0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC34PF4210A1ES

MC34PF4210A1ES

  • 厂商:

    NXP(恩智浦)

  • 封装:

    VFQFN56_EP

  • 描述:

    MC34PF4210A1ES

  • 数据手册
  • 价格&库存
MC34PF4210A1ES 数据手册
PF4210 14-channel power management integrated circuit (PMIC) for audio/video applications Rev. 2.0 — 14 November 2018 1 Data sheet: technical data General description The PF4210 high performance power management integrated circuit (PMIC) provides a highly programmable/configurable architecture with fully integrated power devices and minimal external components. With up to six buck converters, six linear regulators, an RTC supply, and a coin cell charger, the PF4210 can provide power for a complete system, including applications processors, memory, and system peripherals, in a wide range of applications. With on-chip one-time programmable (OTP) memory, the PF4210 is available in preprogrammed standard version or nonprogrammed to support custom programming. The PF4210 is defined to power low-cost audio/video applications using the i.MX 8M family of applications processors. 2 Features and benefits • Four to six buck converters, depending on configuration – Single/dual phase/parallel options – DDR termination tracking mode option • Boost regulator to 5.0 V output • Six general purpose linear regulators • Programmable output voltage, sequence, and timing • OTP (one-time programmable) memory for device configuration • Coin cell charger and RTC supply • DDR termination reference voltage • Power control logic with processor interface and event detection 2 • I C control • Individually programmable on, off, and standby modes PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 3 Simplified application diagram VIN i.MX 8M PROCESSOR EXTERNAL REGULATOR 0.9 V EXTERNAL REGULATOR 3.3 V, 8.0 A CORTEX A53 PLATFORM EXTERNAL REGULATOR 0.9 V QUAD CORTEX-A53 L1 CACHE L2 CONTROLLER AND SCU PMIC PF4210 L2 CACHE MEMORY SW1AB 0.9 V, 2.5 A GPU SW1C 0.9 V, 2.0 A VPU SOC (always ON) LOAD SWITCH DISPLAYMIX 3.3 V GPIO PAO ENABLE SW4A 1.8 V, 1.0 A 1.8 V GPIO PAO eFuse VGEN4 1.8 V, 350 mA PLL XTAL TEMPERATURE SENSOR SW3AB 1.0 V, 3.0 A DRAM CONTROLLER DRAM PHY SW2 1.1 V, 2.5 A LPDDR4 VGEN3 1.8 V, 100 mA PCIe PHY HDMI PHY VGEN2 0.9 V, 250 mA MIPI PHY VGEN5 3.3 V, 100 mA VSNVS 1.0 V, 1.5 mA or 1.0 mA USB PHY1 VGEN1 1.5 V, 100 mA USB PHY2 VGEN6 2.8 V, 200 mA SNVS_LP PMIC PAD Camera SD2 aaa-026470 Figure 1. Simplified application diagram PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 2 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 4 Applications • • • • • • 5 OTT STB Wireless audio Voice recognition assistant A/V receivers Sound bars General embedded Orderable parts The PF4210 is available with both preprogrammed and nonprogrammed OTP memory configurations. The nonprogrammed device uses A0 as the programming code. The preprogrammed devices are identified using the program codes from Table 1, which also list the associated NXP reference designs where applicable. Details of the OTP programming for each device can be found in Table 8. Table 1. Orderable part variations Part number [1] Temperature (TA) Package MC32PF4210A0ES MC32PF4210A1ES MC32PF4210A2ES MC32PF4210A3ES 0 °C to 85 °C (for use in consumer applications) 56 QFN 8x8 mm - 0.5 mm pitch WF-type QFN (wettable flank) MC32PF4210A4ES MC34PF4210A0ES MC34PF4210A1ES MC34PF4210A2ES MC34PF4210A3ES −40 °C to 105 °C (for use in industrial applications) MC34PF4210A4ES [1] [2] Programming [2] Reference designs A0 (Nonprogrammed) N/A A1 MCIMX8M-EVK A2 N/A A3 N/A A4 N/A A0 (Nonprogrammed) N/A A1 MCIMX8M-EVK A2 N/A A3 N/A A4 N/A For tape and reel, add an R2 suffix to the part number. For programming details see Table 8. The available OTP options are not restricted to the listed reference designs. They can be used in any application where the listed voltage and sequence details are acceptable. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 3 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 6 Internal block diagram VIN1 VGEN1 VGEN2 VIN2 VGEN3 VGEN4 VIN3 VGEN5 VGEN6 PF4210 VGEN1 100 mA SINGLE/DUAL 2500 mA BUCK VGEN2 250 mA VGEN3 100 mA VGEN4 350 mA VGEN5 100 mA SW1C 2000 mA REFERENCE GENERATION SW1BLX O/P DRIVE SW1CLX I2C REGISTER MAP SW1BIN SW1CIN SW1CFB O/P DRIVE SW2LX SW2IN SW2IN SW2FB SW3AFB CONTROL SUPPLIES CONTROL SW3A/B SINGLE/DUAL DDR 3000 mA BUCK O/P SW3AIN DRIVE SW3ALX O/P DRIVE SW3BLX SW3BIN SW3BFB SW3VSSSNS DVS CONTROL VCOREDIG VCORE SW2 2500 mA BUCK I2C INTERFACE SDA O/P DRIVE SW1ALX SW1VSSSNS INITIALIZATION STATE MACHINE VDDOTP SCL SW1AIN CORE CONTROL LOGIC VGEN6 200 mA VDDIO O/P DRIVE BUCK OTP VCOREREF SW1FB SW1A/B DVS CONTROL SW4 1000 mA TRIM-IN-PACKAGE BUCK CLOCKS AND RESETS SWBST 600 mA BOOST GNDREF SW4FB O/P SW4IN DRIVE SW4LX GNDREF1 O/P SWBSTLX DRIVE SWBSTIN SWBSTFB CLOCKS 32 kHz and 16 MHz VREFDDR VINREFDDR VHALF VIN LI-CELL CHARGER LICELL BEST OF SUPPLY INTB SDWNB STANDBY RESETBMCU ICTEST PWRON VSNVS VSNVS aaa-026471 Figure 2. Simplified internal block diagram PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 4 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 7 Pinning information 43 VSNVS 44 SWBSTFB 45 SWBSTIN 46 SWBSTLX 47 VDDOTP 48 GNDREF 49 VCORE 50 VIN PF4210 51 VCOREDIG 52 VCOREREF 53 SDA 54 SCL 55 VDDIO 56 PWRON 7.1 Pinning INTB 1 42 LICELL SDWNB 2 41 VGEN6 RESETBMCU 3 40 VIN3 STANDBY 4 39 VGEN5 ICTEST 5 38 SW3AFB SW1FB 6 37 SW3AIN SW1AIN 7 SW1ALX 8 SW1BLX 9 36 SW3ALX EP 35 SW3BLX 34 SW3BIN SW1BIN 10 33 SW3BFB SW1CLX 11 32 SW3VSSSNS SW1CIN 12 31 VREFDDR SW1CFB 13 30 VINREFDDR Transparent top view VGEN4 28 VIN2 27 VGEN3 26 SW2FB 25 SW2IN 24 SW2IN 23 SW2LX 22 SW4LX 21 SW4IN 20 SW4FB 19 VGEN2 18 VIN1 17 VGEN1 16 29 VHALF GNDREF1 15 SW1VSSSNS 14 aaa-026472 Figure 3. Pinout diagram 7.2 Pin definitions Table 2. Pin definitions Number Name Function Max rating Type Definition 1 INTB Output 3.6 V Digital Open drain interrupt signal to processor 2 SDWNB Output 3.6 V Digital Open drain signal to indicate an imminent system shutdown 3 RESETBMCU Output 3.6 V Digital Open drain reset output to processor. Alternatively can be used as a power output. 4 STANDBY Input 3.6 V Digital Standby input signal from processor 5 ICTEST Input 7.5 V Digital/ Analog Reserved pin. Connect to GND in application. 6 SW1FB Input 3.6 V Analog Output voltage feedback for SW1A/B. Route this trace separately from the high current path and terminate at the output capacitance. 7 SW1AIN Input 4.8 V Analog Input to SW1A regulator. Bypass with at least a 4.7 µF ceramic capacitor and a 0.1 µF decoupling capacitor as close to the pin as possible. [1] [1] PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 5 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Number Name Function Max rating Type Definition SW1ALX [1] Output 4.8 V Analog Regulator 1A switch node connection SW1BLX [1] Output 4.8 V Analog Regulator 1B switch node connection 10 SW1BIN [1] Input 4.8 V Analog Input to SW1B regulator. Bypass with at least a 4.7 µF ceramic capacitor and a 0.1 µF decoupling capacitor as close to the pin as possible. 11 SW1CLX [1] Output 4.8 V Analog Regulator 1C switch node connection 12 SW1CIN [1] Input 4.8 V Analog Input to SW1C regulator. Bypass with at least a 4.7 µF ceramic capacitor and a 0.1 µF decoupling capacitor as close to the pin as possible. 13 SW1CFB Input 3.6 V Analog Output voltage feedback for SW1C. Route this trace separately from the high current path and terminate at the output capacitance. 14 SW1VSSSNS GND — GND Ground reference for regulators SW1ABC. It is connected externally to GNDREF through a board ground plane. 15 GNDREF1 GND — GND Ground reference for regulators SW2 and SW4. It is connected externally to GNDREF, via board ground plane. 16 VGEN1 Output 2.5 V Analog VGEN1 regulator output. Bypass with a 2.2 µF ceramic output capacitor. 17 VIN1 Input 3.6 V Analog VGEN1, 2 input supply. Bypass with a 1.0 µF decoupling capacitor as close to the pin as possible. 18 VGEN2 Output 2.5 V Analog VGEN2 regulator output. Bypass with a 4.7 µF ceramic output capacitor. 19 SW4FB Input 3.6 V Analog Output voltage feedback for SW4. Route this trace separately from the high current path and terminate at the output capacitance. 20 SW4IN [1] Input 4.8 V Analog Input to SW4 regulator. Bypass with at least a 4.7 µF ceramic capacitor and a 0.1 µF decoupling capacitor as close to the pin as possible. 21 SW4LX [1] Output 4.8 V Analog Regulator 4 switch node connection SW2LX [1] Output 4.8 V Analog Regulator 2 switch node connection SW2IN [1] Input 4.8 V Analog 24 SW2IN [1] Input 4.8 V Analog Input to SW2 regulator. Connect pin 23 together with pin 24 and bypass with at least a 4.7 µF ceramic capacitor and a 0.1 µF decoupling capacitor as close to these pins as possible. 25 SW2FB Input 3.6 V Analog Output voltage feedback for SW2. Route this trace separately from the high current path and terminate at the output capacitance. 26 VGEN3 Output 3.6 V Analog VGEN3 regulator output. Bypass with a 2.2 µF ceramic output capacitor. 27 VIN2 Input 3.6 V Analog VGEN3, 4 input. Bypass with a 1.0 µF decoupling capacitor as close to the pin as possible. 28 VGEN4 Output 3.6 V Analog VGEN4 regulator output. Bypass with a 4.7 µF ceramic output capacitor. 29 VHALF Input 3.6 V Analog Half supply reference for VREFDDR 8 9 22 23 [1] [1] [1] PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 6 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Number Name Function Max rating Type Definition 30 VINREFDDR Input 3.6 V Analog VREFDDR regulator input. Bypass with at least 1.0 µF decoupling capacitor as close to the pin as possible. 31 VREFDDR Output 3.6 V Analog VREFDDR regulator output 32 SW3VSSSNS GND — GND Ground reference for the SW3 regulator. Connect to GNDREF externally via the board ground plane. 33 SW3BFB Input 3.6 V Analog Output voltage feedback for SW3B. Route this trace separately from the high current path and terminate at the output capacitance. 34 SW3BIN [1] Input 4.8 V Analog Input to SW3B regulator. Bypass with at least a 4.7 µF ceramic capacitor and a 0.1 µF decoupling capacitor as close to the pin as possible. 35 SW3BLX [1] Output 4.8 V Analog Regulator 3B switch node connection SW3ALX [1] Output 4.8 V Analog Regulator 3A switch node connection 37 SW3AIN [1] Input 4.8 V Analog Input to SW3A regulator. Bypass with at least a 4.7 µF ceramic capacitor and a 0.1 µF decoupling capacitor as close to the pin as possible. 38 SW3AFB Input 3.6 V Analog Output voltage feedback for SW3A. Route this trace separately from the high current path and terminate at the output capacitance. 39 VGEN5 Output 3.6 V Analog VGEN5 regulator output. Bypass with a 2.2 µF ceramic output capacitor. 40 VIN3 Input 4.8 V Analog VGEN5, 6 input. Bypass with a 1.0 µF decoupling capacitor as close to the pin as possible. 41 VGEN6 Output 3.6 V Analog VGEN6 regulator output. Bypass with a 2.2 µF ceramic output capacitor. 42 LICELL Input/Out put 3.6 V Analog Coin cell supply input/output 43 VSNVS Output 3.6 V Analog LDO or coin cell output to processor Input 5.5 V Analog Boost regulator feedback. Connect this pin to the output rail close to the load. Keep this trace away from other noisy traces and planes. Analog Input to SWBST regulator. Bypass with at least a 2.2 µF ceramic capacitor and a 0.1 µF decoupling capacitor as close to the pin as possible. Analog SWBST switch node connection Digital/ Analog Supply to program OTP fuses 36 [1] [1] [1] 44 SWBSTFB 45 SWBSTIN [1] Input 4.8 V 46 SWBSTLX [1] Output 7.5 V [2] 47 VDDOTP Input 10 V 48 GNDREF GND — GND Ground reference for the main band gap regulator 49 VCORE Output 3.6 V Analog Analog core supply 50 VIN Input 4.8 V Analog Main chip supply 51 VCOREDIG Output 1.5 V Analog Digital core supply 52 VCOREREF Output 1.5 V Analog Main band gap reference 53 SDA Input/Out put 3.6 V Digital I C data line (open drain) PF4210 Data sheet: technical data 2 All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 7 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Number Name Function Max rating Type Definition 54 SCL Input 3.6 V Digital I C clock 55 VDDIO Input 3.6 V Analog Supply for I C bus. Bypass with 0.1 µF ceramic capacitor 56 PWRON Input 3.6 V Digital Power on/off from processor — EP GND — GND Expose pad. Functions as ground return for buck regulators. Tie this pad to the inner and external ground planes through vias to allow effective thermal dissipation. [1] [2] 2 2 Unused switching regulators should be connected as follow: Pins SWxLX and SWxFB should be unconnected and pin SWxIN should be connected to VIN with a 0.1 µF bypass capacitor. 10 V maximum voltage rating during OTP fuse programming. 7.5 V maximum DC voltage rated otherwise. 8 General product characteristics 8.1 Absolute maximum ratings Table 3. Absolute maximum ratings All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage to the device. For maximum voltage rating for each pin see Section 7.2 "Pin definitions". Symbol Description Value Unit Electrical ratings VIN Main input supply voltage −0.3 to 4.8 V VDDOTP OTP programming input supply voltage −0.3 to 10 V VLICELL Coin cell voltage −0.3 to 3.6 V ±2000 ±500 V VESD [1] [1] ESD ratings Human body model Charge device model ESD testing is performed in accordance with the human body model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the charge device model (CDM), robotic (CZAP = 4.0 pF). 8.2 Thermal characteristics Table 4. Thermal ratings Symbol Description (rating) Min Max Unit TA Ambient operating temperature range MC32PF4210 MC34PF4210 0 −40 85 105 TJ Operating junction temperature range −40 125 °C TST Storage temperature range −65 150 °C — [3] °C Thermal ratings TPPRT Peak package reflow temperature °C [1] [2] QFN56 thermal resistance and package dissipation ratings PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 8 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Min Description (rating) Junction to ambient Natural convection Four layer board (2s2p) Eight layer board (2s6p) [4] [5] [6] RΘJMA Junction to ambient (@200 ft/min) Four layer board (2s2p) [4] [6] RΘJB Junction to board RΘJA RΘJCBOTTOM ΨJT [1] [2] [3] [4] [5] [6] [7] [8] [9] Max Unit °C/W — — 28 15 — 22 [7] — 10 °C/W Junction to case bottom [8] — 1.2 °C/W Junction to package top Natural convection [9] — 2.0 °C/W °C/W Do not operate beyond 125 °C for extended period of time. Operation above 150 °C may cause permanent damage to the IC. See Table 5 for thermal protection features. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a malfunction or permanent damage to the device. NXP’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all orderable parts (MC33xxxD enter 33xxx), and review parametrics. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. The board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5. Per JEDEC JESD51-6 with the board horizontal Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letter (Ψ) is not available, the thermal characterization parameter is written as Psi-JT. 8.3 Power dissipation During operation, the temperature of the die should not exceed the operating junction temperature noted in Table 4. To optimize the thermal management and to avoid overheating, the PF4210 provides thermal protection. An internal comparator monitors the die temperature. Interrupts THERM110I, THERM120I, THERM125I, and THERM130I are generated when the respective thresholds specified in Table 5 are crossed in either direction. The temperature range can be determined by reading the THERMxxxS bits in register INTSENSE0. In the event of excessive power dissipation, thermal protection circuitry shuts down the PF4210. This thermal protection acts above the thermal protection threshold listed in Table 5. To avoid any unwanted power-down resulting from internal noise, the protection is debounced for 8.0 ms. This protection should be considered as a fail-safe mechanism and therefore the system should be configured so protection is not tripped under normal conditions. Table 5. Thermal protection thresholds PF4210 Data sheet: technical data Parameter Min Typ Max Units Thermal 110 °C threshold (THERM110) 100 110 120 °C Thermal 120 °C threshold (THERM120) 110 120 130 °C Thermal 125 °C threshold (THERM125) 115 125 135 °C All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 9 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Parameter Min Typ Max Units Thermal 130 °C threshold (THERM130) 120 130 140 °C Thermal warning hysteresis 2.0 — 4.0 °C Thermal protection threshold 130 140 150 °C 8.4 Electrical characteristics 8.4.1 General specifications Table 6. General PMIC static characteristics TMIN to TMAX (see Table 4),VIN = 2.8 to 4.5 V, VDDIO = 1.7 to 3.6 V, typical external component values and full load current range, unless otherwise noted. Pin name Parameter Load condition PWRON VIL RESETBMCU SCL SDA INTB SDWNB STANDBY VDDOTP Min Max Unit — 0 0.2 * VSNVS V VIH — 0.8 * VSNVS 3.6 V VOL −2.0 mA 0.0 0.4 V VOH Open drain 0.7* VIN VIN V VIL — 0.0 0.2 * VDDIO V VIH — 0.8 * VDDIO 3.6 V VIL — 0 0.2 * VDDIO V VIH — 0.8 * VDDIO 3.6 V VOL −2.0 mA 0.0 0.4 V VOH Open drain 0.7 * VDDIO VDDIO V VOL −2.0 mA 0.0 0.4 V VOH Open drain 0.7 * VIN VIN V VOL −2.0 mA 0.0 0.4 V VOH Open drain 0.7 * VIN VIN V VIL — 0 0.2 * VSNVS V VIH — 0.8 * VSNVS 3.6 V VIL — 0 0.3 V VIH — 1.1 1.7 V PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 10 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 8.4.2 Current consumption Table 7. Current consumption summary TMIN to TMAX (see Table 4), VIN = 3.6 V, VDDIO = 1.7 V to 3.6 V, LICELL = 1.8 V to 3.3 V, VSNVS = 3.0 V, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VDDIO = 3.3 V, LICELL = 3.0 V, VSNVS = 3.0 V and 25 °C, unless otherwise noted. Mode PF4210 conditions System conditions Typ Max Unit 4.0 7.0 µA 17 25 µA Coin cell VSNVS from LICELL All other blocks off VIN = 0.0 V VSNVSVOLT[2:0] = 110 No load on VSNVS [1] [2] Off VSNVS from VIN or LICELL Wake-up from PWRON active 32 kHz RC on All other blocks off VIN ≥ UVDET No load on VSNVS, PMIC able to wake-up [1] [3] Sleep VSNVS from VIN Wake-up from PWRON active Trimmed reference active SW3A/B PFM Trimmed 16 MHz RC off 32 kHz RC on VREFDDR disabled No load on VSNVS. DDR memories in self refresh [1] 122 122 220 [5] 250 [4] µA Standby VSNVS from either VIN or LICELL SW1A/B combined in PFM SW1C in PFM SW2 in PFM SW3A/B combined in PFM SW4 in PFM SWBST off Trimmed 16 MHz RC enabled Trimmed reference active VGEN1 to 6 enabled VREFDDR enabled No load on VSNVS. Processor enabled in lowpower mode. All rails powered on except boost (load = 0 mA) [1] 297 297 450 [5] 550 [4] µA [1] [2] [3] [4] [5] 9 For PFM operation, headroom should be 300 mV or greater. Additional current may be drawn in the coin cell mode when RESETBMCU is pulled up to VSNVS due to an internal path from RESETBMCU to VIN. The additional current is < 30 µA with a pullup resistor of 100 kΩ. When VIN is below the UVDET threshold, in the range of 1.8 V ≤ VIN < 2.65 V, the quiescent current increases by 50 µA, typically. From −40 °C to 85 °C From −40 °C to 105 °C Detailed description The PF4210 is the power management integrated circuit (PMIC) designed primarily for use with NXP's i.MX 8M family of applications processors. 9.1 Features This section summarizes the PF4210 features. • Input voltage range to PMIC: 2.8 V to 4.5 V PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 11 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications • Buck regulators – Four to six channel configurable – SW1A/B/C, 4.5 A (single); 0.3 V to 1.875 V – SW1A/B, 2.5 A (single/dual); SW1C 2.0 A (independent); 0.3 V to 1.875 V – SW2, 2.5 A; 0.4 V to 3.3 V – SW3A/B, 3.0 A (single/dual); 0.4 V to 3.3 V – SW3A, 1.5 A (independent); SW3B, 1.5 A (independent); 0.4 V to 3.3 V – SW4, 1.0 A; 0.4 V to 3.3 V – SW4, VTT mode provide DDR termination at 50 % of SW3A – Dynamic voltage scaling – Modes: PWM, PFM, APS – Programmable output voltage – Programmable current limit – Programmable soft start – Programmable PWM switching frequency – Programmable OCP with fault interrupt • Boost regulator – SWBST, 5.0 V to 5.15 V, 0.6 A, OTG support – Modes: PFM and auto – OCP fault interrupt • LDOs – Six user-programmable LDOs – VGEN1, 0.80 V to 1.55 V, 100 mA – VGEN2, 0.80 V to 1.55 V, 250 mA – VGEN3, 1.8 V to 3.3 V, 100 mA – VGEN4, 1.8 V to 3.3 V, 350 mA – VGEN5, 1.8 V to 3.3 V, 100 mA – VGEN6, 1.8 V to 3.3 V, 200 mA • Soft start • LDO/switch supply – VSNVS (1.0/1.1/1.2/1.3/1.5/1.8/3.0 V), 1.5 mA (consumer version), 1.0 mA (industrial version) • DDR memory reference voltage – VREFDDR, 0.6 V to 0.9 V, 10 mA • 16 MHz internal master clock • OTP (one time programmable) memory for device configuration – User programmable start-up sequence and timing • Battery backed memory including coin cell charger 2 • I C interface • User programmable standby, sleep, and off modes PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 12 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 9.2 Functional block diagram PF4210 functional internal block diagram OTP startup configuration Voltage Sequence and timing Phasing and frequency selection Bias and references Internal core voltage reference DDR voltage reference Logic and control Parallel MCU interface Regulator control I2C communication and registers Fault detection and protection Thermal Current limit Power generation Switching regulators SW1A/B/C (0.3 V to 1.875 V) Configurable 4.5 A or 2.5 A + 2.0 A Linear regulators VGEN1 (0.8 V to 1.55 V, 100 mA) VGEN2 (0.8 V to 1.55 V, 250 mA) SW2 (0.4 V to 3.3 V), 2.5 A VGEN3 (1.8 V to 3.3 V, 100 mA) SW3A/B (0.4 V to 3.3 V) Configurable 3.0 A or 1.5 A + 1.5 A VGEN4 (1.8 V to 3.3 V, 350 mA) SW4 (0.4 V to 3.3 V, 1.0 A) VGEN5 (1.8 V to 3.3 V, 100 mA) VGEN6 (0.8 V to 1.55 V, 200 mA) Boost regulator (5.0 V to 5.15 V, 600 mA) USB OTG supply Short circuit aaa-026473 Figure 4. Functional block diagram 9.3 Functional description 9.3.1 Power generation The PF4210 PMIC features four buck regulators (up to six independent outputs), one boost regulator, six general purpose LDOs, one switch/LDO combination and a DDR voltage reference to supply voltage for the application processor and peripheral devices. The number of independent buck regulator outputs can be configured from four to six, thereby providing flexibility to operate with higher current capability, or to operate as independent outputs for applications requiring more voltage rails with lower current demands. SW1 and SW3 regulators can be configured as single/dual phase and/or independent converters. One of the buck regulators, SW4, can also operate as a tracking regulator when used for memory termination. The buck regulators provide supply to processor cores and to other low voltage circuits such as IO and memory. Dynamic voltage scaling is provided to allow controlled supply rail adjustments for the processor cores and/or other circuitry. Depending on the system power path configuration, the six general purpose LDO regulators can be directly supplied from the main input supply or from the switching regulators to power peripherals, such as audio, camera, bluetooth, and wireless LAN. A specific VREFDDR voltage reference is included to provide an accurate reference voltage for DDR memories operating with or without VTT termination. The VSNVS block PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 13 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications behaves as an LDO, or as a bypass switch to supply the SNVS/SRTC circuitry in the i.MX processors; VSNVS may be powered from VIN, or from a coin cell. 9.3.2 Control logic 2 The PF4210 PMIC is fully programmable via the I C interface. Additional communication is provided by direct logic interfacing including interrupt and reset. Startup sequence of the device is selected based on the initial OTP configuration explained in the Section 10.1 "Startup", or by configuring the Try Before Buy feature to test different power up sequences before choosing the final OTP configuration. The PF4210 PMIC has interfaces for the power buttons and a dedicated signaling interface with the processor. It also ensures supply of critical internal logic and other circuits from the coin cell, in case of brief interruptions from the main battery. A charger for the coin cell is included as well. 9.3.2.1 Interface signals 9.3.2.1.1 PWRON PWRON is an input signal to the IC generating a turn on event. It can be configured to detect a level, or an edge using the PWRON_CFG bit. See Section 10.4.2.1 "Turn on events" for more details. 9.3.2.1.2 STANDBY STANDBY is an input signal to the IC. When it is asserted, the part enters standby mode and when deasserted, the part exits standby mode. STANDBY can be configured as active high or active low using the STANDBYINV bit. See Section 10.4.1.3 "Standby mode" for more details. Note: When operating the PMIC at VIN ≤ 2.85 V and VSNVS is programmed for a 3.0 V output, a coin cell must be present to provide VSNVS, or the PMIC does not reliably enter and exit the standby mode. 9.3.2.1.3 RESETBMCU RESETBMCU is an open drain, active low output configurable for two modes of operation. In default mode, it is deasserted 2.0 ms to 4.0 ms after the last regulator if the startup sequence is enabled (see Figure 5). In this mode, the signal can be used to bring the processor out of reset, or as an indicator that all supplies have been enabled; it is only asserted for a turn off event. When configured for fault mode, RESETBMCU is deasserted after the startup sequence is completed only if no faults occurred during startup. At anytime, if a fault occurs and persists for 1.8 ms typically, RESETBMCU is asserted, LOW. The PF4210 is turned off if the fault persists for more than 100 ms typically. The PWRON signal restarts the part, though if the fault persists, the sequence described above is repeated. To enter the fault mode, set bit OTP_PG_EN of register OTP PWRGD EN to 1. This register, 0xE8, is located in Table 135 of the register map. To test the fault mode, the bit may be set during TBB prototyping, or the mode may be permanently chosen by programming OTP fuses. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 14 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 9.3.2.1.4 SDWNB SDWNB is an open drain, active low output notifying the processor of an imminent PMIC shut down. It is asserted low for one 32 kHz clock cycle before powering down and is then deasserted in the OFF state. 9.3.2.1.5 INTB INTB is an open drain, active low output. It is asserted when any fault occurs, provided the fault interrupt is unmasked. INTB is deasserted after the fault interrupt is cleared by software, which requires writing a 1 to the fault interrupt bit. 10 Functional block requirements and behaviors 10.1 Startup The PF4210 can be configured to start up from either the internal OTP configuration, or with a hard coded configuration built into the device. The internal hard coded configuration is enabled by connecting the VDDOTP pin to VCOREDIG through a 100 kΩ resistor. The OTP configuration is enabled by connecting VDDOTP to GND. For NP (nonprogrammed) devices, selecting the OTP configuration causes the 2 PF4210 to not start up. However, the PF4210 can be controlled through the I C port for prototyping and programming. Once programmed, the NP device starts up with the customer programmed configuration. 