filter noise as shown in the following figure. The resistor value must be in the range of 4.7 kΩ to 10 kΩ; the recommended VDD Supervisor Chip MCU BAT54SW capacitance value is 0.1 μF. The RESET_b pin also has a selectable digital filter to reject spurious noise. 1  Cx 2 2 1 1 2 R4 2 1 ADCx 3 1 2 2 • RESET_b 1pin 2 10k R5 RS 1  10k HDR_5X2 1 2 RS RESET_b VDD 0.1uF 2 RESET_b RESET_b MCU 10k NMI_b 1 2 10k SWD_DIO SWD_CLK RESET_bB  2 0.1uF 2  2 4 6 8 10 1 J1 2 10k 10k 2 Figure 43. Reset circuit Supervisor Chip MCU VDD 1 156 NXP Semiconductors 10k   OUT 1 2 2 1 3 5 7 9 Active high, MCU open drain 1 1  VDDIOx 1 1 OUT VDD 2  RESET_b K32L3A, Rev. 1, 09/2019 2 CRYST 10k SWD_DIO SWD_CLK 10k 2 2 4 6 8 10 RESET_b 1 RESET_b RESET_b Design considerations 0.1uF When an external supervisor chip is connected to the RESET_b pin, a series 10k resistor must be used to avoid damaging the supervisor chip or the RESET_b pin, as shown in the following figure. The series resistor value (RS below) must be in the range of 100 Ω to 1 kΩ depending on the external reset chip drive strength. Select the open-drain output from the supervisor chip. 2 2 HDR_5X2 2 2 J1 1 1 3 5 7 9 4 3 OSCILLATOR Supervisor Chip  EXTAL OSCILLATOR VDD EXTAL XTAL OSCILLATOR MCU XTAL EXTAL XTAL 1 MCU RF 2 2 RF EXTAL RS XTAL 1 2 RF RS RS 2 Do not add a pull-down resistor or capacitor on the NMI_b pin, because a low  1 2 1 2 level on this pin will trigger non-maskable interrupt.1 When this pin is enabled as CRYSTAL CRYSTAL the NMI function, an external pull-up resistor Cy in the following Cx (10 kΩ) as shown figure is recommended for robustness. 2 RESONATOR 2 2 3 1 1 DCx XTAL 1 2 1 2 reset chip Figure 44. Reset signal connection to external 2  OSCILLATOR 1 • NMI pin EXTAL XTAL 1 MCU OSCILLATOR 1 EXTAL RESET_b 2 OSCILLATOR  RESONATOR 0.1uF 2 RS Cy 2 1  3 1 OUT 2 1 CRYSTAL Cx 1 2 1 1 10k CRYSTAL  DCx 2 2 1 If the NMI_b pin is used as an I/O pin, the non-maskable interrupt handler is required to disable the NMI function by remapping to another function. The NMI function is disabled by programming the FOPT[NMI_DIS] bit to zero.    MCU  MCU VDD 1 1 VDD 10k RESET_b NMI_b 1 2  2 10k 2 0.1uF  • Debug interface  MCU VDD 1 K32L3A, Rev. 1, 09/2019 2 1 157 NXP Semiconductors 10k 2 Figure 45. NMI pin biasing RESET_b Design considerations R1 1 MCU VDD 2 2 2 1 3 1 R2 R5 This MCU uses the standard Arm SWD and JTAG interface protocol as shown in 1 2 1 2 ADCx High voltage input R4 the following figure. While pull-up or pull-down resistors are not required 1 R3 (SWD_DIO has an internal pull-up and SWD_CLK has2 an internalCpull-down), 1 2 external 10 kΩ pull resistors are recommended for system robustness. The BAT54SW RESET_b pin recommendations mentioned above must also be considered. VDD 1 1 1 10k 2 SWD_DIO SWD_CLK RESET_b RESET_b RESET_b 0.1uF 1 2 0.1uF 2 4 6 8 10 1 J1 1 3 5 7 9 C 2 10k VDD MCU VDD 2 HDR_5X2 2 10k Figure 46. SWD debug interface Supervisor Chip MCU VDD 1 V_BRD KEY - PI N 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 20 JTAG_TMS/SWD_DIO JTAG_TCLK/SWD_CLK JTAG_TDO/SWD_SWO JTAG_TDI RESET_b TRACE_CLKOUT TRACE_D0 TRACE_D1 TRACE_D2 TRACE_D3 1 2 RS 2 OUT Active high, open drain RESET_b 1 1 3 5 10k R31 10.0K J5 0.1uF 2 MCU_PWR HDR_19P B Figure 47. JTAG debug interface • Low leakage stop mode wakeup Select low leakage wakeup pins (LLWU_Px) to wake the MCU from one of the low leakage stop modes (LLS/VLLSx). See K32 subfamily pinout