0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MIMXRT1166XVM5A

MIMXRT1166XVM5A

  • 厂商:

    NXP(恩智浦)

  • 封装:

    289-LFBGA

  • 描述:

    ARM® Cortex®-M4/M7 i.MX 微控制器 IC 32 位双核 240MHz,500MHz 外部程序存储器 289-LFBGA(14x14)

  • 数据手册
  • 价格&库存
MIMXRT1166XVM5A 数据手册
NXP Semiconductors Data Sheet: Technical Data Document Number: IMXRT1160XEC Rev. 3, 06/2023 MIMXRT1166XVM5A i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products MIMXRT1165XVM5A Package Information Plastic Package 289-pin MAPBGA, 14 x 14 mm, 0.8 mm pitch Ordering Information See Table 1 on page 6 1 i.MX RT1160 introduction The i.MX RT1160 is a new high-end processor of the i.MX RT family, which features NXP’s advanced implementation of a high performance Arm Cortex®-M7 core operating at speeds up to 500 MHz and a power efficient Cortex®-M4 core up to 240 MHz. The i.MX RT1160 processor has 1 MB on-chip RAM in total, including a 768 KB RAM which can be flexibly configured as TCM (512 KB RAM shared with M7 TCM and 256 KB RAM shared with M4 TCM) or general-purpose on-chip RAM. The i.MX RT1160 integrates advanced power management module with DCDC and LDO regulators that reduce complexity of external power supply and simplifies power sequencing. The i.MX RT1160 also provides various memory interfaces, including SDRAM, RAW NAND FLASH, NOR FLASH, SD/eMMC, Quad/Octal SPI, Hyper RAM/Flash, and a wide range of other interfaces for connecting peripherals, such as WLAN, Bluetooth™, NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. © 2023 NXP B.V. 1. i.MX RT1160 introduction . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 6 1.3. Package marking information . . . . . . . . . . . . . . . . 9 2. Architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1. Special signal considerations . . . . . . . . . . . . . . . 20 3.2. Recommended connections for unused analog interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 24 4.2. System power and clocks . . . . . . . . . . . . . . . . . . 33 4.3. I/O parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4. System modules . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.5. External memory interface . . . . . . . . . . . . . . . . . 57 4.6. Display and graphics . . . . . . . . . . . . . . . . . . . . . . 66 4.7. Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.8. Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.9. Communication interfaces . . . . . . . . . . . . . . . . . . 83 4.10. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5. Boot mode configuration . . . . . . . . . . . . . . . . . . 101 5. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . 101 5.1. Boot mode configuration pins . . . . . . . . . . . . . . 101 5.2. Boot device interface allocation . . . . . . . . . . . . . 101 6. Package information and contact assignments . . . . . . 107 6.1. 14 x 14 mm package information . . . . . . . . . . . 107 7. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 i.MX RT1160 introduction GPS, displays, and camera sensors. The i.MX RT1160 also has rich audio and video features, including MIPI CSI/DSI, LCD display, graphic accelerator, camera interface, SPDIF, and I2S audio interface. The i.MX RT1160 is specifically useful for applications such as: • Industrial Human Machine Interfaces (HMI) • Motor Control • Home Appliance • High-end Audio Appliance • Low-end Instrument Cluster • Point-of-Sale (PoS) 1.1 Features The i.MX RT1160 processors are based on Arm Cortex®-M7 Core™ Platform, which has the following features: • The Arm Cortex-M7 Core Platform: — 32 KB L1 Instruction Cache and 32 KB L1 Data Cache — Floating Point Unit (FPU) with single-precision and double-precision support of Armv7-M Architecture FPv5 — Support the Arm®v7-M Thumb instruction set, defined in the Armv7-M architecture — Integrated Memory Protection Unit (MPU), up to 16 individual protection regions — Up to 512 KB I-TCM and D-TCM in total — Frequency of 500 MHz — ECC support for both cache and TCM — Frequency of the core, as per Table 11, "Operating ranges," on page 27. • The Arm Cortex®-M4 Core platform: — Cortex-M4 processor with single-precision FPU defined by Armv7-M architecture FPv4-SP — Integrated MPU with 8 individual protection regions — 16 KB Instruction Cache, 16 KB Data Cache, and 256 KB TCM — Frequency of 240 MHz — ECC support for TCM and parity check support for cache The SoC-level memory system consists of the following additional components: — Boot ROM (256 KB) — On-chip RAM (1 MB in total) – Configurable 512 KB RAM shared with M7 TCM – 256 KB RAM shared with M4 TCM – Dedicated 256 KB OCRAM — Secure always-on RAM (4 KB) • External memory interfaces: i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 2 NXP Semiconductors i.MX RT1160 introduction • — 8/16/32-bit SDRAM, up to SDRAM-133/SDRAM-166/SDRAM-200 — 8/16-bit SLC NAND FLASH — SD/eMMC — SPI NOR/NAND FLASH — Parallel NOR FLASH with XIP support — Single/Dual channel Quad SPI FLASH with XIP support — Hyper RAM/FLASH — OCT FLASH — Synchronization mode for all devices Timers and PWMs: — Six General Programmable Timer (GPT) modules – 4-channel generic 32-bit resolution timer for each – Each supports standard capture and compare operation — Two Periodical Interrupt Timer (PIT) modules – Four timers for each module – Generic 32-bit resolution timer – Periodical interrupt generation — Four Quad Timer (QTimer) modules – 4-channel generic 16-bit resolution timer for each – Each supports standard capture and compare operation – Quadrature decoder integrated — Four FlexPWMs – Up to 8 individual PWM channels for each – 16-bit resolution PWM suitable for Motor Control applications — Four Quadrature Decoders — Four Watch Dog (WDOG) modules Each i.MX RT1160 processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously): • Display Interface: — Parallel RGB LCD interface (eLCDIF) – Support 8/16/24-bit interface – Support up to WXGA resolution @60fps – Support Index color with 256 entry x 24-bit color LUT — Parallel RGB LCD Interface Version 2 (LCDIFv2) – Enhanced based on LCDIF version – Support up to 8 layers of alpha blending — MIPI Display Serial Interface (MIPI DSI) i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 3 i.MX RT1160 introduction • • • • – PHY integrated – 2 data lanes interface with up to 1.5 GHz bit rate clock — Smart LCD Display with 8080 interface through SEMC Audio: — SPDIF input and output — Four Synchronous Audio Interface (SAI) modules supporting I2S, AC97, TDM, and codec/DSP interfaces — Medium Quality Sound (MQS) interface via GPIO pads — PDM microphone interface with 4 pairs of inputs — Asynchronous Sample Rate Converter (ASRC) Graphics engine: — Generic 2D (PXP) – BitBlit – Flexible image composition options—alpha, chroma key – Porter-duff blending – Image rotation (90, 180, 270) – Image resize – Color space conversion – Multiple pixel format support (RGB, YUV444, YUV422, YUV420, YUV400) – Standard 2D-DMA operation — Vector Graphics Processing – Real-time hardware curve tessellation of lines, quadratic, and cubic Bezier curves – 16x Line Anti-aliasing – OpenVG 1.1 support – Vector Drawing Camera Interface: — Parallel Camera Sensor Interface (CSI) – Support 24-bit, 16-bit, and 8-bit input – Barcode binarization and histogram statistics — MIPI Camera Serial Interface (MIPI CSI) – PHY integrated – 2 data lanes interface with up to 1.5 GHz bit rate clock Connectivity: — Two USB 2.0 OTG controllers with integrated PHY interfaces — Two Ultra Secure Digital Host Controller (uSDHC) interfaces – eMMC 5.0 compliance with HS400 support up to 400 MB/sec – SD/SDIO 3.0 compliance with 200 MHz SDR signaling to support up to 100 MB/sec i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 4 NXP Semiconductors i.MX RT1160 introduction • • – Support for SDXC (extended capacity) — One 10M/100M Ethernet controller with support for IEEE1588 — One Gigabit Ethernet controller with support for AVB — Twelve universal asynchronous receiver/transmitter (UARTs) modules — Six I2C modules — Six SPI modules — Three FlexCAN (with Flexible Data-rate supported) modules — Two EMV SIM modules Analog: — Two Analog-Digital-Converters (ADC), which supports both differential and single-end inputs — One Digital-Analog-Converter (DAC) — Four Analog Comparators (ACMP) GPIO and Pin Multiplexing: — General-purpose input/output (GPIO) modules with interrupt capability — Input/output multiplexing controller (IOMUXC) to provide centralized pad control — Two FlexIO modules — 8 x 8 keypad The i.MX RT1160 processors integrate advanced power management unit and controllers: • Full PMIC integration, including on-chip DCDC and LDOs • Temperature sensor with programmable trim points • Hardware power management controller (GPC) The i.MX RT1160 processors support the following system debug: • Arm CoreSight debug and trace architecture • Trace Port Interface Unit (TPIU) to support off-chip real-time trace • Cross Triggering Interface (CTI) • Support for 5-pin (JTAG) and SWD debug interfaces Security functions are enabled and accelerated by the following hardware: • High Assurance Boot (HAB) • Cryptographic Acceleration and Assurance (CAAM) module: — Public Key Cryptography Engine (PKHA) — Symmetric Engines — Cryptographic Hash Engine — Random Number Generation (RNG4) — Four Job Rings for use by processors — Secure Hardware-Only Cryptographic Key Management — Encrypted Boot — Revision control check based on fuse values i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 5 i.MX RT1160 introduction • • • • • • — DEK includes IV — Side channel attack countermeasures — 64 KB secure RAM Inline Encryption Engine (IEE): — External memory encryption/decryption — I/O direct encrypted storage and retrieval (Stream Support) — FlexSPI decryption only On-the-Fly AES Decryption (OTFAD): — AES-128 Counter Mode On-the-Fly Decryption — Hardware support for unwrapping “key blobs” — Functionally acts as a slave sub-module to the FlexSPI Secure Non-Volatile Storage (SNVS): — Secure real-time clock (SRTC) — Zero Master Key (ZMK) Secure always-on RAM (4 KB) Secure key management and protection — Physical Unclonable Function (PUF) — UnDocumented Function (UDF) — Built-in Manufacturing Protection Hardware Secure and trusted access control NOTE The actual feature set depends on the part numbers as described in Table 1. Functions such as display interfaces, camera interfaces, and connectivity interfaces are not offered on all derivatives. 1.2 Ordering information Table 1 provide examples of orderable part numbers covered by this Data Sheet. Table 1. Order information MIMXRT1166XVM5A MIMXRT1165XVM5A Qualification tier Extended Industrial M7 core 500 MHz M4 core 240 MHz SRAM 1 MB without ECC or 896 KB with ECC Parallel LCD and CSI Yes — i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 6 NXP Semiconductors i.MX RT1160 introduction Table 1. Order information (continued) MIMXRT1166XVM5A MIMXRT1165XVM5A MIPI DSI and CSI Yes — GPU2D Yes — PXP Yes — ADC x2 12-bit DAC x1 ACMP x4 CAN-FD x3 1 Gb ENET with AVB x1 10/100 Mb ENET with 1588 x1 USB OTG x2 eMMC 5.0 / SD 3.0 x2 EMV SIM x2 SAI x4 DMIC x8 FlexSPI x2 UART x12 I2C x6 SPI x6 GPT x6 FlexIO x2 PIT x2 QTimer x4 FlexPWM x4 Security Yes Package 289 MAPBGA, 14 mm x14 mm, 0.8 mm pitch Junction temperature Tj (C) -40 to 125 Figure 1 describes the part number nomenclature so that characteristics of a specific part number can be identified (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The primary characteristic which describes which data sheet applies to a specific part is the temperature grade (junction) field. • The i.MX RT1160 Crossover Processors for Extend Industrial Products Data Sheet (IMXRT1160XEC) covers parts listed with a “X (Extend Industrial temp)” i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 7 i.MX RT1160 introduction Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field and matching it to the proper data sheet. If there are any questions, visit the web page nxp.com/IMXRT or contact an NXP representative for details. M IMX XX @ ## % + VV $ A Qualification Level M Prototype Samples P Silicon Rev A Mass Production M A0 A Special S Part # series XX i.MX RT RT Main Core Frequency $ 2xx MHz 2 500 MHz 5 Family @ 600 MHz 6 First Generation RT family 1 800 MHz 8 1 GHz A Reserved 2-8 Sub-Family ## RT116x 16 RT117x 17 Package Type Tie % Single Core Standard Feature 1 Single Core Enhanced Feature 2 Dual Core Enhanced Security 3 Dual Core Standard Feature 5 Dual Core Enhanced Feature 6 Dual Core Premium Feature 7 8MB Flash SIP 8 Dual Core Full Feature 9 Facial Recognition F Hybrid Solution with Vision & Voice H Local Voice Control (w/ Text2Model) S VV 289MAPBGA, 14 x 14 mm, 0.8 mm pitch VM 144MAPBGA, 10 x 10 mm, 0.8 mm pitch VP 196MAPBGA, 10 x 10 mm, 0.65 mm pitch VL Temperature (Tj) + Consumer: 0 to + 95 °C D Industrial: -40 to +105 °C C Extended Industrial: -40 to +125 °C X Automotive: -40 to + 125 eC A Figure 1. Part number nomenclature—i.MX RT11XX family i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 8 NXP Semiconductors i.MX RT1160 introduction 1.3 Package marking information Figure 2 describes the package marking format about the i.MX RT1160 Crossover Processors. Figure 2. MAPBGA289 14 x 14 mm package marking format The 14 x 14 mm of i.MX RT1160 MAPBGA289 package has the following top-side marking: • First line: aaaaaaaaaaaaaaa • Second line: mmmmm • Third line: xxxyywwx Table 2 lists the identifier decoder. Table 2. Identifier decoder Identifier Description a Part number code, refer to Section 1.2, Ordering information m Mask set y Year w Work week x NXP internal use i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 9 Architectural overview 2 Architectural overview The following subsections provide an architectural overview of the i.MX RT1160 processor system. 