10.1.1 Device startup configuration Table 8 shows the default configuration for all devices and the preprogrammed OTP configurations. Table 8. Startup configuration Registers Default configuration A0 Preprogrammed OTP configuration A1 Default I2C addr A2 A3 A4 0x08 VSNVS_VOLT 3.0 V 1.0 V 1.0 V 1.0 V 1.0 V SW1AB_VOLT 1.375 V 0.9 V 0.9 V 0.9 V 0.9 V SW1AB_SEQ 1 4 4 4 3 SW1C_VOLT 1.375 V 0.9 V 0.9 V 0.9 V 0.9 V SW1C_SEQ 1 4 4 4 4 SW2_VOLT 3.0 V 1.1 V 1.2 V 1.35 V 1.2 V SW2_SEQ 2 6 6 6 6 SW3A_VOLT 1.5 V 1.0 V 1.0 V 1.0 V 0.9 V SW3A_SEQ 3 4 4 4 4 SW3B_VOLT 1.5 V 1.0 V 1.0 V 1.0 V 0.9 V SW3B_SEQ 3 4 4 4 4 SW4_VOLT 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 15 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Default configuration Registers Preprogrammed OTP configuration A0 A1 A2 A3 A4 SW4_SEQ 3 6 6 6 6 SWBST_VOLT — — — — — SWBST_SEQ — — — — — VREFDDR_SEQ 3 6 6 6 6 VGEN1_VOLT — 1.5 V 1.5 V 1.5 V — VGEN1_SEQ — 31 31 31 — VGEN2_VOLT 1.5 V 0.9 V 0.9 V 0.9 V 0.9 V VGEN2_SEQ 2 7 7 7 8 VGEN3_VOLT — 1.8 V 1.8 V 1.8 V — VGEN3_SEQ — 7 7 7 — VGEN4_VOLT 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V VGEN4_SEQ 3 5 5 5 5 VGEN5_VOLT 2.5 V 3.3 V 3.3 V 3.3 V — VGEN5_SEQ 3 7 7 7 — VGEN6_VOLT 2.8 V 2.8 V 2.8 V 2.8 V — VGEN6_SEQ 3 31 31 31 — 1.0 ms 2.0 ms 2.0 ms 2.0 ms 2.0 ms 6.25 mV/μs 1.5625 mV/μs 1.5625 mV/μs 1.5625 mV/μs 1.5625 mV/μs PU CONFIG, SEQ_CLK_ SPEED PU CONFIG, SWDVS_ CLK PU CONFIG, PWRON Level sensitive SW1AB CONFIG SW1AB single phase, SW1C independent mode, 2.0 MHz SW1C CONFIG 2.0 MHz SW2 CONFIG 2.0 MHz SW3A CONFIG SW3AB single phase mode, 2.0 MHz SW3B CONFIG 2.0 MHz SW4 CONFIG No VTT, 2.0 MHz PG EN RESETBMCU in default mode Notes: • Keep bit SW2ILIM = 0 for A1, A2, A3 and A4 for max. rated output load current. • Keep bit SW3xILIM = 0 for A1, A2, A3 and A4 for max. rated output load current. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 16 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications LICELL UVDET td1 VIN tr1 1.0 V VSNVS* td2 tr2 PWRON td3 tr3 SW1A/B SW1C td4 tr3 SW2 VGEN2 td4 tr3 SW3A/B SW4 VREFDDR VGEN4 VGEN5 VGEN6 td5 tr4 RESETBMCU *VSNVS starts from 1.0 V if LICELL is valid before VIN aaa-026474 Figure 5. Default startup sequence A0 Table 9. Default startup sequence timing Parameter Description [1] Min Typ Max Unit — 5.0 — ms tD1 Turn-on delay of VSNVS tR1 Rise time of VSNVS — 3.0 — ms tD2 User determined delay — 1.0 — ms — ms tR2 Rise time of PWRON — [2] tD3 Turn-on delay of first regulator SEQ_CLK_SPEED[1:0] = 00 [3] SEQ_CLK_SPEED[1:0] = 01 SEQ_CLK_SPEED[1:0] = 10 SEQ_CLK_SPEED[1:0] = 11 — — — — 2.0 2.5 4.0 7.0 — — — — tR3 Rise time of regulators — 0.2 — PF4210 Data sheet: technical data ms [4] All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 ms © NXP B.V. 2018. All rights reserved. 17 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Parameter Description tD4 Delay between regulators SEQ_CLK_SPEED[1:0] = 00 SEQ_CLK_SPEED[1:0] = 01 SEQ_CLK_SPEED[1:0] = 10 SEQ_CLK_SPEED[1:0] = 11 — — — — 0.5 1.0 2.0 4.0 — — — — tR4 Rise time of RESETBMCU — 0.2 — ms tD5 Turn-on delay of RESETBMCU — 2.0 — ms [1] [2] [3] [4] Min Typ Max Unit ms Assume LICELL voltage is valid before VIN is applied. If LICELL is not valid before VIN is applied, then VSNVS turn on delay may extend to a maximum of 24 ms. Depends on the external signal driving PWRON. Default configuration Rise time is a function of slew rate of regulators and nominal voltage selected. 10.1.2 One time programmability (OTP) OTP allows the programming of startup configurations for a variety of applications. Before permanently programming the IC by programming fuses, a configuration may be prototyped by using the Try Before Buy (TBB) feature. An error correction code (ECC) algorithm is available to correct a single bit error and to detect multiple bit errors when fuses are programmed. The parameters which can be configured by OTP are listed below. 2 • General: I C slave address, PWRON pin configuration, startup sequence and timing • Output voltage, dual/single phase or independent mode configuration, switching frequency, and soft start ramp rate • Boost regulator and LDOs: output voltage Note: When prototyping or programming fuses, ensure register settings are consistent with the hardware configuration. This is important for the buck regulators, where the quantity, size, and value of the inductors depend on the configuration (single/ dual phase or independent mode) and the switching frequency. Additionally, if an LDO is powered by a buck regulator, it is gated by the buck regulator in the startup sequence. 10.1.2.1 Startup sequence and timing Each regulator has 5-bit allocated to program its startup time slot from a turn on event; therefore, each can be placed from position one to thirty-one in the startup sequence. The all zeros code indicates a regulator is not part of the startup sequence and remains off (see Table 10). The delay between each position is equal; however, four delay options are available (see Table 11). The startup sequence terminates at the last programmed regulator. Table 10. Startup sequence PF4210 Data sheet: technical data SWxx_SEQ[4:0]/ VGENx_SEQ[4:0]/ VREFDDR_SEQ[4:0] Sequence 00000 Off 00001 SEQ_CLK_SPEED[1:0] * 1 00010 SEQ_CLK_SPEED[1:0] * 2 * * All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 18 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications SWxx_SEQ[4:0]/ VGENx_SEQ[4:0]/ VREFDDR_SEQ[4:0] Sequence * * * * * * 11111 SEQ_CLK_SPEED[1:0] * 31 Table 11. Startup sequence clock speed SEQ_CLK_SPEED[1:0] Time (µs) 00 500 01 1000 10 2000 11 4000 10.1.2.2 PWRON pin configuration The PWRON pin can be configured as either a level sensitive input (PWRON_CFG = 0), or as an edge sensitive input (PWRON_CFG = 1). As a level sensitive input, an active high signal turns on the part and an active low signal turns off the part, or puts it into sleep mode. As an edge sensitive input, such as when connected to a mechanical switch, a falling edge turns on the part and if the switch is held low for greater than or equal to 4.0 seconds, the part turns off or enters sleep mode. Table 12. PWRON configuration PWRON_CFG Mode 0 PWRON pin HIGH = ON PWRON pin LOW = OFF or sleep mode 1 PWRON pin pulled LOW momentarily = ON PWRON pin LOW for 4.0 seconds = OFF or sleep mode 2 10.1.2.3 I C address configuration 2 The I C device address can be programmed from 0x08 to 0x0F. This allows flexibility to 2 change the I C address to avoid bus conflicts. Address bit, I2C_SLV_ADDR[3] in OTP_I2C_ADDR register is hard coded to 1 while the 2 lower three LSBs of the I C address (I2C_SLV_ADDR[2:0]) are programmable as shown in Table 13. 2 Table 13. I C address configuration PF4210 Data sheet: technical data 2 I2C_SLV_ADDR[3] hard coded I2C_SLV_ADDR[2:0] I C device address (Hex) 1 000 0x08 1 001 0x09 1 010 0x0A All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 19 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 2 I2C_SLV_ADDR[3] hard coded I2C_SLV_ADDR[2:0] I C device address (Hex) 1 011 0x0B 1 100 0x0C 1 101 0x0D 1 110 0x0E 1 111 0x0F 10.1.2.4 Soft start ramp rate The startup ramp rate or soft start ramp rate can be selected from the options shown in Section 10.4.4.2.1 "Dynamic voltage scaling". 10.1.3 OTP prototyping Before permanently programming fuses, it is possible to test the desired configuration by using the Try Before Buy feature. With this feature, the configuration is loaded from the OTP registers. These registers serve as temporary storage for the values to be written to the fuses, for the values read from the fuses, or for the values read from the default configuration. To avoid confusion, these registers are referred to as the TBBOTP registers. The portion of the register map concerned with OTP is shown in Table 135 and Table 136. The contents of the TBBOTP registers are initialized to zero when a valid VIN is first applied. The values loaded into the TBBOTP registers depend on the setting of the VDDOTP pin and on the value of the TBB_POR and FUSE_POR_XOR bits (see Table 14). • If VDDOTP = VCOREDIG (1.5 V), the values are loaded from the default configuration. • If VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 1, the values are loaded from the fuses. In the PF4210, FUSE_POR1, FUSE_POR2, and FUSE_POR3 are XOR'ed into the FUSE_POR_XOR bit. The FUSE_POR_XOR has to be 1 for fuses to be loaded. This can be achieved by setting any one or all of the FUSE_PORx bits. It is required to set all of the FUSE_PORx bits to be able to load the fuses. • If VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 0, the TBBOTP registers remain initialized at zero. The initial value of TBB_POR is always 0; only when VDDOTP = 0.0 V and TBB_POR is set to 1 and the values from the TBBOTP registers maintained and not loaded from a different source. 2 2 The contents of the TBBOTP registers are modified by I C. To communicate with I C, VIN must be valid and VDDIO to which SDA and SCL are pulled up, must be powered by a 1.7 V to 3.6 V supply. VIN or the coin cell voltage must be valid to maintain the contents of the registers. To power on with the contents of the TBBOTP registers, the following conditions must exist: • • • • PF4210 Data sheet: technical data VIN is valid VDDOTP = 0.0 V TBB_POR = 1 Valid turn on event All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 20 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 10.1.4 Reading OTP fuses As described in the previous section, the contents of the fuses are loaded to the TBBOTP registers when the following conditions are met: • • • • VIN is valid VDDOTP = 0.0 V TBB_POR = 0 FUSE_POR_XOR = 1 If ECC were enabled at the time the fuses were programmed, the error corrected values can be loaded into the TBBOTP registers if desired. Once the fuses are loaded and a turn on event occurs, the PMIC powers on with the configuration programmed in the fuses. 10.1.5 Programming OTP fuses The parameters which can be programmed are shown in the TBBOTP registers in Table 135 of the register map. The PF4210 offers ECC, the control registers for which functions are located in Table 136 of the register map. There are ten banks of twenty-six fuses each that can be programmed. Programming the fuses requires an 8.25 V, 100 mA supply powering the VDDOTP pin, bypassed with 10 to 20 µF of capacitance. Table 14. Source of startup sequence VDDOTP (V) TBB_POR FUSE_POR_XOR Startup sequence 0 0 0 None 0 0 1 OTP fuses 0 1 x TBBOTP registers 1.5 x x Default configuration 10.2 16 MHz and 32 kHz clocks There are two clocks: a trimmed 16 MHz, RC oscillator, and an untrimmed 32 kHz, RC oscillator. The 16 MHz oscillator is specified within −8.0/+8.0 %. The 32 kHz untrimmed clock is only used in the following conditions: • VIN < UVDET • All regulators are in sleep mode • All regulators are in PFM switching mode A 32 kHz clock, derived from the 16 MHz trimmed clock, is used when accurate timing is needed under the following conditions: • During start up, VIN > UVDET • PWRON_CFG = 1, for power button debounce timing In addition, when the 16 MHz is active in the ON mode, the debounce time in Table 25 are referenced to the 32 kHz derived from the 16 MHz clock. The exceptions are the LOWVINI and PWRONI interrupts, which are referenced to the 32 kHz untrimmed clock. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 21 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Table 15. 16 MHz clock specifications TMIN to TMAX (see Table 4), VIN = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V and typical external component values. Typical values are characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted. Symbol Parameters Min Typ Max Units VIN16MHz Operating voltage from VIN 2.8 — 4.5 V f16MHZ 16 MHz clock frequency 14.7 16 17.2 MHz 1.84 — 2.15 MHz f2MHZ [1] [1] 2.0 MHz clock frequency 2.0 MHz clock is derived from the 16 MHz clock. 10.2.1 Clock adjustment The 16 MHz clock and hence the switching frequency of the regulators, can be adjusted to improve the noise integrity of the system. By changing the factory trim values of the 16 MHz clock, the user may add an offset as small as ±3.0 % of the nominal frequency. Contact your NXP representative for detailed information on this feature. 10.3 Bias and references block description 10.3.1 Internal core voltage references All regulators use the main band gap as the reference. The main band gap is bypassed with a capacitor at VCOREREF. The band gap and the rest of the core circuitry are supplied from VCORE. The performance of the regulator is directly dependent on the performance of the band gap. No external DC loading is allowed on VCORE, VCOREDIG, or VCOREREF. VCOREDIG is powered as long as there is a valid supply and/or valid coin cell. Table 16 shows the main characteristics of the core circuitry. Table 16. Core voltages electrical specifications TMIN to TMAX (see Table 4),VIN = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V, and typical external component values. Typical [1] values are characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted. Symbol Min Parameters Typ Max Units VCOREDIG (digital core supply) VCOREDIG Output voltage ON mode Coin cell mode and OFF [2] V — — 1.5 1.3 — — — — 2.775 0.0 — — VCORE (analog core supply) VCORE Output voltage ON mode and charging OFF and coin cell mode V VCOREREF (band gap / regulator reference) VCOREREF Output voltage — 1.2 — V VCOREREFACC Absolute accuracy — 0.5 — % VCOREREFTACC Temperature drift — 0.25 — % [1] For information only PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 22 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications [2] 3.0 V < VIN < 4.5 V, no external loading on VCOREDIG, VCORE, or VCOREREF. Extended operation down to UVDET, but no system malfunction. 10.3.1.1 External components Table 17. External components for core voltage Regulator Capacitor value (µF) VCOREDIG 1.0 VCORE 1.0 VCOREREF 0.22 10.3.2 VREFDDR voltage reference VREFDDR is an internal PMOS half supply voltage follower capable of supplying up to 10 mA. The output voltage is at one half the input voltage. It is typically used as the reference voltage for DDR memories. A filtered resistor divider is utilized to create a low frequency pole. This divider then utilizes a voltage follower to drive the load. VINREFDDR VINREFDDR CHALF1 100 nF VHALF CHALF2 100 nF Discharge VREFDDR VREFDDR CREFDDR 1.0 F aaa-026475 Figure 6. VREFDDR block diagram 10.3.2.1 VREFDDR control register The VREFDDR voltage reference is controlled by a single bit in VREFDDCRTL register in Table 18. Table 18. Register VREFDDCRTL – ADDR 0x6A Name Bit number R/W Default Description UNUSED 3:0 — 0x00 unused VREFDDREN 4 R/W 0x00 Enables or disables VREFDDR output voltage • 0 = VREFDDR disabled • 1 = VREFDDR enabled UNUSED 7:5 — 0x00 unused 10.3.2.1.1 External components Table 19. VREFDDR external components Capacitor [1] Capacitance (µF) VINREFDDR to VHALF PF4210 Data sheet: technical data [2] 0.1 All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 23 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Capacitor [1] Capacitance (µF) VHALF to GND 0.1 VREFDDR 1.0 [1] [2] Use X5R or X7R capacitors. VINREFDDR to GND, 1.0 µF minimum capacitance is provided by buck regulator output. 10.3.2.1.2 VREFDDR specifications Table 20. VREFDDR electrical characteristics TMIN to TMAX (see Table 4), VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V and typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V, and 25 °C, unless otherwise noted. Symbol Parameter Min Typ Max Unit VINREFDDR Operating input voltage range 1.1 — 1.8 V IREFDDR Operating load current range 0.0 — 10 mA IREFDDRLIM Current limit IREFDDR when VREFDDR is forced to VINREFDDR/4 10.5 15 25 IREFDDRQ Quiescent current — 8.0 — — VINREFDDR/2 — — VINREFDDR/2 — −1.0 — 1.0 −1.0 — 1.0 VREFDDR mA [1] µA Active mode – DC VREFDDR Output voltage 1.2 V < VINREFDDR < 1.8 V 0.0 mA < IREFDDR < 10 mA V 1.1 V ≤ VINREFDDR ≤ 1.2 V 0.0 mA < IREFDDR ≤ 1.0 mA VREFDDRTOL Output voltage tolerance (TA = 0 °C to 85 °C) 1.2 V < VINREFDDR < 1.8 V 0.6 mA ≤ IREFDDR ≤ 10 mA 1.1 V ≤ VINREFDDR ≤ 1.2 V 0.0 mA < IREFDDR ≤ 1.0 mA VREFDDRTOL Output voltage tolerance (TA = −40 °C to 105 °C), applicable to the industrial version 1.2 V < VINREFDDR < 1.8 V 0.6 mA ≤ IREFDDR ≤ 10 mA 1.1 V ≤ VINREFDDR ≤ 1.2 V 0.0 mA < IREFDDR ≤ 1.0 mA VREFDDRLOR % % –1.2 — 1.2 –1.2 — 1.2 — 0.40 — — 1.15 — Load regulation 1.0 mA < IREFDDR < 10 mA 1.2 V < VINREFDDR < 1.8 V 0.1 mA < IREFDDR < 1.0 mA 1.1 V ≤ VINREFDDR ≤ 1.2 V PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 mV/mA © NXP B.V. 2018. All rights reserved. 24 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Min Parameter Typ Max Unit Active mode – AC tONREFDDR tOFFREFDDR Turn on time Enable to 90 % of end value VINREFDDR = 1.1 V, 1.2 V, 1.8 V IREFDDR = 0.0 mA Turn off time Disable to 10 % of initial value VINREFDDR = 1.1 V, 1.2 V, 1.8 V IREFDDR = 0.0 mA VREFDDROSH Startup overshoot VINREFDDR = 1.1 V, 1.2 V, 1.8 V IREFDDR = 0.0 mA VREFDDRTLR Transient load response VINREFDDR = 1.1 V, 1.2 V, 1.8 V [1] µs — — 100 ms — — 10 — 1.0 6.0 — 5.0 — % mV When VREFDDR is off there is a quiescent current of 1.5 µA typical. 10.4 Power generation 10.4.1 Modes of operation The operation of the PF4210 can be reduced to five states or modes: on, off, sleep, standby, and coin cell. Figure 7 shows the state diagram of the PF4210, along with the conditions to enter and exit from each state. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 25 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications COIN CELL VIN < UVDET VIN < UVDET VIN > UVDET PWRON = 0 held ≥ 4.0 sec any SWxOMODE bits = 1 and PWRONRSTEN = 1 (PWRON_CFG = 1) SLEEP VIN < UVDET VIN < UVDET PWRON = 0 any SWxOMODE bits = 1 and (PWRON_CFG = 0) PWRON = 1 and or VIN > UVDET (PWRON_CFG = 0) PWRON = 0 held ≥ 4.0 sec any SWxOMODE bits = 1 or PWRON = 0 < 4.0 sec and PWRONRSTEN = 1 (PWRON_CFG = 1) and VIN > UVDET (PWRON_CFG = 1) PWRON = 0 any SWxOMODE bits = 1 (PWRON_CFG = 0) or PWRON = 0 held ≥ 4.0 sec any SWxOMODE bits = 1 and PWRONRSTEN = 1 (PWRON_CFG = 1) Thermal shutdown PWRON = 1 and VIN > UVDET (PWRON_CFG = 0) or PWRON = 0 < 4.0 sec and VIN > UVDET (PWRON_CFG = 1) OFF PWRON = 0 all SWxOMODE bits = 0 (PWRON_CFG = 0) or PWRON = 0 held ≥ 4.0 sec all SWxOMODE bits = 0 and PWRONRSTEN = 1 (PWRON_CFG = 1) ON Thermal shutdown STANDBY de-asserted STANDBY asserted PWRON = 0 all SWxOMODE bits = 0 (PWRON_CFG = 0) or PWRON = 0 held ≥ 4.0 sec all SWxOMODE bits = 0 and PWRONRSTEN = 1 (PWRON_CFG = 1) Thermal shutdown STANDBY aaa-026475 Figure 7. State diagram To complement the state diagram in Figure 7, a description of the states is provided in following sections. Note that VIN must exceed the rising UVDET threshold to allow a power up. 2 See Table 26 for the UVDET thresholds. Additionally, I C control is not possible in the coin cell mode and the interrupt signal, INTB, is only active in sleep, standby, and on states. 10.4.1.1 On mode The PF4210 enters the on mode after a turn on event. RESETBMCU is deasserted high in this mode of operation. 10.4.1.2 Off mode The PF4210 enters the off mode after a turn off event. A thermal shutdown event also forces the PF4210 into the off mode. Only VCOREDIG and VSNVS are powered in this mode of operation. To exit the off mode, a valid turn on event is required. RESETBMCU is asserted low in this mode. 10.4.1.3 Standby mode • Depending on STANDBY pin configuration, standby is entered when the STANDBY pin is asserted. This is typically used for low-power mode of operation. • When STANDBY is deasserted, standby mode is exited. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 26 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications A product may be designed to go into a low-power mode after periods of inactivity. The STANDBY pin is provided for board level control of going in and out of such Deep Sleep Modes (DSM). When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing the operating mode of the regulators or disabling some regulators. The configuration of the regulators in standby is 2 preprogrammed through the I C interface. Note that the STANDBY pin is programmable for active high or active low polarity, and decoding of a standby event takes into account the programmed input polarity as shown in Table 21. When the PF4210 is powered up first, regulator settings for the standby mode are mirrored from the regulator settings for the on mode. To change the STANDBY pin polarity to active low, set the STANDBYINV bit via software first, and then change the regulator settings for standby mode as required. For simplicity, STANDBY generally is referred to as active high throughout this document. Table 21. Standby pin and polarity control STANDBY (pin) [1] 2 STANDBYINV (I C bit) [2] STANDBY control 0 0 0 0 1 1 1 0 1 1 1 0 [1] [2] [3] The state of the STANDBY pin only has influence in on mode. Bit 6 in power control register (ADDR – 0x1B) STANDBY = 0: system is not in standby, STANDBY = 1: system is in standby [3] Since STANDBY pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond to the pin level changes. A programmable delay is provided to hold off the system response to a standby event. This allows the processor and peripherals some time after a standby instruction has been received to terminate processes to facilitate seamless entering into standby mode. When enabled (STBYDLY = 01, 10, or 11) per Table 22, STBYDLY delays the standby initiated response for the entire IC, until the STBYDLY counter expires. An allowance should be made for three additional 32 kHz cycles required to synchronize the standby event. Table 22. STANDBY delay – initiated response STBYDLY[1:0] [1] Function 00 No delay 01 One 32 kHz period (default) 10 Two 32 kHz periods 11 Three 32 kHz periods [1] Bits [5:4] in power control register (ADDR – 0x1B) 10.4.1.4 Sleep mode • Depending on PWRON pin configuration, sleep mode is entered when PWRON is deasserted and SWxOMODE bit is set. • To exit sleep mode, assert the PWRON pin. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 27 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications In the sleep mode, the regulator uses the set point as programmed by SW1xOFF[5:0] for SW1A/B/C and by SWxOFF[6:0] for SW2, SW3A/B, and SW4. The activated regulators maintain settings for this mode and voltage until the next turn on event. Table 23 shows the control bits in sleep mode. During sleep mode, interrupts are active and the INTB pin reports any unmasked fault event. Table 23. Regulator mode control SWxOMODE Off operational mode (sleep) 0 Off 1 PFM [1] [1] For sleep mode, an activated switching regulator should use the off mode set point as programmed by SW1xOFF[5:0] for SW1A/B/C and SWxOFF[6:0] for SW2, SW3A/B, and SW4. 10.4.1.5 Coin cell mode In the coin cell state, the coin cell is the only valid power source (VIN = 0.0 V) to the PMIC. No turn on event is accepted in the coin cell state. Transition to the off state requires VIN surpasses UVDET threshold. RESETBMCU is held low in this mode. If the coin cell is depleted, a complete system reset occurs. At the next application of 2 power and the detection of a turn on event, the system is re-initialized with all I C bits including those reset on COINPORB, which are restored to their default states. 10.4.2 State machine flow summary Table 24 provides a summary matrix of the PF4210 flow diagram to show the conditions needed to transition from one state to another. Table 24. State machine flow summary STATE Next state OFF Coin cell Sleep Standby ON X VIN < UVDET X X PWRON_CFG = 0 PWRON = 1 & VIN > UVDET or PWRON_CFG = 1 PWRON = 0 < 4.0 s & VIN > UNDET Coin cell VIN > UVDET X X X X Sleep Thermal shutdown VIN < UVDET X X PWRON_CFG = 0 PWRON = 1 & VIN > UVDET or PWRON_CFG = 1 PWRON = 0 < 4.0 s & VIN > UNDET Initial OFF state PWRON_CFG = 1 PWRON = 0 ≥ 4.0 s Any SWxOMODE = 1 & PWRONRSTEN = 1 PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 28 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications STATE Next state Standby OFF Coin cell Sleep Standby ON Thermal shutdown VIN < UVDET PWRON_CFG = 0 PWRON = 0 Any SWxOMODE = 1 or PWRON_CFG = 1 PWRON = 0 ≥ 4.0 s Any SWxOMODE = 1 & PWRONRSTEN = 1 X Standby deasserted VIN < UVDET PWRON_CFG = 0 PWRON = 0 Any SWxOMODE = 1 or PWRON_CFG = 1 PWRON = 0 ≥ 4.0 s Any SWxOMODE = 1 & PWRONRSTEN = 1 Standby asserted X PWRON_CFG = 0 PWRON = 0 All SWxOMODE = 0 or PWRON_CFG = 1 PWRON = 0 ≥ 4.0 s All SWxOMODE = 0 & PWRONRSTEN = 1 ON Thermal shutdown PWRON_CFG = 0 PWRON = 0 All SWxOMODE = 0 or PWRON_CFG = 1 PWRON = 0 ≥ 4.0 s All SWxOMODE = 0 & PWRONRSTEN = 1 10.4.2.1 Turn on events From off and sleep modes, the PMIC is powered on by a turn on event. The type of turn on event depends on the configuration of PWRON. PWRON may be configured as an active high when PWRON_CFG = 0, or as the input of a mechanical switch when PWRON_CFG = 1. VIN must be greater than UVDET for the PMIC to turn on. When PWRON is configured as an active high and PWRON is high (pulled up to VSNVS) before VIN is valid, a VIN transition from 0.0 V to a voltage greater than UVDET is also a turn on event. See Figure 7 and the Table 24 for more details. Any regulator enabled in the sleep mode remains enabled when transitioning from sleep to on, the regulator does not turn off and then on again to match the startup sequence. Detailed description of the PWRON configurations are as follows: • If PWRON_CFG = 0, the PWRON signal is high and VIN > UVDET, the PMIC turns on; the interrupt and sense bits, PWRONI and PWRONS respectively are set • If PWRON_CFG = 1, VIN > UVDET and PWRON transitions from high to low, the PMIC turns on; the interrupt and sense bits, PWRONI and PWRONS respectively are set The sense bit shows the real time status of the PWRON pin. In this configuration, the PWRON input can be a mechanical switch debounced through a programmable debouncer, PWRONDBNC[1:0], to avoid a response to a very short (unintentional) key press. The interrupt is generated for both the falling and the rising edge of the PWRON pin. By default, a 30 ms interrupt debounce is applied to both falling and rising edges. The falling edge debounce timing can be extended with PWRONDBNC[1:0] as defined in Table 25. The interrupt is cleared by software, or when cycling through the off mode. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 29 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Table 25. PWRON hardware debounce bit settings Bits State PWRONDBNC[1:0] [1] [1] Turn on debounce (ms) Falling edge INT debounce (ms) Rising edge INT debounce (ms) 00 0.0 31.25 31.25 01 31.25 31.25 31.25 10 125 125 31.25 11 750 750 31.25 The sense bit, PWRONS is not debounced and follows the state of the PWRON pin. 10.4.2.2 Turn off events 10.4.2.2.1 PWRON pin The PWRON pin is used to power off the PF4210. The PWRON pin can be configured with OTP to power off the PMIC under the following two conditions: 1. PWRON_CFG bit = 0, SWxOMODE bit = 0 and PWRON pin is low 2. PWRON_CFG bit = 1, SWxOMODE bit = 0, PWRONRSTEN = 1 and PWRON is held low for longer than 4.0 seconds. Alternatively, the system can be configured to restart automatically by setting the RESTARTEN bit. 10.4.2.2.2 Thermal protection If the die temperature surpasses a given threshold, the thermal protection circuit powers off the PMIC to avoid damage. A turn on event does not power on the PMIC while it is in thermal protection. The part remains in off mode until the die temperature decreases below a given threshold. There are no specific interrupts related to this other than the warning interrupt. See Section 8.3 "Power dissipation" for more information. 