for pin selection. • Unused pin Unused GPIO pins must be left floating (no electrical connections) with the MUX field of the pin’s PORTx_PCRn register equal to 0:0:0. This disables the digital input path to the MCU. If the USB module is not used, leave the USB data pins (USB0_DP, USB0_DM) floating. Connect VREGIN and VOUT to ground through a 10 kΩ resistor if the USB module is not used. A 158 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Design considerations 5.1.5 Crystal oscillator This device contains one crystal oscillator, a 32 kHz oscillator for the RTC. The output of this oscillator is available for use by other modules within the device. The oscillator has its own integrated feedback resistor and internal load capacitors as shown in the following figure. The only external components required are the crystals. The load capacitor values for the RTC oscillator are adjusted by the SCxP bits in the 4 3 CR register in the RTC module. OSCILLATOR EXTAL EXTAL XTAL 2 1 1 CRYSTAL ADCx 2 Figure 48. Crystal connection 2 CRYSTAL Cx EXT Cy 2 1 XTAL 1 OSCILLATOR MCU C OSCILLATOR 5.2 Software considerations EXTAL OSCILLATOR EXTAL XTAL XTAL 1 2 C CRYSTAL • Freedom Development Platform: http://www.nxp.com/freedom Cx IDEs for Kinetis MCUs 2 CRYSTAL 2 2 1 1 Cy 2 Evaluation and Prototyping Hardware 1 ADCx 2 1 1 All Kinetis MCUs are supported by comprehensive NXP and third-party hardware and 1 1 2 software enablement solutions, which can reduce development costs and time2 to MCU market. Featured software and tools are listed RF RF below. Visit http://www.nxp.com/ kinetis/sw for more information and supporting collateral. RS RS • MCUXpresso IDE: kex.nxp.com • Partner IDEs: http://www.nxp.com/kide Development Tools 1 Run-time Software MCU 1 • PEG Graphics Software: http://www.nxp.com/peg VDD ) MCU • VDD MCUXpresso Config Tools: kex.nxp.com 10k 10k RESET_b NMI_b 1 RESET_b 2 2 • Kinetis SDK: kex.nxp.com or http://www.nxp.com/ksdk 2 K32L3A, Rev. 1, 09/2019 0.1uF 159 NXP Semiconductors EXT Part identification • Kinetis Bootloader: http://www.nxp.com/kboot • Arm embed Development Platform: http://www.nxp.com/mbed For all other partner-developed software and tools, visit http://www.nxp.com/partners. 6 Part identification Part numbers for the device have fields that identify the specific part. Use the values of these fields to determine the specific part. 6.1 Part number format Part numbers for this device have the following format: B PS C FS T SPF T PG FR S PT Table 115. Part number fields descriptions Field Description Values B Brand • K32 PS Product series • L3 C Core • A = M0+ and M4F FS Flash size • 6 = 1.25 MB SPF Special feature • 0 = Superset T Temperature range (°C) • V = –40 to 105 PG Package • PJ = 176 VFBGA (9 mm x 9 mm) FR Frequency • 1 = 50-99 MHz S Silicon revision • A = Initial mask set • B = First major spin PT Packaging type • R = Full reel • T = Trays • Z = Small reel 7 Revision History The following table provides a revision history for this document. 160 NXP Semiconductors K32L3A, Rev. 1, 09/2019 Revision History Table 116. Revision History Rev. No. Date Rev.0 06/2019 Initial release. Rev.1 09/2019 Added Table 68. K32L3A, Rev. 1, 09/2019 Substantial Changes 161 NXP Semiconductors How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. ©2019 NXP B.V. Document Number K32L3A Revision 1, 09/2019
K32L3A60VPJ1AT 价格&库存

很抱歉,暂时无法提供与“K32L3A60VPJ1AT”相匹配的价格&库存,您可以联系我们找货

免费人工找货