2.1 Block diagram Figure 3 shows the functional modules in the i.MX RT1160 processor system1. System Control Connectivity CPU Platform JTAGC eMMC5.0/ SD3.0 x2 Arm Cortex-M7 PLL,OSC 32KB I-cache eDMA x2 FPU WDOG x4, EWM x1 UART x12 32KB D-cache MPU I2C x6 NVIC SPI x6 512KB TCM 8x8 Keypad x 1 GPT x6 ARM Cortex-M4 Quadrature Enc/Dec x4 16KB I-cache QuadTimer x4 FPU FlexPWM x4 I2S/SAI x4 16KB D-cache MPU SPDIF Tx/Rx x 1 NVIC ASRC x 1 256KB TCM 8-ch DMIC x 1 PIT x2 Multimedia RDC, SEMA4, MU Power Mgmt DCDC &LDO CAN-FD x3 Parallel LCD MIPI DSI Parallel CSI MIPI CSI USB2.0 OTG w/PHY x2 Vector GPU Acceleration Temp Monitor 10M/100M ENET x1 w/IEEE 1588 2D Graphics Acceleration(PXP) Resize, CSC, Overlay, Rotation ADC/DAC 1Gbps ENETx1 w/ AVB LPADC x2 (20-ch) HSADCx3(24-ch) External Memory Dual-Channel QSPI FLASH x2 ACMPx8,DAC x4, DACx2 x1 ACMP GPIO / HS GPIO HyperRAM/HyperFLASH Internal Memory 1MB SRAM/TCM EMVSIM x2 External Memory Controller FlexIO x2 8/16/32-bit SDRAM Parallel NAND/ NOR Flash 256KB ROM Security RNG4 Secure RTC RSA4096 HAB Crypto Engine Secure RAM SHA-1 / SHA-2 eFUSE AES-128/256 DES/3DES PUF / UDF CDOG Ellipse Curve Encrypted XIP . Figure 3. i.MX RT1160 system block diagram 1. Some modules shown in this block diagram are not offered on all derivatives. See Table 1 for details. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 10 NXP Semiconductors Modules list 3 Modules list The i.MX RT1160 processors contain a variety of digital and analog modules. Table 3 describes these modules in alphabetical order. Table 3. i.MX RT1160 modules list Block Mnemonic Block Name Subsystem Brief Description ACMP1 ACMP2 ACMP3 ACMP4 Analog Comparator Analog The comparator (CMP) provides a circuit for comparing two analog input voltages. The comparator circuit is designed to operate across the full range of the supply voltage (rail-to-rail operation). ADC_ETC ADC External Trigger Control Analog ADC_ETC enables multiple users shares a ADC module in a Time-Division-Multiplexing (TDM). ADC1 ADC2 Analog to Digital Converter Analog The ADC is a 12-bit general purpose analog to digital converter. AOI And-Or-Inverter Cross Trigger The AOI provides a universal boolean function generator using a four-term sum of products expression with each product term containing true or complement values of the four selected inputs (A, B, C, D). Arm Arm Platform Arm The Arm Core Platform includes one Cortex-M7 core. It includes associated sub-blocks, such as Nested Vectored Interrupt Controller (NVIC), Floating-Point Unit (FPU), Memory Protection Unit (MPU), and CoreSight debug modules. The Cortex-M4 platform has following features: • Cortex-M4 processor with FPU • Local memory – 16 KB instruction cache and 16 KB data cache – 256 KB TCM – TCM memories support ECC – Cache memories support Parity Check ASRC Asynchronous Sample Rate Converter Multimedia Peripherals The ASRC can process groups of audio channels with an independent time-based simultaneously. CAAM Cryptographic Accelerator and Assurance Module Security CAAM supports a set of standard hardware accelerators, boot time acceleration of the hashing function, crypto key protection, HDCP 2.x authentication and protected video path support, manufacturing protection and public key cryptographic acceleration, and inter-operate with TrustZone, Resource Domain, and system virtualization access controls. CANFD1 CANFD2 CANFD3 Flexible Controller Area Network Connectivity Peripherals The CAN with Flexible Data rate (CAN FD) module is a communication controller implementing the CAN protocol according to the ISO11898-1 and CAN 2.0B protocol specification. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 11 Modules list Table 3. i.MX RT1160 modules list (continued) Block Mnemonic CCM GPC PGMC PMU SRC Block Name Subsystem Brief Description Clocks, Resets, and These modules are responsible for clock and reset Clock Control Module, Power Control distribution in the system, and also for the system power General Power Controller, management. Power Manage Unit, Power Gating and Memory Controller, System Reset Controller CSI Parallel CSI Multimedia Peripherals The CSI IP provides parallel CSI standard camera interface port. The CSI parallel data ports are up to 24 bits. It is designed to support 24-bit RGB888/YUV444, CCIR656 video interface, 8-bit YCbCr, YUV or RGB, and 8-bit/10-bit/16-bit/24-bit Bayer data input. CWT Code Watchdog Timer Timer peripherals The CWT provides mechanisms for detecting side-channel attacks and the execution of unexpected instruction sequences. DAC Digital-Analog-Converter Analog The DAC is a 12-bit general purpose digital to analog converter. DAP Debug Access Port System Control Peripherals The DAP provides real-time access for the debugger without halting the core to: • System memory and peripheral registers • All debug configuration registers The DAP also provides debugger access to JTAG scan chains. The DAP module is internal to the Cortex-M7 Core Platform. DCDC DCDC Converter Analog The DCDC module is used for generating power supply for core logic. Main features are: • Adjustable high efficiency regulator • Two outputs: 1.0 V and 1.8 V • Over current and over voltage detection eDMA eDMA_LPSR enhanced Direct Memory Access System Control Peripherals There are two enhanced DMAs (eDMA). • The eDMA is a 32-channel DMA engine, which is capable of performing complex data transfers with minimal intervention from a host processor. • The DMA_MUX is capable of multiplexing up to 128 DMA request sources to the 32 DMA channels of eDMA. eLCDIF LCD interface Multimedia Peripherals The enhanced LCD controller provides flexible display options and to drive a wide range of display devices varying in size and capability. Major features are: • Up to WXGA 60 Hz • 8/16/18/24 bit LCD data bus support available depending on I/O mux options. • Programmable timing and parameters for LCD interfaces to support a wide variety of displays. • Index color with 256 entry x 24-bit color LUT EMV SIM1 EMV SIM2 Europay, Master and Visa Subscriber Identification Module Connectivity Peripherals EMV SIM is designed to facilitate communication to Smart Cards compatible to the EMV version 4.3 standard (Book 1) and Smart Cards compatible with ISO/IEC 7816-3 standard. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 12 NXP Semiconductors Modules list Table 3. i.MX RT1160 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description ENET Ethernet Controller Connectivity Peripherals The Ethernet Media Access Controller (MAC) is designed to support 10/100 Mbit/s Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the reference manual for details. ENET 1G Ethernet Controller Connectivity Peripherals One 1G Ethernet is also integrated, which has following features: • RGMII/RMII/MII operation • Support IEEE1588 • Support AVB EWM External Watchdog Monitor Timer Peripherals The EWM modules is designed to monitor external circuits, as well as the software flow. This provides a back-up mechanism to the internal WDOG that can reset the system. The EWM differs from the internal WDOG in that it does not reset the system. The EWM, if allowed to time-out, provides an independent trigger pin that when asserted resets or places an external circuit into a safe mode. FlexIO1 FlexIO2 Flexible Input/output Connectivity and Communications The FlexIO is capable of supporting a wide range of protocols including, but not limited to: UART, I2C, SPI, I2S, camera interface, display interface, PWM waveform generation, etc. The module can remain functional when the chip is in a low power mode provided the clock it is using remain active. FlexPWM1 FlexPWM2 FlexPWM3 FlexPWM4 Pulse Width Modulation Timer Peripherals The pulse-width modulator (PWM) contains four PWM sub-modules, each of which is set up to control a single half-bridge power stage. Fault channel support is provided. The PWM module can generate various switching patterns, including highly sophisticated waveforms. FlexRAM RAM Memories The i.MX RT1160 has 512 KB of on-chip RAM which could be flexible allocated to I-TCM, D-TCM, and on-chip RAM (OCRAM) in a 32 KB granularity. The FlexRAM is the manager of the 512 KB on-chip RAM array. Major functions of this blocks are: interfacing to I-TCM and D-TCM of CM7 and OCRAM controller; dynamic RAM arrays allocation for I-TCM, D-TCM, and OCRAM. FlexSPI1 FlexSPI2 Flexible Serial Peripheral Interface Connectivity and Communications FlexSPI acts as an interface to one or two external serial memory devices, FlexSPI2 has 8 bi-directional data lines. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 13 Modules list Table 3. i.MX RT1160 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPIO6 GPIO7 GPIO8 GPIO9 GPIO10 GPIO11 GPIO12 GPIO13 General Purpose I/O Modules System Control Peripherals Used for general purpose input/output to external ICs. Each GPIO module supports up to 32 bits of I/O. Note: GPIO13 register access takes a long time (about 50s due to clocked by 32 KHz clock source). During the period of registers access, the LPSR domain bus would be on hold. GPT1 GPT2 GPT3 GPT4 GPT5 GPT6 General Purpose Timer Timer Peripherals Each GPT is a 32-bit “free-running” or “set and forget” mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in “set and forget” mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock. GPU2D Graphics Processing Multimedia Peripherals The vector graphics processing supports following features: • Real-time hardware curve tessellation of lines, quadratic, and cubic Bezier curves • 16x line anti-aliasing • OpenVG 1.1 support • Vector drawing IOMUXC IOMUX Control Mux control This module enables flexible I/O multiplexing. Each IO pad has a default as well as several alternate functions. The alternate functions are software configurable. JTAGC JTAG Controller System Control Peripherals The JTAG interface complies with JTAG TAP standards to internal logic. The i.MX RT1160 processors use JTAG port for production, testing, and system debugging. In addition, the JTAG provides BSR (Boundary Scan Register) standard support, which complies with IEEE 1149.1 and IEEE 1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX RT1160 JTAG incorporates two security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 14 NXP Semiconductors Modules list Table 3. i.MX RT1160 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description KPP Keypad Port Human Machine Interfaces LCDIFv2 Parallel RGB LCD interface version 2 Multimedia Peripherals LPI2C1 LPI2C2 LPI2C3 LPI2C4 LPI2C5 LPI2C6 Low Power Inter-integrated Circuit Connectivity and Communications The LPI2C is a low power Inter-Integrated Circuit (I2C) module that supports an efficient interface to an I2C bus as a master. The I2C provides a method of communication between a number of external devices. More detailed information, see Section 4.9.2, LPI2C module timing parameters. LPSPI1 LPSPI2 LPSPI3 LPSPI4 LPSPI5 LPSPI6 Low Power Serial Peripheral Interface Connectivity and Communications The LPSPI is a low power Serial Peripheral Interface (SPI) module that support an efficient interface to an SPI bus as a master and/or a slave. • It can continue operating while the chip is in stop modes, if an appropriate clock is available • Designed for low CPU overhead, with DMA off loading of FIFO register access LPUART1 LPUART2 LPUART3 LPUART4 LPUART5 LPUART6 LPUART7 LPUART8 LPUART9 LPUART10 LPUART11 LPUART12 UART Interface Connectivity Peripherals Each of the UART modules support the following serial data transmit/receive protocols and configurations: • 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) • Programmable baud rates up to 20 Mbps. MECC64 Error Correcting Code The KPP is a 16-bit peripheral that can be used as a keypad matrix interface or as general purpose input/output (I/O). It supports 8 x 8 external key pad matrix. Main features are: • Multiple-key detection • Long key-press detection • Standby key-press detection • Supports a 2-point and 3-point contact key matrix The LCDIFv2 is an enhanced version of LCDIF. Main features are: • Eight layers of alpha blending • CRC check for configurable region on the final display output after alpha blending • Write-back channel to save the final output into memory Memories and MECC64 module supports Single Error Correction and Memory Controllers Double Error Detection (SECDED) ECC function to provide reliability for 4 banks On-Chip RAM (OCRAM) access. When ECC function is disabled, ECC OCRAM can be also used to store data. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 15 Modules list Table 3. i.MX RT1160 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description MIPI-CSI MIPI CSI Interface Multimedia Peripherals Key features of MIPI CSI controller are listed as following: • Implements all three MIPI CSI-2 layers • Supports CSI-2 Unidirectional Master operation • Virtual Channel support • Flexible pixel-based user interface MIPI-DSI MIPI DSI Interface Multimedia Peripherals Key features of MIPI DSI controller are listed as following: • Implements all three DSI layers • Supports Command and Video Modes • Virtual Channel support • Flexible packet based user interface MQS Medium Quality Sound Multimedia Peripherals MQS is used to generate 2-channel medium quality PWM-like audio via two standard digital GPIO pins. MU Messaging Unit System Control OCOTP_CTRL OTP Controller Security OCRAM On-Chip Memory controller PDM Pulse Density Modulation Multimedia Peripherals The PDM supports up to 8-channels (4 lanes) digital MIC inputs. PIT1 PIT2 Periodical Interrupt Timer Timer Peripherals The PIT features 32-bit counter timer, programmable count modules, clock division features, interrupt generation, and a slave mode to synchronize count enable for multiple PITs. The Messaging Unit module enables two processors within the SoC to communicate and coordinate by passing messages (e.g. data, status, and control) through the MU interface. The MU also provides the ability for one processor to signal the other processor using interrupts. The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals requiring permanent non volatility. Memories and The On-Chip Memory controller (OCRAM) module is Memory Controllers designed as an interface between the system’s AXI bus and the internal (on-chip) SRAM memory module. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 16 NXP Semiconductors Modules list Table 3. i.MX RT1160 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description PXP Pixel Processing Pipeline Multimedia Peripherals A high-performance pixel processor capable of 1 pixel/clock performance for combined operations, such as color-space conversion, alpha blending, and rotation. The PXP is enhanced with features specifically for gray scale applications. In addition, the PXP supports traditional pixel/frame processing paths for still-image and video processing applications. Quadrature DEC1 Quadrature DEC2 Quadrature DEC3 Quadrature DEC4 Quadrature Decoder Timer Peripherals The enhanced quadrature decoder module provides interfacing capability to position/speed sensors. There are five input signals: PHASEA, PHASEB, INDEX, TRIGGER, and HOME. This module is used to decode shaft position, revolution count, and speed. QuadTimer1 QuadTimer2 QuadTimer3 QuadTimer4 QuadTimer Timer Peripherals The quad-timer provides four time channels with a variety of controls affecting both individual and multi-channel features.Specific features include up/down count, cascading of counters, programmable module, count once/repeated, counter preload, compare registers with preload, shared use of input signals, prescaler controls, independent capture/compare, fault input control, programmable input filters, and multi-channel synchronization. RDC Resource Domain Controller Security The RDC provides robust support for the isolation of processing domain to prevent one core from accessing another’s peripherals, to control access rights to common memory and provide hardware enforcement of semaphore based locking of shared peripherals. For single system use case, RDC can be disabled and AIPS-TZ/DEXSC can be bypassed. For dual system case, RDC can be configured and locked each core starts their own image. ROMCP ROM Controller with Patch RTC OSC Real Time Clock Oscillator Clock Sources and Control The RTC OSC provides the clock source for the Real-Time Clock module and low speed clock source for CCM/SRC/GPC modules. The RTC OSC module, in conjunction with an external crystal, generates a 32.768 kHz reference clock. SAI1 SAI2 SAI3 SAI4 Synchronous Audio Interface Multimedia Peripherals The SAI module provides a synchronous audio interface (SAI) that supports full duplex serial interfaces with frame synchronization, such as I2S, AC97, TDM, and codec/DSP interfaces. SEMA4 Semaphores System Control The SEMA4 module implements hardware-enforced semaphores as an IPS-mapped slave peripheral device and provides 16 hardware-enforced gates in a dual-processor configuration. Memories and The ROMCP acts as an interface between the Arm Memory Controllers advanced high-performance bus and the ROM. The on-chip ROM is only used by the Cortex-M7 core during boot up. Size of the ROM is 256 KB. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 17 Modules list Table 3. i.MX RT1160 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description SEMC Smart External Memory Controller Memory and Memory Controller The SEMC is a multi-standard memory controller optimized for both high-performance and low pin-count. It can support multiple external memories in the same application with shared address and data pins. The interface supported includes SDRAM, NOR Flash, SRAM, and NAND Flash, as well as 8080 display interface. SNVS Secure Non-Volatile Storage Security SPDIF Sony Philips Digital Interconnect Format Multimedia Peripherals SSARC State Save and Restore Controller Memories and The SSARC saves the registers of functional modules in Memory Controllers memory before power down, and restores registers from memory after the module is powered up. SYS OSC System Clock Oscillator Clock Sources and Control TEMP SENSE Temperature Sensor Analog USB1 USB2 Universal Serial Bus 2.0 Connectivity Peripherals Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine and Master Key Control. A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. Has Transmitter and Receiver functionality. The SYS OSC provides the primary clock source for all the PLLs to generate the clock for CPU, BUS, and high-speed interfaces. The SYS OSC module, in conjunction with an external crystal, generates a 24 MHz reference clock. The temperature sensor implements a temperature sensor/conversion function based on a temperature-dependent voltage to time conversion. USB 2.0 OTG modules (USB OTG1 and USB OTG2) contains: • Two high-speed OTG 2.0 modules with integrated HS USB PHYs • Support eight Transmit (TX) and eight Receive (Rx) endpoints, including endpoint 0 i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 18 NXP Semiconductors Modules list Table 3. i.MX RT1160 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description uSDHC1 uSDHC2 SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller Connectivity Peripherals i.MX RT1160 specific SoC characteristics: All four MMC/SD/SDIO controllers are identical and are based on the uSDHC. They are: • Fully compliant with MMC command/response sets and Physical Layer as defined in the Multimedia Card System Specification. • Fully compliant with SD command/response sets and Physical Layer as defined in the SD Memory Card Specifications, v3.0 including high-capacity SDXC cards up to 2 TB. • Fully compliant with SDIO command/response sets and interrupt/read-wait mode as defined in the SDIO Card Specification, Part E1, v3.0 Two ports support: • 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR104 mode (104 MB/s max) • 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) • 4-bit or 8-bit transfer mode specifications for eMMC chips up to 200 MHz in HS200 mode (200 MB/s max) VIDMUX Video mux Mux control Video mux are mux control for Parallel CSI (IO PADs), MIPI CSI-2, MIPI DSI, Parallel LCDIF (IO PADs) and CSI, LCDIF-V2, eLCDIF control. It also includes the DCIC of MIPI DSI and Parallel DSI. WDOG1 WDOG2 WDOG3 WDOG4 Watch Dog Timer Peripherals WDOG1 and WDOG2 Timer support two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the Arm core, and a second point evokes an external event on the WDOG line. WDOG3 and WDOG4 modules are high reliability independent timers that are available for system to use. They provide a safety feature to ensure software is executing as planned and the CPU is not stuck in an infinite loop or executing unintended code. If the WDOG module is not serviced (refreshed) within a certain period, it resets the MCU. Windowed refresh mode is supported as well. XBARA XBARB Cross BAR Cross Trigger Each crossbar switch is an array of muxes with shared inputs. Each mux output provides one output of the crossbar. The number of inputs and the number of muxes/outputs are user configurable and registers are provided to select which of the shared inputs are routed to each output. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 19 Modules list Table 3. i.MX RT1160 modules list (continued) Block Mnemonic Block Name XECC External ECC Controller XRDC Extended Resource Domain Controller 3.1 Subsystem Brief Description Memories and XECC can be used as a gasket module on AXI bus to Memory Controllers support ECC function for external memory. Security The XRDC provides an integrated, scalable architectural framework for access control, system memory protection, and peripheral isolation. It allows software to assign chip resources including processor cores, non-core bus masters, memory regions, and slave peripherals to processing domains to support enforcement of robust operational environments. Special signal considerations Table 4 lists special signal considerations for the i.MX RT1160 processors. The signal names are listed in alphabetical order. The package contact assignments can be found in Section 6, Package information and contact assignments.” Signal descriptions are provided in the i.MX RT1160 Reference Manual (IMXRT1160RM). Table 4. Special signal considerations Signal Name Remarks GPIO_LPSR_02, GPIO_LPSR_03, GPIO_DISP_B1_06, GPIO_DISP_B1_07, GPIO_DISP_B1_08, GPIO_DISP_B1_09, GPIO_DISP_B1_10, GPIO_DISP_B1_11, GPIO_DISP_B2_00, GPIO_DISP_B2_01, GPIO_DISP_B2_02, GPIO_DISP_B2_03, GPIO_DISP_B2_04, GPIO_DISP_B2_05 If not using eFuse setting, these I/Os level determine the boot mode and boot device configuration. In case of boot mode pins immediately change state after POR_B released, user must ensure POR_B remains asserted until the last power rail reach its working voltage. CLK1_P/ CLK1_N This differential output is reserved for NXP internal use. For users, this output must be a no connect. DCDC_PSWITCH PAD is in DCDC_IN domain and connected to ground to bypass DCDC. To enable DCDC function, assert DCDC_IN with at least 1ms delay for DCDC_IN rising edge. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 20 NXP Semiconductors Modules list Table 4. Special signal considerations (continued) Signal Name Remarks RTC_XTALI/RTC_XTALO To hit the exact oscillation frequency, the board capacitors must be reduced to account for the board and chip parasitics. The integrated oscillation amplifier is self-biasing, but relatively weak. Care must be taken to limit the parasitic leakage from RTC_XTALI and RTC_XTALO to either the power or the ground (> 100 M). This de-biases the amplifier and reduces the start-up margin. If you want to feed an external low-frequency clock into RTC_XTALI, the RTC_XTALO pin must remain unconnected or driven by a complementary signal. The logic level of this forcing clock must not exceed the VDD_SNVS_ANA level and the frequency shall be < 100 kHz under the typical conditions. It is recommended to tie RTC_XTALI to GND if external crystal is not used. When a high-accuracy real-time clock is not required, the system may use the on-chip 32 kHz oscillator. The tolerance is ±25%. The ring oscillator starts faster than the external crystal and is used until the external crystal reaches a stable oscillation. The ring oscillator also starts automatically if no clock is detected at RTC_XTALI. XTALI/XTALO JTAG_nnnn The SDK software requires 24 MHz on XTALI/XTALO. The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this case, refer to section of Bypass Configuration (24 MHz) from the reference manual. There are three configurations that can be utilized, but configuration 2 is recommended. The logic level of this forcing clock must not exceed the VDD_LPSR_ANA level. If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter requirements. See Section 4.2.6, On-chip oscillators and relevant interface specifications chapters for details. External resistors can be used with all JTAG signals except for JTAG_TDO, but they are not required. See Table 5 for a summary of the JTAG interface. JTAG_TDO is configured with an on-chip keeper circuit, such that the floating condition is actively eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental. See Table 5 for a summary of the JTAG interface. When JTAG_MOD is low, the JTAG interface is configured for a common software debug, adding all the system TAPs to the chain. When JTAG_MOD is high, the JTAG interface is configured to a mode compliant with the IEEE 1149.1 standard. NC These signals are No Connect (NC) and should not be connected by the user. POR_B See the System Boot chapter in the reference manual for the correct boot configuration. Note that an incorrect setting may result from an improper boot sequence. POR_B signal has internal 100 k pull up to SNVS domain, should pull up to VDD_SNVS_ANA if need to add external pull up resistor, otherwise it will cause additional leakage during SNVS mode. It is recommended to add the external reset IC to the circuit to guarantee POR_B is properly processed during power up/down, please refer to the EVK design for details. Note: • As the Low DCDC_IN detection threshold is 2.6 V, the reset IC’s reset threshold must be higher than 2.6 V, then the whole chip is reset before the internal DCDC module reset to guarantee the chip safety during power down. • For power on reset, on any conditions ones need to make sure the voltage on DCDC_PSWITCH pin is below 0.5 V before power up. ONOFF A brief connection to GND in the OFF mode causes the internal power management state machine to change the state to ON. In the ON mode, a brief connection to GND generates an interrupt (intended to be a software-controllable power-down). Approximately five seconds (or more) to GND causes a forced OFF. Both boot mode inputs can be disconnected. TEST_MODE This input is reserved for NXP manufacturing use. The user must tie this pin directly to GND. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 21 Modules list Table 4. Special signal considerations (continued) Signal Name Remarks WAKEUP A GPIO powered by SNVS domain power supply which can be configured as wakeup source in SNVS mode. Table 5. JTAG controller interface summary 3.2 JTAG I/O Type On-chip Termination JTAG_TCK Input 20–50 kpull-down JTAG_TMS Input 20–50 kpull-up JTAG_TDI Input 20–50 kpull-up JTAG_TDO 3-state output None JTAG_TRSTB Input 20–50 kpull-up JTAG_MOD Input 20–50 kpull-down Recommended connections for unused analog interfaces Table 6 shows the recommended connections for unused analog interfaces. Table 6. Recommended connections for unused analog interfaces hi Module 32 kHz OSC ADC Pad Name RTC_XTALI, RTC_XTALO Recommendations if Unused Not connected It is recommended that RTC_XTALI ties to GND if external crystal is not connected. ADC_VREFH 10 K resistor to ground VDDA_ADC_1P8 10 K resistor to ground VDDA_ADC_3P3 10 K resistor to ground CCM CLK1_N, CLK1_P Not connected DAC DAC_OUT Not connected MIPI VDD_MIPI_1P0 10 K resistor to ground VDD_MIPI_1P8 10 K resistor to ground DCDC MIPI_DSI_CKN, MIPI_DSI_CKP, MIPI_DSI_DN0, MIPI_DSI_DP0, MIPI_DSI_DN1, MIPI_DSI_DP1 Not connected MIPI_CSI_CKN, MIPI_CSI_CKP, MIPI_CSI_DN0, MIPI_CSI_DP0, MIPI_CSI_DN1, MIPI_CSI_DP1 Not connected DCDC_IN, DCDC_IN_Q, DCDC_DIG, DCDC_ANA Not connected DCDC_DIG_SENSE, DCDC_ANA_SENSE, DCDC_LP, DCDC_LN Not connected DCDC_PSWITCH, DCDC_MODE To ground i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 22 NXP Semiconductors Modules list Table 6. Recommended connections for unused analog interfaces (continued) Module USB Pad Name USB1_DN, USB1_DP, USB1_VBUS, USB2_DN, USB2_DP, USB2_VBUS Recommendations if Unused Not connected VDD_USB_1P8 Powered with 1.8 V VDD_USB_3P3 Powered with 3.3 V SYS OSC XTALI, XTALO Not connected i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 23 Electrical characteristics 4 Electrical characteristics This section provides the device and module-level electrical characteristics for the i.MX RT1160 processors. 4.1 Chip-level conditions This section provides the device-level electrical characteristics for the IC. See Table 7 for a quick reference to the individual tables and sections. Table 7. i.MX RT1160 chip-Level conditions For these characteristics Topic appears Absolute maximum ratings on page 24 Thermal characteristics on page 26 Operating ranges on page 26 Maximum supply currents on page 29 Typical power mode supply currents on page 30 System power and clocks on page 33 4.1.1 Absolute maximum ratings CAUTION Stress beyond those listed under Table 8 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Table 8 shows the absolute maximum operating ratings. Table 8. Absolute maximum ratings Parameter Description Symbol Min Max Unit Core supplies input voltage VDD_SOC_IN -0.3 1.2 V Power for LPSR domain VDD_LPSR_IN -0.3 3.96 V DCDC_IN -0.3 3.96 V Power for PLL, OSC, and LDOs VDDA_1P8_IN -0.3 1.98 V Supply input voltage to Secure Non-Volatile Storage and Real Time Clock VDD_SNVS_IN -0.3 3.96 V USB1_VBUS USB2_VBUS -0.3 5.6 V Power for DCDC USB VBUS supply i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 24 NXP Semiconductors Electrical characteristics Table 8. Absolute maximum ratings (continued) Power for USB OTG PHYs Power for ADC, DAC, and ACMP Power for MIPI CSI/DSI PHY IO supply for GPIO in SDIO1 bank (3.3 V mode) VDD_USB_1P8 -0.3 1.98 V VDD_USB_3P3 -0.3 3.96 V VDDA_ADC_1P8 -0.3 1.98 V VDDA_ADC_3P3 -0.3 3.96 V VDD_MIPI_1P8 -0.3 1.98 V VDD_MIPI_1P0 -0.3 1.2 V NVCC_SD1 -0.3 3.96 V -0.3 1.98 V -0.3 3.96 V -0.3 1.98 V -0.3 3.96 V -0.3 1.98 V -0.3 3.96 V -0.3 1.98 V -0.3 3.96 V -0.3 1.98 V -0.3 3.96 V -0.3 1.98 V -0.3 3.96 V -0.3 1.98 V -0.3 3.96 V -0.3 1.98 V -0.3 1.98 IO supply for GPIO in SDIO1 bank (1.8 V mode) IO supply for GPIO in SDIO2 bank (3.3 V mode) NVCC_SD2 IO supply for GPIO in SDIO2 bank (1.8 V mode) IO supply for GPIO in EMC bank1 (3.3 V mode) NVCC_EMC1 IO supply for GPIO in EMC bank1 (1.8 V mode) IO supply for GPIO in EMC bank2 (3.3 V mode) NVCC_EMC2 IO supply for GPIO in EMC bank2 (1.8 V mode) IO power for GPIO in GPIO AD bank (3.3 V mode) NVCC_GPIO IO power for GPIO in GPIO AD bank (1.8 V mode) IO supply for GPIO in DISP1 bank (3.3 V mode) NVCC_DISP1 IO supply for GPIO in DISP1 bank1 (1.8 V mode) IO supply for GPIO in DISP2 bank (3.3 V mode) NVCC_DISP2 IO supply for GPIO in DISP2 bank1 (1.8 V mode) IO power for GPIO in LPSR bank (3.3 V mode) NVCC_LPSR IO power for GPIO in LPSR bank (1.8 V mode) IO power for GPIO in SNVS bank (1.8 V mode) NVCC_SNVS V 1 Input/Output Voltage range Vin/Vout -0.5 NVCC + 0.3 Storage Temperature range TSTORAGE -40 150 1 V o C NVCC is the I/O supply voltage. Table 9. Electrostatic discharge and latch-up characteristics Symbol VHBM Description Min Max Unit Notes Electrostatic discharge voltage, human body model -2000 +2000 V 1 i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 25 Electrical characteristics Table 9. Electrostatic discharge and latch-up characteristics (continued) Symbol VESD ILAT 1 Description Min Max Unit Notes All pins except the corner pins -500 +500 V 2 Corner pins only -750 +750 V Immunity level • Class II @125 oC ambient temperature -100 +100 mA Electrostatic discharge voltage, charged-device model 3 Determined according to JEDEC Standard JS001, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). Determined according to JEDEC Standard JS002, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. Determined according to JEDEC Standard JESD78, IC Latch-up Test. 2 3 4.1.2 Thermal characteristics Table 10 displays the 14 x 14 mm package thermal characteristics. Table 10. 14 x 14 mm thermal characteristics Rating Board Type1 Symbol Value Unit Junction to Ambient Thermal Resistance2 JESD51-9, 2s2p RJA3 31.6 o Junction to Top of Package Thermal Characterization Parameter2 JESD51-9, 2s2p JT4 1.4 o Junction to Case Thermal Resistance5 JESD51-9, 1s RJC6 10 o 1 2 3 4 5 6 C/W C/W C/W Thermal test board meets JEDEC specification for this package (JESD51-9). Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment. RJA = (Tj - Ta)/P [unit: oC/W], where Tj = junction temperature, Ta = ambient temperature, P = device power. JT = (Tj - Tt)/P [unit: oC/W], where Tj = junction temperature, Tt = temperature at top of package, P = device power. Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature is taken at the package top side centre surface temperature. RJC = (Tj - Tc)/P [unit: oC/W], where Tj = junction temperature, Tc = case temperature, P = device power. 4.1.3 Operating ranges Table 11 provides the operating ranges of the i.MX RT1160 processors. For details on the chip's power structure, see the “Power Management Unit (PMU)” chapter of the i.MX RT1160 Reference Manual (IMXRT1160RM). i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 26 NXP Semiconductors Electrical characteristics Table 11. Operating ranges Parameter Description Operating Conditions Min Max1 Unit M7 core at 500 MHz 0.975 1.15 V Powered by external power supply M7 core at 500 MHz 0.975 1.025 V Powered by on-chip DCDC M7 core at 240 MHz 0.9 1.15 V — M4 core at 240 MHz 0.975 1.15 V — M4 core at 120 MHz 0.9 1.15 V — VDD_SOC_IN M7 core 0.8 1.15 V — VDD_LPSR_DIG M4 core 0.8 1.15 V — Power for DCDC DCDC_IN — 3.0 3.6 V — Power for PLL, OSC, and LDOs VDDA_1P8_IN — 1.71 1.89 V — Power for LPSR domain VDD_LPSR_IN — 3.0 3.6 V — Power for SNVS and RTC VDD_SNVS_IN — 2.4 3.6 V — Power for USB OTG PHYs VDD_USB_1P8 — 1.65 1.95 V — VDD_USB_3P3 — 3.0 3.6 V — USB1_VBUS USB2_VBUS — 2.4 5.5 V — VDDA_ADC_1P8 — 1.65 1.95 V — VDDA_ADC_3P3 — 3.0 3.6 V — ADC_VREFH — 1.0 1.89 V — VDD_MIPI_1P8 — 1.65 1.95 V — VDD_MIPI_1P0 — 0.9 1.1 V — Run Mode Symbol VDD_SOC_IN VDD_LPSR_DIG STANDBY Mode USB VBUS supply Power for ADC, DAC, and ACMP Power for MIPI CSI/DSI PHY Comment i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 27 Electrical characteristics Table 11. Operating ranges (continued) GPIO supplies NVCC_SD1 NVCC_SD2 NVCC_EMC1 NVCC_EMC2 NVCC_GPIO NVCC_DISP1 NVCC_DISP2 NVCC_LPSR NVCC_SNVS — 3.0 3.6 V IO power for GPIO in SDIO1 bank (3.3 V mode) — 1.65 1.95 V IO power for GPIO in SDIO1 bank (1.8 V mode) — 3.0 3.6 V IO power for GPIO in SDIO2 bank (3.3 V mode) — 1.65 1.95 V IO power for GPIO in SDIO2 bank (1.8 V mode) — 3.0 3.6 V IO power for GPIO in EMC bank1 (3.3 V mode) — 1.65 1.95 V IO power for GPIO in EMC bank1 (1.8 V mode) — 3.0 3.6 V IO power for GPIO in EMC bank2 (3.3 V mode) — 1.65 1.95 V IO power for GPIO in EMC bank2 (1.8 V mode) — 3.0 3.6 V IO power for GPIO in GPIO AD bank (3.3 V mode) — 1.65 1.95 V IO power for GPIO in GPIO AD bank (1.8 V mode) — 3.0 3.6 V IO power for GPIO in DISP1 bank (3.3 V mode) — 1.65 1.95 V IO power for GPIO in DISP1 bank (1.8 V mode) — 3.0 3.6 V IO power for GPIO in DISP2 bank (3.3 V mode) — 1.65 1.95 V IO power for GPIO in DISP2 bank (1.8 V mode) — 3.0 3.6 V IO power for GPIO in LPSR bank (3.3 V mode) — 1.65 1.95 V IO power for GPIO in LPSR bank (1.8 V mode) — 1.65 1.95 V IO power for GPIO in SNVS bank (1.8 V mode) Temperature Operating Ranges Junction temperature 1 Tj Extended Industrial -40 125 o C See the application note, i.MX RT1160 Product Lifetime Usage Estimates for information on product lifetime (power-on years) for this processor. Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 28 NXP Semiconductors Electrical characteristics 4.1.4 Maximum supply currents The data shown in Table 12 represent a use case designed specifically to show the maximum current consumption possible. All cores are running at the defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention were to specifically show the worst case power consumption. Table 12. Maximum supply currents Power Rail Comments Max Current Unit DCDC_IN Max current for chip at 125 oC 1000 mA VDDA_1P8_IN 1.8 V power supply for PLL, OSC, and LDOs 100 mA VDD_SOC_IN Power supply for digital logic 850 mA VDD_LPSR_IN 3.3 V power supply for LPSR domain 75 mA VDD_SNVS_IN Power supply for SNVS domain 1 mA VDD_USB_1P8 1.8 V power supply for USB OTG PHYs 50 mA VDD_USB_3P3 3.3 V power supply for USB OTG PHYs 60 mA VDDA_ADC_1P8 1.8 V power supply for ADC, DAC, and ACMP 10 mA VDDA_ADC_3P3 ADC_VREFH 3.3 V power supply for ADC, DAC, and ACMP 2 mA VDD_MIPI_1P8 1.8 V power supply for MIPI CSI/DSI PHY 4 mA VDD_MIPI_1P0 1.0 V power supply for MIPI CSI/DSI PHY 30 mA NVCC_SD1 NVCC_SD2 NVCC_EMC1 NVCC_EMC2 NVCC_GPIO NVCC_DISP1 NVCC_DISP2 NVCC_LPSR NVCC_SNVS Imax = N x C x V x (0.5 x F) Where: N—Number of IO pins supplied by the power line C—Equivalent external capacitive load V—IO voltage (0.5 x F)—Data change rate. Up to 0.5 of the clock rate (F) In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 29 Electrical characteristics 4.1.5 Typical power mode supply currents Table 13 shows the current and power consumption (not including I/O) of i.MX RT1160 processors in selected power modes. Table 13. Typical power modes current and power consumption (Dual core) Modes Test conditions Set Point #0 Active • CM7 runs at 500 MHz, drive voltage to 1.0 V; CM4 runs at 240 MHz, drive voltage to 1.0 V • CM7 domain bus frequency at 200 MHz; CM4 domain bus frequency at 120 MHz • Enables ECC for cache, TCM, and OCRAM • LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed • 16 MHz, 400 MHz, external 24 MHz crystal, and external 32 kHz crystal are enabled • All PLLs are enabled • All peripherals are enabled and run at their maximum clock root frequency under normal drive mode Set Point #5 Active Set Point #7 Active • CM7 runs at 240 MHz, lower voltage to 0.9 V; CM4 runs at 120 MHz, lower voltage to 0.9 V • CM7 domain bus frequency at 100 MHz; CM4 domain bus frequency at 60 MHz • Enables ECC for cache, TCM, and OCRAM • LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed • 16 MHz, 400 MHz, external 24 MHz crystal, and external 32 kHz crystal are enabled • All PLLs are enabled • All peripherals are enabled and run at their maximum clock root frequency under underdrive mode • CM7 runs at 200 MHz, lower voltage to 0.9 V; CM4 is clock gated, lower voltage to 0.9 V • CM7 domain bus frequency at 100 MHz • Enables ECC for cache, TCM, and OCRAM • LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed • 16 MHz, 400 MHz, and external 32 kHz crystal are enabled • All PLLs are power gated • All peripherals controlled by CM4 core are clock gated, but remain powered Power supplies at 3.3 V (Typical)1 Units 25 oC Tj 125 oC Tj DCDC_IN 83.4 174.8 mA VDD_LPSR_IN 28.1 34.2 A VDD_SNVS_IN 4 22.1 A Total 275.326 577.026 mW DCDC_IN 43.3 97.6 mA VDD_LPSR_IN 28.1 33.6 A VDD_SNVS_IN 3.9 20.4 A Total 142.996 322.258 mW DCDC_IN 24.9 74.4 mA VDD_LPSR_IN 28.1 33.1 A VDD_SNVS_IN 3.9 19.7 A Total 82.276 245.694 mW i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 30 NXP Semiconductors Electrical characteristics Table 13. Typical power modes current and power consumption (Dual core) (continued) Set Point #9 Active Set Point #11 Active Set Point #12 Active Set Point #0 Standby Suspend • CM7 is clock gated, lower voltage to 0.9 V; CM4 runs at 100 MHz, lower voltage to 0.9 V • CM4 domain bus frequency at 50 MHz • Enables ECC for cache, TCM, and OCRAM • LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed • 16 MHz, 400 MHz, and external 32 kHz crystal are enabled • All PLLs are power gated • All peripherals controlled by CM7 core are clock gated, but remain powered • CM7 is power off; CM4 runs at 200 MHz, drive voltage to 1.0 V • CM4 domain bus frequency at 100 MHz • Enables ECC for CM4 TCM and OCRAM • DCDC is off, LDO_LPSR_ANA and LDO_LPSR_DIG are active • 16 MHz, 400 MHz, and external 32 kHz crystal are enabled • All PLLs are power gated • The WAKEUPMIX domain, MEGAMIX domain, and DISPLAYMIX domain are power gated • All peripherals in LPSRMIX domain are clocked • CM7 is power off; CM4 runs at 100 MHz, lower voltage to 0.9 V • CM4 domain bus frequency at 50 MHz • Enables ECC for CM4 TCM and OCRAM • DCDC is off, LDO_LPSR_ANA and LDO_LPSR_DIG are active • 16 MHz, 400 MHz, and external 32 kHz crystal are enabled • All PLLs are power gated • The WAKEUPMIX domain, MEGAMIX domain, and DISPLAYMIX domain are power gated • All peripherals in LPSRMIX domain are clocked • • • • System is on STANDBY mode Both CM7 and CM4 are on SUSPEND mode TCM with ECC is on retention LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed • All clock sources are turned off except for 32 kHz RTC • All PLLs are power gated • All peripherals are clock gated, but remain powered DCDC_IN 14.5 59.9 mA VDD_LPSR_IN 28.2 33.1 A VDD_SNVS_IN 3.9 19.4 A Total 47.956 197.843 mW DCDC_IN 26.5 54.3 A VDD_LPSR_IN 38.2 52.6 mA VDD_SNVS_IN 3.9 19.8 A Total 126.160 173.825 mW DCDC_IN 26.2 53.2 A VDD_LPSR_IN 22.9 33.3 mA VDD_SNVS_IN 3.9 19 A Total 75.669 110.128 mW DCDC_IN 3 33.1 mA VDD_LPSR_IN 29.9 43.5 A VDD_SNVS_IN 3.9 18.8 A Total 10.012 109.436 mW i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 31 Electrical characteristics Table 13. Typical power modes current and power consumption (Dual core) (continued) Set Point #5 Standby Suspend Set Point #7 Standby Suspend Set Point #10 Standby Suspend Set Point #11 Standby Suspend • • • • System is on STANDBY mode Both CM7 and CM4 are on SUSPEND mode TCM with ECC is on retention LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed • All clock sources are turned off except for 32 kHz RTC • All PLLs are power gated • All peripherals are clock gated, but remain powered • • • • System is on STANDBY mode Both CM7 and CM4 are on SUSPEND mode TCM with ECC is on retention LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed • All clock sources are turned off except for 32 kHz RTC • All PLLs are power gated • All peripherals are clock gated, but remain powered • Lower voltage to 0.8 V with RBB mode for both SOC and LPSR domains • System is on STANDBY mode • Both CM7 and CM4 are on SUSPEND mode • TCM with ECC is on retention • LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed • All clock sources are turned off except for 32 kHz RTC • All PLLs are power gated • All peripherals are clock gated, but remain powered • • • • • • • • System is on STANDBY mode CM7 is power off, CM4 is on SUSPEND mode CM4 TCM with ECC is on retention DCDC is off, LDO_LPSR_ANA and LDO_LPSR_DIG are active All clock sources are turned off except for 32 kHz RTC All PLLs are power gated The WAKEUPMIX domain, MEGAMIX domain, and DISPLAYMIX domain are power gated All peripherals in LPSRMIX domain are clock gated, but remain powered DCDC_IN 2.3 24.8 mA VDD_LPSR_IN 29.8 43.5 A VDD_SNVS_IN 3.8 18.6 A Total 7.701 82.045 mW DCDC_IN 2.3 24.8 mA VDD_LPSR_IN 29.8 43.5 A VDD_SNVS_IN 3.8 18.6 A Total 7.701 82.045 mW DCDC_IN 1.8 18.7 mA VDD_LPSR_IN 29.7 43.5 A VDD_SNVS_IN 3.8 18.4 A Total 6.051 61.914 mW DCDC_IN 26.1 52.6 A VDD_LPSR_IN 0.893 11.8 mA VDD_SNVS_IN 3.8 18.2 A Total 3.046 39.174 mW i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 32 NXP Semiconductors Electrical characteristics Table 13. Typical power modes current and power consumption (Dual core) (continued) Set Point #15 Standby Suspend SNVS 1 • Lower voltage to 0.8 V with RBB mode for LPSR domain • System is on STANDBY mode • CM7 is power off, CM4 is on SUSPEND mode • CM4 TCM with ECC is on retention • DCDC is off, LDO_LPSR_ANA and LDO_LPSR_DIG are active • All clock sources are turned off except for 32 kHz RTC • All PLLs are power gated • The WAKEUPMIX domain, MEGAMIX domain, and DISPLAYMIX domain are power gated • All peripherals in LPSRMIX domain are clock gated, but remain powered • Only SNVS domain is powered • 32 kHz RTC is alive • DCDC_IN and VDD_LPSR_IN are power gated DCDC_IN 26.1 52.4 A VDD_LPSR_IN 0.503 7.9 mA VDD_SNVS_IN 3.8 18.1 A Total 1.759 26.303 mW DCDC_IN 0 0 A VDD_LPSR_IN 0 0 A VDD_SNVS_IN 3.8 18.4 A Total 12.54 60.72 W Code runs in the ITCM; typical values are the average values on typical process wafers. Table 14 shows the typical wakeup time. Table 14. Typical wakeup time1 1 Description Typical wakeup time Unit From Set Point #0 Standby Suspend to Set Point #0 normal drive RUN 4.13 ms From Set Point #5 Standby Suspend to Set Point #0 normal drive RUN 4.79 ms From Set Point #10 Standby Suspend to Set Point #0 normal drive RUN 5.47 ms From Set Point #15 Standby Stop to Set Point #0 normal drive RUN 7.6 ms From SNVS mode to ROM exit 8.97 ms Please refer to Table 13 for Set Point modes definition, and the only difference between Set Point #15 Standby Suspend mode and Set Point #15 Standby Stop mode is the Suspend mode versus Stop mode on CM4 core. 4.2 System power and clocks This section provides the information about the system power and clocks. 4.2.1 Power supplies requirements and restrictions The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to guarantee the reliable operation of the device. Any deviation from these sequences may result in the following situations: • Excessive current during power-up phase • Prevention of the device from booting i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 33 Electrical characteristics • Irreversible damage to the processor (worst-case scenario) Figure 4 shows the power sequence. VDD_SNVS_IN VDD_SNVS_ANA VDD_SNVS_DIG VDD_LPSR_IN VDD_LPSR_ANA VDD_LPSR_DIG DCDC_IN 1ms DCDC_PSWITCH VDDA_1P8 VDD_SOC_IN ONOFF Figure 4. Power sequence 4.2.1.1 Power-up sequence The below restrictions must be followed: • VDD_SNVS_IN supply must be turned on before any other power supply or be connected (shorted) with VDD_LPSR_IN and DCDC_IN supply. • If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other supply is switched on. • An RC delay circuit is recommended for providing the delay between DCDC_IN stable and DCDC_PSWITCH. The total RC delay should be 5 – 40 ms. • DCDC_IN must reach a minimum 3.0 V within 0.3 x RC. • Delay from DCDC_IN stable at 3.0 V min to DCDC_PSWITCH reaching 0.5 x DCDC_IN (1.5 V) must be at least 1 ms. • Power up slew rate specification for other power domains is 360 V/s – 36 KV/s. • Ensure VDD_LPSR_DIG powered prior to VDD_SOC_IN. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 34 NXP Semiconductors Electrical characteristics NOTE If expect to release MCU by POR_B signal, the POR_B input must be immediately asserted at power-up and remain asserted until the last power rail reaches its working voltage. In the absence of an external reset feeding the POR_B input, the internal POR module takes control. See the i.MX RT1160 Reference Manual (IMXRT1160RM) for further details and to ensure that all necessary requirements are being met. NOTE The voltage on DCDC_PSWITCH pin should be below 0.5 V before ramping up the voltage on DCDC_PSWITCH. NOTE The power rail VDD_SNVS_DIG is controlled by software. NOTE Need to ensure that there is no back voltage (leakage) from any supply on the board towards the 3.3 V supply (for example, from the external components that use both the 1.8 V and 3.3 V supplies). NOTE USB1_VBUS, USB2_VBUS, and VDDA_ADC_3P3 are not part of the power supply sequence and may be powered at any time. 4.2.1.2 Power-down sequence The following restrictions must be followed: • VDD_SNVS_IN supply must be turned off after any other power supply or be connected (shorted) with VDD_LPSR_IN and DCDC_IN supply. • If a coin cell is used to power VDD_SNVS_IN, then ensure that it is removed after any other supply is switched off. 4.2.1.3 Power supplies usage I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_XXXX) is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O power supply of each pin, see “Power Rail” columns in pin list tables of Section 6, Package information and contact assignments.” 4.2.2 Internal POR and power detect Internal detector monitors VDD_SOC_IN and VDD_LPSR_DIG. Internal POR will be asserted whenever VDD_SOC_IN or VDD_LPSR_DIG are lower than the valid voltage values shown in the Table 15. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 35 Electrical characteristics Table 15. Internal POR and power detect Symbol Description Value Unit Vdetlpsr1p0_H 1.0 V supply valid 0.75 V Vdetsoc1p0_H 1.0 V supply valid 0.75 V The detector hysteresis 100 mV Hystdet1p0 4.2.3 Integrated LDO voltage regulator parameters Various internal supplies can be powered ON from internal LDO voltage regulators. The on-chip LDOs are intended for internal use only and should not be used to power any external circuitry. See the i.MX RT1160 Reference Manual (IMXRT1160RM) for details on the power tree scheme. 