10.4.2.2.3 Undervoltage detection When the voltage at VIN drops below the undervoltage falling threshold UVDET, the state machine transitions to the coin cell mode. 10.4.3 Power tree The PF4210 PMIC features up to six buck regulators, one boost regulator, six general purpose LDOs, one switch/LDO combination, and a DDR voltage reference to supply voltages for the application processor and peripheral devices. The buck regulators as well as the boost regulator are supplied directly from the main input supply (VIN). The inputs to all of the buck regulators must be tied to VIN, whether they are powered on or off. The six general use LDO regulators are directly supplied from the main input supply or from the switching regulators depending on the application requirements. Since VREFDDR is intended to provide DDR memory reference voltage, it is supplied by any rail supplying voltage to DDR memories; the typical application recommends the use of SW3 as the input supply for VREFDDR. VSNVS is supplied by either the main input supply or the coin cell. See Table 26 for a summary of all power supplies provided by the PF4210. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 30 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Table 26. Power tree summary Supply Output voltage (V) Step size (mV) Maximum load current (mA) SW1A/B 0.3 to 1.875 25 2500 SW1C 0.3 to 1.875 25 2000 SW2 0.4 to 3.3 25/50 2500 SW3A/B 0.4 to 3.3 25/50 1500 SW4 0.5*SW3A_OUT, 0.4 to 3.3 25/50 1000 SWBST 5.00/5.05/5.10/5.15 50 600 VGEN1 0.80 to 1.55 50 100 VGEN2 0.80 to 1.55 50 250 VGEN3 1.8 to 3.3 100 100 VGEN4 1.8 to 3.3 100 350 VGEN5 1.8 to 3.3 100 100 VGEN6 1.8 to 3.3 50 200 VSNVS 1.0 to 3.0 NA 1.5 (consumer version) 1.0 (industrial version) VREFDDR 0.5*SW3A_OUT NA 10 [1] [1] Current rating per independent phase, when SW3A/B is set in single or dual phase, current capability is up to 3000 mA. Figure 8 shows a simplified power map with various recommended options to supply the different block within the PF4210, as well as the typical application voltage domain on the i.MX processor. Note that each application power tree is dependent upon the system's voltage and current requirements, therefore a proper input voltage should be selected for the regulators. The minimum operating voltage for the main VIN supply is 2.8 V, for lower voltage proper operation is not guaranteed. However at initial power up, the input voltage must surpass the rising UVDET threshold before proper operation is guaranteed. Table 27 summarizes the UVDET thresholds. Table 27. UVDET threshold PF4210 Data sheet: technical data UVDET threshold VIN Rising 3.1 V Falling 2.65 V All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 31 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications VIN i.MX 8M PROCESSOR EXTERNAL REGULATOR 0.9 V EXTERNAL REGULATOR 3.3 V, 8.0 A CORTEX A53 PLATFORM QUAD CORTEX-A53 EXTERNAL REGULATOR 0.9 V PMIC PF4210 L1 CACHE L2 CONTROLLER AND SCU VDD_ARM (0.9 V/1.0 V @ 4.0 A) SW1AB 0.9 V, 2.5 A VDD_GPU (0.9 V/1.0 V @ 2.0 A) SW1C 0.9 V, 2.0 A VDD_VPU (0.9 V/1.0 V @ 1.0 A) VDD_SOC (0.9 V @ 3.6 A) L2 CACHE MEMORY GPU VPU SOC (always ON) LOAD SWITCH ENABLE DISPLAYMIX NVCC_XXX (3.3 V @ 150 mA) SW4A 1.8 V, 1.0 A NVCC_XXX (1.8 V @ 100 mA) VGEN4 1.8 V, 350 mA VDDA_1P8 (1.8 V @ 250 mA) EFUSE_VQPS 3.3 V GPIO PAO 1.8 V GPIO PAO eFuse PLL XTAL TEMPERATURE SENSOR SW3AB 1.0 V, 3.0 A VDD_DRAM (1.0 V @ 3.0 A) VDDA_DRAM (1.8 V @ 50 mA) NVCC_DRAM (1.1 V/1.2 V/1.35 V @ 700 mA) SW2 1.1 V, 2.5 A VGEN3 1.8 V, 100 mA VSNVS 1.0 V, 1.5 mA or 1.0 mA VGEN1 1.5 V, 100 mA VGEN6 2.8 V, 200 mA DRAM PHY LPDDR4 1.8 V @ 50 mA PCIE_VPH PCIE_VP PCIE_VPTX HDMI_AVDDIO HDMI_AVDDCLK HDMI_AVDDCORE VGEN2 0.9 V, 250 mA VGEN5 3.3 V, 100 mA DRAM CONTROLLER PCIe PHY HDMI PHY MIPI_VDDA 0.9 V @ 250 mA 3.3 V @ 100 mA MIPI_VDDHA USB_P1_VDD33 USB_P1_VPH USB_P1_DVDD USB_P1_VP USB_P1_VPTX USB_P2_VDD33 USB_P2_VPH USB_P2_DVDD USB_P2_VP USB_P2_VPTX MIPI PHY USB PHY1 USB PHY2 VDD_SNVS SNVS_LP NVCC_SNVS PMIC PAD CAMERA SD2 aaa-026477 Figure 8. PF4210 typical power map 10.4.4 Buck regulators Each buck regulator is capable of operating in PFM, APS, and PWM switching modes. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 32 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 10.4.4.1 Current limit Each buck regulator has a programmable current limit. In an overcurrent condition, the current is limited cycle-by-cycle. If the current limit condition persists for more than 8.0 ms, a fault interrupt is generated. 10.4.4.2 General control To improve system efficiency the buck regulators can operate in different switching modes. Changing between switching modes can occur by any of the following means: 2 I C programming, exiting/entering the standby mode, exiting/entering sleep mode, and load current variation. Available switching modes for buck regulators are presented in Table 28. Table 28. Switching mode description Mode Description OFF The regulator is switched off and the output voltage is discharged. PFM In this mode, the regulator is always in PFM mode, which is useful at light loads for optimized efficiency. PWM In this mode, the regulator is always in PWM mode operation regardless of load conditions. APS In this mode, the regulator moves automatically between pulse skipping mode and PWM mode depending on load conditions. During soft start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms (typical) after the output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the particular switching mode selected, additional ripple is observed on the output voltage rail as the controller transitions between switching modes. Table 29 summarizes the buck regulator programmability for normal and standby modes. Table 29. Regulator mode control PF4210 Data sheet: technical data SWxMODE[3:0] Normal mode Standby mode 0000 Off Off 0001 PWM Off 0010 Reserved Reserved 0011 PFM Off 0100 APS Off 0101 PWM PWM 0110 PWM APS 0111 Reserved Reserved 1000 (by default) APS APS 1001 Reserved Reserved 1010 Reserved Reserved 1011 Reserved Reserved 1100 APS PFM All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 33 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications SWxMODE[3:0] Normal mode Standby mode 1101 PWM PFM 1110 Reserved Reserved 1111 Reserved Reserved Transitioning between normal and standby modes can affect a change in switching modes as well as output voltage. The rate of the output voltage change is controlled by the dynamic voltage scaling (DVS), explained in Section 10.4.4.2.1 "Dynamic voltage scaling". For each regulator, the output voltage options are the same for normal and standby modes. When in standby mode, the regulator outputs the voltage programmed in its standby voltage register and operates in the mode selected by the SWxMODE[3:0] bits. Upon exiting standby mode, the regulator returns to its normal switching mode and its output voltage programmed in its voltage register. Any regulators whose SWxOMODE bit is set to 1 enters sleep mode if a PWRON turn off event occurs, and any regulator whose SWxOMODE bit is set to 0 turns off. In sleep mode, the regulator outputs the voltage programmed in its off (sleep) voltage register and operates in the PFM mode. The regulator exits the sleep mode when a turn on event occurs. Any regulator whose SWxOMODE bit is set to 1 remains on and change to its normal configuration settings when exiting the sleep state to the on state. Any regulator whose SWxOMODE bit is set to 0 is powered up with the same delay in the start up sequence as when powering on from off. At this point, the regulator returns to its default on state output voltage and switch mode settings. Table 23 shows the control bits in sleep mode. When sleep mode is activated by the SWxOMODE bit, the regulator uses the set point as programmed by SW1xOFF[5:0] for SW1A/B/C and by SWxOFF[6:0] for SW2, SW3A/B, and SW4. 10.4.4.2.1 Dynamic voltage scaling To reduce overall power consumption, processor core voltage can be varied depending on the mode or activity level of the processor. 2 1. Normal operation: The output voltage is selected by I C bits SW1x[5:0] for SW1A/B/ 2 C and SWx[6:0] for SW2, SW3A/B, and SW4. A voltage transition initiated by I C is governed by the DVS stepping rates shown in Table 32 and Table 33. 2. Standby mode: The output voltage can be higher, or lower than in normal operation, but is typically selected to be the lowest state retention voltage of a given processor; 2 it is selected by I C bits SW1xSTBY[5:0] for SW1A/B/C and by bits SWxSTBY[6:0] for SW2, SW3A/B, and SW4. Voltage transitions initiated by a Standby event are 2 governed by the SW1xDVSSPEED[1:0] and SWxDVSSPEED[1:0] I C bits shown in Table 32 and Table 33 respectively. 3. Sleep mode: The output voltage can be higher or lower than in normal operation, but is typically selected to be the lowest state retention voltage of a given processor; it is 2 selected by I C bits SW1xOFF[5:0] for SW1A/B/C and by bits SWxOFF[6:0] for SW2, SW3A/B, and SW4. Voltage transitions initiated by a turn off event are governed by 2 the SW1xDVSSPEED[1:0] and SWxDVSSPEED[1:0] I C bits shown in Table 32 and Table 33 respectively. Table 30, Table 31, Table 32, and Table 33 summarize the set point control and DVS time stepping applied to all regulators. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 34 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Table 30. DVS control logic for SW1A/B/C STANDBY Set point selected by 0 SW1x[5:0] 1 SW1xSTBY[5:0] Table 31. DVS control logic for SW2, SW3A/B, and SW4 STANDBY Set point selected by 0 SWx[6:0] 1 SWxSTBY[6:0] Table 32. DVS speed selection for SW1A/B/C SW1xDVSSPEED[1:0] Function 00 25 mV step each 2.0 µs 01 (default) 25 mV step each 4.0 µs 10 25 mV step each 8.0 µs 11 25 mV step each 16 µs Table 33. DVS speed selection for SW2, SW3A/B, and SW4 SWxDVSSPEED[1:0] Function SWx[6] = 0 or SWxSTBY[6] = 0 Function SWx[6] = 1 or SWxSTBY[6] = 1 00 25 mV step each 2.0 µs 50 mV step each 4.0 µs 01 (default) 25 mV step each 4.0 µs 50 mV step each 8.0 µs 10 25 mV step each 8.0 µs 50 mV step each 16 µs 11 25 mV step each 16 µs 50 mV step each 32 µs The regulators have a strong sourcing and sinking capability in PWM mode, therefore the fastest rising and falling slopes are determined by the regulator in PWM mode. However, if the regulators are programmed in PFM or APS mode during a DVS transition, the falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS transitions in PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation. The following diagram shows the general behavior for the regulators when initiated with 2 I C programming, or standby control. During the DVS period the overcurrent condition of the regulator should be masked. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 35 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Requested set point Output voltage with light load Internally controlled steps Output voltage Example actual output voltage Initial set point Actual output voltage Internally controlled steps Request for higher voltage Voltage change request Request for lower voltage Initiated by I2C programming, standby control Possible output voltage window aaa-026478 Figure 9. Voltage stepping with DVS 10.4.4.2.2 Regulator phase clock The SWxPHASE[1:0] bits select the phase of the regulator clock as shown in Table 34. By default, each regulator is initialized at 90 ° out of phase with respect to each other. For example, SW1x is set to 0 °, SW2 is set to 90 °, SW3A/B is set to 180 °, and SW4 is set to 270 ° by default at power up. Table 34. Regulator phase clock selection SWxPHASE[1:0] Phase of clock sent to regulator (degrees) 00 0 01 90 10 180 11 270 The SWxFREQ[1:0] register is used to set the desired switching frequency for each one of the buck regulators. Table 36 shows the selectable options for SWxFREQ[1:0]. For each frequency, all phases are available, allowing regulators operating at different frequencies to have different relative switching phases. However, not all combinations are practical. For example, 2.0 MHz, 90 ° and 4.0 MHz, 180 ° are the same in terms of phasing. Table 35 shows the optimum phasing when using more than one switching frequency. Table 35. Optimum phasing PF4210 Data sheet: technical data Frequencies Optimum phasing 1.0 MHz 2.0 MHz 0° 180 ° 1.0 MHz 4.0 MHz 0° 180 ° 2.0 MHz 4.0 MHz 0° 180 ° 1.0 MHz 2.0 MHz 4.0 MHz 0° 90 ° 90 ° All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 36 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Table 36. Regulator frequency configuration SWxFREQ[1:0] Frequency 00 1.0 MHz 01 2.0 MHz 10 4.0 MHz 11 Reserved 10.4.4.2.3 Programmable maximum current The maximum current, ISWxMAX, of each buck regulator is programmable. This allows the use of smaller inductors where lower currents are required. Programmability is accomplished by choosing the number of paralleled power stages in each regulator. The SWx_PWRSTG[2:0] bits in Table 136 of the register map control the number of power stages. See Table 37 for the programmable options. Bit[0] must always be enabled to ensure the stage with the current sensor is used. The default setting, SWx_PWRSTG[2:0] = 111, represents the highest maximum current. The current limit for each option is also scaled by the percentage of power stages enabled. Table 37. Programmable current configuration Regulators Control bits SW1AB SW1AB_PWRSTG[2:0] SW1C SW2 SW3A SW3B PF4210 Data sheet: technical data % of power stages enabled Rated current (A) ISW1ABMAX 0 0 1 40 % 1.0 0 1 1 80 % 2.0 1 0 1 60 % 1.5 1 1 1 100 % 2.5 ISW1CMAX SW1C_PWRSTG[2:0] 0 0 1 43 % 0.9 0 1 1 58 % 1.2 1 0 1 86 % 1.7 1 1 1 100 % 2.0 ISW2MAX SW2_PWRSTG[2:0] 0 0 1 38% 0.75 0 1 1 75% 1.5 1 0 1 63 % 1.25 1 1 1 100 % 2.5 ISW3AMAX SW3A_PWRSTG[2:0] 0 0 1 40 % 0.5 0 1 1 80 % 1.0 1 0 1 60 % 0.75 1 1 1 100 % 1.5 SW3B_PWRSTG[2:0] All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 ISW3BMAX © NXP B.V. 2018. All rights reserved. 37 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Regulators Control bits SW4 % of power stages enabled Rated current (A) 0 0 1 40 % 0.5 0 1 1 80 % 1.0 1 0 1 60 % 0.75 1 1 1 100 % 1.5 ISW4MAX SW4_PWRSTG[2:0] 0 0 1 50 % 0.5 0 1 1 75 % 0.75 1 0 1 75 % 0.75 1 1 1 100 % 1.0 10.4.4.3 SW1A/B/C SW1/A/B/C are 2.5 A to 4.5 A buck regulators which can be configured in various phasing schemes, depending on the desired cost/ performance trade-offs. The following configurations are available: • SW1A/B/C single phase with one inductor • SW1A/B as a single phase with one inductor and SW1C in independent mode with one inductor • SW1A/B as a dual phase with two inductors and SW1C in independent mode with one inductor The desired configuration is programmed by OTP by using SW1_CONFIG[1:0] bits in the register map Table 135, as shown in Table 38. Table 38. SW1 configuration SW1_CONFIG[1:0] Description 00 A/B/C single phase 01 A/B single phase, C independent mode 10 A/B dual phase, C independent mode 11 Reserved 10.4.4.3.1 SW1A/B/C single phase In this configuration, all phases A, B, and C are connected together to a single inductor, thus, providing up to 4.50 A current capability for high current applications. The feedback and all other controls are accomplished by use of pin SW1CFB and SW1C control registers, respectively. Figure 10 shows the connection for SW1A/B/C in single phase mode. During single phase mode operation, all three phases use the same configuration for frequency, phase, and DVS speed set in SW1CCONF register. However, the same configuration settings for frequency, phase, and DVS speed setting on SW1AB registers should be used. The SW1FB pin should be left floating in this configuration. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 38 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications VIN SW1AIN SW1A/B/C SW1AMODE ISENSE CINSW1A SW1ALX LSW1 CONTROLLER DRIVER SW1AFAULT COSW1A INTERNAL COMPENSATION Z2 SW1FB Z1 EA I2C DAC SW1BIN SW1BMODE ISENSE CINSW1B SW1BLX VREF I2C INTERFACE CONTROLLER DRIVER SW1BFAULT SW1CIN SW1CMODE ISENSE CINSW1C SW1CLX CONTROLLER DRIVER SW1CFAULT EP INTERNAL COMPENSATION Z2 SW1CFB Z1 EA I2C DAC VREF aaa-026479 Figure 10. SW1A/B/C single phase block diagram 10.4.4.3.2 SW1A/B single phase - SW1C independent mode In this configuration, SW1A/B is connected as a single phase with a single inductor, while SW1C is used as an independent output, using its own inductor and configurations parameters. This configuration allows reduced component count by using only one inductor for SW1A/ B. As mentioned before, SW1A/B and SW1C operate independently from one another, thus, they can be operated with a different voltage set point for normal, standby, and sleep modes, as well as switching mode selection and on/off control. Figure 11 shows the physical connection for SW1A/B in single phase and SW1C as an independent output. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 39 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications VIN SW1AIN SW1A/B LSW1A SW1AMODE ISENSE CINSW1A SW1ALX CONTROLLER DRIVER SW1AFAULT COSW1A INTERNAL COMPENSATION SW1FB Z2 Z1 I2C EA DAC VIN SW1BIN SW1BMODE ISENSE CINSW1B SW1BLX VREF I2C INTERFACE CONTROLLER DRIVER SW1BFAULT VIN SW1CIN SW1C LSW1C COSW1A SW1CMODE ISENSE CINSW1C SW1CLX CONTROLLER DRIVER SW1CFAULT EP INTERNAL COMPENSATION SW1CFB Z2 Z1 I2C EA DAC VREF aaa-026480 Figure 11. SW1A/B single phase, SW1C independent mode block diagram Both SW1ALX and SW1BLX nodes operate at the same DVS, frequency, and phase configured by the SW1ABCONF register, while SW1CLX node operates independently, using the configuration in the SW1CCONF register. 10.4.4.3.3 SW1A/B dual phase - SW1C independent mode In this mode, SW1A/B is connected in dual phase mode using one inductor per switching node, while SW1C is used as an independent output using its own inductor and configuration parameters. This mode provides a smaller output voltage ripple on the SW1A/B output. SW1A/B and SW1C operate independently from one another, thus, they can be operated with a different voltage set point for normal, standby, and sleep modes, as well as switching mode selection and on/off control. Figure 12 shows the physical connection for SW1A/B in dual phase and SW1C as an independent output. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 40 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications VIN SW1AIN SW1AB SW1AMODE ISENSE CINSW1A CONTROLLER SW1ALX DRIVER LSW1A SW1AFAULT COSW1A INTERNAL COMPENSATION Z2 SW1FB Z1 EA I2C DAC VREF VIN SW1BIN SW1BMODE ISENSE CINSW1B I2C INTERFACE CONTROLLER SW1BLX DRIVER LSW1B SW1BFAULT COSW1B VIN SW1CIN SW1C CONTROLLER SW1CLX DRIVER LSW1C COSW1C SW1CMODE ISENSE CINSW1C SW1CFAULT EP INTERNAL COMPENSATION Z2 SW1CFB Z1 EA I2C DAC VREF aaa-026481 Figure 12. SW1A/B dual phase, SW1C independent mode block diagram In this mode of operation, SW1ALX and SW1BLX nodes operate automatically at 180 ° phase shift from each other and use the same frequency and DVS configured by SW1ABCONF register, while SW1CLX node operate independently using the configuration in the SW1CCONF register. 10.4.4.3.4 SW1A/B/C setup and control registers SW1A/B and SW1C output voltages are programmable from 0.300 V to 1.875 V in steps of 25 mV. The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW1x[5:0], SW1xSTBY[5:0], and SW1xOFF[5:0] bits respectively. Table 39 shows the output voltage coding for SW1A/B or SW1C. Note: Voltage set points of 0.6 V and below are not supported. Table 39. SW1A/B/C output voltage configuration Set point SW1x[5:0] SW1xSTBY[5:0] SW1xOFF[5:0] SW1x output (V) Set point SW1x[5:0] SW1xSTBY[5:0] SW1xOFF[5:0] SW1x output (V) 0 000000 0.3000 32 100000 1.1000 PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 41 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Set point SW1x[5:0] SW1xSTBY[5:0] SW1xOFF[5:0] SW1x output (V) Set point SW1x[5:0] SW1xSTBY[5:0] SW1xOFF[5:0] SW1x output (V) 1 000001 0.3250 33 100001 1.1250 2 000010 0.3500 34 100010 1.1500 3 000011 0.3750 35 100011 1.1750 4 000100 0.4000 36 100100 1.2000 5 000101 0.4250 37 100101 1.2250 6 000110 0.4500 38 100110 1.2500 7 000111 0.4750 39 100111 1.2750 8 001000 0.5000 40 101000 1.3000 9 001001 0.5250 41 101001 1.3250 10 001010 0.5500 42 101010 1.3500 11 001011 0.5750 43 101011 1.3750 12 001100 0.6000 44 101100 1.4000 13 001101 0.6250 45 101101 1.4250 14 001110 0.6500 46 101110 1.4500 15 001111 0.6750 47 101111 1.4750 16 010000 0.7000 48 110000 1.5000 17 010001 0.7250 49 110001 1.5250 18 010010 0.7500 50 110010 1.5500 19 010011 0.7750 51 110011 1.5750 20 010100 0.8000 52 110100 1.6000 21 010101 0.8250 53 110101 1.6250 22 010110 0.8500 54 110110 1.6500 23 010111 0.8750 55 110111 1.6750 24 011000 0.9000 56 111000 1.7000 25 011001 0.9250 57 111001 1.7250 26 011010 0.9500 58 111010 1.7500 27 011011 0.9750 59 111011 1.7750 28 011100 1.0000 60 111100 1.8000 29 011101 1.0250 61 111101 1.8250 30 011110 1.0500 62 111110 1.8500 31 011111 1.0750 63 111111 1.8750 Table 40 provides a list of registers used to configure and operate SW1A/B/C and a detailed description on each one of these register is provided in Table 41 to Table 50. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 42 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Table 40. SW1A/B/C register summary Register Address Output SW1ABVOLT 0x20 SW1AB output voltage set point in normal operation SW1ABSTBY 0x21 SW1AB output voltage set point on standby SW1ABOFF 0x22 SW1AB output voltage set point on sleep SW1ABMODE 0x23 SW1AB switching mode selector register SW1ABCONF 0x24 SW1AB DVS, phase, frequency and ILIM configuration SW1CVOLT 0x2E SW1C output voltage set point in normal operation SW1CSTBY 0x2F SW1C output voltage set point in standby SW1COFF 0x30 SW1C output voltage set point in sleep SW1CMODE 0x31 SW1C switching mode selector register SW1CCONF 0x32 SW1C DVS, phase, frequency and ILIM configuration Table 41. Register SW1ABVOLT - ADDR 0x20 Name Bit number R/W Default Description SW1AB 5:0 R/W 0x00 Sets the SW1AB output voltage during normal operation mode. See Table 39 for all possible configurations. UNUSED 7:6 — 0x00 unused Table 42. Register SW1ABSTBY – ADDR 0x21 Name Bit number R/W Default Description SW1ABSTBY 5:0 R/W 0x00 Sets the SW1AB output voltage during standby mode. See Table 39 for all possible configurations. UNUSED 7:6 — 0x00 unused Table 43. Register SW1ABOFF – ADDR 0x22 Name Bit number R/W Default Description SW1ABOFF 5:0 R/W 0x00 Sets the SW1AB output voltage during sleep mode. See Table 39 for all possible configurations. UNUSED 7:6 — 0x00 unused Table 44. Register SW1ABMODE – ADDR 0x23 Name Bit number R/W Default Description SW1ABMODE 3:0 R/W 0x08 Sets the SW1AB switching operation mode. See Table 29 for all possible configurations. UNUSED 4 — 0x00 unused PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 43 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Name Bit number R/W Default Description SW1ABOMODE 5 R/W 0x00 Set status of SW1AB when in sleep mode • 0 = OFF • 1 = PFM UNUSED 7:6 — 0x00 unused Table 45. Register SW1ABCONF – ADDR 0x24 Name Bit number R/W Default Description SW1ABILIM 0 R/W 0x00 SW1AB current limit level selection • 0 = High-level current limit • 1 = Low-level current limit UNUSED 1 R/W 0x00 unused SW1ABFREQ 3:2 R/W 0x00 SW1A/B switching frequency selector. See Table 36. SW1ABPHASE 5:4 R/W 0x00 SW1A/B phase clock selection. See Table 34. SW1ABDVSSPEED 7:6 R/W 0x00 SW1A/B DVS speed selection. See Table 33. Table 46. Register SW1CVOLT – ADDR 0x2E Name Bit number R/W Default Description SW1C 5:0 R/W 0x00 Sets the SW1C output voltage during normal operation mode. See Table 39 for all possible configurations. UNUSED 7:6 — 0x00 unused Table 47. Register SW1CSTBY – ADDR 0x2F Name Bit number R/W Default Description SW1CSTBY 5:0 R/W 0x00 Sets the SW1C output voltage during standby mode. See Table 39 for all possible configurations. UNUSED 7:6 — 0x00 unused Table 48. Register SW1COFF – ADDR 0x30 Name Bit number R/W Default Description SW1COFF 5:0 R/W 0x00 Sets the SW1C output voltage during sleep mode. See Table 39 for all possible configurations. UNUSED 7:6 — 0x00 unused Table 49. Register SW1CMODE – ADDR 0x31 Name Bit number R/W Default Description SW1CMODE 3:0 R/W 0x08 Sets the SW1C switching operation mode. See Table 29 for all possible configurations. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 44 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Name Bit number R/W Default Description UNUSED 4 — 0x00 unused SW1COMODE 5 R/W 0x00 Set status of SW1C when in sleep mode • 0 = OFF • 1 = PFM UNUSED 7:6 — 0x00 unused Table 50. Register SW1CCONF – ADDR 0x32 Name Bit number R/W Default Description SW1CILIM 0 R/W 0x00 SW1C current limit level selection • 0 = High-level current limit • 1 = Low-level current limit UNUSED 1 R/W 0x00 unused SW1CFREQ 3:2 R/W 0x00 SW1C switching frequency selector. See Table 36. SW1CPHASE 5:4 R/W 0x00 SW1C phase clock selection. See Table 34. SW1CDVSSPEED 7:6 R/W 0x00 SW1C DVS speed selection. See Table 32. 10.4.4.3.5 SW1A/B/C external components Table 51. SW1A/B/C external component recommendations Components Description Mode A/B/C single phase A/B single - C independent mode A/B dual - C independent mode CINSW1A [1] SW1A input capacitor 4.7 µF 4.7 µF 4.7 µF CIN1AHF [1] SW1A decoupling input capacitor 0.1 µF 0.1 µF 0.1 µF CINSW1B [1] SW1B input capacitor 4.7 µF 4.7 µF 4.7 µF CIN1BHF [1] SW1B decoupling input capacitor 0.1 µF 0.1 µF 0.1 µF SW1C input capacitor 4.7 µF 4.7 µF 4.7 µF SW1C decoupling input capacitor 0.1 µF 0.1 µF 0.1 µF SW1A/B output capacitor 6 x 22 µF 2 x 22 µF 4 x 22 µF SW1C output capacitor — 3 x 22 µF 3 x 22 µF LSW1A SW1A inductor 1.0 µH 1.0 µH 1.0 µH LSW1B SW1B inductor — — 1.0 µH LSW1C SW1C inductor — 1.0 µH 1.0 µH CINSW1C [1] CIN1CHF COSW1AB COSW1C [1] [1] [1] Use X5R or X7R capacitors. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 45 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 10.4.4.3.6 SW1A/B/C specifications Table 52. SW1A/B/C electrical characteristics All parameters are specified at TMIN to TMAX (see Table 4), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted. Symbol Parameter Min Typ Max Unit SW1A/B/C (Single phase) VINSW1A VINSW1B VINSW1C Operating input voltage 2.8 — 4.5 V VSW1ABC Nominal output voltage — Table 39 — V VSW1ABCACC Output voltage accuracy PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1ABC < 4.5 A 0.625 V ≤ VSW1ABC ≤ 1.450 V 1.475 V ≤ VSW1ABC ≤ 1.875 V PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1ABC < 150 mA 0.625 V < VSW1ABC < 0.675 V 0.7 V < VSW1ABC < 0.85 V 0.875 V < VSW1ABC < 1.875 V −25 −3.0 % — — 25 3.0 % mV % −65 −45 −3.0 % — — — 65 45 3.0 % mV mV % — — 4500 ISW1ABC Rated output load current 2.8 V < VIN < 4.5 V, 0.625 V < VSW1ABC < 1.875 V ISW1ABCLIM Current limiter peak current detection Current through inductor SW1ABILIM = 0 SW1ABILIM = 1 VSW1ABCOSH tONSW1ABC fSW1ABC PF4210 Data sheet: technical data Startup overshoot ISW1ABC = 0 mA DVS clk = 25 mV/4 µs, VIN = VINSW1x = 4.5 V, VSW1ABC = 1.875 V Turn on time Enable to 90 % of end value ISW1x = 0 mA DVS clk = 25 mV/4.0 µs, VIN = VINSW1x = 4.5 V, VSW1ABC = 1.875 V Switching frequency SW1xFREQ[1:0] = 00 SW1xFREQ[1:0] = 01 SW1xFREQ[1:0] = 10 mA A 7.1 5.3 10.5 7.9 13.7 10.3 mV — — 66 µs — — 500 — — — 1.0 2.0 4.0 — — — MHz All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 46 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Parameter Min ηSW1ABC Efficiency VIN = 3.6 V, fSW1ABC = 2.0 MHz, LSW1ABC = 1.0 µH PFM, 0.9 V, 1.0 mA PFM, 1.2 V, 50 mA APS, PWM, 1.2 V, 850 mA APS, PWM, 1.2 V, 1275 mA APS, PWM, 1.2 V, 2125 mA APS, PWM, 1.2 V, 4500 mA Typ Max Unit % — — — — — — 77 82 86 84 80 68 — — — — — — ΔVSW1ABC Output ripple — 10 — mV VSW1ABCLIR Line regulation (APS, PWM) — — 20 mV VSW1ABCLOR DC load regulation (APS, PWM) — — 20 mV VSW1ABCLOTR Transient load regulation Transient load = 0 to 2.25 A, di/dt = 100 mA/µs Overshoot Undershoot mV — — — — 50 50 ISW1ABCQ Quiescent current PFM mode APS mode — — 18 145 – – µA RSW1ABCDIS Discharge resistance — 600 — Ω VINSW1A VINSW1B Operating input voltage 2.8 — 4.5 V VSW1AB Nominal output voltage — Table 39 — V VSW1ABACC Output voltage accuracy PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1AB < 2.5 A 0.625 V ≤ VSW1AB ≤ 1.450 V 1.475 V ≤ VSW1AB ≤ 1.875 V PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1AB < 150 mA 0.625 V < VSW1AB < 0.675 V 0.7 V < VSW1AB < 0.85 V 0.875 V < VSW1AB < 1.875 V −25 −3.0 % — — 25 3.0 % mV % −65 −45 −3.0 % — — — 65 45 3.0 % mV mV % SW1A/B (Single/ dual phase) ISW1AB PF4210 Data sheet: technical data Rated output load current, 2.8 V < VIN < 4.5 V, 0.625 V < VSW1AB < 1.875 V mA — All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 — 2500 © NXP B.V. 2018. All rights reserved. 47 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Parameter ISW1ABLIM Current limiter peak current detection SW1A/B single phase (current through inductor) SW1ABILIM = 0 SW1ABILIM = 1 SW1A/B dual phase (current through inductor per phase) SW1ABILIM = 0 SW1ABILIM = 1 VSW1ABOSH Min Start-up overshoot ISW1AB = 0.0 mA DVS clk = 25 mV/4 µs, VIN = VINSW1x = 4.5 V, VSW1AB = 1.875 V tONSW1AB Turn-on time Enable to 90 % of end value ISW1AB = 0.0 mA DVS clk = 25 mV/4 µs, VIN = VINSW1x = 4.5 V, VSW1AB = 1.875 V fSW1AB Switching frequency SW1ABFREQ[1:0] = 00 SW1ABFREQ[1:0] = 01 SW1ABFREQ[1:0] = 10 ηSW1AB Efficiency (single phase) VIN = 3.6 V, fSW1AB = 2.0 MHz, LSW1AB = 1.0 µH PFM, 0.9 V, 1.0 mA PFM, 1.2 V, 50 mA APS, PWM, 1.2 V, 500 mA APS, PWM, 1.2 V, 750 mA APS, PWM, 1.2 V, 1250 mA APS, PWM, 1.2 V, 2500 mA Typ Max Unit A 4.5 3.3 6.5 4.9 8.5 6.4 2.2 1.6 3.2 2.4 4.3 3.2 mV — — 66 — — 500 — — — 1.0 2.0 4.0 — — — µs MHz % — — — — — — 82 84 86 87 82 71 — — — — — — ΔVSW1AB Output ripple — 10 — mV VSW1ABLIR Line regulation (APS, PWM) — — 20 mV VSW1ABLOR DC load regulation (APS, PWM) — — 20 mV VSW1ABLOTR Transient load regulation Transient load = 0 to 1.25 A, di/dt = 100 µs Overshoot Undershoot mV — — — — 50 50 ISW1ABQ Quiescent current PFM mode APS mode — — 18 235 — — RONSW1AP SW1A P-MOSFET RDS(on) VINSW1A = 3.3 V — 215 245 PF4210 Data sheet: technical data µA mΩ All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 48 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Parameter Min Typ Max Unit RONSW1AN SW1A N-MOSFET RDS(on) VINSW1A = 3.3 V — 258 326 ISW1APQ SW1A P-MOSFET leakage current VINSW1A = 4.5 V — — 7.5 ISW1ANQ SW1A N-MOSFET leakage current VINSW1A = 4.5 V — — 2.5 RONSW1BP SW1B P-MOSFET RDS(on) VINSW1B = 3.3 V — 215 245 RONSW1BN SW1B N-MOSFET RDS(on) VINSW1B = 3.3 V — 258 326 ISW1BPQ SW1B P-MOSFET leakage current VINSW1B = 4.5 V — — 7.5 ISW1BNQ SW1B N-MOSFET leakage current VINSW1B = 4.5 V — — 2.5 RSW1ABDIS Discharge resistance — 600 — 2.8 — 4.5 — Table 39 — V −25 −3.0 % — — 25 3.0 % mV % −65 −45 −3.0 % — — — 65 45 3.0 % mV mV % — — 2000 mΩ µA µA mΩ mΩ µA µA Ω SW1C (independent) VINSW1C Operating input voltage VSW1C Nominal output voltage VSW1CACC Output voltage accuracy PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1C < 2.0 A 0.625 V ≤ VSW1C ≤ 1.450 V 1.475 V ≤ VSW1C ≤ 1.875 V PFM, steady state 2.8 V < VIN < 4.5 V, 0 < ISW1C < 50 mA 0.625 V < VSW1C < 0.675 V 0.7 V < VSW1C < 0.85 V 0.875 V < VSW1C < 1.875 V ISW1C Rated output load current 2.8 V < VIN < 4.5 V, 0.625 V < VSW1C < 1.875 V ISW1CLIM Current limiter peak current detection Current through inductor SW1CILIM = 0 SW1CILIM = 1 VSW1COSH PF4210 Data sheet: technical data Start up overshoot ISW1C = 0 mA DVS clk = 25 mV/4 µs, VIN = VINSW1C = 4.5 V, VSW1C = 1.875 V V mA A 2.6 1.95 4.0 3.0 5.2 3.9 — — 66 mV All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 49 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Parameter Min tONSW1C Turn on time Enable to 90 % of end value ISW1C = 0 mA DVS clk = 25 mV/4 µs, VIN = VINSW1C = 4.5 V, VSW1C = 1.875 V fSW1C Switching frequency SW1CFREQ[1:0] = 00 SW1CFREQ[1:0] = 01 SW1CFREQ[1:0] = 10 ηSW1C Efficiency VIN = 3.6 V, fSW1C = 2.0 MHz, LSW1C = 1.0 µH PFM, 0.9 V, 1.0 mA PFM, 1.2 V, 50 mA APS, PWM, 1.2 V, 400 mA APS, PWM, 1.2 V, 600 mA APS, PWM, 1.2 V, 1000 mA APS, PWM, 1.2 V, 2000 mA Typ Max Unit µs — — 500 — — — 1.0 2.0 4.0 — — — MHz % — — — — — — 77 78 86 84 78 65 — — — — — — ΔVSW1C Output ripple — 10 — mV VSW1CLIR Line regulation (APS, PWM) — — 20 mV VSW1CLOR DC load regulation (APS, PWM) — — 20 mV VSW1CLOTR Transient load regulation Transient load = 0.0 mA to 1.0 A, di/dt = 100 mA/µs Overshoot Undershoot mV — — — — 50 50 ISW1CQ Quiescent current PFM mode APS mode — — 22 145 — — RONSW1CP SW1C P-MOSFET RDS(on) at VINSW1C = 3.3 V — 184 206 RONSW1CN SW1C N-MOSFET RDS(on) at VINSW1C = 3.3 V — 211 260 ISW1CPQ SW1C P-MOSFET leakage current VINSW1C = 4.5 V — — 10.5 ISW1CNQ SW1C N-MOSFET leakage current VINSW1C = 4.5 V — — 3.5 RSW1CDIS Discharge resistance — 600 — PF4210 Data sheet: technical data µA mΩ mΩ µA µA All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 Ω © NXP B.V. 2018. All rights reserved. 50 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications aaa-026482 100 efficiency (%) PFM 80 60 40 20 0 0.1 1.0 10 100 1000 load current (mA) aaa-027172 100 efficiency (%) APS 80 PWM 60 40 20 0 10 100 1000 10000 load current (mA) Figure 13. SW1AB efficiency waveforms: VIN = 4.2 V; VOUT = 1.375 V; consumer version aaa-026483 100 efficiency (%) PFM 80 60 40 20 0 0.1 PF4210 Data sheet: technical data 1.0 10 100 1000 load current (mA) All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 51 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications aaa-027173 100 efficiency (%) APS 80 PWM 60 40 20 0 10 100 1000 10000 load current (mA) Figure 14. SW1AB efficiency waveforms: VIN = 4.2 V; VOUT = 1.375 V; industrial version aaa-026484 100 efficiency (%) PFM 80 60 40 20 0 0.1 1.0 10 100 1000 load current (mA) aaa-027174 100 efficiency (%) 80 PWM 60 40 20 0 10 100 1000 10000 load current (mA) Figure 15. SW1C efficiency waveforms: VIN = 4.2 V; VOUT = 1.375 V; consumer version PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 52 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications aaa-026485 100 efficiency (%) PFM 80 60 40 20 0 0.1 1.0 10 100 1000 load current (mA) aaa-027175 100 efficiency (%) APS 80 PWM 60 40 20 0 10 100 1000 10000 load current (mA) Figure 16. SW1C efficiency waveforms: VIN = 4.2 V; VOUT = 1.375 V; industrial version 10.4.4.4 SW2 SW2 is a single phase, 2.5 A rated buck regulator. Table 28 describes the modes, and Table 29 shows the options for the SWxMODE[3:0] bits. Figure 17 shows the block diagram and the external component connections for SW2 regulator. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 53 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications VIN SW2IN SW2 CONTROLLER SW2LX DRIVER LSW2 COSW2 SW2MODE ISENSE CINSW2 SW2FAULT EP I2C INTERFACE INTERNAL COMPENSATION Z2 SW2FB Z1 EA I2C DAC V REF aaa-026486 Figure 17. SW2 block diagram 10.4.4.4.1 SW2 setup and control registers SW2 output voltage is programmable from 0.400 V to 3.300 V; however, bit SW2[6] in register SW2VOLT is read-only during normal operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Therefore, once SW2[6] is set to 0, the output is limited to the lower output voltage range from 0.400 V to 1.975 V with 25 mV increments, as determined by bits SW2[5:0]. Likewise, once bit SW2[6] is set to 1, the output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV increments, as determined by bits SW2[5:0]. In order to optimize the performance of the regulator, it is recommended only voltage from 2.000 V to 3.300 V be used in the high range, and the lower range be used for voltage from 0.400 V to 1.975 V. The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW2[5:0], SW2STBY[5:0] and SW2OFF[5:0] bits, respectively. However, the initial state of bit SW2[6] are copied into bits SW2STBY[6], and SW2OFF[6] bits. Therefore, the output voltage range remains the same in all three operating modes. Table 53 shows the output voltage coding valid for SW2. Note: Voltage set points of 0.6 V and below are not supported. Table 53. SW2 output voltage configuration Low output voltage range PF4210 Data sheet: technical data [1] High output voltage range Set point SW2[6:0] SW2 output Set point SW2[6:0] SW2 output 0 0000000 0.4000 64 1000000 0.8000 1 0000001 0.4250 65 1000001 0.8500 2 0000010 0.4500 66 1000010 0.9000 3 0000011 0.4750 67 1000011 0.9500 4 0000100 0.5000 68 1000100 1.0000 5 0000101 0.5250 69 1000101 1.0500 6 0000110 0.5500 70 1000110 1.1000 7 0000111 0.5750 71 1000111 1.1500 8 0001000 0.6000 72 1001000 1.2000 All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 54 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Low output voltage range PF4210 Data sheet: technical data [1] High output voltage range Set point SW2[6:0] SW2 output Set point SW2[6:0] SW2 output 9 0001001 0.6250 73 1001001 1.2500 10 0001010 0.6500 74 1001010 1.3000 11 0001011 0.6750 75 1001011 1.3500 12 0001100 0.7000 76 1001100 1.4000 13 0001101 0.7250 77 1001101 1.4500 14 0001110 0.7500 78 1001110 1.5000 15 0001111 0.7750 79 1001111 1.5500 16 0010000 0.8000 80 1010000 1.6000 17 0010001 0.8250 81 1010001 1.6500 18 0010010 0.8500 82 1010010 1.7000 19 0010011 0.8750 83 1010011 1.7500 20 0010100 0.9000 84 1010100 1.8000 21 0010101 0.9250 85 1010101 1.8500 22 0010110 0.9500 86 1010110 1.9000 23 0010111 0.9750 87 1010111 1.9500 24 0011000 1.0000 88 1011000 2.0000 25 0011001 1.0250 89 1011001 2.0500 26 0011010 1.0500 90 1011010 2.1000 27 0011011 1.0750 91 1011011 2.1500 28 0011100 1.1000 92 1011100 2.2000 29 0011101 1.1250 93 1011101 2.2500 30 0011110 1.1500 94 1011110 2.3000 31 0011111 1.1750 95 1011111 2.3500 32 0100000 1.2000 96 1100000 2.4000 33 0100001 1.2250 97 1100001 2.4500 34 0100010 1.2500 98 1100010 2.5000 35 0100011 1.2750 99 1100011 2.5500 36 0100100 1.3000 100 1100100 2.6000 37 0100101 1.3250 101 1100101 2.6500 38 0100110 1.3500 102 1100110 2.7000 39 0100111 1.3750 103 1100111 2.7500 40 0101000 1.4000 104 1101000 2.8000 41 0101001 1.4250 105 1101001 2.8500 42 0101010 1.4500 106 1101010 2.9000 43 0101011 1.4750 107 1101011 2.9500 44 0101100 1.5000 108 1101100 3.0000 All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 55 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Low output voltage range [1] High output voltage range Set point SW2[6:0] SW2 output Set point SW2[6:0] SW2 output 45 0101101 1.5250 109 1101101 3.0500 46 0101110 1.5500 110 1101110 3.1000 47 0101111 1.5750 111 1101111 3.1500 48 0110000 1.6000 112 1110000 3.2000 49 0110001 1.6250 113 1110001 3.2500 50 0110010 1.6500 114 1110010 3.3000 51 0110011 1.6750 115 1110011 Reserved 52 0110100 1.7000 116 1110100 Reserved 53 0110101 1.7250 117 1110101 Reserved 54 0110110 1.7500 118 1110110 Reserved 55 0110111 1.7750 119 1110111 Reserved 56 0111000 1.8000 120 1111000 Reserved 57 0111001 1.8250 121 1111001 Reserved 58 0111010 1.8500 122 1111010 Reserved 59 0111011 1.8750 123 1111011 Reserved 60 0111100 1.9000 124 1111100 Reserved 61 0111101 1.9250 125 1111101 Reserved 62 0111110 1.9500 126 1111110 Reserved 63 0111111 1.9750 127 1111111 Reserved [1] For voltage less than 2.0 V, use set points 0 to 63. 2 Setup and control of SW2 is done through I C registers listed in Table 54, and a detailed description of each one of the registers is provided in Table 55 to Table 59. Table 54. SW2 register summary Register Address Description SW2VOLT 0x35 Output voltage set point in normal operation SW2STBY 0x36 Output voltage set point in standby SW2OFF 0x37 Output voltage set point in sleep SW2MODE 0x38 Switching mode selector register SW2CONF 0x39 DVS, phase, frequency, and ILIM configuration Table 55. Register SW2VOLT - ADDR 0x35 Name Bit number R/W Default Description SW2 5:0 R/W 0x00 Sets the SW2 output voltage during normal operation mode. See Table 53 for all possible configurations. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 56 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Name Bit number R/W Default Description SW2 6 R 0x00 Sets the operating output voltage range for SW2. Set during OTP or TBB configuration only. See Table 53 for all possible configurations. UNUSED 7 — 0x00 unused Table 56. Register SW2STBY - ADDR 0x36 Name Bit number R/W Default Description SW2STBY 5:0 R/W 0x00 Sets the SW2 output voltage during standby mode. See Table 53 for all possible configurations. SW2STBY 6 R 0x00 Sets the operating output voltage range for SW2 in standby mode. This bit inherits the value configured on bit SW2[6] during OTP or TBB configuration. See Table 53 for all possible configurations. UNUSED 7 — 0x00 unused Table 57. Register SW2OFF - ADDR 0x37 Name Bit number R/W Default Description SW2OFF 5:0 R/W 0x00 Sets the SW2 output voltage during sleep mode. See Table 53 for all possible configurations. SW2OFF 6 R 0x00 Sets the operating output voltage range for SW2 in sleep mode. This bit inherits the value configured on bit SW2[6] during OTP or TBB configuration. See Table 53 for all possible configurations. UNUSED 7 — 0x00 unused Table 58. Register SW2MODE - ADDR 0x38 Name Bit number R/W Default Description SW2MODE 3:0 R/W 0x08 Sets the SW2 switching operation mode. See Table 29 for all possible configurations. UNUSED 4 — 0x00 unused SW2OMODE 5 R/W 0x00 Set status of SW2 when in sleep mode • 0 = OFF • 1 = PFM UNUSED 7:6 — 0x00 unused Table 59. Register SW2CONF - ADDR 0x39 Name Bit number R/W Default Description SW2ILIM 0 R/W 0x00 SW2 current limit level selection • 0 = High-level current limit • 1 = Low-level current limit PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 [1] © NXP B.V. 2018. All rights reserved. 57 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Name Bit number R/W Default Description UNUSED 1 R/W 0x00 unused SW2FREQ 3:2 R/W 0x00 SW2 switching frequency selector. See Table 36. SW2PHASE 5:4 R/W 0x00 SW2 phase clock selection. See Table 34. SW2DVSSPEED 7:6 R/W 0x00 SW2 DVS speed selection. See Table 33. [1] SW2ILIM = 0 must be used if 2.5 A output load current is desired 10.4.4.4.2 SW2 external components Table 60. SW2 external component recommendations Components Description Values CINSW2 [1] SW2 input capacitor 4.7 µF CIN2HF [1] SW2 decoupling input capacitor 0.1 µF COSW2 [1] SW2 output capacitor 3 x 22 µF SW2 inductor 1.0 µH LSW2 [1] Use X5R or X7R capacitors. 10.4.4.4.3 SW2 Specifications Table 61. SW2 electrical characteristics All parameters are specified at TMIN to TMAX (see Table 4), VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], typical external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted. Symbol Parameter Min Typ Max Unit 2.8 — 4.5 V — Table 53 — V −25 −3.0 % −6.0 % — — — 25 3.0 % 6.0 % mV % % −65 −45 −3.0 % −3.0 % — — — — 65 45 3.0 % 3.0 % mV mV % % SWITCH MODE SUPPLY SW2 [1] VINSW2 Operating input voltage VSW2 Nominal output voltage VSW2ACC Output voltage accuracy PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW2 < 2.5 A 0.625 V < VSW2 < 0.85 V 0.875 V < VSW2 < 1.975 2.0 V < VSW2 < 3.3 V PFM, 2.8 V < VIN < 4.5 V, 0 < ISW2 ≤ 50 mA 0.625 V < VSW2 < 0.675 V 0.7 V < VSW2 < 0.85 V 0.875 V < VSW2 < 1.975 V 2.0 V < VSW2 < 3.3 V ISW2 Rated output load current 2.8 V < VIN < 4.5 V, 0.625 V < VSW2 < 3.3 V 2.8 V < VIN < 4.5 V, 1.2 V < VSW2 < 3.3 V, SW2LIM = 0 PF4210 Data sheet: technical data [2] mA — All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 — 2500 © NXP B.V. 2018. All rights reserved. 58 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Parameter Min ISW2LIM Current limiter peak current detection Current through inductor SW2ILIM = 0 SW2ILIM = 1 VSW2OSH Startup overshoot ISW2 = 0.0 mA DVS clk = 25 mV/4 µs, VIN = VINSW2 = 4.5 V tONSW2 Turn on time Enable to 90 % of end value ISW2 = 0.0 mA DVS clk = 50 mV/8 µs, VIN = VINSW2 = 4.5 V Typ Max Unit A 2.8 2.1 4.0 3.0 5.2 3.9 — — 66 mV µs — — 550 — — — 1.0 2.0 4.0 — — — fSW2 Switching frequency SW2FREQ[1:0] = 00 SW2FREQ[1:0] = 01 SW2FREQ[1:0] = 10 MHz ηSW2 Efficiency VIN = 3.6 V, fSW2 = 2.0 MHz, LSW2 = 1.0 µH PFM, 3.15 V, 1.0 mA PFM, 3.15 V, 50 mA APS, PWM, 3.15 V, 400 mA APS, PWM, 3.15 V, 600 mA APS, PWM, 3.15 V, 1000 mA APS, PWM, 3.15 V, 2000 mA APS, PWM, 3.15 V, 2500 mA — — — — — — — 94 95 96 94 92 86 81 — — — — — — — ΔVSW2 Output ripple — 10 — mV VSW2LIR Line regulation (APS, PWM) — — 20 mV VSW2LOR DC load regulation (APS, PWM) — — 20 mV VSW2LOTR Transient load regulation Transient load = 0.0 mA to 1.0 A, di/dt = 100 mA/µs Overshoot Undershoot % mV — — — — 50 50 ISW2Q Quiescent current PFM mode APS mode (low output voltage settings) APS mode (high output voltage settings) — — — 23 145 305 — — — RONSW2P SW2 P-MOSFET RDS(on) at VIN = VINSW2 = 3.3 V — 190 209 RONSW2N SW2 N-MOSFET RDS(on) at VIN = VINSW2 = 3.3 V — 212 255 ISW2PQ SW2 P-MOSFET leakage current VIN = VINSW2 = 4.5 V — — 12 ISW2NQ SW2 N-MOSFET leakage current VIN = VINSW2 = 4.5 V — — 4.0 RSW2DIS Discharge resistance — 600 — PF4210 Data sheet: technical data µA mΩ mΩ µA µA All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 Ω © NXP B.V. 2018. All rights reserved. 59 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications [1] [2] When output is set to > 2.6 V, the output follows the input down when VIN gets near 2.8 V. The higher output voltage available depends on the voltage drop in the conduction path as given by the following equation: (VINSW2 − VSW2) = ISW2* (DCR of Inductor + RONSW2P + PCB trace resistance). aaa-026487 100 PFM efficiency (%) 80 60 40 20 0 0.1 1.0 10 100 1000 load current (mA) aaa-027176 100 efficiency (%) 80 PWM 60 40 20 0 10 100 1000 10000 load current (mA) Figure 18. SW2 efficiency waveforms: VIN = 4.2 V; VOUT = 3.0 V; consumer version aaa-026488 100 efficiency (%) PFM 80 60 40 20 0 0.1 PF4210 Data sheet: technical data 1.0 10 100 1000 load current (mA) All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 60 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications aaa-027177 100 efficiency (%) 80 APS PWM 60 40 20 0 10 100 1000 10000 load current (mA) Figure 19. SW2 efficiency waveforms: vIN = 4.2 V; Vout = 3.0 V; industrial version 10.4.4.5 SW3A/B SW3A/B are 1.5 to 3.0 A rated buck regulators, depending on the configuration. Table 28 describes the available switching modes and Table 29 shows the actual configuration options for the SW3xMODE[3:0] bits. SW3A/B can be configured in various phasing schemes, depending on the desired cost/performance trade-offs. The following configurations are available: • A single phase • A dual phase • Independent regulators The desired configuration is programmed in OTP by using the SW3_CONFIG[1:0] bits. Table 62 shows the options for the SW3CFG[1:0] bits. Table 62. SW3 configuration SW3_CONFIG[1:0] Description 00 A/B single phase 01 A/B single phase 10 A/B dual phase 11 A/B independent 10.4.4.5.1 SW3A/B single phase In this configuration, SW3ALX and SW3BLX are connected in single phase with a single inductor a shown in Figure 20. This configuration reduces cost and component count. Feedback is taken from the SW3AFB pin and the SW3BFB pin must be left open. Although control is from SW3A, registers of both regulators, SW3A and SW3B, must be identically set. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 61 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications VIN SW3AIN SW3 SW3AMODE ISENSE CINSW3A SW3ALX LSW3A CONTROLLER DRIVER SW3AFAULT COSW3A INTERNAL COMPENSATION Z2 SW3AFB Z1 EA I2C DAC I2C INTERFACE VREF VIN SW3BIN SW3BMODE ISENSE CINSW3B SW3BLX CONTROLLER DRIVER SW3BFAULT EP INTERNAL COMPENSATION Z2 SW3BFB Z1 EA I2C DAC VREF aaa-026489 Figure 20. SW3A/B single phase block diagram 10.4.4.5.2 SW3A/B dual phase SW3A/B can be connected in dual phase configuration using one inductor per switching node, as shown in Figure 21. This mode allows a smaller output voltage ripple. Feedback is taken from pin SW3AFB and pin SW3BFB must be left open. Although control is from SW3A, registers of both regulators, SW3A and SW3B, must be identically set. In this configuration, the regulators switch 180 degrees apart. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 62 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications VIN SW3AIN SW3 SW3AMODE ISENSE CINSW3A SW3ALX LSW3A CONTROLLER DRIVER SW3AFAULT COSW3A INTERNAL COMPENSATION Z2 SW3AFB Z1 EA I2C DAC I2C INTERFACE VREF VIN SW3BIN SW3BLX LSW3B COSW3B SW3BMODE ISENSE CINSW3B CONTROLLER DRIVER SW3BFAULT EP INTERNAL COMPENSATION Z2 SW3BFB Z1 EA I2C DAC VREF aaa-026490 Figure 21. SW3A/B dual phase block diagram 10.4.4.5.3 SW3A – SW3B independent outputs SW3A and SW3B can be configured as independent outputs as shown in Figure 22, providing flexibility for applications requiring more voltage rails with less current 2 capability. Each output is configured and controlled independently by its respective I C registers as shown in Table 64. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 63 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications VIN SW3AIN SW3 SW3AMODE ISENSE CINSW3A SW3ALX LSW3A CONTROLLER DRIVER SW3AFAULT COSW3A INTERNAL COMPENSATION Z2 SW3AFB Z1 EA I2C DAC I2C INTERFACE VREF VIN SW3BIN SW3BLX SW3B LSW3B COSW3B SW3BMODE ISENSE CINSW3B CONTROLLER DRIVER SW3BFAULT EP INTERNAL COMPENSATION Z2 SW3BFB Z1 EA I2C DAC VREF aaa-026491 Figure 22. SW3A/B independent output block diagram 10.4.4.5.4 SW3A/B setup and control registers SW3A/B output voltage is programmable from 0.400 V to 3.300 V; however, bit SW3x[6] in register SW3xVOLT is read-only during normal operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Therefore, once SW3x[6] is set to 0, the output is limited to the lower output voltage range from 0.40 V to 1.975 V with 25 mV increments, as determined by bits SW3x[5:0]. Likewise, once bit SW3x[6] is set to 1, the output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV increments, as determined by bits SW3x[5:0]. In order to optimize the performance of the regulator, it is recommended only voltage from 2.00 V to 3.300 V be used in the high range and the lower range be used for voltage from 0.400 V to 1.975 V. The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW3x[5:0], SW3xSTBY[5:0], and SW3xOFF[5:0] bits respectively; however, the initial state of the SW3x[6] bit is copied into the SW3xSTBY[6] and SW3xOFF[6] bits. Therefore, the output voltage range remains the same on all three operating modes. Table 63 shows the output voltage coding valid for SW3x. Note: Voltage set points of 0.6 V and below are not supported. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 64 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Table 63. SW3A/B output voltage configuration PF4210 Data sheet: technical data Low output voltage range [1] High output voltage range Set point SW3x[6:0] SW3x output Set point SW3x[6:0] SW3x output 0 0000000 0.4000 64 1000000 0.8000 1 0000001 0.4250 65 1000001 0.8500 2 0000010 0.4500 66 1000010 0.9000 3 0000011 0.4750 67 1000011 0.9500 4 0000100 0.5000 68 1000100 1.0000 5 0000101 0.5250 69 1000101 1.0500 6 0000110 0.5500 70 1000110 1.1000 7 0000111 0.5750 71 1000111 1.1500 8 0001000 0.6000 72 1001000 1.2000 9 0001001 0.6250 73 1001001 1.2500 10 0001010 0.6500 74 1001010 1.3000 11 0001011 0.6750 75 1001011 1.3500 12 0001100 0.7000 76 1001100 1.4000 13 0001101 0.7250 77 1001101 1.4500 14 0001110 0.7500 78 1001110 1.5000 15 0001111 0.7750 79 1001111 1.5500 16 0010000 0.8000 80 1010000 1.6000 17 0010001 0.8250 81 1010001 1.6500 18 0010010 0.8500 82 1010010 1.7000 19 0010011 0.8750 83 1010011 1.7500 20 0010100 0.9000 84 1010100 1.8000 21 0010101 0.9250 85 1010101 1.8500 22 0010110 0.9500 86 1010110 1.9000 23 0010111 0.9750 87 1010111 1.9500 24 0011000 1.0000 88 1011000 2.0000 25 0011001 1.0250 89 1011001 2.0500 26 0011010 1.0500 90 1011010 2.1000 27 0011011 1.0750 91 1011011 2.1500 28 0011100 1.1000 92 1011100 2.2000 29 0011101 1.1250 93 1011101 2.2500 30 0011110 1.1500 94 1011110 2.3000 31 0011111 1.1750 95 1011111 2.3500 32 0100000 1.2000 96 1100000 2.4000 33 0100001 1.2250 97 1100001 2.4500 34 0100010 1.2500 98 1100010 2.5000 All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 65 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Low output voltage range [1] High output voltage range Set point SW3x[6:0] SW3x output Set point SW3x[6:0] SW3x output 35 0100011 1.2750 99 1100011 2.5500 36 0100100 1.3000 100 1100100 2.6000 37 0100101 1.3250 101 1100101 2.6500 38 0100110 1.3500 102 1100110 2.7000 39 0100111 1.3750 103 1100111 2.7500 40 0101000 1.4000 104 1101000 2.8000 41 0101001 1.4250 105 1101001 2.8500 42 0101010 1.4500 106 1101010 2.9000 43 0101011 1.4750 107 1101011 2.9500 44 0101100 1.5000 108 1101100 3.0000 45 0101101 1.5250 109 1101101 3.0500 46 0101110 1.5500 110 1101110 3.1000 47 0101111 1.5750 111 1101111 3.1500 48 0110000 1.6000 112 1110000 3.2000 49 0110001 1.6250 113 1110001 3.2500 50 0110010 1.6500 114 1110010 3.3000 51 0110011 1.6750 115 1110011 Reserved 52 0110100 1.7000 116 1110100 Reserved 53 0110101 1.7250 117 1110101 Reserved 54 0110110 1.7500 118 1110110 Reserved 55 0110111 1.7750 119 1110111 Reserved 56 0111000 1.8000 120 1111000 Reserved 57 0111001 1.8250 121 1111001 Reserved 58 0111010 1.8500 122 1111010 Reserved 59 0111011 1.8750 123 1111011 Reserved 60 0111100 1.9000 124 1111100 Reserved 61 0111101 1.9250 125 1111101 Reserved 62 0111110 1.9500 126 1111110 Reserved 63 0111111 1.9750 127 1111111 Reserved [1] For voltage less than 2.0 V, use set points 0 to 63. Table 64 provides a list of registers used to configure and operate SW3A/B. A detailed description on each of these registers is provided in Table 65 to Table 74. Table 64. SW3AB register summary PF4210 Data sheet: technical data Register Address Output SW3AVOLT 0x3C SW3A output voltage set point on normal operation All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 66 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Register Address Output SW3ASTBY 0x3D SW3A output voltage set point on standby SW3AOFF 0x3E SW3A output voltage set point on sleep SW3AMODE 0x3F SW3A switching mode selector register SW3ACONF 0x40 SW3A DVS, phase, frequency and ILIM configuration SW3BVOLT 0x43 SW3B output voltage set point on normal operation SW3BSTBY 0x44 SW3B output voltage set point on standby SW3BOFF 0x45 SW3B output voltage set point on sleep SW3BMODE 0x46 SW3B switching mode selector register SW3BCONF 0x47 SW3B DVS, phase, frequency and ILIM configuration Table 65. Register SW3AVOLT - ADDR 0x3C Name Bit number R/W Default Description SW3A 5:0 R/W 0x00 Sets the SW3A output voltage (independent) or SW3A/B output voltage (single/dual phase), during normal operation mode. See Table 63 for all possible configurations. SW3A 6 R 0x00 Sets the operating output voltage range for SW3A (independent) or SW3A/B (single/dual phase). Set during OTP or TBB configuration only. See Table 63 for all possible configurations. UNUSED 7 — 0x00 unused Table 66. Register SW3ASTBY - ADDR 0x3D Name Bit number R/W Default Description SW3ASTBY 5:0 R/W 0x00 Sets the SW3A output voltage (independent) or SW3A/B output voltage (single/dual phase), during standby mode. See Table 63 for all possible configurations. SW3ASTBY 6 R 0x00 Sets the operating output voltage range for SW3A (independent) or SW3A/B (single/dual phase) in standby mode. This bit inherits the value configured on bit SW3A[6] during OTP or TBB configuration. See Table 63 for all possible configurations. UNUSED 7 — 0x00 unused Table 67. Register SW3AOFF - ADDR 0x3E Name Bit number R/W Default Description SW3AOFF 5:0 R/W 0x00 Sets the SW3A output voltage (independent) or SW3A/B output voltage (single/dual phase), during sleep mode. See Table 63 for all possible configurations. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 67 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Name Bit number R/W Default Description SW3AOFF 6 R 0x00 Sets the operating output voltage range for SW3A (independent) or SW3A/B (single/dual phase) in sleep mode. This bit inherits the value configured on bit SW3A[6] during OTP or TBB configuration. See Table 63 for all possible configurations. UNUSED 7 — 0x00 unused Table 68. Register SW3AMODE - ADDR 0x3F Name Bit number R/W Default Description SW3AMODE 3:0 R/W 0x08 Sets the SW3A (independent) or SW3A/B (single/dual phase) switching operation mode. See Table 29 for all possible configurations. UNUSED 4 — 0x00 unused SW3AOMODE 5 R/W 0x00 Set status of SW3A (independent) or SW3A/B (single/dual phase) when in sleep mode. • 0 = OFF • 1 = PFM UNUSED 7:6 — 0x00 unused Table 69. Register SW3ACONF - ADDR 0x40 Name Bit number R/W Default Description SW3AILIM 0 R/W 0x00 SW3A current limit level selection • 0 = High-level current limit • 1 = Low-level current limit UNUSED 1 R/W 0x00 unused SW3AFREQ 3:2 R/W 0x00 SW3A switching frequency selector. See Table 36. SW3APHASE 5:4 R/W 0x00 SW3A phase clock selection. See Table 34. SW3ADVSSPEED 7:6 R/W 0x00 SW3A DVS speed selection. See Table 33. Table 70. Register SW3BVOLT - ADDR 0x43 Name Bit number R/W Default Description SW3B 5:0 R/W 0x00 Sets the SW3B output voltage (independent) during normal operation mode. See Table 63 for all possible configurations. SW3B 6 R 0x00 Sets the operating output voltage range for SW3B (independent). Set during OTP or TBB configuration only. See Table 63 for all possible configurations. UNUSED 7 – 0x00 unused PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 68 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Table 71. Register SW3BSTBY - ADDR 0x44 Name Bit number R/W Default Description SW3BSTBY 5:0 R/W 0x00 Sets the SW3B output voltage (independent) during standby mode. See Table 63 for all possible configurations. SW3BSTBY 6 R 0x00 Sets the operating output voltage range for SW3B (independent) in standby mode. This bit inherits the value configured on bit SW3B[6] during OTP or TBB configuration. See Table 63 for all possible configurations. UNUSED 7 — 0x00 unused Table 72. Register SW3BOFF - ADDR 0x45 Name Bit number R/W Default Description SW3BOFF 5:0 R/W 0x00 Sets the SW3B output voltage (independent) during sleep mode. See Table 63 for all possible configurations. SW3BOFF 6 R 0x00 Sets the operating output voltage range for SW3B (independent) in sleep mode. This bit inherits the value configured on bit SW3B[6] during OTP or TBB configuration. See Table 63 for all possible configurations. UNUSED 7 — 0x00 unused Table 73. Register SW3BMODE - ADDR 0x46 Name Bit number R/W Default Description SW3BMODE 3:0 R/W 0x08 Sets the SW3B (independent) switching operation mode. See Table 29 for all possible configurations. UNUSED 4 — 0x00 unused SW3BOMODE 5 R/W 0x00 Set status of SW3B (independent) when in sleep mode. • 0 = OFF • 1 = PFM UNUSED 7:6 — 0x00 unused Table 74. Register SW3BCONF - ADDR 0x47 Name Bit number R/W Default Description SW3BILIM 0 R/W 0x00 SW3B current limit level selection • 0 = High-level Current limit • 1 = Low-level Current limit UNUSED 1 R/W 0x00 unused SW3BFREQ 3:2 R/W 0x00 SW3B switching frequency selector. See Table 36. SW3BPHASE 5:4 R/W 0x00 SW3B phase clock selection. See Table 34. SW3BDVSSPEED 7:6 R/W 0x00 SW3B DVS speed selection. See Table 33. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 69 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 10.4.4.5.5 SW3A/B external components Table 75. SW3A/B external component requirements Compone nts Description Mode SW3A/B single phase SW3A/B dual phase SW3A independent SW3B independent CINSW3A [1] SW3A input capacitor 4.7 µF 4.7 µF 4.7 µF CIN3AHF [1] SW3A decoupling input capacitor 0.1 µF 0.1 µF 0.1 µF CINSW3B [1] SW3B input capacitor 4.7 µF 4.7 µF 4.7 µF CIN3BHF [1] SW3B decoupling input capacitor 0.1µF 0.1 µF 0.1 µF COSW3A [1] SW3A output capacitor 3 x 22 µF 2 x 22 µF 2 x 22 µF COSW3B [1] SW3B output capacitor — 2 x 22 µF 2 x 22 µF LSW3A SW3A inductor 1.0 µH 1.0 µH 1.0 µH LSW3B SW3B inductor — 1.0 µH 1.0 µH [1] Use X5R or X7R capacitors. 10.4.4.5.6 SW3A/B specifications Table 76. SW3A/B electrical characteristics All parameters are specified at TMIN to TMAX (see Table 4), VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA, SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single/dual phase and independent mode unless, otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA, SW3x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted. Symbol Parameter Min Typ Max Unit 2.8 — 4.5 V — Table 63 — V −25 −3.0 % −6.0 % — — — 25 3.0 % 6.0 % mV % % −65 −45 −3.0 % −3.0 % — — — — 65 45 3.0 % 3.0 % mV mV % % Switch mode supply SW3A/B [1] VINSW3x Operating input voltage VSW3x Nominal output voltage VSW3xACC Output voltage accuracy PWM, APS 2.8 V < VIN < 4.5 V, 0 < ISW3x < ISW3xMAX 0.625 V < VSW3x < 0.85 V 0.875 V < VSW3x < 1.975 V 2.0 V < VSW3x < 3.3 V PFM, steady state (2.8 V < VIN < 4.5 V, 0 < ISW3x < 50 mA) 0.625 V < VSW3x < 0.675 V 0.7 V < VSW3x < 0.85 V 0.875 V < VSW3x < 1.975 V 2.0 V < VSW3x < 3.3 V PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 70 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol ISW3x ISW3xLIM Min Parameter Rated output load current 2.8 V < VIN < 4.5 V, 0.625 V < VSW3x < 3.3 V PWM, APS mode single/dual phase, SW3xILIM = 0 PWM, APS mode independent (per phase), SW3xILIM = 0 Current limiter peak current detection Single phase (current through inductor) SW3xILIM = 0 SW3xILIM = 1 Independent mode or dual phase (current through inductor per phase) SW3xILIM = 0 SW3xILIM = 1 Typ Max [2] Unit mA — — — — 3000 1500 A 3.5 2.7 5.0 3.8 6.5 4.9 1.8 1.3 2.5 1.9 3.3 2.5 — — 66 — — 500 — — — 1.0 2.0 4.0 — — — VSW3xOSH Startup overshoot ISW3x = 0.0 mA DVS clk = 25 mV/4 µs, VIN = VINSW3x = 4.5 V tONSW3x Turn on time Enable to 90 % of end value ISW3x = 0 mA DVS clk = 25 mV/4 µs, VIN = VINSW3x = 4.5 V fSW3x Switching frequency SW3xFREQ[1:0] = 00 SW3xFREQ[1:0] = 01 SW3xFREQ[1:0] = 10 ηSW3AB Efficiency (single phase) fSW3 = 2.0 MHz, LSW3x 1.0 µH PFM, 1.5 V, 1.0 mA PFM, 1.5 V, 50 mA APS, PWM 1.5 V, 500 mA APS, PWM 1.5 V, 750 mA APS, PWM 1.5 V, 1250 mA APS, PWM 1.5 V, 2500 mA APS, PWM 1.5 V, 3000 mA — — — — — — — 84 85 85 84 80 74 65 — — — — — — — ΔVSW3x Output ripple — 10 — mV VSW3xLIR Line regulation (APS, PWM) — — 20 mV VSW3xLOR DC load regulation (APS, PWM) — — 20 mV VSW3xLOTR Transient load regulation Transient load = 0.0 mA to ISW3x/2, di/dt = 100 mA/µs Overshoot Undershoot PF4210 Data sheet: technical data mV µs MHz % mV — — All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 — — 50 50 © NXP B.V. 2018. All rights reserved. 71 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Parameter ISW3xQ Quiescent current PFM mode (single/dual phase) APS mode (single/dual phase) PFM mode (independent mode) APS mode (SW3A independent mode) APS mode (SW3B independent mode) — — — — — 22 300 50 250 150 — — — — — RONSW3AP SW3A P-MOSFET RDS(on) at VIN = VINSW3A = 3.3 V — 215 245 RONSW3AN SW3A N-MOSFET RDS(on) at VIN = VINSW3A = 3.3 V — 258 326 ISW3APQ SW3A P-MOSFET leakage current VIN = VINSW3A = 4.5 V — — 7.5 ISW3ANQ SW3A N-MOSFET leakage current VIN = VINSW3A = 4.5 V — — 2.5 RONSW3BP SW3B P-MOSFET RDS(on) at VIN = VINSW3B = 3.3 V — 215 245 RONSW3BN SW3B N-MOSFET RDS(on) at VIN = VINSW3B = 3.3 V — 258 326 ISW3BPQ SW3B P-MOSFET leakage current VIN = VINSW3B = 4.5 V — — 7.5 ISW3BPQ SW3B N-MOSFET leakage current VIN = VINSW3B = 4.5 V — — 2.5 RSW3xDIS Discharge resistance — 600 – [1] [2] Min Typ Max Unit µA mΩ mΩ µA µA mΩ mΩ µA µA Ω When output is set to > 2.6 V, the output follows the input down when VIN gets near 2.8 V. The higher output voltage available depends on the voltage drop in the conduction path as given by the following equation: (VINSW3x − VSW3x) = ISW3x* (DCR of inductor + RONSW3xP + PCB trace resistance). aaa-026492 100 efficiency (%) PFM 80 60 40 20 0 0.1 PF4210 Data sheet: technical data 1.0 10 100 1000 load current (mA) All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 72 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications aaa-027178 100 efficiency (%) APS 80 PWM 60 40 20 0 10 100 1000 10000 load current (mA) Figure 23. SW3AB efficiency waveforms: VIN = 4.2 V; VOUT = 1.5 V; consumer version aaa-026493 100 efficiency (%) PFM 80 60 40 20 0 0.1 1.0 10 100 1000 load current (mA) aaa-027179 100 efficiency (%) APS 80 PWM 60 40 20 0 10 100 1000 10000 load current (mA) Figure 24. SW3AB efficiency waveforms: VIN = 4.2 V; VOUT = 1.5 V; industrial version PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 73 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 10.4.4.6 SW4 SW4 is a 1.0 A rated single phase buck regulator capable of operating in two modes. In default mode, it operates as a normal buck regulator with a programmable output between 0.400 V and 3.300 V. It is capable of operating in the three available switching modes: PFM, APS, and PWM, described in Table 28 and configured by the SW4MODE[3:0] bits, as shown in Table 29. If the system requires DDR memory termination, SW4 can be used in VTT mode. In the VTT mode, the reference voltage tracks the output voltage of SW3A, scaled by 0.5. In VTT mode, only the PWM switching mode is allowed. The VTT mode can be configured by use of VTT bit in the OTP_SW4_CONFIG register. Figure 25 shows the block diagram and the external component connections for the SW4 regulator. VIN SW4IN SW4 SW4LX LSW4 COSW4 SW4AMODE ISENSE CINSW4 CONTROLLER DRIVER SW4AFAULT EP I2C INTERFACE INTERNAL COMPENSATION Z2 SW4FB Z1 EA I2C DAC VREF aaa-026494 Figure 25. SW4 block diagram 10.4.4.6.1 SW4 setup and control registers To set the SW4 in regulator or VTT mode, bit VTT of the register OTP_SW4_CONF register in Table 135 is programmed during OTP or TBB configuration; setting bit VTT to 1 enables SW4 to operate in VTT mode and 0 in regulator mode. See Section 10.1.2 "One time programmability (OTP)" for detailed information on OTP configuration. In regulator mode, the SW4 output voltage is programmable from 0.400 V to 3.300 V; however, bit SW4[6] in the SW4VOLT register is read-only during normal operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Once SW4[6] is set to 0, the output is limited to the lower output voltage range from 0.400 V to 1.975 V with 25 mV increments, as determined by the SW4[5:0] bits. Likewise, once the SW4[6] bit is set to 1, the output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV increments, as determined by the SW4[5:0] bits. To optimize the performance of the regulator, it is recommended only voltage from 2.000 V to 3.300 V be used in the high range and the lower range be used for voltage from 0.400 V to 1.975 V. The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW4[5:0], SW4STBY[5:0], and SW4OFF[5:0] bits, respectively. However, the initial state of the SW4[6] bit is copied into bits SW4STBY[6], and PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 74 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications SW4OFF[6] bits, so the output voltage range remains the same on all three operating modes. Table 77 shows the output voltage coding valid for SW4. Note: Voltage set points of 0.6 V and below are supported only in the VTT mode. Table 77. SW4 output voltage configuration Low output voltage range PF4210 Data sheet: technical data [1] High output voltage range Set point SW4[6:0] SW4 output Set point SW4[6:0] SW4 output 0 0000000 0.4000 64 1000000 0.8000 1 0000001 0.4250 65 1000001 0.8500 2 0000010 0.4500 66 1000010 0.9000 3 0000011 0.4750 67 1000011 0.9500 4 0000100 0.5000 68 1000100 1.0000 5 0000101 0.5250 69 1000101 1.0500 6 0000110 0.5500 70 1000110 1.1000 7 0000111 0.5750 71 1000111 1.1500 8 0001000 0.6000 72 1001000 1.2000 9 0001001 0.6250 73 1001001 1.2500 10 0001010 0.6500 74 1001010 1.3000 11 0001011 0.6750 75 1001011 1.3500 12 0001100 0.7000 76 1001100 1.4000 13 0001101 0.7250 77 1001101 1.4500 14 0001110 0.7500 78 1001110 1.5000 15 0001111 0.7750 79 1001111 1.5500 16 0010000 0.8000 80 1010000 1.6000 17 0010001 0.8250 81 1010001 1.6500 18 0010010 0.8500 82 1010010 1.7000 19 0010011 0.8750 83 1010011 1.7500 20 0010100 0.9000 84 1010100 1.8000 21 0010101 0.9250 85 1010101 1.8500 22 0010110 0.9500 86 1010110 1.9000 23 0010111 0.9750 87 1010111 1.9500 24 0011000 1.0000 88 1011000 2.0000 25 0011001 1.0250 89 1011001 2.0500 26 0011010 1.0500 90 1011010 2.1000 27 0011011 1.0750 91 1011011 2.1500 28 0011100 1.1000 92 1011100 2.2000 29 0011101 1.1250 93 1011101 2.2500 30 0011110 1.1500 94 1011110 2.3000 31 0011111 1.1750 95 1011111 2.3500 All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 75 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Low output voltage range [1] High output voltage range Set point SW4[6:0] SW4 output Set point SW4[6:0] SW4 output 32 0100000 1.2000 96 1100000 2.4000 33 0100001 1.2250 97 1100001 2.4500 34 0100010 1.2500 98 1100010 2.5000 35 0100011 1.2750 99 1100011 2.5500 36 0100100 1.3000 100 1100100 2.6000 37 0100101 1.3250 101 1100101 2.6500 38 0100110 1.3500 102 1100110 2.7000 39 0100111 1.3750 103 1100111 2.7500 40 0101000 1.4000 104 1101000 2.8000 41 0101001 1.4250 105 1101001 2.8500 42 0101010 1.4500 106 1101010 2.9000 43 0101011 1.4750 107 1101011 2.9500 44 0101100 1.5000 108 1101100 3.0000 45 0101101 1.5250 109 1101101 3.0500 46 0101110 1.5500 110 1101110 3.1000 47 0101111 1.5750 111 1101111 3.1500 48 0110000 1.6000 112 1110000 3.2000 49 0110001 1.6250 113 1110001 3.2500 50 0110010 1.6500 114 1110010 3.3000 51 0110011 1.6750 115 1110011 Reserved 52 0110100 1.7000 116 1110100 Reserved 53 0110101 1.7250 117 1110101 Reserved 54 0110110 1.7500 118 1110110 Reserved 55 0110111 1.7750 119 1110111 Reserved 56 0111000 1.8000 120 1111000 Reserved 57 0111001 1.8250 121 1111001 Reserved 58 0111010 1.8500 122 1111010 Reserved 59 0111011 1.8750 123 1111011 Reserved 60 0111100 1.9000 124 1111100 Reserved 61 0111101 1.9250 125 1111101 Reserved 62 0111110 1.9500 126 1111110 Reserved 63 0111111 1.9750 127 1111111 Reserved [1] For voltage less than 2.0 V, use set points 0 to 63. 2 Full setup and control of SW4 is done through the I C registers listed in Table 77. A detailed description of each of the registers is provided in Table 79 to Table 83. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 76 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Table 78. SW4 register summary Register Address Description SW4VOLT 0x4A Output voltage set point on normal operation SW4STBY 0x4B Output voltage set point on standby SW4OFF 0x4C Output voltage set point on sleep SW4MODE 0x4D Switching mode selector register SW4CONF 0x4E DVS, phase, frequency and ILIM configuration Table 79. Register SW4VOLT - ADDR 0x4A Name Bit number R/W Default Description SW4 5:0 R/W 0x00 Sets the SW4 output voltage during normal operation mode. See Table 77 for all possible configurations. SW4 6 R 0x00 Sets the operating output voltage range for SW4. Set during OTP or TBB configuration only. See Table 77 for all possible configurations. UNUSED 7 — 0x00 unused Table 80. Register SW4STBY - ADDR 0x4B Name Bit number R/W Default Description SW4STBY 5:0 R/W 0x00 Sets the SW4 output voltage during standby mode. See Table 77 for all possible configurations. SW4STBY 6 R 0x00 Sets the operating output voltage range for SW4 in standby mode. This bit inherits the value configured on bit SW4[6] during OTP or TBB configuration. See Table 77 for all possible configurations. UNUSED 7 — 0x00 unused Table 81. Register SW4OFF - ADDR 0x4C Name Bit number R/W Default Description SW4OFF 5:0 R/W 0x00 Sets the SW4 output voltage during sleep mode. See Table 77 for all possible configurations. SW4OFF 6 R 0x00 Sets the operating output voltage range for SW4 in sleep mode. This bit inherits the value configured in bit SW4[6] during OTP or TBB configuration. See Table 77 for all possible configurations. UNUSED 7 — 0x00 unused Table 82. Register SW4MODE - ADDR 0x4D Name Bit number R/W Default Description SW4MODE 3:0 R/W 0x08 Sets the SW4 switching operation mode. See Table 29 for all possible configurations. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 77 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Name Bit number R/W Default Description UNUSED 4 — 0x00 unused SW4OMODE 5 R/W 0x00 Set status of SW4 when in sleep mode • 0 = OFF • 1 = PFM UNUSED 7:6 — 0x00 unused Table 83. Register SW4CONF - ADDR 0x4E Name Bit number R/W Default Description SW4ILIM 0 R/W 0x00 SW4 current limit level selection • 0 = High-level current limit • 1 = Low-level current limit UNUSED 1 R/W 0x00 unused SW4FREQ 3:2 R/W 0x00 SW4 switching frequency selector. See Table 36. SW4PHASE 5:4 R/W 0x00 SW4 phase clock selection. See Table 34. SW4DVSSPEED 7:6 R/W 0x00 SW4 DVS speed selection. See Table 33. 10.4.4.6.2 SW4 external components Table 84. SW4 external component requirements Components Description Values CINSW4 [1] SW4 input capacitor 4.7 µF CIN4HF [1] SW4 decoupling input capacitor 0.1 µF [1] COSW4 SW4 output capacitor 3 x 22 µF LSW4 SW4 inductor 1.0 µH [1] Use X5R or X7R capacitors. 10.4.4.6.3 SW4 specifications Table 85. SW4 electrical characteristics All parameters are specified at TMIN to TMAX (see Table 4), VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA, SW4_PWRSTG[2:0] = [101], typical external component values, fSW4 = 2.0 MHz, single/dual phase and independent mode unless, otherwise noted. Typical values are characterized at VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA, SW4_PWRSTG[2:0] = [101], and 25 °C, unless otherwise noted. Symbol Parameter Min Typ Max Unit 2.8 — 4.5 V — — Table 77 VSW3AFB/2 — — SWITCH MODE SUPPLY SW4 VINSW4 Operating input voltage VSW4 Nominal output voltage Normal operation VTT mode PF4210 Data sheet: technical data [1] V All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 78 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Parameter VSW4ACC Output voltage accuracy PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A 0.625 V < VSW4 < 0.85 V 0.875 V < VSW4 < 1.975 V 2.0 V < VSW4 < 3.3 V PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 50 mA 0.625 V < VSW4 < 0.675 V 0.7 V < VSW4 < 0.85 V 0.875 V < VSW4 < 1.975 V 2.0 V < VSW4 < 3.3 V VTT Mode , 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A ISW4 Rated output load current 2.8 V < VIN < 4.5 V, 0.625 V < VSW4 < 3.3 V ISW4LIM Current limiter peak current detection Current through inductor SW4ILIM = 0 SW4ILIM = 1 VSW4OSH tONSW4 Min Typ Max Unit −25 −3.0 −6.0 — — — 25 3.0 6.0 mV % % −65 −45 −3.0 −3.0 −40 — — — — — 65 45 3.0 3.0 40 mV mV % % mV [2] Startup overshoot ISW4 = 0.0 mA DVS clk = 25 mV/4 µs, VIN = VINSW4 = 4.5 V Turn on time Enable to 90 % of end value ISW4 = 0.0 mA DVS clk = 25 mV/4 µs, VIN = VINSW4 = 4.5 V mA — — 1000 A 1.4 1.0 2.0 1.5 3.0 2.4 mV — — 66 µs — — 500 fSW4 Switching frequency SW4FREQ[1:0] = 00 SW4FREQ[1:0] = 01 SW4FREQ[1:0] = 10 ηSW4 Efficiency fSW4 = 2.0 MHz, LSW4 = 1.0 µH PFM, 1.8 V, 1.0 mA PFM, 1.8 V, 50 mA APS, PWM 1.8 V, 200 mA APS, PWM 1.8 V, 500 mA APS, PWM 1.8 V, 1000 mA PWM 0.75 V, 200 mA PWM 0.75 V, 500 mA PWM 0.75 V, 1000 mA — — — — — — — — 81 78 87 88 83 78 76 66 — — — — — — — — ΔVSW4 Output ripple — 10 — mV VSW4LIR Line regulation (APS, PWM) — — 20 mV VSW4LOR DC load regulation (APS, PWM) — — 20 mV PF4210 Data sheet: technical data MHz — — — — — — % All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 1.0 2.0 4.0 © NXP B.V. 2018. All rights reserved. 79 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Parameter Min VSW4LOTR Transient load regulation Transient load = 0.0 mA to 500 mA, di/dt = 100 mA/µs Overshoot Undershoot Typ Max mV — — — — 50 50 ISW4Q Quiescent current PFM mode APS mode — — 22 145 — — RONSW4P SW4 P-MOSFET RDS(on) at VIN = VINSW4 = 3.3 V — 236 274 RONSW4N SW4 N-MOSFET RDS(on) at VIN = VINSW4 = 3.3 V — 293 378 ISW4PQ SW4 P-MOSFET leakage current VIN = VINSW4 = 4.5 V — — 6.0 ISW4NQ SW4 N-MOSFET leakage current VIN = VINSW4 = 4.5 V — — 2.0 RSW4DIS Discharge resistance — 600 — [1] [2] Unit µA mΩ mΩ µA µA Ω When output is set to > 2.6 V, the output follows the input down when VIN gets near 2.8 V. The higher output voltage available depends on the voltage drop in the conduction path as given by the following equation: (VINSW3x − VSW3x) = ISW3x* (DCR of inductor + RONSW3xP + PCB trace resistance). aaa-026495 90 efficiency (%) 80 PFM 70 60 50 40 30 20 10 0 0.1 PF4210 Data sheet: technical data 1.0 10 100 1000 load current (mA) All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 80 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications aaa-027180 100 efficiency (%) 80 PWM 60 40 20 0 10 100 1000 10000 load current (mA) Figure 26. SW4 efficiency waveforms: VIN = 4.2 V; VOUT = 1.8 V; consumer version aaa-026496 90 efficiency (%) 80 PFM 70 60 50 40 30 20 10 0 0.1 1.0 10 100 1000 load current (mA) aaa-027181 100 efficiency (%) 80 PWM 60 40 20 0 10 100 1000 10000 load current (mA) Figure 27. SW4 efficiency waveforms: VIN = 4.2 V; VOUT = 1.8 V; industrial version PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 81 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 10.4.5 Boost regulator SWBST is a boost regulator with a programmable output from 5.0 V to 5.15 V. SWBST can supply the VUSB regulator for the USB PHY in OTG mode, as well as the VBUS voltage. Note that the parasitic leakage path for a boost regulator causes the SWBSTOUT and SWBSTFB voltage to be a Schottky drop below the input voltage whenever SWBST is disabled. The switching NMOS transistor is integrated on-chip. Figure 28 shows the block diagram and component connection for the boost regulator. VIN CINBST SWBSTIN LBST VOBST SWBSTLX DBST DRIVER SWBSTMODE OC EP VREFSC SC VREFUV SWBSTFB COSWBST I2C INTERFACE CONTROLLER RSENSE SWBSTFAULT UV INTERNAL COMPENSATION Z2 Z1 EA VREF aaa-026497 Figure 28. Boost regulator architecture 10.4.5.1 SWBST setup and control Boost regulator control is done through a single register SWBSTCTL described in Table 86. SWBST is included in the power-up sequence if its OTP power-up timing bits, SWBST_SEQ[4:0], are not all zeros. Table 86. Register SWBSTCTL - ADDR 0x66 Name Bit number R/W Default Description SWBST1VOLT 1:0 R/W 0x00 Set the output voltage for SWBST • 00 = 5.000 V • 01 = 5.050 V • 10 = 5.100 V • 11 = 5.150 V SWBST1MODE 3:2 R 0x02 Set the switching mode in normal operation • 00 = OFF • 01 = PFM [1] • 10 = Auto (default) • 11 = APS UNUSED 4 — 0x00 unused PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 82 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Name R/W Default Description SWBST1STBYMODE 6:5 R/W 0x02 Set the switching mode in standby • 00 = OFF • 01 = PFM [1] • 10 = Auto (default) • 11 = APS UNUSED — 0x00 unused [1] Bit number 7 In auto mode, the controller automatically switches between PFM and APS modes, depending on the load current. The SWBST regulator starts up by default in the auto mode if SWBST is part of the startup sequence. 10.4.5.2 SWBST external components Table 87. SWBST external component requirements Components Description Values SWBST input capacitor 10 µF SWBST decoupling input capacitor 0.1 µF SWBST output capacitor 2 x 22 µF LSBST SWBST inductor 2.2 µH DBST SWBST boost diode 1.0 A, 20 V Schottky CINBST [1] CINBSTHF COBST [1] [1] [1] Use X5R or X7R capacitors. 10.4.5.3 SWBST specifications Table 88. SWBST Electrical Specifications All parameters are specified at TMIN to TMAX (see Table 4), VIN = VINSWBST = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, typical external component values, fSWBST = 2.0 MHz, otherwise noted. Typical values are characterized at VIN = VINSWBST = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, and 25 °C, unless otherwise noted. Symbol Parameters Min Typ Max Units Switch mode supply SWBST VINSWBST Input voltage range 2.8 — 4.5 V VSWBST Nominal output voltage — Table 86 — V VSWBSTACC Output voltage accuracy 2.8 V ≤ VIN ≤ 4.5 V 0 < ISWBST < ISWBSTMAX −4.0 — 3.0 ΔVSWBST Output ripple 2.8 V ≤ VIN ≤ 4.5 V 0 < ISWBST < ISWBSTMAX, excluding reverse recovery of Schottky diode — — 120 VSWBSTLOR DC load regulation 0 < ISWBST < ISWBSTMAX — 0.5 — VSWBSTLIR DC line regulation 2.8 V ≤ VIN ≤ 4.5 V, ISWBST = ISWBSTMAX — 50 — ISWBST Continuous load current 2.8 V ≤ VIN ≤ 3.0 V 3.0 V ≤ VIN ≤ 4.5 V — — — — 500 600 PF4210 Data sheet: technical data % mVpk-pk mV/mA mV mA All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 83 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Parameters Min ISWBSTQ Quiescent current Auto RDSONBST MOSFET on resistance Typ Max µA [1] — 222 289 — 206 306 mΩ 1400 2200 3200 mA — — 500 ISWBSTLIM Peak current limit VSWBSTOSH Startup overshoot ISWBST = 0.0 mA VSWBSTTR Transient load response ISWBST from 1.0 mA to 100 mA in 1.0 µs Maximum transient amplitude — — 300 VSWBSTTR Transient load response ISWBST from 100 mA to 1.0 mA in 1.0 µs Maximum transient amplitude — — 300 tSWBSTTR Transient load response ISWBST from 1.0 mA to 100 mA in 1.0 µs Time to settle 80 % of transient — — 500 tSWBSTTR Transient load response ISWBST from 100 mA to 1.0 mA in 1.0 µs Time to settle 80 % of transient — — 20 ISWBSTHSQ NMOS Off leakage SWBSTIN = 4.5 V, SWBSTMODE [1:0] = 00 — 1.0 5.0 tONSWBST Turn-on time Enable to 90 % of VSWBST, ISWBST = 0.0 mA — — 2.0 fSWBST Switching frequency — 2.0 — ηSWBST Efficiency ISWBST = ISWBSTMAX — 86 — [1] Units mV mV mV µs ms µA ms MHz % Only in auto mode 10.4.6 LDO regulators description This section describes the LDO regulators provided by the PF4210. All regulators use the main band gap as reference. See Section 10.3 "Bias and references block description", for more information on the internal reference voltages. A low-power mode is automatically activated by reducing bias currents when the load current is less than I_Lmax/5. However, the lowest bias currents may be attained by forcing the part into its low-power mode by setting the VGENxLPWR bit. The use of this bit is only recommended when the load is expected to be less than I_Lmax/50, otherwise performance may be degraded. When a regulator is disabled, the output is discharged by an internal pull down. The pull down is also activated when RESETBMCU is low. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 84 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications VINx VREF VINx VGENx VGENxEN VGENxLPWR VGENx I2C INTERFACE CGENx VGENx DISCHARGE aaa-026498 Figure 29. General LDO block diagram 10.4.6.1 Transient response waveforms Idealized stimulus and response waveforms for transient line and transient load tests are depicted in Figure 30. Note that the transient line and load response refers to the overshoot, or undershoot only, excluding the DC shift. IL = IMAX/10 IMAX ILOAD IL = IMAX overshoot VOUT IMAX/10 1.0 µs 1.0 µs undershoot VOUT transient load reponse Transient load stimulus VINx_INITIAL VINx_INITIAL VINx VINx_FINAL overshoot VOUT VINx_FINAL 10 µs 10 µs undershoot Transient line stimulus VOUT transient line reponse aaa-026499 Figure 30. Transient waveforms 10.4.6.2 Short-circuit protection All general purpose LDOs have short-circuit protection capability. The Short-Circuit Protection (SCP) system includes debounced fault condition detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of product damage. If a short-circuit condition is detected, the LDO is disabled by resetting its VGENxEN bit, while at the same time, an interrupt VGENxFAULTI is generated to flag the fault to the system processor. The VGENxFAULTI interrupt is maskable through the VGENxFAULTM mask bit. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 85 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, the regulators do not automatically disable upon a short-circuit detection. However, the current limiter continues to limit the output current of the regulator. By default, the REGSCPEN is not set; therefore, at startup none of the regulators are disabled if an overloaded condition occurs. A fault interrupt, VGENxFAULTI, is generated in an overload condition regardless of the state of the REGSCPEN bit. See Table 89 for SCP behavior configuration. Table 89. Short-circuit behavior REGSCPEN[0] Short-circuit behavior 0 Current limit 1 Shutdown 10.4.6.3 LDO regulator control Each LDO is fully controlled through its respective VGENxCTL register. This register enables the user to set the LDO output voltage according to Table 90 for VGEN1 and VGEN2; and uses the voltage set point in Table 91 for VGEN3 through VGEN6. Table 90. VGEN1, VGEN2 output voltage configuration Set point VGENx[3:0] VGENx output (V) 0 0000 0.800 1 0001 0.850 2 0010 0.900 3 0011 0.950 4 0100 1.000 5 0101 1.050 6 0110 1.100 7 0111 1.150 8 1000 1.200 9 1001 1.250 10 1010 1.300 11 1011 1.350 12 1100 1.400 13 1101 1.450 14 1110 1.500 15 1111 1.550 Table 91. VGEN3/ 4/ 5/ 6 output voltage configuration PF4210 Data sheet: technical data Set point VGENx[3:0] VGENx output (V) 0 0000 1.80 1 0001 1.90 2 0010 2.00 All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 86 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Set point VGENx[3:0] VGENx output (V) 3 0011 2.10 4 0100 2.20 5 0101 2.30 6 0110 2.40 7 0111 2.50 8 1000 2.60 9 1001 2.70 10 1010 2.80 11 1011 2.90 12 1100 3.00 13 1101 3.10 14 1110 3.20 15 1111 3.30 In addition to the output voltage configuration, the LDOs can be enabled or disabled at anytime during normal mode operation, as well as programmed to stay ON or be 2 disabled when the PMIC enters standby mode. Each regulator has associated I C bits for this. Table 92 presents a summary of all valid combinations of the control bits on VGENxCTL register and the expected behavior of the LDO output. Table 92. LDO control (except VGEN1) [1] VGENxEN VGENxLPWR VGENxSTBY STANDBY 0 X X X Off 1 0 0 X On 1 1 0 X Low power 1 X 1 0 On 1 0 1 1 Off 1 1 1 1 Low power [1] VGENxOUT STANDBY refers to a standby event. Table 93 through Table 98 provide a description of all registers necessary to operate all six general purpose LDO regulators. Table 93. Register VGEN1CTL - ADDR 0x6C Name Bit number R/W Default Description VGEN1 3:0 R/W 0x80 Sets VGEN1 output voltage. See Table 90 for all possible configurations. VGEN1EN 4 R/W 0x00 Enables or disables VGEN1 output • 0 = OFF • 1 = ON VGEN1STBY 5 R/W 0x00 Set VGEN1 output state when in standby. See Table 92. VGEN1LPWR 6 R/W 0x00 Enable low-power mode for VGEN1. See Table 92. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 87 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Name Bit number R/W Default Description UNUSED 7 — 0x00 unused Table 94. Register VGEN2CTL - ADDR 0x6D Name Bit number R/W Default Description VGEN2 3:0 R/W 0x80 Sets VGEN2 output voltage. See Table 90 for all possible configurations. VGEN2EN 4 R/W 0x00 Enables or disables VGEN2 output • 0 = OFF • 1 = ON VGEN2STBY 5 R/W 0x00 Set VGEN2 output state when in standby. See Table 92. VGEN2LPWR 6 R/W 0x00 Enable low-power mode for VGEN2. See Table 92. UNUSED 7 — 0x00 unused Table 95. Register VGEN3CTL - ADDR 0x6E Name Bit number R/W Default Description VGEN3 3:0 R/W 0x80 Sets VGEN3 output voltage. See Table 91 for all possible configurations. VGEN3EN 4 R/W 0x00 Enables or disables VGEN3 output • 0 = OFF • 1 = ON VGEN3STBY 5 R/W 0x00 Set VGEN3 output state when in standby. Refer to Table 92. VGEN3LPWR 6 R/W 0x00 Enable low-power mode for VGEN3. Refer to Table 92. UNUSED 7 — 0x00 unused Table 96. Register VGEN4CTL - ADDR 0x6F Name Bit number R/W Default Description VGEN4 3:0 R/W 0x80 Sets VGEN4 output voltage. See Table 91 for all possible configurations. VGEN4EN 4 R/W 0x00 Enables or disables VGEN4 output • 0 = OFF • 1 = ON VGEN4STBY 5 R/W 0x00 Set VGEN4 output state when in standby. See Table 92. VGEN4LPWR 6 R/W 0x00 Enable low-power mode for VGEN4. See Table 92. UNUSED 7 — 0x00 unused PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 88 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Table 97. Register VGEN5CTL - ADDR 0x70 Name Bit number R/W Default Description VGEN5 3:0 R/W 0x80 Sets VGEN5 output voltage. See Table 91 for all possible configurations. VGEN5EN 4 R/W 0x00 Enables or disables VGEN5 output • 0 = OFF • 1 = ON VGEN5STBY 5 R/W 0x00 Set VGEN5 output state when in standby. See Table 92. VGEN5LPWR 6 R/W 0x00 Enable low-power mode for VGEN5. See Table 92. UNUSED 7 — 0x00 unused Table 98. Register VGEN6CTL - ADDR 0x71 Name Bit number R/W Default Description VGEN6 3:0 R/W 0x80 Sets VGEN6 output voltage. See Table 91 for all possible configurations. VGEN6EN 4 R/W 0x00 Enables or disables VGEN6 output • 0 = OFF • 1 = ON VGEN6STBY 5 R/W 0x00 Set VGEN6 output state when in standby. See Table 92. VGEN6LPWR 6 R/W 0x00 Enable low-power mode for VGEN6. See Table 92. UNUSED 7 — 0x00 unused 10.4.6.4 External components Table 99 lists the typical component values for the general purpose LDO regulators. Table 99. LDO external components Regulator Output capacitor (µF) VGEN1 2.2 VGEN2 4.7 VGEN3 2.2 VGEN4 4.7 VGEN5 2.2 VGEN6 2.2 [1] PF4210 Data sheet: technical data [1] Use X5R/X7R ceramic capacitors. All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 89 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 10.4.6.5 LDO specifications 10.4.6.5.1 VGEN1 Table 100. VGEN1 electrical characteristics All parameters are specified at TMIN to TMAX (see Table 4), VIN = 3.6 V, VIN1 = 3.0 V, VGEN1[3:0] = 1111, IGEN1 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IN1 = 3.0 V, VGEN1[3:0] = 1111, IGEN1 = 10 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min Typ Max Unit VIN1 Operating input voltage 1.75 — 3.40 V VGEN1NOM Nominal output voltage — Table 90 — V IGEN1 Operating load current 0.0 — 100 mA VGEN1 VGEN1 DC VGEN1TOL Output voltage tolerance 1.75 V < VIN1 < 3.4 V 0.0 mA < IGEN1 < 100 mA VGEN1[3:0] = 0000 to 1111 VGEN1LOR Load regulation (VGEN1 at IGEN1 = 100 mA) − (VGEN1 at IGEN1 = 0.0 mA) For any 1.75 V < VIN1 < 3.4 V VGEN1LIR Line regulation (VGEN1 at VIN1 = 3.4 V) − (VGEN1 at VIN1 = 1.75 V) For any 0.0 mA < IGEN1 < 100 mA IGEN1LIM % −3.0 — 3.0 — 0.15 — mV/mA mV/mA — 0.30 — Current limit IGEN1 when VGEN1 is forced to VGEN1NOM/2 122 167 200 IGEN1OCP Overcurrent protection threshold IGEN1 required to cause the SCP function to disable LDO when REGSCPEN = 1 115 — 200 IGEN1Q Quiescent current No load, change in IVIN and IVIN1 When VGEN1 enabled — 14 — mA mA µA VGEN1 AC and transient PSRRVGEN1 NOISEVGEN1 PSRR IGEN1 = 75 mA, 20 Hz to 20 kHz VGEN1[3:0] = 0000 to 1101 VGEN1[3:0] = 1110, 1111 Output noise density VIN1 = 1.75 V, IGEN1 = 75 mA 100 Hz to < 1.0 kHz 1.0 kHz to < 10 kHz 10 kHz to 1.0 MHz PF4210 Data sheet: technical data [1] dB 50 37 60 45 — — dBV/√Hz — — — All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 −108 −118 −124 −100 −108 −112 © NXP B.V. 2018. All rights reserved. 90 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Parameter Min SLWRVGEN1 Turn on slew rate 10 % to 90 % of end value 1.75 V ≤ VIN1 ≤ 3.4 V, IGEN1 = 0.0 mA VGEN1[3:0] = 0000 to 0111 VGEN1[3:0] = 1000 to 1111 GEN1tON Turn on time Enable to 90 % of end value, VIN1 = 1.75 V, 3.4 V IGEN1 = 0.0 mA GEN1OSHT Startup overshoot VIN1 = 1.75 V, 3.4 V, IGEN1 = 0.0 mA VGEN1LOTR Transient load response VIN1 = 1.75 V, 3.4 V IGEN1 = 10 mA to 100 mA in 1.0 µs. Peak of overshoot or undershoot of VGEN1 with respect to final value Peak of overshoot or undershoot of VGEN1 with respect to final value. See Figure 30 VGEN1LITR [1] Transient line response IGEN1 = 75 mA VIN1INITIAL = 1.75 V to VIN1FINAL = 2.25 V for VGEN1[3:0] = 0000 to 1101 VIN1INITIAL = VGEN1 + 0.3 V to VIN1FINAL = VGEN1 + 0.8 V for VGEN1[3:0] = 1110, 1111 See Figure 30 Typ Max Unit mV/µs — — — — 12.5 16.5 60 — 500 — 1.0 2.0 µs % % — — 3.0 mV — 5.0 8.0 The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout region of the regulator under test. 10.4.6.5.2 VGEN2 Table 101. VGEN2 electrical characteristics All parameters are specified at TMIN to TMAX (see Table 4), VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111, IGEN2 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111, IGEN2 = 10 mA and 25 °C, unless otherwise noted. Symbol Parameter Min Typ Max Unit VIN1 Operating input voltage 1.75 — 3.40 V VGEN2NOM Nominal output voltage — Table 90 — V IGEN2 Operating load current 0.0 — 250 mA VGEN2 VGEN2 active mode - DC VGEN2TOL Output voltage tolerance 1.75 V < VIN1 < 3.4 V 0.0 mA < IGEN2 < 250 mA VGEN2[3:0] = 0000 to 1111 PF4210 Data sheet: technical data % −3.0 All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 — 3.0 © NXP B.V. 2018. All rights reserved. 91 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Parameter Min VGEN2LOR Load regulation (VGEN2 at IGEN2 = 250 mA) − (VGEN2 at IGEN2 = 0.0 mA) For any 1.75 V < VIN1 < 3.4 V VGEN2LIR Line regulation (VGEN2 at VIN1 = 3.4 V) − (VGEN2 at VIN1 = 1.75 V) For any 0.0 mA < IGEN2 < 250 mA IGEN2LIM Typ Max Unit mV/mA — 0.05 — — 0.50 — Current limit IGEN2 when VGEN2 is forced to VGEN2NOM/2 305 417 510 IGEN2OCP Overcurrent protection threshold IGEN2 required to cause the SCP function to disable LDO when REGSCPEN = 1 290 — 500 IGEN2Q Quiescent current No load, change in IVIN and IVIN1 When VGEN2 enabled — 16 — mV/mA mA mA µA VGEN2 AC and transient PSRRVGEN2 NOISEVGEN2 SLWRVGEN2 PSRR IGEN2 = 187.5 mA, 20 Hz to 20 kHz VGEN2[3:0] = 0000 to 1101 VGEN2[3:0] = 1110, 1111 Output noise density VIN1 = 1.75 V, IGEN2 = 187.5 mA 100 Hz to < 1.0 kHz 1.0 kHz to < 10 kHz 10 kHz to 1.0 MHz Turn on slew rate 10 % to 90 % of end value 1.75 V ≤ VIN1 ≤ 3.4 V, IGEN2 = 0.0 mA VGEN2[3:0] = 0000 to 0111 VGEN2[3:0] = 1000 to 1111 GEN2tON Turn on time Enable to 90 % of end value, VIN1 = 1.75 V, 3.4 V IGEN2 = 0.0 mA GEN2tOFF Turn off time Disable to 10 % of initial value, VIN1 = 1.75 V IGEN2 = 0.0 mA GEN2OSHT Startup overshoot VIN1 = 1.75 V, 3.4 V, IGEN2 = 0.0 mA VGEN2LOTR Transient load response VIN1 = 1.75 V, 3.4 V IGEN2 = 25 to 250 mA in 1.0 µs Peak of overshoot or undershoot of VGEN2 with respect to final value. See Figure 30 PF4210 Data sheet: technical data [1] dB 50 37 60 45 — — dBV/√Hz — — — −108 −118 −124 −100 −108 −112 mV/µs — — — — 12.5 16.5 60 — 500 — — 10 — 1.0 2.0 µs ms % % — All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 — 3.0 © NXP B.V. 2018. All rights reserved. 92 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Parameter VGEN2LITR Transient line response IGEN2 = 187.5 mA VIN1INITIAL = 1.75 V to VIN1FINAL = 2.25 V for VGEN2[3:0] = 0000 to 1101 VIN1INITIAL = VGEN2 + 0.3 V to VIN1FINAL = VGEN2 + 0.8 V for VGEN2[3:0] = 1110, 1111 See Figure 30 [1] Min Typ Max Unit mV — 5.0 8.0 The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout region of the regulator under test. 10.4.6.5.3 VGEN3 Table 102. VGEN3 electrical characteristics All parameters are specified at TMIN to TMAX (see Table 4), VIN = 3.6 V, VIN2 = 3.6 V, VGEN3[3:0] = 1111, IGEN3 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN2 = 3.6 V, VGEN3[3:0] = 1111, IGEN3 = 10 mA, and 25 °C, unless otherwise noted. Symbol Min Parameter Typ Max Unit VGEN3 VIN2 Operating input voltage 1.8 V ≤ VGEN3NOM ≤ 2.5 V 2.6 V ≤ VGEN3NOM ≤ 3.3 V VGEN3NOM IGEN3 [1] V 2.8 — VGEN3NOM — + 0.250 3.6 3.6 Nominal output voltage — Table 91 — V Operating load current 0.0 — 100 mA VGEN3 DC VGEN3TOL Output voltage tolerance VIN2MIN < VIN2 < 3.6 V 0.0 mA < IGEN3 < 100 mA VGEN3[3:0] = 0000 to 1111 % −3.0 — 3.0 — 0.07 — VGEN3LOR Load regulation (VGEN3 at IGEN3 = 100 mA) − (VGEN3 at IGEN3 = 0.0 mA) For any VIN2MIN < VIN2 < 3.6 V VGEN3LIR Line regulation (VGEN3 at VIN2 = 3.6 V) − (VGEN3 at VIN2MIN ) For any 0.0 mA < IGEN3 < 100 mA — 0.8 — IGEN3LIM Current limit IGEN3 when VGEN3 is forced to VGEN3NOM/2 127 167 200 IGEN3OCP Overcurrent protection threshold IGEN3 required to cause the SCP function to disable LDO when REGSCPEN = 1 120 — 200 IGEN3Q Quiescent current No load, change in IVIN and IVIN2 When VGEN3 enabled — 13 — PF4210 Data sheet: technical data mV/mA mV/mA mA mA µA All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 93 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Symbol Min Parameter Typ Max Unit VGEN3 AC and transient PSRRVGEN3 NOISEVGEN3 SLWRVGEN3 PSRR IGEN3 = 75 mA, 20 Hz to 20 kHz VGEN3[3:0] = 0000 to 1110, VIN2 = VIN2MIN + 100 mV VGEN3[3:0] = 0000 to 1000, VIN2 = VGEN3NOM + 1.0 V Output noise density VIN2 = VIN2MIN, IGEN3 = 75 mA 100 Hz to < 1.0 kHz 1.0 kHz to < 10 kHz 10 kHz to 1.0 MHz Turn on slew rate 10 % to 90 % of end value VIN2MIN ≤ VIN2 ≤ 3.6 V, IGEN3 = 0.0 mA VGEN3[3:0] = 0000 to 0011 VGEN3[3:0] = 0100 to 0111 VGEN3[3:0] = 1000 to 1011 VGEN3[3:0] = 1100 to 1111 GEN3tON Turn on time Enable to 90 % of end value, VIN2 = VIN2MIN, 3.6 V IGEN3 = 0.0 mA GEN3tOFF Turn off time Disable to 10 % of initial value, VIN2 = VIN2MIN IGEN3 = 0.0 mA GEN3OSHT Startup overshoot VIN2 = VIN2MIN, 3.6 V, IGEN3 = 0.0 mA VGEN3LOTR Transient load response VIN2 = VIN2MIN, 3.6 V IGEN3 = 10 to 100 mA in 1.0 µs Peak of overshoot or undershoot of VGEN3 with respect to final value. See Figure 30 VGEN3LITR [1] [2] Transient line response IGEN3 = 75 mA VIN2INITIAL = 2.8 V to VIN2FINAL = 3.3 V for VGEN3[3:0] = 0000 to 0111 VIN2INITIAL = VGEN3 + 0.3 V to VIN2FINAL = VGEN3 + 0.8 V for VGEN3[3:0] = 1000 to 1010 VIN2INITIAL = VGEN3 + 0.25 V to VIN2FINAL = 3.6 V for VGEN3[3:0] = 1011 to 1111 See Figure 30 [2] dB 35 55 40 60 — — dBV/√Hz — — — −114 −129 −135 −102 −123 −130 mV/µs — — — — — — — — 22.0 26.5 30.5 34.5 µs 60 — 500 — — 10 — 1.0 2.0 ms % % — — 3.0 mV — 5.0 8.0 When the LDO output voltage is set above 2.6 V, the minimum allowed input voltage needs to be at least the output voltage plus 0.25 V, for proper regulation due to the dropout voltage generated through the internal LDO transistor. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout region of the regulator under test. VIN2MIN refers to the minimum allowed input voltage for a particular output voltage. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 94 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 10.4.6.5.4 VGEN4 Table 103. VGEN4 electrical characteristics All parameters are specified at TMIN to TMAX (see Table 4), VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111, IGEN4 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111, IGEN4 = 10 mA, and 25 °C, unless otherwise noted. Symbol Min Parameter Typ Max Unit VGEN4 VIN2 Operating input voltage 1.8 V ≤ VGEN4NOM ≤ 2.5 V 2.6 V ≤ VGEN4NOM ≤ 3.3 V VGEN4NOM IGEN4 [1] V 2.8 — VGEN4NOM — + 0.250 3.6 3.6 Nominal output voltage — Table 91 — V Operating load current 0.0 — 350 mA VGEN4 DC VGEN4TOL Output voltage tolerance VIN2MIN < VIN2 < 3.6 V 0.0 mA < IGEN4 < 350 mA VGEN4[3:0] = 0000 to 1111 VGEN4LOR Load regulation (VGEN4 at IGEN4 = 350 mA) − (VGEN4 at IGEN4 = 0.0 mA ) For any VIN2MIN < VIN2 < 3.6 V VGEN4LIR % −3.0 — 3.0 mV/mA — 0.07 — Line regulation (VGEN4 at 3.6 V) − (VGEN4 at VIN2MIN) For any 0.0 mA < IGEN4 < 350 mA — 0.80 — IGEN4LIM Current limit IGEN4 when VGEN4 is forced to VGEN4NOM/2 435 584.5 700 IGEN4OCP Overcurrent protection threshold IGEN4 required to cause the SCP function to disable LDO when REGSCPEN = 1 420 — 700 IGEN4Q Quiescent current No load, change in IVIN and IVIN2 When VGEN4 enabled — 13 — mV/mA mA mA µA VGEN4 AC and transient PSRRVGEN4 NOISEVGEN4 PSRR IGEN4 = 262.5 mA, 20 Hz to 20 kHz VGEN4[3:0] = 0000 to 1110, VIN2 = VIN2MIN + 100 mV VGEN4[3:0] = 0000 to 1000, VIN2 = VGEN4NOM + 1.0 V Output noise density VIN2 = VIN2MIN, IGEN4 = 262.5 mA 100 Hz to 2.825 V, ISNVS = 100 µA LDO to Switch: VIN < 3.05 V, ISNVS = 100 µA Typ Max [2] Unit V 2.7 — — — — 24 VSNVS AC and transient tONSNVS Turn on time (load capacitor, 0.47 µF) VIN > UVDET to 90 % of VSNVS VCOIN = 0.0 V, ISNVS = 5.0 µA VSNVSVOLT[2:0] = 000 to 110 VSNVSOSH Startup overshoot VSNVSVOLT[2:0] = 000 to 110 ISNVS = 5.0 µA dVIN/dt = 50 mV/µs VSNVSLITR Transient line response ISNVS = 75 % of ISNVS [3] [4] mV — 40 70 — — 32 22 — — 2.8 — — V — 1.0 2.0 % 1.8 — 3.3 1500 1800 1000 — — — — 100 2.725 2.90 3.00 2.775 2.95 3.1 mV MAX 3.2 V < VIN < 4.5 V, VSNVSVOLT[2:0] = 110 2.45 V < VIN < 4.5 V, VSNVSVOLT[2:0] = [000] - [101] VSNVSLOTR ms Transient load response VSNVSVOLT[2:0] = 110 3.1 V (UVDETL) < VIN ≤ 4.5 V ISNVS = 75 to 750 µA VSNVSVOLT[2:0] = 000 to 101 2.45 V < VIN ≤ 4.5 V VTL0 > VIN, 1.8 V ≤ VCOIN ≤ 3.3 V ISNVS = 40 µA to ISNVS MAX Refer to Figure 30 VSNVS DC, switch VINSNVS Operating input voltage Valid coin cell range ISNVS Operating load current TA = 0 °C to 85 °C TA = −40 °C to 105 °C RDSONSNVS Internal switch RDS(on) VCOIN = 2.6 V VTL1 VIN threshold (VIN powered to coin cell powered) VSNVSVOLT[2:0] = 110 VTH1 VIN threshold (coin cell powered to VIN powered) VSNVSVOLT[2:0] = 110 [1] [2] [3] [4] V µA Ω [2] V V For 1.8 V ISNVS limited to 100 µA for VCOIN < 2.1 V During crossover from VIN to LICELL, the VSNVS output voltage may drop to 2.7 V before going to the LICELL voltage. This momentary drop does not cause any malfunction. The i.MX RTC continues to operate through the transition, and as a worst case it may switch to the internal RC oscillator for a few clock cycles before switching back to the external crystal oscillator. The start-up of VSNVS is not monotonic. It first rises to 1.0 V and then settles to its programmed value within the specified tr1 time. From coin cell insertion to VSNVS =1.0 V, the delay time is typically 400 ms. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 103 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 10.4.6.7 Coin cell battery backup The LICELL pin provides for a connection of a coin cell backup battery or a super capacitor. If the voltage at VIN goes below the VIN threshold (VTL1 and VTL0), contactbounced, or removed, the coin cell maintained logic is powered by the voltage applied to LICELL. The supply for internal logic and the VSNVS rail switches over to the LICELL pin when VIN goes below VTL1 or VTL0, even in the absence of a voltage at the LICELL pin, resulting in clearing of memory and turning off of VSNVS. When system operation below VTL1 is required, for systems not utilizing a coin cell, connect the LICELL pin to any system voltage between 1.8 V and 3.0 V. A small capacitor should be placed from LICELL to ground under all circumstances. 10.4.6.7.1 Coin cell charger control The coin cell charger circuit functions as a current-limited voltage source, resulting in the CC/CV taper characteristic typically used for rechargeable Lithium-Ion batteries. The coin cell charger is enabled via the COINCHEN bit while the coin cell voltage is programmable through the VCOIN[2:0] bits on register COINCTL in Table 111. The coin cell charger voltage is programmable. In the on state, the charger current is fixed at ICOINHI. In sleep and standby modes, the charger current is reduced to a typical 10 µA. In the off state, coin cell charging is not available as the main battery could be depleted unnecessarily. The coin cell charging stops when VIN is below UVDET. Table 110. Coin cell charger voltage VCOIN[2:0] VCOIN (V) 000 2.50 001 2.70 010 2.80 011 2.90 100 3.00 101 3.10 110 3.20 111 3.30 [1] [1] Coin cell voltage selected is based on the type of LICELL used in the system. Table 111. Register COINCTL - ADDR 0x1A Name Bit number R/W Default Description VCOIN 2:0 R/W 0x00 Coin cell charger output voltage selection. See Table 110 for all options selectable through these bits. COINCHEN 3 R/W 0x00 Enable or disable the coin cell charger UNUSED 7:4 — 0x00 unused PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 104 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 10.4.6.7.2 External components Table 112. Coin cell charger external components Component Value Units LICELL bypass capacitor 100 nF 10.4.6.7.3 Coin cell specifications Table 113. Coin cell charger specifications Parameter Typ Unit Voltage accuracy 100 mV Coin cell charge current in on mode ICOINHI 60 µA Current accuracy 30 % 2 10.5 Control interface I C block description 2 The PF4210 contains an I C interface port which allows access by a processor, or 2 any I C master, to the register set. Via these registers the resources of the IC can be controlled. The registers also provide status information about how the IC is operating. The SCL and SDA lines should be routed away from noisy signals and planes to minimize noise pick up. To prevent reflections in the SCL and SDA traces from creating false pulses, the rise and fall times of the SCL and SDA signals must be greater than 2 20 ns. This can be accomplished by reducing the drive strength of the I C master via software. Alternatively, this can be accomplished by using small capacitors from SCL and SDA to ground. For example, use 5.1 pF capacitors from SCL and SDA to ground for bus pull-up resistors of 4.8 kΩ. 2 10.5.1 I C device ID 2 I C interface protocol requires a device ID for addressing the target IC on a multi-device bus. To allow flexibility in addressing for bus conflict avoidance, fuse programmability is provided to allow configuration for the lower 3 address LSB(s). See Section 10.1.2 "One time programmability (OTP)" for more details. This product supports 7-bit addressing only; support is not provided for 10-bit or general call addressing. 2 Note: When the TBB bits for the I C slave address are written, the next access to the chip, must then use the new slave address; these bits take affect right away. 2 10.5.2 I C operation 2 The I C mode of the interface is implemented generally following the fast mode definition which supports up to 400 kbits/s operation (exceptions to the standard are noted to be 7-bit only addressing and no support for general call addressing). Timing diagrams, 2 electrical specifications, and further details can be found in the I C specification, which is available for download at: http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf 2 I C read operations are also performed in byte increments separated by an ACK. Read operations also begin with the MSB and each byte is sent out unless a STOP command or NACK is received prior to completion. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 105 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications The following examples show how to write and read data to and from the IC. The host initiates and terminates all communication. The host sends a master command packet after driving the start condition. The device responds to the host if the master command packet contains the corresponding slave address. In the following examples, the device is shown always responding with an ACK to transmissions from the host. If at any time a NACK is received, the host should terminate the current transaction and retry the transaction. I2C write example device address SDA S register address 0 START condition host can also drive another START instead of STOP master driven data A A R/W acknowledge from slave acknowledge from slave DATA (byte 0) A acknowledge from slave P STOP condition I2C read example device address SDA S register address 0 START condition device address A A R/W acknowledge from slave acknowledge from slave S START condition PMIC driven data 1 A R/W acknowledge from slave host can also drive another START instead of STOP NA P no acknowledge from slave STOP condition aaa-026501 2 Figure 32. I C sequence 10.5.3 Interrupt handling The system is informed about important events based on interrupts. Unmasked interrupt events are signaled to the processor by driving the INTB pin low. Each interrupt is latched so even if the interrupt source becomes inactive, the interrupt remains set until cleared. Each interrupt can be cleared by writing a 1 to the appropriate bit in the Interrupt Status register; this also causes the INTB pin to go high. If there are multiple interrupt bits set, the INTB pin remains low until all are either masked or cleared. If a new interrupt occurs while the processor clears an existing interrupt bit, the INTB pin remains low. Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high, the INTB pin does not go low. A masked interrupt can still be read from the Interrupt Status register. This gives the processor the option of polling for status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the device to determine if any interrupts are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked interrupt bit was already high, the INTB pin goes low after unmasking. The sense registers contain status and input sense bits so the system processor can poll the current state of interrupt sources. They are read only, and not latched or clearable. Interrupts generated by external events are debounced; therefore, the event needs to be stable throughout the debounce period before an interrupt is generated. Nominal debounce periods for each event are documented in the INT summary Table 114. Due to the asynchronous nature of the debounce timer, the effective debounce time can vary slightly. 10.5.4 Interrupt bit summary Table 114 summarizes all interrupt, mask, and sense bits associated with INTB control. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 106 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Table 114. Interrupt, mask and sense bits Interrupt Mask Sense Purpose Trigger Debounce time (ms) LOWVINI LOWVINM LOWVINS Low input voltage detect H to L Sense is 1 if below 2.80 V threshold PWRONI PWRONM PWRONS Power on button event Sense is 1 if PWRON is high. H to L 31.25 L to H 31.25 3.9 THERM110 THERM110M THERM110S Thermal 110 °C threshold Sense is 1 if above threshold Dual 3.9 THERM120 THERM120M THERM120S Thermal 120 °C threshold Sense is 1 if above threshold Dual 3.9 THERM125 THERM125M THERM125S Thermal 125 °C threshold Sense is 1 if above threshold Dual 3.9 THERM130 THERM130M THERM130S Thermal 130 °C threshold Sense is 1 if above threshold Dual 3.9 SW1AFAULTI SW1AFAULTM SW1AFAULTS Regulator 1A overcurrent limit Sense is 1 if above current limit L to H 8.0 SW1BFAULTI SW1BFAULTM SW1BFAULTS Regulator 1B overcurrent limit Sense is 1 if above current limit L to H 8.0 SW1CFAULTI SW1CFAULTM SW1CFAULTS Regulator 1C overcurrent limit Sense is 1 if above current limit L to H 8.0 SW2FAULTI SW2FAULTM SW2FAULTS Regulator 2 overcurrent limit Sense is 1 if above current limit L to H 8.0 SW3AFAULTI SW3AFAULTM SW3AFAULTS Regulator 3A overcurrent limit Sense is 1 if above current limit L to H 8.0 SW3BFAULTI SW3BFAULTM SW3BFAULTS Regulator 3B overcurrent limit Sense is 1 if above current limit L to H 8.0 SW4FAULTI SW4FAULTM SW4FAULTS Regulator 4 overcurrent limit Sense is 1 if above current limit L to H 8.0 SWBSTFAULTI SWBSTFAULTM SWBSTFAULTS SWBST overcurrent limit Sense is 1 if above current limit L to H 8.0 VGEN1FAULTI VGEN1FAULTM VGEN1FAULTS VGEN1 overcurrent limit Sense is 1 if above current limit L to H 8.0 VGEN2FAULTI VGEN2FAULTM VGEN2FAULTS VGEN2 overcurrent limit Sense is 1 if above current limit L to H 8.0 VGEN3FAULTI VGEN3FAULTM VGEN3FAULTS VGEN3 overcurrent limit Sense is 1 if above current limit L to H 8.0 VGEN4FAULTI VGEN4FAULTM VGEN4FAULTS VGEN4 overcurrent limit Sense is 1 if above current limit L to H 8.0 VGEN5FAULTI VGEN5FAULTM VGEN1FAULTS VGEN5 overcurrent limit Sense is 1 if above current limit L to H 8.0 VGEN6FAULTI VGEN6FAULTM VGEN6FAULTS VGEN6 overcurrent limit Sense is 1 if above current limit L to H 8.0 PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 [1] [1] © NXP B.V. 2018. All rights reserved. 107 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Interrupt Mask Sense Purpose Trigger Debounce time (ms) OTP_ECCI OTP_ECCM OTP_ECCS 1 or 2 bit error detected in OTP registers Sense is 1 if error detected L to H 8.0 [1] Debounce timing for the falling edge can be extended with PWRONDBNC[1:0]. A full description of all interrupt, mask, and sense registers is provided in Table 115 to Table 126. Table 115. Register INTSTAT0 - ADDR 0x05 Name Bit number R/W Default Description PWRONI 0 R/W1C 0 Power on interrupt bit LOWVINI 1 R/W1C 0 Low-voltage interrupt bit THERM110I 2 R/W1C 0 110 °C Thermal interrupt bit THERM120I 3 R/W1C 0 120 °C Thermal interrupt bit THERM125I 4 R/W1C 0 125 °C Thermal interrupt bit THERM130I 5 R/W1C 0 130 °C Thermal interrupt bit UNUSED 7:6 — 00 unused Table 116. Register INTMASK0 - ADDR 0x06 Name Bit number R/W Default Description PWRONM 0 R/W1C 1 Power on interrupt mask bit LOWVINM 1 R/W1C 1 Low-voltage interrupt mask bit THERM110M 2 R/W1C 1 110 °C thermal interrupt mask bit THERM120M 3 R/W1C 1 120 °C thermal interrupt mask bit THERM125M 4 R/W1C 1 125 °C thermal interrupt mask bit THERM130M 5 R/W1C 1 130 °C thermal interrupt mask bit UNUSED 7:6 — 00 unused Table 117. Register INTSENSE0 - ADDR 0x07 Name Bit number R/W Default Description PWRONS 0 R 0 Power on sense bit • 0 = PWRON low • 1 = PWRON high LOWVINS 1 R 0 Low-voltage sense bit • 0 = VIN > 2.8 V • 1 = VIN ≤ 2.8 V THERM110S 2 R 0 110 °C thermal sense bit • 0 = Below threshold • 1 = Above threshold PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 108 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Name Bit number R/W Default Description THERM120S 3 R 0 120 °C thermal sense bit • 0 = Below threshold • 1 = Above threshold THERM125S 4 R 0 125 °C thermal sense bit • 0 = Below threshold • 1 = Above threshold THERM130S 5 R 0 130 °C thermal sense bit • 0 = Below threshold • 1 = Above threshold UNUSED 6 — 0 unused VDDOTPS 7 R 00 Additional VDDOTP voltage sense pin • 0 = VDDOTP grounded • 1 = VDDOTP to VCOREDIG or greater Table 118. Register INTSTAT1 - ADDR 0x08 Name Bit number R/W Default Description SW1AFAULTI 0 R/W1C 0 SW1A overcurrent interrupt bit SW1BFAULTI 1 R/W1C 0 SW1B overcurrent interrupt bit SW1CFAULTI 2 R/W1C 0 SW1C overcurrent interrupt bit SW2FAULTI 3 R/W1C 0 SW2 overcurrent interrupt bit SW3AFAULTI 4 R/W1C 0 SW3A overcurrent interrupt bit SW3BFAULTI 5 R/W1C 0 SW3B overcurrent interrupt bit SW4FAULTI 6 R/W1C 0 SW4 overcurrent interrupt bit UNUSED 7 — 0 unused Table 119. Register INTMASK1 - ADDR 0x09 Name Bit number R/W Default Description SW1AFAULTM 0 R/W 1 SW1A overcurrent interrupt mask bit SW1BFAULTM 1 R/W 1 SW1B overcurrent interrupt mask bit SW1CFAULTM 2 R/W 1 SW1C overcurrent interrupt mask bit SW2FAULTM 3 R/W 1 SW2 overcurrent interrupt mask bit SW3AFAULTM 4 R/W 1 SW3A overcurrent interrupt mask bit SW3BFAULTM 5 R/W 1 SW3B overcurrent interrupt mask bit SW4FAULTM 6 R/W 1 SW4 overcurrent interrupt mask bit UNUSED 7 — 0 unused PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 109 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Table 120. Register INTSENSE1 - ADDR 0x0A Name Bit number R/W Default Description SW1AFAULTS 0 R 0 SW1A overcurrent sense bit • 0 = Normal operation • 1 = Above current limit SW1BFAULTS 1 R 0 SW1B overcurrent sense bit • 0 = Normal operation • 1 = Above current limit SW1CFAULTS 2 R 0 SW1C overcurrent sense bit • 0 = Normal operation • 1 = Above current limit SW2FAULTS 3 R 0 SW2 overcurrent sense bit • 0 = Normal operation • 1 = Above current limit SW3AFAULTS 4 R 0 SW3A overcurrent sense bit • 0 = Normal operation • 1 = Above current limit SW3BFAULTS 5 R 0 SW3B overcurrent sense bit • 0 = Normal operation • 1 = Above current limit SW4FAULTS 6 R 0 SW4 overcurrent sense bit • 0 = Normal operation • 1 = Above current limit UNUSED 7 — 0 unused Table 121. Register INTSTAT3 - ADDR 0x0E Name Bit number R/W Default Description SWBSTFAULTI 0 R/W1C 0 SWBST overcurrent limit interrupt bit UNUSED 6:1 — 0x00 unused OTP_ECCI 7 R/W1C 0 OTP error interrupt bit Table 122. Register INTMASK3 - ADDR 0x0F Name Bit number R/W Default Description SWBSTFAULTM 0 R/W 1 SWBST overcurrent limit interrupt mask bit UNUSED 6:1 — 0x00 unused OTP_ECCM 7 R/W 1 OTP error interrupt mask bit PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 110 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Table 123. Register INTSENSE3 - ADDR 0x10 Name Bit number R/W Default Description SWBSTFAULTS 0 R 0 SWBST overcurrent limit sense bit • 0 = Normal operation • 1 = Above current limit UNUSED 6:1 — 0x00 unused OTP_ECCS 7 R 0 OTP error sense bit • 0 = No error detected • 1 = OTP error detected Table 124. Register INTSTAT4 - ADDR 0x11 Name Bit number R/W Default Description VGEN1FAULTI 0 R/W1C 0 VGEN1 overcurrent interrupt bit VGEN2FAULTI 1 R/W1C 0 VGEN2 overcurrent interrupt bit VGEN3FAULTI 2 R/W1C 0 VGEN3 overcurrent interrupt bit VGEN4FAULTI 3 R/W1C 0 VGEN4 overcurrent interrupt bit VGEN5FAULTI 4 R/W1C 0 VGEN5 overcurrent interrupt bit VGEN6FAULTI 5 R/W1C 0 VGEN6 overcurrent interrupt bit UNUSED 7:6 — 00 unused Table 125. Register INTMASK4 - ADDR 0x12 Name Bit number R/W Default Description VGEN1FAULTM 0 R/W 1 VGEN1 overcurrent interrupt mask bit VGEN2FAULTM 1 R/W 1 VGEN2 overcurrent interrupt mask bit VGEN3FAULTM 2 R/W 1 VGEN3 overcurrent interrupt mask bit VGEN4FAULTM 3 R/W 1 VGEN4 overcurrent interrupt mask bit VGEN5FAULTM 4 R/W 1 VGEN5 overcurrent interrupt mask bit VGEN6FAULTM 5 R/W 1 VGEN6 overcurrent interrupt mask bit UNUSED 7:6 — 00 unused Table 126. Register INTSENSE4 - ADDR 0x13 Name Bit number R/W Default Description VGEN1FAULTS 0 R 0 VGEN1 overcurrent sense bit • 0 = Normal operation • 1 = Above current limit VGEN2FAULTS 1 R 0 VGEN2 overcurrent sense bit • 0 = Normal operation • 1 = Above current limit PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 111 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Name Bit number R/W Default Description VGEN3FAULTS 2 R 0 VGEN3 overcurrent sense bit • 0 = Normal operation • 1 = Above current limit VGEN4FAULTS 3 R 0 VGEN4 overcurrent sense bit • 0 = Normal operation • 1 = Above current limit VGEN5FAULTS 4 R 0 VGEN5 overcurrent sense bit • 0 = Normal operation • 1 = Above current limit VGEN6FAULTS 5 R 0 VGEN6 overcurrent sense bit • 0 = Normal operation • 1 = Above current limit UNUSED 7:6 — 00 unused 10.6 Specific registers 10.6.1 IC and version identification The IC and other version details can be read via identification bits. These are hard-wired on chip and described in Table 127 to Table 129. Table 127. Register DEVICEID - ADDR 0x00 Name Bit number R/W Default Description DEVICEID 3:0 R 0x00 Die version • 0000 = PF4210 UNUSED 7:4 — 0x01 unused R/W Default Description METAL_LAYER_REV 3:0 R 0x00 Represents the metal mask revision • Pass 0.0 = 0000 • ... • Pass 0.15 = 1111 FULL_LAYER_REV R 0x01 Represents the full mask revision • Pass 1.0 = 0001 • ... • Pass 15.0 = 1111 Table 128. Register SILICON REV- ADDR 0x03 Name Bit number 7:4 Table 129. Register FABID - ADDR 0x04 Name Bit number R/W Default Description FIN 1:0 R 0x00 Allows for characterizing different options within the same reticule FAB 3:2 R 0x00 Represents the wafer manufacturing facility PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 112 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Name Bit number R/W Default Description Unused 7:0 R 0x00 unused 10.6.2 Embedded memory There are four register banks of general purpose embedded memory to store critical data. The data written to MEMA[7:0], MEMB[7:0], MEMC[7:0], and MEMD[7:0] is maintained by the coin cell when the main battery is deeply discharged, removed, or contact-bounced. The contents of the embedded memory are reset by COINPORB. The banks can be used for any system need for bit retention with coin cell backup. Table 130. Register MEMA ADDR 0x1C Name Bit number R/W Default Description MEMA 7:0 R/W 0 Memory bank A Table 131. Register MEMB ADDR 0x1D Name Bit number R/W Default Description MEMB 7:0 R/W 0 Memory bank B Table 132. Register MEMC ADDR 0x1E Name Bit number R/W Default Description MEMC 7:0 R/W 0 Memory bank C Table 133. Register MEMD ADDR 0x1F Name Bit number R/W Default Description MEMD 7:0 R/W 0 Memory bank D 10.7 Register bitmap The register map is comprised of thirty-two pages, and its address and data fields are each eight bits wide. Only the first two pages can be accessed. On each page, registers 0 to 0x7F are referred to as functional, and registers 0x80 to 0xFF as extended. On each page, the functional registers are the same, but the extended registers are different. To access registers in Table 135, write 0x01 to the page register at address 0x7F, and to access registers in Table 136, write 0x02 to the page register at address 0x7F. To access Table 134, from one of the extended pages, no write to the page register is necessary. Registers missing in the sequence are reserved; reading from them returns a value 0x00, and writing to them has no effect. The contents of all registers are given in the tables defined in this chapter. Each table is structured as follows: Name: Name of the bit. Bit number: The bit location in the register (7-0) PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 113 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications R/W: Read / Write access and control • R is read-only access • R/W is read and write access • RW1C is read and write access with write 1 to clear Reset: Reset signals are color coded based on the following legend. Bits reset by SC and VCOREDIG_PORB Bits reset by PWRON or loaded default or OTP configuration Bits reset by DIGRESETB Bits reset by PORB or RESETBMCU Bits reset by VCOREDIG_PORB Bits reset by POR or OFFB Default: The value after reset, as noted in the default column of the memory map. • Fixed defaults are explicitly declared as 0 or 1 • X corresponds to read/write bits that are initialized at startup, based on the OTP fuse 2 settings or default if VDDOTP = 1.5 V. Bits are subsequently I C modifiable, when their reset has been released. X may also refer to bits which may have other dependencies. For example, some bits may depend on the version of the IC, or a value from an analog block, for instance the sense bits for the interrupts. 10.7.1 Register map Table 134. Functional page BITS[7:0] Add Register name R/W Default 7 6 5 4 00 DeviceID R 8'b0001_ 0000 — — — — 0 0 0 1 0 0 x x x x x x 03 SILICONREVID R 8'b0001_ 0000 3 2 1 0 DEVICE ID [3:0] FULL_LAYER_REV[3:0] 0 0 METAL_LAYER_REV[3:0] x x 04 FABID R 8'b0000_ 0000 — — — — 0 0 0 0 0 0 0 0 05 INTSTAT0 RW 1C 8'b0000_ 0000 — — THERM130I THERM125I THERM120I THERM110I LOWVINI PWRONI 0 0 0 0 0 0 0 0 R/W 8'b0011_ 1111 — — THERM130M THERM125M THERM120M THERM110M LOWVINM PWRONM 0 0 1 1 1 1 1 1 RSVD THERM130S THERM125S THERM120S THERM110S LOWVINS PWRONS 0 0 x x x x x x 06 07 08 INTMASK0 INTSENSE0 INTSTAT1 R 8'b00xx_xxxx VDDOTPS 8'b0000_ 0000 — SW4FAULTI SW3BFAULTI SW3AFAULTI SW2FAULTI SW1CFAULTI SW1BFAULTI SW1AFAULTI 0 0 0 0 0 0 0 0 — SW4FAULT M SW3BFAULTM SW3AFAUL TM SW2FAULTM SW1CFAUL TM SW1BFAULTM SW1AFAULTM 0 1 1 INTMASK1 R/W 8'b0111_ 1111 0A INTSENSE1 R 8'b0xxx_xxxx — INTSTAT3 FIN[1:0] RW 1C 09 0E FAB[1:0] RW 1C 8'b0000_ 0000 PF4210 Data sheet: technical data 1 1 1 1 1 SW4FAULTS SW3BFAULTS SW3AFAUL TS SW2FAULTS SW1CFAUL TS SW1BFAULTS SW1AFAULTS 0 x x x x x x x OTP_ECCI — — — — — — SWBSTFAULTI 0 0 0 0 0 0 0 0 All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 114 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications BITS[7:0] Add Register name R/W Default 7 6 5 4 3 2 1 0 0F INTMASK3 R/W 8'b1000_ 0001 OTP_ECCM — — — — — — SWBSTFAUL TM 1 0 0 0 0 0 0 1 10 INTSENSE3 R 8'b0000_ 000x OTP_ECCS — — — — — — SWBSTFAUL TS 0 0 0 0 0 0 0 x 11 INTSTAT4 RW 1C 8'b0000_ 0000 — — VGEN6FAULTI VGEN5FAU LTI VGEN4FAU LTI VGEN3FAU LTI VGEN2FAULTI VGEN1FAULTI 0 0 0 0 0 0 0 0 12 INTMASK4 R/W 8'b0011_ 1111 — — VGEN6 FAULTM VGEN5 FAULTM VGEN4 FAULTM VGEN3 FAULTM VGEN2 FAULTM VGEN1 FAULTM 0 0 1 1 1 1 1 1 13 INTSENSE4 R 8'b00xx_xxxx — — VGEN6 FAULTS VGEN5 FAULTS VGEN4 FAULTS VGEN3 FAULTS VGEN2 FAULTS VGEN1 FAULTS 0 0 x x x x x x 8'b0000_ 0000 — — — — COINCHEN 0 0 0 0 0 0 0 0 REGSCPEN STANDBYI NV PWRONRST EN RESTARTEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x x x 1A COINCTL R/W 1B PWRCTL R/W 8'b0001_ 0000 1C MEMA R/W 8'b0000_ 0000 1D MEMB R/W 8'b0000_ 0000 1E MEMC R/W 8'b0000_ 0000 1F MEMD R/W 8'b0000_ 0000 20 SW1ABVOLT R/W /M 8'b00xx_xxxx — 21 SW1ABSTBY R/W 8'b00xx_xxxx — 22 SW1ABOFF R/W 8'b00xx_xxxx — 23 SW1ABMODE R/W 8'b0000_ 1000 24 SW1ABCONF R/W 8'bxx00_ xx00 0 R/W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SW1AB[5:0] 0 x x 0 x x x SW1ABOMO DE — 0 0 0 SW1ABDVSSPEED[1:0] 30 SW1COFF R/W 8'b00xx_xxxx — 31 SW1CMODE R/W 8'b0000_ 1000 32 SW1CCONF R/W 8'bxx00_ xx00 0 x 1 x x x x Data sheet: technical data x 0 0 — SW1ABILIM 0 0 x x x x x x SW1C[5:0] — 0 x SW1CSTBY[5:0] — 0 x x x x SW1COFF[5:0] — x x — SW1COMODE — 0 0 0 SW1CDVSSPEED[1:0] x x SW1CMODE[3:0] 1 0 SW1CPHASE[1:0] 0 0 — SW1CILIM x 0 0 x x x SW1CFREQ[1:0] x 0 0 x x x x x 8'b0xxx_xxxx — PF4210 0 SW1ABFREQ[1:0] 0 0 0 x SW1ABMODE[3:0] 0 — x x SW1BAPHASE[1:0] 0 0 x SW1ABOFF[5:0] x 8'b00xx_xxxx — x — — R/W x SW1ABSTBY[5:0] 0 8'b00xx_xxxx — x — — x 0 — 0 SW1CSTBY R/W 0 MEMD[7:0] 2F SW2VOLT 0 MEMC[7:0] 0 35 1 MEMB[7:0] 0 SW1CVOLT 0 PWRONDBNC[1:0] MEMA[7:0] 0 2E STBYDLY[1:0] VCOIN[2:0] SW2[6:0] All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 115 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications BITS[7:0] Add Register name R/W Default 36 SW2STBY R/W 8'b0xxx_xxxx — 7 37 SW2OFF R/W 8'b0xxx_xxxx — 38 SW2MODE R/W 8'b0000_ 1000 39 SW2CONF R/W 8'bxx01_ xx00 0 3C SW3AVOLT R/W — 0 0 0 SW2DVSSPEED[1:0] x R/W 8'b0xxx_xxxx — 3F SW3AMODE R/W 8'b0000_ 1000 40 SW3ACONF R/W 8'bxx10_ xx00 0 0 0 x SW3BSTBY R/W 8'b0xxx_xxxx — 45 SW3BOFF R/W 8'b0xxx_xxxx — 46 SW3BMODE R/W 8'b0000_ 1000 47 SW3BCONF R/W 8'bxx10_ xx00 0 x x x x x x 0 x x SW3AOMODE — 0 0 x SW4MODE R/W 8'b0000_ 1000 4E SW4CONF R/W 8'bxx11_ xx00 1 x x x x x 0 x x x x x x x 0 0 0 — SW3AILIM x 0 0 x x x x x x x SW3B[6:0] SW3BSTBY[6:0] x x x x x SW3BOFF[6:0] x x SW3BMODE[3:0] 1 0 SW3BPHASE[1:0] 0 0 — SW3BILIM x 0 0 x x x x x x x x SW3BFREQ[1:0] x 1 0 x x x x x SW4[6:0] SW4STBY[6:0] x x x x SW4OFF[6:0] x x x — — SW4OMODE — 0 0 0 SW4DVSSPEED[1:0] x 0 SW3AFREQ[1:0] 0 0 0 SW2ILIM x x 8'b0xxx_xxxx — 4D 0 — SW3AMODE[3:0] 1 0 0 0 x x x 0 8'b0xxx_xxxx — x 0 SW3APHASE[1:0] 0 R/W x SW3AOFF[6:0] SW3BDVSSPEED[1:0] SW4OFF x SW3ASTBY[6:0] — 4C x SW3A[6:0] x 8'b0xxx_xxxx — R/W x SW3BOMODE R/W VREFDDRCTL x x SW4STBY 6A x — 4B x SW2FREQ[1:0] 1 x 0 R/W 1 0 — x 0 SW2MODE[3:0] x 0 0 1 x 8'b0xxx_xxxx — 44 SWBSTCTL x SW2PHASE[1:0] SW3ADVSSPEED[1:0] 0 66 x 8'b0xxx_xxxx — SW3AOFF 2 SW2OFF[6:0] x 3E R/W x SW2OMODE 8'b0xxx_xxxx — SW4VOLT x x R/W 4A x — 0 3 SW2STBY[6:0] x SW3ASTBY R/W 4 — 3D SW3BVOLT 5 0 0 43 6 x x SW4MODE[3:0] 1 SW4PHASE[1:0] 1 1 x 0 SW4FREQ[1:0] x x 0 0 — SW4ILIM 0 0 8'b0xx0_ 10xx — SWBST1STBYMODE[1:0] — 0 x x 0 1 SWBST1MODE[1:0] 0 x x 8'b000x_ 0000 — — — VREFDDREN — — — — 0 0 0 x 0 0 0 0 6B VSNVSCTL R/W 8'b0000_ 0xxx — — — — — 0 0 0 0 0 6C VGEN1CTL R/W 8'b000x_ xxxx — — — — 0 0 0 0 PF4210 Data sheet: technical data VSNVSVOLT[2:0] 0 x x VGEN1[3:0] x All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 SWBST1VOLT[1:0] x x x © NXP B.V. 2018. All rights reserved. 116 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications BITS[7:0] Add Register name R/W Default 7 6 5 4 6D VGEN2CTL R/W 8'b000x_ xxxx — VGEN2LPW R VGEN2STBY VGEN2EN 0 0 0 x 6E VGEN3CTL R/W 8'b000x_ xxxx — VGEN3LPW R VGEN3STBY VGEN3EN 0 0 0 x 6F VGEN4CTL R/W 8'b000x_ xxxx — VGEN4LPW R VGEN4STBY VGEN4EN 0 0 0 x 70 VGEN5CTL R/W 8'b000x_ xxxx — VGEN5LPW R VGEN5STBY VGEN5EN 0 0 0 x 71 VGEN6CTL R/W 8'b000x_ xxxx — VGEN6LPW R VGEN6STBY VGEN6EN 0 0 0 x x x — — — 0 0 0 0 0 0 7F Page Register R/W 8'b0000_ 0000 3 2 1 0 VGEN2[3:0] x x x x VGEN3[3:0] x x x x VGEN4[3:0] x x x x VGEN5[3:0] x x x x VGEN6[3:0] x x 0 0 PAGE[4:0] Table 135. Extended page 1 Address Register name TYPE Default 80 OTP FUSE READ EN R/W 8'b000x_ xxx0 OTP LOAD MASK R/W 84 8A 8B 8C 8D A0 OTP ECC SE1 OTP ECC SE2 OTP ECC DE1 OTP ECC DE2 R R R R BITS[7:0] 7 6 5 4 3 2 1 0 — — — — — — — OTP FUSE READ EN 0 0 0 x x x x 0 START RL PWBRTN FORCE PWRCTL RL PWRCTL RL OTP RL OTP ECC RL OTP FUSE RL TRIM FUSE 0 0 0 0 0 0 0 0 8'bxxx0_ 0000 — — — ECC5_SE ECC4_SE ECC3_SE ECC2_SE ECC1_SE x x x 0 0 0 0 0 8'bxxx0_ 0000 — — — ECC10_SE ECC9_SE ECC8_SE ECC7_SE ECC6_SE x x x 0 0 0 0 0 8'bxxx0_ 0000 — — — ECC5_DE ECC4_DE ECC3_DE ECC2_DE ECC1_DE x x x 0 0 0 0 0 8'bxxx0_ 0000 — — — ECC10_DE ECC9_DE ECC8_DE ECC7_DE ECC6_DE x x x 0 0 0 0 0 x x x x x X x 8'b0000_ 0000 OTP SW1AB VOLT R/W A1 OTP SW1AB SEQ R/W 8'b000x_ xxXx — 0 0 0 x x A2 OTP SW1AB CONFIG R/W 8'b0000_ xxxx — — — — SW1_CONFIG[1:0] SW1AB_FREQ[1:0] 0 0 0 0 x x x OTP SW1C VOLT R/W x x x x x A9 OTP SW1C SEQ R/W 8'b000x_xxxx — AA OTP SW1C CONFIG R/W 8'b0000_ 00xx A8 8'b00xx_xxxx — 0 8'b00xx_xxxx — 0 PF4210 Data sheet: technical data SW1AB_VOLT[5:0] — 0 x SW1AB_SEQ[4:0] x SW1C_VOLT[5:0] — 0 x x SW1C_SEQ[4:0] 0 0 0 x x x — — — — — — 0 0 0 0 0 0 All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 x x SW1C_FREQ[1:0] x x © NXP B.V. 2018. All rights reserved. 117 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Address Register name TYPE Default BITS[7:0] 7 AC OTP SW2 VOLT R/W 8'b0xxx_xxxx 6 5 4 x x x 2 1 0 x x x SW2_VOLT[5:0] — 0 3 x AD OTP SW2 SEQ R/W 8'b000x_xxxx — 0 0 0 x x x AE OTP SW2 CONFIG R/W 8'b0000_ 00xx — — — — — — 0 0 0 0 0 0 x x OTP SW3A VOLT R/W 8'b0xxx_xxxx — x x x x x x B1 OTP SW3A SEQ R/W 8'b000x_xxxx — 0 0 0 x B2 OTP SW3A CONFIG R/W 8'b0000_ xxxx — — — — 0 0 0 0 OTP SW3B VOLT R/W 8'b0xxx_xxxx — x x x B5 OTP SW3B SEQ R/W 8'b000x_xxxx — B6 OTP SW3B CONFIG R/W 8'b0000_ 00xx OTP SW4 VOLT R/W B0 B4 B8 0 0 x x x x x x SW3B_VOLT[6:0] x SW3B_SEQ[4:0] — x — — 0 0 0 0 0 0 x x 0 x x x x x — — 0 0 x x x — — VTT — — 0 0 0 x x x 8'b0000_ 00xx — — — — — — 0 0 0 0 0 0 8'b0000_ xxxx — — — 0 0 0 0 x 8'b0000_ 0xxx — — — — — 0 0 0 0 0 8'b000x_ x0xx — — — 0 0 0 x x 0 8'b0000_ xxxx — — — — 0 0 0 0 x x x x — — — — — — — 0 0 0 0 0 0 0 1 — — — — 0 0 0 0 x x — — 0 0 8'b00xx_xxxx — OTP SWBST VOLT R/W OTP SWBST SEQ R/W OTP VSNVS VOLT R/W OTP VREFDDR SEQ R/W OTP VGEN1 VOLT R/W OTP VGEN1 SEQ R/W OTP VGEN2 VOLT R/W OTP VGEN2 SEQ R/W 0 Data sheet: technical data x x SW3A_FREQ[1:0] x 8'b000x_xxxx — PF4210 x — R/W CD x SW3_CONFIG[1:0] x OTP SW4 CONFIG CC x — BA C9 SW3A_SEQ[4:0] 0 8'b000x_xxxx — C8 x — — R/W C4 SW3A_VOLT[6:0] 0 OTP SW4 SEQ C0 x SW2_FREQ[1:0] — B9 BD x 0 0 BC SW2_SEQ[4:0] — 8'b000x_xxxx — 8'b0000_ xxxx 8'b000x_xxxx — 0 x x SW3B_CONFIG[1:0] SW4_VOLT[6:0] x SW4_SEQ[4:0] x x SW4_FREQ[1:0] x x SWBST_VOLT[1:0] x x SWBST_SEQ[4:0] x x x VSNVS_VOLT[2:0] 0 x x VREFDDR_SEQ[4:0] x x VGEN1_VOLT[3:0] VGEN2_VOLT[3:0] x x x x VGEN2_SEQ[4:0] x All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 x x © NXP B.V. 2018. All rights reserved. 118 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Address Register name TYPE Default D0 OTP VGEN3 VOLT R/W 8'b0000_ xxxx D1 OTP VGEN3 SEQ R/W 8'b000x_xxxx — OTP VGEN4 VOLT R/W OTP VGEN4 SEQ R/W OTP VGEN5 VOLT R/W OTP VGEN5 SEQ R/W OTP VGEN6 VOLT R/W OTP VGEN6 SEQ R/W E0 OTP PU CONFIG1 R/W 8'b000x_xxxx — E1 OTP PU CONFIG2 R/W 8'b000x_xxxx — E2 OTP PU CONFIG3 R/W 8'b000x_xxxx — E3 OTP PU CONFIG XOR R 8'b000x_xxxx — OTP FUSE POR1 R/W 8'b0000_ 00x0 E5 OTP FUSE POR1 R/W 8'b0000_ 00x0 E6 OTP FUSE POR1 R/W 8'b0000_ 00x0 E7 OTP FUSE POR XOR R 8'b0000_ 00x0 E8 OTP PWRGD EN R/W/M 8'b0000_ 000x D4 D5 D8 D9 DC DD 8'b0000_ xxxx BITS[7:0] 7 6 5 4 — — — — 0 0 0 0 — — 0 0 0 x — — — — 0 0 0 0 — — 0 0 0 x — — — — 0 0 0 0 — — 0 0 0 x — — — — 0 0 0 0 — — 0 0 x — — PWRON_ CFG1 0 0 x — — PWRON_ CFG2 0 0 x — — PWRON_ CFG3 0 0 x — — PWRON_ CFG_XOR 0 0 0 x x x x TBB_POR SOFT_ FUSEPOR — — — — FUSE_POR1 – 0 0 0 0 0 0 x RSVD RSVD — — — — FUSE_POR2 – 0 0 0 0 0 0 x RSVD RSVD — — — — FUSE_POR3 – 0 0 0 0 0 0 x RSVD RSVD — — — — FUSE_POR_ – X OR 0 0 0 0 0 0 x 0 — — — — — — — OTP_PG_ EN 0 0 0 0 0 0 x 0 — — EN_ECC_ BANK5 EN_ECC_ BANK4 EN_ECC_ BANK3 EN_ECC_ BANK2 EN_ECC_ BANK1 0 0 x x x x x — — EN_ECC_ BANK10 EN_ECC_ BANK9 EN_ECC_ BANK8 EN_ECC_ BANK7 EN_ECC_ BANK6 0 0 0 x x x x x — — — — 0 0 0 0 8'b000x_xxxx — 8'b0000_ xxxx 8'b000x_xxxx — 8'b0000_ xxxx 8'b000x_xxxx — 0 0 0 0 E4 [1] F0 OTP EN ECCO R/W 8'b000x_xxxx — F1 OTP EN ECC1 R/W 8'b000x_xxxx — F4 OTP SPARE2_4 R/W 8'b0000_ xxxx 0 PF4210 Data sheet: technical data 3 2 1 0 VGEN3_VOLT[3:0] x x x x x x VGEN3_SEQ[4:0] x x x x VGEN4_VOLT[3:0] x x x x VGEN4_SEQ[4:0] x x x x VGEN5_VOLT[3:0] x x x x VGEN5_SEQ[4:0] x x x x VGEN6_VOLT[3:0] x x x x VGEN6_SEQ[4:0] All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 x x SWDVS_CLK1[1:0] x x SEQ_CLK_SPEED1[1:0] x SWDVS_CLK2[1:0] x x x SWDVS_CLK3[1:0] x x x SEQ_CLK_SPEED2[1:0] x SEQ_CLK_SPEED3[1:0] x SWDVS_CLK3_XOR x SEQ_CLK_SPEED_XOR x 0 0 0 RSVD x x x x © NXP B.V. 2018. All rights reserved. 119 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Address Register name TYPE Default 7 6 5 4 3 F5 OTP SPARE4_3 R/W 8'b0000_ 0xxx — — — — — 0 0 0 0 0 x F6 OTP SPARE6_2 R/W 8'b0000_ 00xx — — — — — — 0 0 0 0 0 0 x x F7 OTP SPARE7_1 R/W 8'b0000_ 0xxx — — — — — — — RSVD 0 0 0 0 0 x x x 8'b0000_ 000x — — — — — — — OTP_DONE 0 0 0 0 0 0 0 x 8'b0000_ 0xxx — — — — I2C_SLV ADDR[3] 0 0 0 0 1 FE OTP DONE FF [1] OTP I2C ADDR R/W R/W BITS[7:0] 2 1 0 RSVD x x RSVD I2C_SLV ADDR[2:0] x x x In the PF4210 FUSE_POR1, FUSE_POR2, and FUSE_POR3 are XOR'ed into the FUSE_POR_XOR bit. The FUSE_POR_XOR has to be 1 for fuses to be loaded. This can be achieved by setting any one or all of the FUSE_PORx bits. In PF4210, the XOR function is removed. It is required to set all of the FUSE_PORx bits to be able to load the fuses. Table 136. Extended Page 2 Address 81 Register name SW1AB PWRSTG TYPE R/W Default 8'b1111_ 1111 BITS[7:0] 7 6 5 4 3 RSVD RSVD RSVD RSVD RSVD 1 1 1 1 1 2 1 0 SW1AB_PWRSTG[2:0] 1 1 1 0 0 82 PWRSTG RSVD R 8'b0000_ 0000 0 0 0 0 0 83 SW1C PWRSTG R 8'b1111_ 1111 RSVD RSVD RSVD RSVD RSVD 1 1 1 1 1 84 SW2 PWRSTG R 8'b1111_ 1111 RSVD RSVD RSVD RSVD RSVD 1 1 1 1 1 85 SW3A PWRSTG R 8'b1111_ 1111 RSVD RSVD RSVD RSVD RSVD 1 1 1 1 1 86 SW3B PWRSTG R 8'b1111_ 1111 RSVD RSVD RSVD RSVD RSVD 1 1 1 1 1 1 87 SW4 PWRSTG R 8'b0111_ 1111 FSLEXT_ THERM_ DISABLE PWRGD_ SHDWN_ DISABLE RSVD RSVD RSVD SW4_PWRSTG[2:0] 0 0 1 1 1 1 1 1 88 PWRCTRL OTP CTRL R/W 8'b0000_ 0001 — — — — — — PWRGD_EN OTP_ SHDWN_EN 0 0 0 0 0 0 0 1 0 0 0 0 0 0 8D I2C WRITE ADDRESS TRAP R/W 8'b0000_ 0000 8E I2C TRAP PAGE R/W 8'b0000_ 0000 8F I2C TRAP CNTR R/W 8'b0000_ 0000 90 IO DRV R/W 8'b00xx_xxxx PWRSTGRSVD OTP AUTO ECC0 R/W PF4210 Data sheet: technical data 8'b0000_ 0000 SW1C_PWRSTG[2:0] 1 1 1 SW2_PWRSTG[2:0] 1 1 1 SW3A_PWRSTG[2:0] 1 1 1 SW3B_PWRSTG[2:0] 1 1 I2C_WRITE_ADDRESS_TRAP[7:0] LET_IT_ ROLL 0 DO 0 RSVD 0 0 0 I2C_TRAP_PAGE[4:0] RSVD 0 0 0 0 0 0 I2C_WRITE_ADDRESS_COUNTER[7:0] 0 0 0 SDA_DRV[1:0] 0 0 SDWNB_DRV[1:0] 0 0 INTB_DRV[1:0] 0 0 x x — – – AUTO_ AUTO_ AUTO_ AUTO_ AUTO_ ECC_BANK5 ECC_BANK4 ECC_BANK3 ECC_BANK2 ECC_ BANK1 All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 x x 0 RESETBMCU_DRV[1:0] x x © NXP B.V. 2018. All rights reserved. 120 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Address D1 D8 D9 Register name OTP AUTO ECC1 [1] [1] Reserved Reserved TYPE R/W — — Default 8'b0000_ 0000 8'b0000_ 0000 8'b0000_ 0000 E1 OTP ECC CTRL1 R/W 8'b0000_ 0000 E2 OTP ECC CTRL2 R/W 8'b0000_ 0000 E3 OTP ECC CTRL3 R/W 8'b0000_ 0000 E4 OTP ECC CTRL4 R/W 8'b0000_ 0000 E5 OTP ECC CTRL5 R/W 8'b0000_ 0000 E6 OTP ECC CTRL6 R/W 8'b0000_ 0000 E7 OTP ECC CTRL7 R/W 8'b0000_ 0000 E8 OTP ECC CTRL8 R/W 8'b0000_ 0000 E9 OTP ECC CTRL9 R/W 8'b0000_ 0000 EA OTP ECC CTRL10 R/W 8'b0000_ 0000 F1 OTP FUSE CTRL1 R/W 8'b0000_ 0000 F2 OTP FUSE CTRL2 R/W 8'b0000_ 0000 F3 OTP FUSE CTRL3 R/W 8'b0000_ 0000 F4 OTP FUSE CTRL4 R/W 8'b0000_ 0000 F5 OTP FUSE CTRL5 R/W 8'b0000_ 0000 PF4210 Data sheet: technical data BITS[7:0] 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 — — — AUTO_ ECC_ BANK10 AUTO_ AUTO_ AUTO_ ECC_BANK9 ECC_BANK8 ECCBANK7 AUTO_ ECC_ BANK6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RSVD 0 RSVD 0 0 0 0 0 ECC1_EN_ TBB ECC1_ CALC_CIN 0 0 ECC2_EN_ TBB ECC2_ CALC_CIN 0 0 ECC3_EN_ TBB ECC3_ CALC_CIN 0 0 ECC4_EN_ TBB ECC4_ CALC_CIN 0 0 ECC5_EN_ TBB ECC5_ CALC_CIN 0 0 ECC6_EN_ TBB ECC6_ CALC_CIN 0 0 ECC7_EN_ TBB ECC7_ CALC_CIN 0 0 ECC8_EN_ TBB ECC8_ CALC_CIN 0 0 ECC9_EN_ TBB ECC9_ CALC_CIN 0 0 ECC10_EN_ TBB ECC10_ CALC_CIN 0 0 0 0 0 — — — — ANTIFUSE1_ ANTIFUSE1_ ANTIFUSE1_ BYPASS1 EN LOAD RW 0 0 0 0 0 — — — — ANTIFUSE2_ ANTIFUSE2_ ANTIFUSE2_ BYPASS2 EN LOAD RW 0 0 0 0 0 — — — — ANTIFUSE3_ ANTIFUSE3_ ANTIFUSE3_ BYPASS3 EN LOAD RW 0 0 0 0 0 — — — — ANTIFUSE4_ ANTIFUSE4_ ANTIFUSE4_ BYPASS4 EN LOAD RW 0 0 0 0 0 — — — — ANTIFUSE5_ ANTIFUSE5_ ANTIFUSE5_ BYPASS5 EN LOAD RW 0 0 0 0 0 ECC1_CIN_TBB[5:0] 0 0 0 0 ECC2_CIN_TBB[5:0] 0 0 0 0 ECC3_CIN_TBB[5:0] 0 0 0 0 ECC4_CIN_TBB[5:0] 0 0 0 0 ECC5_CIN_TBB[5:0] 0 0 0 0 ECC6_CIN_TBB[5:0] 0 0 0 0 ECC7_CIN_TBB[5:0] 0 0 0 0 ECC8_CIN_TBB[5:0] 0 0 0 0 ECC9_CIN_TBB[5:0] 0 0 0 0 ECC10_CIN_TBB[5:0] All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 © NXP B.V. 2018. All rights reserved. 121 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Address Register name TYPE Default F6 OTP FUSE CTRL6 R/W 8'b0000_ 0000 F7 OTP FUSE CTRL7 R/W 8'b0000_ 0000 F8 OTP FUSE CTRL8 R/W 8'b0000_ 0000 F9 OTP FUSE CTRL9 R/W 8'b0000_ 0000 FA OTP FUSE CTRL10 R/W 8'b0000_ 0000 [1] BITS[7:0] 7 6 5 4 3 — — — — ANTIFUSE6_ ANTIFUSE6_ ANTIFUSE6_ BYPASS6 EN LOAD RW 2 0 0 0 0 0 — — — — ANTIFUSE7_ ANTIFUSE7_ ANTIFUSE7_ BYPASS7 EN LOAD RW 0 0 0 0 0 — — — — ANTIFUSE8_ ANTIFUSE8_ ANTIFUSE8_ BYPASS8 EN LOAD RW 0 0 0 0 0 — — — — ANTIFUSE9_ ANTIFUSE99_ ANTIFUSE9_ BYPASS9 EN LOAD RW 0 0 0 0 0 — — — — ANTIFUSE10_ ANTIFUSE10_ ANTIFUSE10_ BYPASS10 EN LOAD RW 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Do not write in reserved registers. 11 Typical applications 11.1 Introduction Figure 33 provides a typical application diagram of the PF4210 PMIC together with its functional components. For details on component references and additional components such as filters, see individual sections. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 122 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 11.1.1 Application diagram VIN1 1.0 F VIN1 2.2 F VGEN1 4.7 F VGEN2 VIN2 VGEN4 4.7 F VIN3 2.2 F VGEN5 2.2 F VGEN6 BUCK SW1C 2000 mA VGEN4 350 mA VIN3 1.0 F SINGLE/DUAL 2500 mA VGEN3 100 mA VGEN3 2.2 F SW2 2500 mA BUCK VGEN6 200 mA CONTROL SUPPLIES CONTROL SW3A/B SINGLE/DUAL DDR 4.7 k 3000 mA BUCK I2 C INTERFACE SCL DVS CONTROL SDA 1.0 F VCOREDIG 220 nF VCOREREF VCORE 1.0 F I2C REGISTER MAP REFERENCE GENERATION DVS CONTROL CLOCKS AND RESETS SWBST SW1C output 4.7 F 1.0 H SW1CIN DRIVE VIN SW1CFB 3 x 22 F 4.7 F SW1VSSSNS 1.0 H SW2LX SW2IN SW2IN O/P DRIVE VIN SW2FB VIN 4.7 F SW3AIN O/P DRIVE 1.0 H SW3BIN SW3BFB SW3VSSSNS SW4IN SW4LX GNDREF1 600 mA BOOST VIN SWBSTIN SWBSTFB 2 x 22 F 4.7 F SW3B output VIN 4.7 F SW4 output 3 x 22 F 1.0 H SWBSTLX O/P DRIVE SW3A output 1.0 H SW3BLX O/P DRIVE 3 x 22 F 2 x 22 F SW3ALX O/P DRIVE 4.7 F 2.2 H VIN 2.2 F VIN 4.7 F SWBST output 2 x 22 F CLOCKS 32 kHz and 16 MHz VINREFDDR 100 nF SW4 1000 mA BUCK VREFDDR 1.0 F VIN SW1CLX O/P SW4FB TRIM-IN-PACKAGE GNDREF VSW3A 2 x 22 F SW1BIN SW3AFB OTP VDDOTP to MCU 1.0 H SW1BLX O/P DRIVE SW2 output INITIALIZATION STATE MACHINE VDDIO 4.7 k SW1ALX CORE CONTROL LOGIC VDDOTP VDDIO VIN 4.7 F SW1AIN O/P DRIVE BUCK VGEN5 100 mA SW1AB output SW1FB SW1A/B VGEN2 250 mA VIN2 1.0 F PF4210 VGEN1 100 mA VHALF 100 nF VIN LI-CELL CHARGER 100 nF BEST OF SUPPLY VSW2 VSW2 100 k 100 k INTB VSW2 100 k VSW2 SDWNB 0.47 F RESETBMCU VSNVS VSNVS STANDBY +- LICELL 100 k COIN CELL BATTERY PWRON VIN ICTEST 1.0 F to/from AP aaa-026503 Figure 33. Typical application schematic 11.1.2 Bill of materials The following table provides a complete list of the recommended components on a fullfeatured system using the PF4210 device for 0 °C to 85 °C applications. Components are provided with an example part number. Equivalent components may be used. Table 137. Bill of materials 0 °C to 85 °C applications Value Qty Description Part number Manufacturer 1 PF4210 NXP DFE252012R-H-1R0M TOKO INC. [1] Component/pin PMIC Power management IC Buck, SW1AB (0.300 to 1.875 V), 2.5 A 1.0 µH 1 2.5 x 2 x 1.2 ISAT = 3.4 A for 10 % drop, DCRMAX = 49 mΩ PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 Output inductor © NXP B.V. 2018. All rights reserved. 123 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications [1] Value Qty Description Part number Manufacturer Component/pin 22 µH 4 10 V X5R 0603 GRM188R61A226ME15 Murata Output capacitance 4.7 µF 2 10 V X5R 0402 GRM155R61A475MEAA Murata Input capacitance 0.1 µF 1 10 V X5R 0201 GRM033R61A104ME84 Murata Input capacitance Buck, SW1C (0.300 to 1.875 V), 2.0 A 1.0 µH 1 2.5 x 2 x 1.2 ISAT = 3.0 A for 10 % drop, DCRMAX = 59 mΩ DFE252012C-1R0M TOKO INC. Output inductor 22 µF 3 10 V X5R 0603 GRM188R61A226ME15 Murata Output capacitance 4.7 µF 1 10 V X5R 0402 GRM155R61A475MEAA Murata Input capacitance 0.1 µF 1 10 V X5R 0201 GRM033R61A104ME84 Murata Input capacitance Buck, SW2 (0.400 to 3.300 V), 2.5 A 1.0 µH 1 2.5 x 2 x 1.2 ISAT = 3.0 A for 10 % drop, DCRMAX = 59 mΩ DFE252012C-1R0M TOKO INC. Output inductor 22 µF 3 10 V X5R 0603 GRM188R61A226ME15 Murata Output capacitance 4.7 µF 1 10 V X5R 0402 GRM155R61A475MEAA Murata Input capacitance 0.1 µF 1 10 V X5R 0201 GRM033R61A104ME84 Murata Input capacitance Buck, SW3AB (0.400 to 3.300 V), 3.0 A 1.0 µH 1 2.5 x 2 x 1.2 ISAT = 3.4 A for 10 % drop, DCRMAX = 49 mΩ DFE252012R-1R0M TOKO INC. Output inductor 22 µF 3 10 V X5R 0603 GRM188R61A226ME15 Murata Output capacitance 4.7 µF 2 10 V X5R 0402 GRM155R61A475MEAA Murata Input capacitance 0.1 µF 1 10 V X5R 0201 GRM033R61A104ME84 Murata Input capacitance Buck, SW4 (0.400 to 3.300 V), 1.0 A 1.0 µH 1 2 x 1.6 x 0.9 ISAT = 2.0 A for 30 % drop, DCRMAX = 80 mΩ LQM2MPN1R0MGH Murata Output inductor 22 µF 3 10 V X5R 0603 GRM188R61A226ME15 Murata Output capacitance 4.7 µF 2 10 V X5R 0402 GRM155R61A475MEAA Murata Input capacitance 0.1 µF 1 10 V X5R 0201 GRM033R61A104ME84 Murata Input capacitance BOOST, SWBST 5.0 V, 600 mA 2.2 µH 1 2 x 1.6 x 1 ISAT = 2.4 A for 10 % drop DFE201610E-2R2M TOKO INC. Output inductor 22 µF 2 10 V X5R 0603 GRM188R61A226ME15D Murata Output capacitance 10 µF 3 10 V X5R 0402 GRM155R61A106ME11 Murata Input capacitance 2.2 µF 1 10 V X5R 0201 GRM033R61A225ME47 Murata Input capacitance 0.1 µF 1 10 V X5R 0201 GRM033R61A104KE84 Murata Input capacitance PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 124 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications [1] Value Qty Description Part number Manufacturer 1.0 A 1 MBR120LSFT3G ON Semiconductor Schottky diode DIODE SCH PWR RECT 1.0 A 20 V SMT Component/pin LDO, VGEN1, 2, 3, 4, 5, 6 4.7 µF 1 10 V X5R 0402 GRM155R61A475MEAA Murata VGEN2, 4 output capacitors 2.2 µF 1 10 V X5R 0201 GRM033R61A225ME47 Murata VGEN1, 3, 5, 6 output capacitors 1.0 µF 1 10 V X5R 0402 GRM033R61A105ME44 Murata VGEN1, 2, 3, 4, 5, 6 input capacitors Miscellaneous 1.0 µF 1 10 V X5R 0402 GRM033R61A105ME44 Murata VCORE, VCOREDIG, VREFDDR, VINREFDDR, VIN capacitors 0.22 µF 1 10 V X5R 0201 GRM033R61A224ME90 Murata VCOREREF output capacitor 0.47 µF 1 10 V X5R 0201 GRM033R61A474ME90 Murata VSNVS output capacitor 0.1 µF 1 10 V X5R 0201 GRM033R61A104KE84 Murata VHALF, VINREFDDR, VDDIO, LICELL capacitors 100 kΩ 2 RES MF 100 k 1/16 W 1 % 0402 RC0402FR-07100KL Yageo America Pull-up resistors 4.7 kΩ 2 RES MF 4.70 K 1/20 W 1 % RC0201FR-074K7L 0201 Yageo America I C pull-up resistors [1] 2 NXP does not assume liability, endorse, or warrant components from external manufacturers referenced in circuit drawings or tables. While NXP offers component recommendations in this configuration, it is the customer's responsibility to validate their application. The following table provides a complete list of the recommended components on a fullfeatured system using the PF4210 device for −40 °C to 105 °C applications. Components are provided with an example part number. Equivalent components may be used. Table 138. Bill of materials −40 °C to 105 °C applications Value Qty Description Part number Manufacturer 1 PF4210 NXP [1] Component/pin PMIC Power management IC Buck, SW1AB (0.300 to 1.875 V), 2.5 A 1.0 µH 1 2.5 x 2 x 1.2 ISAT = 3.4 A for 10 % drop DCRMAX = 49 mΩ DFE252012R-H-1R0M TOKO INC. Output inductor 22 µH 4 10 V X7T 0805 GRM21BD71A226ME44 Murata Output capacitance 4.7 µF 2 10 V X7S 0603 GRM188C71A475KE11 Murata Input capacitance 0.1 µF 1 10 V X7S 0201 GRM033C71A104KE14 Murata Input capacitance Buck, SW1C (0.300 to 1.875 V), 2.0 A PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 125 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications [1] Value Qty Description Part number Manufacturer Component/pin 1.0 µH 1 2 x 1.6 x 1 ISAT = 2.9 A for 10 % drop DFE201610E-1R0M TOKO INC. Output inductor 22 µF 3 10 V X7T 0805 GRM21BD71A226ME44 Murata Output capacitance 4.7 µF 1 10 V X7S 0603 GRM188C71A475KE11 Murata Input capacitance 0.1 µF 1 10 V X7S 0201 GRM033C71A104KE14 Murata Input capacitance Buck, SW1ABC (0.300 to 1.875 V), 4.5 A 1.0 µH 1 4.2 x 4.2 x 2 ISAT = 5.1 A for 10 % drop, DCRMAX = 29 mΩ FDSD0420-H-1R0M TOKO INC. Output inductor 22 µF 6 10 V X7T 0805 GRM21BD71A226ME44 Murata Output capacitance 4.7 µF 2 10 V X7S 0603 GRM188C71A475KE11 Murata Input capacitance 0.1 µF 1 10 V X7S 0201 GRM033C71A104KE14 Murata Input capacitance Buck, SW2 (0.400 to 3.300 V), 2.5 A 1.0 µH 1 2 x 1.6 x 1 ISAT = 2.9 A for 10 % drop DFE201610E-1R0M TOKO INC. Output inductor 22 µF 3 10 V X7T 0805 GRM21BD71A226ME44 Murata Output capacitance 4.7 µF 1 10 V X7S 0603 GRM188C71A475KE11 Murata Input capacitance 0.1 µF 1 10 V X7S 0201 GRM033C71A104KE14 Murata Input capacitance Buck, SW3AB (0.400 to 3.300 V), 3.0 A 1.0 µH 1 2 x 1.6 x 1 ISAT = 2.9 A for 10 % drop DFE201610E-1R0M TOKO INC. Output inductor 22 µF 3 10 V X7T 0805 GRM21BD71A226ME44 Murata Output capacitance 4.7 µF 1 10 V X7S 0603 GRM188C71A475KE11 Murata Input capacitance 0.1 µF 1 10 V X7S 0201 GRM033C71A104KE14 Murata Input capacitance Buck, SW4 (0.400 to 3.300 V), 1.0 A 1.0 µH 1 2 x 1.6 x 1 ISAT = 2.9 A for 30 % drop DFE201610E-1R0M Murata Output inductor 22 µF 3 10 V X7T 0805 GRM21BD71A226ME44 Murata Output capacitance 4.7 µF 1 10 V X7S 0603 GRM188C71A475KE11 Murata Input capacitance 0.1 µF 1 10 V X7S 0201 GRM033C71A104KE14 Murata Input capacitance BOOST, SWBST 5.0 V, 600 mA 2.2 µH 1 2 x 1.6 x 1 ISAT = 2.4 A for 10 % drop DFE201610E-2R2M TOKO INC. Output inductor 22 µF 2 10 V X7T 0805 GRM21BD71A226ME44 Murata Output capacitance 10 µF 3 10 V X7T 0603 GRM188D71A106MA73 Murata Input capacitance 2.2 µF 1 10 V X7S 0402 GRM155C71A225KE11 Murata Input capacitance 0.1 µF 1 10 V X7S 0201 GRM033C71A104KE14 Murata Input capacitance 1.0 A 1 DIODE SCH PWR RECT 1.0 A 20 V SMT MBR120LSFT3G ON Semiconductor Schottky diode PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 126 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Value Qty Description Part number Manufacturer [1] Component/pin LDO, VGEN1, 2, 3, 4, 5, 6 4.7 µF 1 10 V X7S 0603 GRM188C71A475KE11 Murata VGEN2, 4 output capacitors 2.2 µF 1 10 V X7S 0402 GRM155C71A225KE11 Murata VGEN1, 3, 5, 6 output capacitors 1.0 µF 1 10 V X7S 0402 GRM155C71A105KE11 Murata VGEN1, 2, 3, 4, 5, 6 input capacitors Miscellaneous 1.0 µF 1 10 V X7S 0402 GRM155C71A105KE11 Murata VCORE, VCOREDIG, VREFDDR, VINREFDDR, VIN capacitors 0.22 µF 1 10 V X7R 0402 GRM155R71A224KE01 Murata VCOREREF output capacitor 0.47 µF 1 10 V X7R 0402 GRM155R71A474KE01 Murata VSNVS output capacitor 0.1 µF 1 10 V X7S 0201 GRM033C71A104KE14 Murata VHALF, VINREFDDR,VDDIO, LICELL capacitors 100 kΩ 2 RES MF 100 k 1/16 W 1 % 0402 RC0402FR-07100KL Yageo America Pull-up resistors 4.7 kΩ 2 RES MF 4.70 K 1/20 W 1 % RC0201FR-074K7L 0201 Yageo America I C pull-up resistors [1] 2 NXP does not assume liability, endorse, or warrant components from external manufacturers referenced in circuit drawings or tables. While NXP offers component recommendations in this configuration, it is the customer's responsibility to validate their application. 12 PF4210 layout guidelines 12.1 General board recommendations • It is recommended to use an eight-layer board stack-up arranged as follows: – High current signal – GND – Signal – Power – Power – Signal – GND – High current signal • Allocate top and bottom PCB layers for power routing (high current signals), copperpour the unused area. • Use internal layers sandwiched between two GND planes for the signal routing. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 127 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 12.2 Component placement It is desirable to keep all components related to the power stage as close to the PMIC as possible, especially decoupling input and output capacitors. 12.3 General routing requirements • Some recommended things to keep in mind for manufacturability: – Via in pads require a 4.5 mil minimum annular ring. Each pad must be 9.0 mils larger than its hole – Maximum copper thickness for lines less than 5.0 mils wide is 0.6 oz copper – Minimum allowed spacing between line and hole pad is 3.5 mils – Minimum allowed spacing between line and line is 3.0 mils • Care must be taken with SWxFB pins traces. These signals are susceptible to noise and must be routed far away from power, clock, or high-power signals, like the ones on the SWxIN, SWx, SWxLX, SWBSTIN, SWBST, and SWBSTLX pins. They could also be shielded. • Shield feedback traces of the regulators and keep them as short as possible (trace them on the bottom so the ground and power planes shield these traces). • Avoid coupling traces between important signal/low-noise supplies (like REFCORE, VCORE, VCOREDIG) from any switching node (for example, SW1ALX, SW1BLX, SW1CLX, SW2LX, SW3ALX, SW3BLX, SW4LX, and SWBSTLX). • Make sure that all components related to a specific block are referenced to the corresponding ground. 12.4 Parallel routing requirements 2 • I C signal routing – CLK is the fastest signal of the system, therefore it must be given special care. – To avoid contamination of these delicate signals by nearby high-power or highfrequency signals, it is a good practice to shield them with ground planes placed on adjacent layers. Make sure the ground plane is uniform throughout the entire signal trace length. DO Signal DON'T Signal Ground plane Ground planes aaa-023891 – These signals can be placed on an outer layer of the board to reduce their capacitance with respect to the ground plane. – Care must be taken with these signals not to contaminate analog signals, as they are high-frequency signals. Another good practice is to trace them perpendicularly on different layers, so there is a minimum area of proximity between signals. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 128 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 12.5 Switching regulator layout recommendations • Per design, the switching regulators in PF4210 are designed to operate with only one input bulk capacitor. However, it is recommended to add a high-frequency filter input capacitor (CIN_HF), to filter out any noise at the regulator input. This capacitor should be in the range of 100 nF and should be placed right next to or under the IC, close to the IC pins. • Make high-current ripple traces low-inductance (short, high W/L ratio). • Make high-current traces wide or copper islands. • Make high-current traces symmetrical for dualphase regulators (SW1, SW3). VIN SWxIN CIN_HF CIN SWxLX DRIVER CONTROLLER L COUT SWxFB COMPENSATION aaa-023892 Figure 34. Generic buck regulator architecture Route FB trace on any layer away from noisy nodes VIN GND COUT CIN SWxFB VOUT CIN_HF SWxIN Inductor SWxLX aaa-023893 Figure 35. Layout example for buck regulators PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 129 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 12.6 Thermal information 12.6.1 Rating data The thermal rating data of the packages has been simulated with the results listed in Table 4. Junction to Ambient Thermal Resistance Nomenclature: the JEDEC specification reserves the symbol RθJA or θJA (Theta-JA) strictly for junction-to-ambient thermal resistance on a 1s test board in natural convection environment. RθJMA or θJMA (ThetaJMA) is used for both junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with forced convection on both 1s and 2s2p test boards. It is anticipated that the generic name, Theta-JA, continues to be commonly used. The JEDEC standards can be consulted at http://www.jedec.org/. 12.6.2 Estimation of junction temperature An estimation of the chip junction temperature TJ can be obtained from the equation: TJ = TA + (RθJA x PD) with TA = Ambient temperature for the package in °C RθJA = Junction to ambient thermal resistance in °C/W PD = Power dissipation in the package in W The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: • The value determined on a single layer board RθJA • The value obtained on a four layer board RθJMA Actual application PCBs show a performance close to the simulated four layer board value. This performance may be somewhat degraded in case of significant power dissipated by other components placed close to the device. At a known board temperature, the junction temperature TJ is estimated using the following equation TJ = TB + (RθJB x PD) with TB = Board temperature at the package perimeter in °C RθJB = Junction to board thermal resistance in °C/W PD = Power dissipation in the package in W When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. See Section 10 "Functional block requirements and behaviors" for more details on thermal management. 13 Packaging Table 139. Package drawing information PF4210 Data sheet: technical data Package Suffix Package outline drawing number 56 QFN 8x8 mm - 0.5 mm pitch. WF-type (wettable flank) ES 98ASA00589D All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 130 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 13.1 Packaging dimensions Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and perform a keyword search for the drawing’s document number. See Section 8.2 "Thermal characteristics" for specific thermal characteristics for each package. PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 131 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 132 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Figure 36. Package dimensions PF4210 Data sheet: technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 133 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 14 Revision history Table 140. Revision history Document ID Release date Data sheet status Change notice Supersedes PF4210 v2.0 20181114 Technical data — PF4210 v1.0 Modifications • Added MC32PF4210A4ES and MC34PF4210A4ES part numbers to Table 1 • Added sequencing information for A4 to Table 8 • Corrected typo in Table 8 for PU CONFIG, SWDVS_CLK (changed ms to μs) PF4210 v1.0 20180214 PF4210 Data sheet: technical data Technical data All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 — — © NXP B.V. 2018. All rights reserved. 134 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications 15 Legal information 15.1 Data sheet status Document status [1][2] Product status [3] Definition [short] Data sheet: product preview Development This document contains certain information on a product under development. NXP reserves the right to change or discontinue this product without notice. [short] Data sheet: advance information Qualification This document contains information on a new product. Specifications and information herein are subject to change without notice. [short] Data sheet: technical data Production This document contains the product specification. NXP Semiconductors reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. [1] [2] [3] Please consult the most recently issued document before initiating or completing a design. The term 'short data sheet' is explained in section "Definitions". The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 15.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a technical data data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the technical data data sheet. 15.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. PF4210 Data sheet: technical data Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 135 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of nonautomotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall PF4210 Data sheet: technical data use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. 15.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. NXP — is a trademark of NXP B.V. All information provided in this document is subject to legal disclaimers. Rev. 2.0 — 14 November 2018 © NXP B.V. 2018. All rights reserved. 136 / 137 PF4210 NXP Semiconductors 14-channel power management integrated circuit (PMIC) for audio/video applications Contents 1 2 3 4 5 6 7 7.1 7.2 8 8.1 8.2 8.3 8.4 8.4.1 8.4.2 9 9.1 9.2 9.3 9.3.1 9.3.2 9.3.2.1 10 General description ............................................ 1 Features and benefits .........................................1 Simplified application diagram .......................... 2 Applications .........................................................3 Orderable parts ................................................... 3 Internal block diagram ........................................4 Pinning information ............................................ 5 Pinning ............................................................... 5 Pin definitions .................................................... 5 General product characteristics ........................ 8 Absolute maximum ratings ................................ 8 Thermal characteristics ......................................8 Power dissipation .............................................. 9 Electrical characteristics .................................. 10 General specifications ..................................... 10 Current consumption ....................................... 11 Detailed description ..........................................11 Features ...........................................................11 Functional block diagram .................................13 Functional description ......................................13 Power generation ............................................ 13 Control logic .....................................................14 Interface signals .............................................. 14 Functional block requirements and behaviors ........................................................... 15 10.1 Startup ............................................................. 15 10.1.1 Device startup configuration ............................ 15 10.1.2 One time programmability (OTP) .....................18 10.1.2.1 Startup sequence and timing ...........................18 10.1.2.2 PWRON pin configuration ............................... 19 10.1.2.3 I2C address configuration ................................19 10.1.2.4 Soft start ramp rate ......................................... 20 10.1.3 OTP prototyping .............................................. 20 10.1.4 Reading OTP fuses ......................................... 21 10.1.5 Programming OTP fuses ................................. 21 10.2 16 MHz and 32 kHz clocks ..............................21 10.2.1 Clock adjustment ............................................. 22 10.3 Bias and references block description ............. 22 10.3.1 Internal core voltage references ...................... 22 10.3.1.1 External components ....................................... 23 10.3.2 VREFDDR voltage reference ...........................23 10.3.2.1 VREFDDR control register .............................. 23 10.4 Power generation ............................................ 25 10.4.1 Modes of operation ..........................................25 10.4.1.1 On mode ..........................................................26 10.4.1.2 Off mode ..........................................................26 10.4.1.3 Standby mode ................................................. 26 10.4.1.4 Sleep mode ..................................................... 27 10.4.1.5 Coin cell mode .................................................28 10.4.2 State machine flow summary .......................... 28 10.4.2.1 Turn on events ................................................ 29 10.4.2.2 Turn off events ................................................ 30 10.4.3 Power tree ....................................................... 30 10.4.4 Buck regulators ................................................32 10.4.4.1 Current limit ..................................................... 33 10.4.4.2 General control ................................................ 33 10.4.4.3 SW1A/B/C ........................................................38 10.4.4.4 SW2 ................................................................. 53 10.4.4.5 SW3A/B ........................................................... 61 10.4.4.6 SW4 ................................................................. 74 10.4.5 Boost regulator ................................................ 82 10.4.5.1 SWBST setup and control ............................... 82 10.4.5.2 SWBST external components ..........................83 10.4.5.3 SWBST specifications ..................................... 83 10.4.6 LDO regulators description .............................. 84 10.4.6.1 Transient response waveforms ........................85 10.4.6.2 Short-circuit protection .....................................85 10.4.6.3 LDO regulator control ...................................... 86 10.4.6.4 External components ....................................... 89 10.4.6.5 LDO specifications ...........................................90 10.4.6.6 VSNVS LDO/switch ....................................... 100 10.4.6.7 Coin cell battery backup ................................ 104 10.5 Control interface I2C block description .......... 105 10.5.1 I2C device ID .................................................105 10.5.2 I2C operation ................................................. 105 10.5.3 Interrupt handling ...........................................106 10.5.4 Interrupt bit summary .....................................106 10.6 Specific registers ........................................... 112 10.6.1 IC and version identification .......................... 112 10.6.2 Embedded memory ....................................... 113 10.7 Register bitmap ............................................. 113 10.7.1 Register map ................................................. 114 11 Typical applications ........................................122 11.1 Introduction .................................................... 122 11.1.1 Application diagram ....................................... 123 11.1.2 Bill of materials .............................................. 123 12 PF4210 layout guidelines ............................... 127 12.1 General board recommendations .................. 127 12.2 Component placement ...................................128 12.3 General routing requirements ........................ 128 12.4 Parallel routing requirements .........................128 12.5 Switching regulator layout recommendations . 129 12.6 Thermal information .......................................130 12.6.1 Rating data .................................................... 130 12.6.2 Estimation of junction temperature ................ 130 13 Packaging ........................................................ 130 13.1 Packaging dimensions ...................................131 14 Revision history .............................................. 134 15 Legal information ............................................ 135 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. © NXP B.V. 2018. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 14 November 2018 Document identifier: PF4210
MC34PF4210A1ES 价格&库存

很抱歉,暂时无法提供与“MC34PF4210A1ES”相匹配的价格&库存,您可以联系我们找货

免费人工找货