4.2.3.1 LDO_SNVS_ANA Table 16 shows the parameters of LDO_SNVS_ANA. Table 16. LDO_SNVS_ANA specification Specification Min Typ Max Unit VDD_SNVS_IN 2.4 3 3.6 V VDD_SNVS_ANA 1.65 1.75 1.95 V I_out — — 1 mA External decoupling capacitor — 2.2 — F 4.2.3.2 LDO_SNVS_DIG Table 17 shows the parameters of LDO_SNVS_DIG. Table 17. LDO_SNVS_DIG specification Specification Min Typ Max Unit VDD_SNVS_ANA 1.65 1.75 1.95 V VDD_SNVS_DIG 0.65 0.85 0.95 V I_out — — 1 mA External decoupling capacitor — 0.22 — F i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 36 NXP Semiconductors Electrical characteristics 4.2.3.3 LDO_PLL Table 18 shows the parameters of LDO_PLL. Table 18. LDO_PLL specification Specification Min Typ Max Unit VDDA_1P8_IN 1.71 1.8 1.89 V VDDA_1P0 0.9 1 1.2 V I_out — — 70 mA External decoupling capacitor — 2.2 — F 4.2.3.4 LPSR_LDO_DIG LPSR_LDO_DIG provides 1.0 V power source (VDD_LPSR_DIG) from 1.8V power domain (VDD_LPSR_ANA). The trim voltage range of LDO output is from 0.7 V to 1.15 V. There are two work modes: Low Power mode and High Power mode. In typical PVT case, the static current consumption is less than 3 A in Low Power mode. The maximum drive strength of this LDO regulator is 50 mA in High Power mode. Table 19. LPSR_LDO_DIG specification Specification Min Typ Max Unit VDD_LPSR_ANA 1.71 1.8 1.89 V VDD_LPSR_DIG 0.7 1 1.15 V I_out — — 50 mA External decoupling capacitor — 2.2 — F 4.2.3.5 LPSR_LDO_ANA LPSR_LDO_ANA provides 1.8 V power source (VDD_LPSR_ANA) from 3.3 V power domain (VDD_LPSR_IN). Its default output value is 1.8 V. Two work modes are supported by this LDO: Low Power mode and High Power mode. In Low Power mode, the LDO provides 2 mA (maximum value) by consuming only 4 A current. In High Power mode, the LDO provides 75 mA current capacity with 40 A static power dissipation. Table 20. LPSR_LDO_ANA specification Specification Min Typ Max Unit VDD_LPSR_IN 3 3.3 3.6 V VDD_LPSR_ANA — 1.8 — V I_out — — 75 mA External decoupling capacitor — 4.7 — F i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 37 Electrical characteristics 4.2.4 DCDC DCDC can be configured to operate on power-save mode when the load current is less than 50 mA. During the power-save mode, the converter operates with reduced switching frequency in PFM mode and with a minimum quiescent current to maintain high efficiency. DCDC can detect the peak current in the P-channel switch. When the peak current exceeds the threshold, DCDC will give an alert signal, and the threshold can be configured. By this way, DCDC can roughly detect the current loading. DCDC also includes the following protection functions: • Over current protection. In run mode, DCDC shuts down when detecting abnormal large current in the P-type power switch. • Over voltage protection. DCDC shuts down when detecting the output voltage is too high. • Low voltage detection. DCDC shuts down when detecting the input voltage is too low. On-chip regulators are designed to power on-chip load only. Do not use on-chip regulators to power external loads. DCDC_DIG is used to power VDD_SOC_IN. DCDC_ANA is a low-noise power rail used to power on-chip analog loads only. Table 21 shows DCDC characteristics. Input voltage refers to DCDC_IN balls. 1.0 V output refers to DCDC_DIG balls. 1.8 V output refers to DCDC_ANA balls. Table 21. DCDC characteristics1 Description Input voltage Min Typ Max Unit Comments 3 3.3 3.6 V — • 1.0 V output 0.6 1 1.375 V 25 mV per step • 1.8 V output 1.5 1.8 2.275 V 25 mV per step • 1.0 V output — 150 850 mA — • 1.8 V output — 80 150 mA Consider 1.8 V supply currents in Table 12 to ensure no DCDC overload. Add currents for active modules per use case. • DCDC run mode — 80% — — 150 mA@vdd1p0 80 mA@vdd1p8 • DCDC low power mode — 80% — — 300 A@vdd1p0 300 A@vdd1p8 Output voltage Loading Efficiency Output voltage accuracy i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 38 NXP Semiconductors Electrical characteristics Table 21. DCDC characteristics1 Description Min Typ Max Unit Comments • DCDC Run mode -2.5% — 2.5% — Maximum 50 mV Vp-p@vdd1p0 • DCDC Low power mode -6% — 6% — — Over current detection — 1.5 — A The typical value can be configured as 1.5 A and 2 A by register. • Output 1.8 V — 2.5 2.75 V — • Output 1.0 V — 1.5 1.65 V — • Low DCDC_IN detection — 2.6 2.8 V — Leakage current — 3 — A DCDC off • DCDC Run mode — 150 — A — • DCDC Low power mode — 5 — A — Capacitor value — 33 (DCDC_ANA) 66 (DCDC_DIG) — F High frequency capacitor are also required. Inductor value — 4.7 — H — • Saturation current — 1 — A — Over voltage detection Quiescent current 1 Values in this table are based on CZ test with limited matrix samples in lab environment. For additional information, see the i.MX RT1160 Reference Manual (IMXRT1160RM). 4.2.5 PLL’s electrical characteristics This section provides PLL electrical characteristics. 4.2.5.1 Audio/Video PLL’s electrical parameters Table 22. Audio/Video PLL’s electrical parameters Parameter Min Typ Max Unit 650 — 1300 MHz Reference clock — 24 — MHz Lock time — — 11250 reference cycles Clock output range i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 39 Electrical characteristics Table 22. Audio/Video PLL’s electrical parameters (continued) Parameter Min Typ Max Unit — 50 — ps 48.5 — 51.5 % Period jitter (p2p) Duty cycle 4.2.5.2 528 MHz PLL Table 23. 528 MHz PLL’s electrical parameters Parameter Min Typ Max Unit Clock output range — — 528 MHz Reference clock — 24 — MHz Lock time — — 11250 reference cycles Period jitter (p2p) — 50 — ps PFD period jitter (p2p) — 100 — ps Duty cycle 45 — 55 % 4.2.5.3 Ethernet PLL Table 24. Ethernet PLL’s electrical parameters Parameter Min Typ Max Unit Clock output range — — 1000 MHz Reference clock — 24 — MHz Lock time — — 11250 reference cycles Period jitter (p2p) — 50 — ps 47.5 — 52.5 % Duty cycle 4.2.5.4 480 MHz PLL Table 25. 480 MHz PLL’s electrical parameters Parameter Min Typ Max Unit Clock output range — — 480 MHz Reference clock — 24 — MHz Lock time — — 383 reference cycles Period jitter (p2p) — 40 — ps i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 40 NXP Semiconductors Electrical characteristics Table 25. 480 MHz PLL’s electrical parameters (continued) Parameter Min Typ Max Unit PFD period jitter (p2p) — 125 — ps Duty cycle 45 — 55 % 4.2.5.5 Arm PLL Table 26. Arm PLL’s electrical parameters Parameter Min Typ Max Unit 156 — 2496 MHz Reference clock — 24 — MHz Lock time — — 2250 reference cycles Period jitter (p2p) — 15 — ps Duty cycle 45 — 55 % Clock output range 4.2.6 On-chip oscillators The system oscillator (SYS OSC) is a crystal oscillator. The SYS OSC, in conjunction with an external crystal or resonator, generates a reference clock for this chip. It also provides the option for an external input clock to XTALI signal directly. Table 27. 24 MHz system oscillator frequency specifications Symbol Parameter Conditions Min Typ Max Unit 24 MHz — 0.5 — mA 24 MHz — 1.3 — mA IVDDA (Low power mode) Analog supply current IVDDA (High gain mode) RF RS Analog supply current Feedback resistor Low-power mode High-gain mode — 1 — M — — 0 — k Series resistor1 CXCY XTALI/XTALO load capacitance Cpara Parasitically capacitance of XTALI and XTALO No need See crystal or resonator manufacture’s recommendation — — 1.5 2.0 pF Clock output FOSC Oscillator crystal or resonator frequency — — 24 — MHz tdcy Duty-cycle of the output clock — 40 50 60 % Dynamic parameters i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 41 Electrical characteristics Table 27. 24 MHz system oscillator frequency specifications (continued) Symbol VPP tstart 1 2 Parameter Peak-peak amplitude of oscillation Start-up time from OSC_24M_CNTL[OSC_EN] set to oscillator stable2 Conditions Min Typ Max Unit Low-power mode — 0.8 — V High gain mode 0.75x VDDA_ 1P8_IN 0.8 x VDDA_ 1P8_IN — V 24 MHz low-power mode — 250 — s 24 MHz high-gain mode — 250 — s Depends on the drive level of external crystal device Oscillator hardware default is OFF at power-up, so requires firmware or software to enable. Each i.MX RT1160 processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI). The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is an internal ring oscillator, which can be used instead of the clock source from RTC_XTALI. The internal ring oscillator does not provide an accurate frequency and is affected by process, voltage, and temperature variations. NXP recommends using an external crystal as the clock source for RTC_XTALI. If the internal clock oscillator is used instead, careful consideration should be given to the timing implications on all of the SoC modules dependent on this clock. The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. Table 28. 32 kHz oscillator specifications Symbol Cpara Vpp fosc_lo tstart Vec_extal32 1 2 Description Min Typ Max Unit Note Parasitically capacitance of RTC_XTALI and RTC_XTALO — 1.5 2.0 pF — Peak-to-peak amplitude of oscillator — 0.6 — V 1 Oscillator crystal — 32.768 — kHz — Crystal startup time from VDD_SNVS_ANA ramp-up to minimum operating voltage to oscillator stable — 500 — ms 1 Externally provided input clock amplitude 0.7 — VDD_SNVS _ANA V 2,3 Proper PCB layout procedures must be followed to achieve specifications. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 42 NXP Semiconductors Electrical characteristics 3 The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock must be within the range of VSS to VDD_SNVS_ANA. The RTC OSC module provides the clock source for the Real-Time Clock module. The RTC OSC module, in conjunction with an external crystal, generates a 32.768 kHz reference clock for the RTC. Table 29. RC oscillator with 16 MHz internal reference frequency Symbol Parameter Condition Min Typ Max Unit — 15.1 16 16.9 MHz Start-up time from VDD_LPSR_ANA ramp-up to minimum operating voltage to oscillator stable — — 50 — s Supply current in power-down — 1 2 95 nA Clock output Fclkout_16M Clock frequency Dynamic parameters Tstart_16M Power-down mode IVDDA Table 30. RC oscillator with 48 MHz internal reference frequency Symbol Parameter Condition Min Typ Max Unit Analog supply current — — 350 500 A Clock frequency — — 48 — MHz Start-up time from VDD_LPSR_ANA ramp-up to minimum operating voltage to oscillator stable — — 2.5 — s Trimmed — -2 — 2 % General IVDDA Clock output Fclkout Dynamic parameters Tstart Accuracy Ttarget Table 31. RC oscillator with 400 MHz internal reference frequency Symbol Parameter Condition Min Typ Max Unit General IVDD_1P8V_ON Analog supply current — — 60 — A IVDD_ON Digital supply current — — 80 — A Clock output i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 43 Electrical characteristics Table 31. RC oscillator with 400 MHz internal reference frequency (continued) Symbol Condition Min Typ Max Unit Tuned clock frequency — — 400 — MHz Frequency error after tuning — — 0.1 — % Peak-peak, period jitter — — 50 — ps tstart Start-up time from OSC_400M_CTRL1[PWD] is cleared to oscillator stable1 — — 1 — s ttune Tuning time — 1 — 256 s F_tuned ΔF/F Parameter Dynamic parameters JPP-CC 1 Oscillator hardware default is OFF at power-up, so requires firmware or software to enable. Table 32. RC oscillator with 32 kHz internal reference frequency Symbol firc32k Internal reference frequency Δfirc32k 4.3 Description Deviation of IRC32K frequency Min Typ Max Unit Note — 32 — kHz — -25% — 25% %firc32k — I/O parameters This section provides parameters on I/O interfaces. 4.3.1 I/O DC parameters This section includes the DC parameters of the following I/O types: • XTALI and RTC_XTALI (Clock Inputs) DC Parameters • General Purpose I/O (GPIO) NOTE The term ‘NVCC_XXXX’ in this section refers to the associated supply rail of an input or output. NOTE When enable the open drain for I/O pad, the external pull-up voltage cannot exceed the associated supply rail. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 44 NXP Semiconductors Electrical characteristics Figure 5. Circuit for parameters Voh and Vol for I/O cells 4.3.1.1 XTALI and RTC_XTALI (clock inputs) DC parameters Table 33 shows the DC parameters for the clock inputs. Table 33. XTALI and RTC_XTALI DC parameters1 Parameter Symbol Test Conditions Min Max Unit XTALI high-level DC input voltage Vih — VDDA_1P8_IN - 0.5 VDDA_1P8_IN V XTALI low-level DC input voltage Vil — 0 0.5 V RTC_XTALI high-level DC input voltage Vih — VDD_SNVS_ANA - 0.5 VDD_SNVS_ANA V RTC_XTALI low-level DC input voltage Vil — 0 0.5 V 1 The DC parameters are for external clock input only. 4.3.1.2 General purpose I/O (GPIO) DC parameters Following section introduces the GPIO DC parameters, respectively, for GPIO pads. These parameters are guaranteed per the operating ranges in Table 11 unless otherwise noted. Table 34. DC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank Parameter Symbol Value Min Typ Max Unit Condition Receiver 3.3 V High level input voltage VIH 0.625 x NVCC — NVCC + 0.3 V — Low level input voltage VIL -0.3 — 0.25 x NVCC V — Receiver 1.8 V High level input voltage VIH 0.65 x NVCC — NVCC + 0.3 V — Low level input voltage VIL -0.3 — 0.35 x NVCC V — Driver 3.3 V and driver 1.8 V for PDRV = L and PDRV = H i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 45 Electrical characteristics Table 34. DC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank (continued) Parameter Symbol Output high current Value Unit Condition — mA VOH = 0.8 x NVCC — — mA VOL = 0.2 x NVCC — 100 mA — Min Typ Max IOH -6 — Output low current IOL 6 Output low/high current total for each IO bank IOCT — Weak pull-up and pull-down Pull-up / pull-down resistance RHigh 10 — 100 k High voltage range (2.7 V - 3.6 V) Pull-up / pull-down resistance RLow 20 — 50 k Low voltage range (1.65 V - 1.95 V) Table 35. DC specification for GPIO_SNVS bank1 Parameter Symbol Min Typ2 Max Unit Condition High level input voltage VIH 0.7 x NVCC_SNVS — NVCC_SNVS + 0.1 V — Low level input voltage VIL -0.3 — 0.3 x NVCC_SNVS V — Output high current IOH — -45 — A VOH = NVCC_SNVS - 0.3 Output low current IOL — 50 — A VOL = 0.3 Output low/high current total for GPIO_SNVS bank IOCT — — 1 mA — 600 k — Weak pull-up and pull-down Pull-up and pull-down resistance 1 2 RHigh/ RLow 100 200 By default, functionality of GPIO_SNVS_XX port is determined by the part number. Tamper function is available only on tamper-enabled parts, and GPIO is the only available function on parts which do not support tamper. Typical numbers are not guaranteed. Table 36. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank NO. Characteristics Test Conditions Min Max Units 1 Input high voltage (VIH) Normal voltage range 0.7 x NVCC NVCC + 0.1 V Derated voltage range 0.75 x NVCC NVCC + 0.1 V Derated2 voltage range 0.75 x NVCC NVCC + 0.1 V Low voltage range 0.7 x NVCC NVCC + 0.1 V High voltage range 0.7 x NVCC NVCC + 0.1 V i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 46 NXP Semiconductors Electrical characteristics Table 36. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued) NO. Characteristics Test Conditions Min Max Units 2 Input low voltage (VIL) Normal voltage range - 0.3 0.3 x NVCC V Derated voltage range - 0.3 0.25 x NVCC V Derated2 voltage range - 0.3 0.25 x NVCC V Low voltage range - 0.3 0.3 x NVCC V High voltage range - 0.3 0.3 x NVCC V 3 Input Hysteresis (VHYSN) All voltage range 0.06 x NVCC — V 4 Output high voltage (VOH) DSE = 1 Normal voltage range IOH = -10 mA NVCC - 0.5 — V Derated voltage range IOH = -6 mA NVCC - 0.5 — V Derated2 voltage range IOH = -5 mA NVCC - 0.5 — V Low voltage range IOH = -10 mA NVCC - 0.5 — V High voltage range IOH = -10 mA NVCC - 0.5 — V Normal voltage range IOH = -5 mA NVCC - 0.5 — V Derated voltage range IOH = -3 mA NVCC - 0.5 — V Derated2 voltage range IOH = -2.5 mA NVCC - 0.5 — V Low voltage range IOH = -5 mA NVCC - 0.5 — V High voltage range IOH = -5 mA NVCC - 0.5 — V Normal voltage range IOL = 10 mA — 0.5 V Derated voltage range IOL = 6 mA — 0.5 V Derated2 voltage range IOL = 5 mA — 0.5 V Low voltage range IOL = 10 mA — 0.5 V High voltage range IOL = 10 mA — 0.5 V 5 6 Output high voltage (VOH) DSE = 0 Output low voltage (VOL) DSE = 1 i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 47 Electrical characteristics Table 36. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued) NO. Characteristics Test Conditions Min Max Units 7 Output low voltage (VOL) DSE = 0 Normal voltage range IOL = 5 mA — 0.5 V Derated voltage range IOL = 3 mA — 0.5 V Derated2 voltage range IOL = 2.5 mA — 0.5 V Low voltage range IOL = 5 mA — 0.5 V High voltage range IOL = 5 mA — 0.5 V Normal voltage range 2.7 3.6 V Derated voltage range 1.98 2.7 V Derated2 voltage range 1.71 1.98 V Low voltage range 1.71 1.98 V High voltage range 3 3.6 V 8 NVCC 11 Pull-up resistor range (RPU) Measure @VDD All voltage range 25 50 k 12 Pull-down resistor range (RPD) Measure @VSS All voltage range 25 50 k 13 Input leakage current All voltage range — 1 A 14 Output capacitance (CL) All voltage range — 15 pF 15 Input capacitance (Cin) All voltage range — 5 pF 16 Output low/high current total for each IO bank (IOCT) All voltage range — 100 mA 4.3.2 I/O AC parameters The GPIO and DDR I/O load circuit and output transition time waveform are shown in Figure 6 and Figure 7. From Output Under Test Test Point CL CL includes package, probe and fixture capacitance Figure 6. Load circuit for output i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 48 NXP Semiconductors Electrical characteristics 80% 80% 20% 0V 20% Output (at pad) tf tr OVDD Figure 7. Output transition time waveform 4.3.2.1 General purpose I/O (GPIO) AC parameters The I/O AC parameters for GPIO are presented in the Table 37 and Table 38, respectively. Table 37. AC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank Symbol Parameter Test Condition Min Typ Max Unit 208 MHz Driver 1.8 V application fmax Maximum frequency Load = 21 pF (PDRV = L, high drive, 33  Load = 15 pF (PDRV = H, low drive, 50  — — tr Rise time Measured between VOL and VOH 0.4 — 1.32 ns tf Fall time Measured between VOH and VOL 0.4 — 1.32 ns Load = 20 pF — — 200 MHz Driver 3.3 V application fmax Maximum frequency tr Rise time Measured between VOL and VOH — — 3 ns tf Fall time Measured between VOH and VOL — — 3 ns Table 38. Dynamic input characteristics for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank Symbol Test Condition1, 2 Parameter Min Max Unit — 200 MHz — 208 MHz Dynamic Input Characteristics for 3.3 V Application fop Input frequency of operation — Dynamic Input Characteristics for 1.8 V Application fop 1 2 Input frequency of operation — For all supply ranges of operation. The dynamic input characteristic specifications are applicable for the digital bidirectional cells. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 49 Electrical characteristics Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank NO. Characteristic 1 fmax 2 Pad rise/fall time (DSE = 0, SRE = 0) 3 4 Pad rise/fall time (DSE = 0, SRE = 1) Pad rise/fall time (DSE = 1, SRE = 0) Condition Min Max Unit Cload = 15 pF — 104 MHz Normal voltage range (Cload = 15 pF) — 3 ns Derated voltage range (Cload = 15 pF) — 5 ns Derated2 voltage range (Cload = 15 pF) — 6 ns Low voltage range (Cload = 15 pF) — 3 ns High voltage range (Cload = 15 pF) — 3 ns Normal voltage range (Cload = 15 pF) — 6 ns Derated voltage range (Cload = 15 pF) — 10 ns Derated2 voltage range (Cload = 15 pF) — 12 ns Low voltage range (Cload = 15 pF) — 6 ns High voltage range (Cload = 15 pF) — 6 ns Normal voltage range (Cload = 15 pF) — 2.5 ns Derated voltage range (Cload = 15 pF) — 4.5 ns Derated2 voltage range (Cload = 15 pF) — 5 ns Low voltage range (Cload = 15 pF) — 2.5 ns High voltage range (Cload = 15 pF) — 2.5 ns i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 50 NXP Semiconductors Electrical characteristics Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued) NO. Characteristic Condition Min Max Unit 5 Pad rise/fall time (DSE = 1, SRE = 1) Normal voltage range (Cload = 15 pF) — 5 ns Derated voltage range (Cload = 15 pF) — 9 ns Derated2 voltage range (Cload = 15 pF) — 10 ns Low voltage range (Cload = 15 pF) — 5 ns High voltage range (Cload = 15 pF) — 5 ns Normal voltage range (Cload = 15 pF) — 2.5 ns Derated voltage range (Cload = 15 pF) — 4.5 ns Derated2 voltage range (Cload = 15 pF) — 5 ns Low voltage range (Cload = 15 pF) — 2.5 ns High voltage range (Cload = 15 pF) — 4 ns Normal voltage range (Cload = 15 pF) — 7 ns Derated voltage range (Cload = 15 pF) — 12 ns Derated2 voltage range (Cload = 15 pF) — 14 ns Low voltage range (Cload = 15 pF) — 7 ns High voltage range (Cload = 15 pF) — 8.5 ns Normal voltage range (Cload = 15 pF) — 2 ns Derated voltage range (Cload = 15 pF) — 3.6 ns Derated2 voltage range (Cload = 15 pF) — 4 ns Low voltage range (Cload = 15 pF) — 2 ns High voltage range (Cload = 15 pF) — 4 ns 6 7 8 IPP_DO to pad propagation delay: (DSE = 0, SRE = 0) IPP_DO to pad propagation delay: (DSE = 0, SRE = 1) IPP_DO to pad propagation delay: (DSE = 1, SRE = 0) i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 51 Electrical characteristics Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued) NO. 9 Characteristic IPP_DO to pad propagation delay: (DSE = 1, SRE = 1) Condition Min Max Unit Normal voltage range (Cload = 15 pF) — 6 ns Derated voltage range (Cload = 15 pF) — 11 ns Derated2 voltage range (Cload = 15 pF) — 12 ns Low voltage range (Cload = 15 pF) — 6 ns High voltage range (Cload = 15 pF) — 7.5 ns Figure 8 is the GPIO block diagram. IPP_OBE IPP_DSE OUTPUT DRIVER IPP_DO Pad IPP_SRE IPP_PUE IPP_PUS IOMUX/IOMUXC PU/PD logic PU/PD device IPP_IBE IPP_IND IPP_HYS INPUT RECEIVER Figure 8. GPIO block diagram 4.4 System modules This section contains the timing and electrical parameters for the modules in the i.MX RT1160 processor. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 52 NXP Semiconductors Electrical characteristics 4.4.1 Reset timing parameters Figure 9 shows the POR reset timing and Table 40 lists the timing parameters. POR_B (Input) CC1 Figure 9. POR reset timing diagram Table 40. POR reset timing parameters ID CC1 4.4.2 Parameter Duration of POR_B to be qualified as valid. Min Max Unit 1 — RTC_XTALI cycle WDOG reset timing parameters Figure 10 shows the WDOG reset timing and Table 41 lists the timing parameters. WDOG_B (Output) CC3 Figure 10. WDOG_B timing diagram Table 41. WDOG_B timing parameters ID CC3 Parameter Duration of WDOG_B Assertion Min Max Unit 1 — RTC_XTALI cycle NOTE RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or approximately 30 s. NOTE WDOG_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUX manual for detailed information. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 53 Electrical characteristics 4.4.3 JTAG Controller timing parameters Figure 11 depicts the JTAG controller timing. Figure 12 depicts the JTAG TRST_B timing. Figure 11. JTAG controller timing Figure 12. JTAG_TRST_B timing i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 54 NXP Semiconductors Electrical characteristics Table 42. JTAG timing parameters ID Parameter Value Min Max Unit J0 TCK frequency — 25 MHz J1 TCK cycle time 40 — ns J2 TCK pulse width 20 — ns J3 Input data setup time 5 — ns J4 Input data hold time 5 — ns J5 Output data valid time — 15.2 ns J6 Output high impedance time — 15.2 ns J7 TRST_B assert time 100 — ns J8 TRST_B setup time to TCK edge 18 — ns 4.4.4 SWD timing parameters Figure 13 depicts the SWD timing. Figure 13. SWD timing i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 55 Electrical characteristics Table 43. SWD timing parameters Symbol Description Min Max Unit S0 SWD_CLK frequency — 50 MHz S1 SWD_CLK cycle time 20 — ns S2 SWD_CLK pulse width 10 — ns S3 Input data setup time 5 — ns S4 Input data hold time 1 — ns S5 Output data valid time — 14.4 ns S6 Output high impedance time — 14.4 ns Min Max Unit 4.4.5 Trace timing parameters Figure 14 depicts the trace timing. T1 T2 T2 TRACE_CLK (output) T3 T4 T3 T4 TRACE0-3 (output) Figure 14. Trace timing Table 44. Trace timing parameters Symbol Description T0 TRACE_CLK frequency — 70 MHz T1 TRACE_CLK cycle time 1/T0 — ns T2 TRACE_CLK pulse width 6 — ns i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 56 NXP Semiconductors Electrical characteristics Table 44. Trace timing parameters (continued) Symbol Description Min Max Unit T3 TRACE data setup time 2 — ns T4 TRACE data hold time 0.7 — ns 4.5 External memory interface The following sections provide information about external memory interfaces. 4.5.1 SEMC specifications The following sections provide information on SEMC interface. Measurements are with a load of 15 pf and an input slew rate of 1 V/ns. 4.5.1.1 SEMC output timing There are ASYNC and SYNC modes for SEMC output timing. 4.5.1.1.1 SEMC output timing in ASYNC mode Table 45 shows SEMC output timing in ASYNC mode. Table 45. SEMC output timing in ASYNC mode Symbol Min. Max. Unit Frequency of operation — 200 MHz TCK Internal clock period 5 — ns TAVO Address output valid time — 2 ns — ns 2 ns — ns 2 3 1 TAHO Address output hold time (TCK - 2) TADVL Active low time (TCK - 1) 2 TDVO Data output valid time — TDHO Data output hold time (TCK - 2) 3 TWEL 1 Parameter WE# low time (TCK - 1) 4 ns Comment These timing parameters apply to Address and ADV# for NOR/PSRAM in ASYNC mode. These timing parameters apply to Data/CLE/ALE and WE# for NAND, apply to Data/DM/CRE for NOR/PSRAM, apply to Data/DCX and WRX for DBI interface. Address output hold time is configurable by SEMC_*CR0.AH. AH field setting value is 0x0 in above table. When AH is set with value N, TAHO min time should be ((N + 1) x TCK). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more detail about SEMC_*CR0.AH register field. ADV# low time is configurable by SEMC_*CR0.AS. AS field setting value is 0x0 in above table. When AS is set with value N, TADL min time should be ((N + 1) x TCK - 1). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more detail about SEMC_*CR0.AS register field. Data output hold time is configurable by SEMC_*CR0.WEH. WEH field setting value is 0x0 in above table. When WEH is set with value N, TDHO min time should be ((N + 1) x TCK). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more detail about SEMC_*CR0.WEH register field. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 57 Electrical characteristics 4 WE# low time is configurable by SEMC_*CR0.WEL. WEL field setting value is 0x0 in above table. When WEL is set with value N, TWEL min time should be ((N + 1) x TCK - 1). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more detail about SEMC_*CR0.WEL register field. Figure 15 shows the output timing in ASYNC mode. 4#+ )NTERNALCLOCK !$$2 ! 4!(/ 4!6/ !$6 $ $!4! 4$(/ 4$6/ 7% Figure 15. SEMC output timing in ASYNC mode 4.5.1.1.2 SEMC output timing in SYNC mode Table 46 shows SEMC output timing in SYNC mode. Table 46. SEMC output timing in SYNC mode Symbol Min. Max. Unit Comment Frequency of operation — 200 MHz — Internal clock period 5 — ns — TDVO Data output valid time — 0.6 ns TDHO Data output hold time -0.7 — ns TCK Parameter These timing parameters apply to Address/Data/DM/CKE/control signals with SEMC_CLK for SDRAM. Figure 16 shows the output timing in SYNC mode. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 58 NXP Semiconductors Electrical characteristics 3%-#?#,+ 4$6/ $!4! 4$(/ $ Figure 16. SEMC output timing in SYNC mode 4.5.1.2 SEMC input timing There are ASYNC and SYNC modes for SEMC input timing. 4.5.1.2.1 SEMC input timing in ASYNC mode Table 47 shows SEMC input timing in ASYNC mode. Table 47. SEMC input timing in ASYNC mode Symbol Parameter Min. Max. Unit Comment For NAND/NOR/PSRAM/DBI, these timing parameters apply to RE# and Read Data. TIS Data input setup 7.1 — ns TIH Data input hold 0 — ns Figure 17 shows the input timing in ASYNC mode. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 59 Electrical characteristics .!.$NON %$/MODEAND./2032!-TIMING /% $!4! $ 4)3 $ 4)( .!.$%$/MODETIMING /% $!4! $ $ 4)3 4)( Figure 17. SEMC input timing in ASYNC mode 4.5.1.2.2 SEMC input timing in SYNC mode Table 48 and Table 49 show SEMC input timing in SYNC mode. Table 48. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x0) Symbol Parameter Min. Max. Unit TIS Data input setup 8.67 — ns TIH Data input hold 0 — ns Comment — Table 49. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x1) Symbol Parameter Min. Max. Unit TIS Data input setup 0.6 — ns TIH Data input hold 1 — ns Comment — Figure 18 shows the input timing in SYNC mode. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 60 NXP Semiconductors Electrical characteristics 3%-#?#,+ $!4! 3%-#?$13 $ 4)3 4)( Figure 18. SEMC input timing in SYNC mode 4.5.2 FlexSPI parameters Measurements are with a load 15 pf and input slew rate of 1 V/ns. 4.5.2.1 FlexSPI input/read timing There are three sources for the internal sample clock for FlexSPI read data: • Dummy read strobe generated by FlexSPI controller and looped back internally (FlexSPIn_MCR0[RXCLKSRC] = 0x0) • Dummy read strobe generated by FlexSPI controller and looped back through the DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1) • Read strobe provided by memory device and input from DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x3) The following sections describe input signal timing for each of these three internal sample clock sources. 4.5.2.1.1 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 Table 50. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0 Symbol Parameter Frequency of operation Min Max Unit — 60 MHz TIS Setup time for incoming data 8.67 — ns TIH Hold time for incoming data 0 — ns Table 51. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X1 Symbol Parameter Min Max Unit Frequency of operation — 133 MHz TIS Setup time for incoming data 2 — ns TIH Hold time for incoming data 1 — ns i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 61 Electrical characteristics SCK TIS TIH TIS TIH SIO[0:7] Internal Sample Clock Figure 19. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0, 0X1 NOTE Timing shown is based on the memory generating read data on the SCK falling edge, and FlexSPI controller sampling read data on the falling edge. 4.5.2.1.2 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3 There are two cases when the memory provides both read data and the read strobe in SDR mode: • A1—Memory generates both read data and read strobe on SCK rising edge (or falling edge) • A2—Memory generates read data on SCK falling edge and generates read strobe on SCK rising edge Table 52. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A1) Symbol TSCKD - TSCKDQS Value Parameter Min Unit Max Frequency of operation — 166 MHz Time delta between TSCKD and TSCKDQS -2 2 ns SCK TSCKD TSCKD SIO[0:7] TSCKDQS TSCKDQS DQS Figure 20. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A1) i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 62 NXP Semiconductors Electrical characteristics NOTE Timing shown is based on the memory generating read data and read strobe on the SCK rising edge. The FlexSPI controller samples read data on the DQS falling edge. Table 53. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A2) Symbol TSCKD - TSCKDQS Value Parameter Min Unit Max Frequency of operation — 166 MHz Time delta between TSCKD and TSCKDQS -2 2 ns SCK TSCKD TSCKD TSCKD SIO[0:7] TSCKDQS TSCKDQS TSCKDQS DQS Internal Sample Clock Figure 21. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A2) NOTE Timing shown is based on the memory generating read data on the SCK falling edge and read strobe on the SCK rising edge. The FlexSPI controller samples read data on a half cycle delayed DQS falling edge. 4.5.2.1.3 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 Table 54. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0 Symbol Parameter Frequency of operation Min Max Unit — 30 MHz TIS Setup time for incoming data 8.67 — ns TIH Hold time for incoming data 0 — ns i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 63 Electrical characteristics Table 55. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1 Symbol Parameter Min Max Unit Frequency of operation — 66 MHz TIS Setup time for incoming data 2 — ns TIH Hold time for incoming data 1 — ns SCLK TIS TIH TIS TIH SIO[0:7] Internal Sample Clock Figure 22. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 4.5.2.1.4 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3 There are two cases when the memory provides both read data and the read strobe in DDR mode: • B1—Memory generates both read data and read strobe on SCK edges • B2—Memory generates read data on SCK edges and generates read strobe on SCK2 edges Table 56. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1) Symbol TSCKD - TSCKDQS Parameter Min Max Unit Frequency of operation — 166 MHz Time delta between TSCKD and TSCKDQS -1 1 ns SCK TSCKD SIO[0:7] TSCKDQS DQS Figure 23. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1) i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 64 NXP Semiconductors Electrical characteristics Table 57. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2) Symbol TSCKD - TSCKDQS Parameter Min Max Unit Frequency of operation — 166 MHz Time delta between TSCKD and TSCKDQS -1 1 ns SCK TSCKD SIO[0:7] SCK2 TSCK2DQS DQS Figure 24. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2) 4.5.2.2 FlexSPI output/write timing The following sections describe output signal timing for the FlexSPI controller including control signals and data outputs. 4.5.2.2.1 SDR mode Table 58. FlexSPI output timing in SDR mode Symbol Parameter Min Max Unit Frequency of operation — 1661 MHz Tck SCK clock period 6.0 — ns TDVO Output data valid time — 4 ns TDHO Output data hold time 2 — ns TCSS Chip select output setup time 3 x TCK - 1 — ns TCSH Chip select output hold time 3 x TCK + 2 — ns 1 The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing specifications. NOTE TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the default values are shown above. Please refer to the i.MXRT1160 Reference Manual (IMXRT1160RM) for more details. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 65 Electrical characteristics SCK T CSS TCSH T CK CS TDVO TDVO SIO[0:7] TDHO TDHO Figure 25. FlexSPI output timing in SDR mode 4.5.2.2.2 DDR mode Table 59. FlexSPI output timing in DDR mode Symbol Parameter Min Max Unit Frequency of operation1 — 166 MHz Tck SCK clock period (FlexSPIn_MCR0[RXCLKSRC] = 0x0) 6.0 — ns TDVO Output data valid time — 2.2 ns TDHO Output data hold time 0.8 — ns TCSS Chip select output setup time 3 x TCK / 2 - 0.7 — ns TCSH Chip select output hold time 3 x TCK / 2 + 0.8 — ns 1 The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing specifications. NOTE TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the default values are shown above. Please refer to the i.MXRT1160 Reference Manual (IMXRT1160RM) for more details. SCK T CSS T CK TCSH CS TDVO SIO[0:7] TDHO TDVO TDHO Figure 26. FlexSPI output timing in DDR mode 4.6 Display and graphics The following sections provide information about display and graphic interfaces. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 66 NXP Semiconductors Electrical characteristics 4.6.1 MIPI D-PHY electrical characteristics The i.MX RT1160 conforms to the MIPI CSI-2 and D-PHY standards for protocol and electrical specifications. Compliant with standards: • MIPI Alliance Specification for Display Serial Interface Version 1.1 (MIPI DSI controller) • MIPI Standard 1.1 for D-PHY (MIPI DSI D-PHY) • Compatible with MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) Version 1.1 4.6.1.1 MIPI HS-TX specifications Table 60. MIPI high-speed transmitter DC specifications Symbol Parameter VCMTX1 1 |VOD| Max Unit 150 200 250 mV — — 5 mV 140 200 270 mV VOD mismatch when Output is Differential-1 or Differential-0 — — 14 mV High Speed Output High Voltage — — 360 mV Single Ended Output Impedance 40 50 62.5  Single Ended Output Impedance Mismatch — — 10 % VCMTX mismatch when Output is Differential-1 or Differential-0 High Speed Transmit Differential Voltage |VOD| 1 ZOS ZOS 1 Typ High Speed Transmit Static Common Mode Voltage |VCMTX|(1,0) VOHHS Min Value when driving into load impedance anywhere in the ZID (Differential input impedance) range. Table 61. MIPI high-speed transmitter AC specifications Symbol Min Typ Max Unit VCMTX(HF) Common-level variations above 450 MHz — — 15 mVRMS VCMTX(LF) Common-level variation between 50-450 MHz — — 25 mVPEAK 150 — 0.3 x UI ps Min Typ Max Unit tF1 tR and 1 Parameter Rise Time and Fall Time (20% to 80%) UI is the long-term average unit interval. 4.6.1.2 MIPI LP-TX specifications Table 62. MIPI low-power transmitter DC specifications Symbol VOH1 Thevenin Output High Level 1.1 1.2 1.3 V VOL Thevenin Output Low Level -50 — 50 mV Output Impedance of Low Power Transmitter 110 — —  ZOLP2 1 Parameter This specification can only be met when limiting the core supply variation from 1.1 V to 1.3 V. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 67 Electrical characteristics 2 Though there is no specified maximum for ZOLP, the LP transmitter output impedance ensures the TRLP/TFLP specification is met. Table 63. MIPI low-power transmitter AC specifications Symbol Parameter — — 25 ns 30% to 85% Rise Time and Fall Time — — 35 ns Pulse width of the LP exclusive-OR clock: First LP exclusive-OR clock pulse after Stop state or last pulse before Stop state 40 — — ns Pulse width of the LP exclusive-OR clock: All other pulses 20 — — ns Period of the LP exclusive-OR clock 90 — — ns Slew Rate @ CLOAD = 0 pF 30 — 500 mV/ns Slew Rate @ CLOAD = 5 pF 30 — 200 mV/ns Slew Rate @ CLOAD = 20 pF 30 — 150 mV/ns Slew Rate @ CLOAD = 70 pF 30 — 100 mV/ns Load Capacitance 0 — 70 pF CLOAD1 4 5 6 7 Unit 15% to 85% Rise Time and Fall Time V/tSR1,5,6,7 3 Max TREOT1,2,3 TLP-PER-TX 2 Typ TRLP /TFLP1 TLP-PULSE-TX4 1 Min CLOAD includes the low equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be < 10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2 ns delay. The rise-time of TREOT starts from the HS common-level at the moment of the differential amplitude drops below 70 mV, due to stopping of the differential drive. With an additional load capacitance CCM between 0 to 60 pF on the termination center tap at RX side of the lane. This parameter value can be lower than TLPX (MIPI D-PHY low power states), due to differences in rise vs. fall signal slopes, trip levels, and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior as described in Low-Power Receiver section. When the output voltage is between 15% and 85% of the fully settled LP signal levels. Measured as average across any 50 mV segment of the output signal transition. This value represents a corner point in a piecewise linear curve. 4.6.1.3 MIPI LP-RX specifications Table 64. MIPI low power receiver DC specifications Symbol Parameter Min Typ Max Unit 880 — 1300 mV VIH Logic 1 input voltage VIL Logic 0 input voltage, not in ULP state — — 550 mV Logic 0 input voltage, ULP state — — 300 mV Input hysteresis 25 — — mV Min Typ Max Unit — — 300 V.ps VIL-ULPS VHYST Table 65. MIPI low power receiver AC specifications Symbol eSPIKE1,2 Parameter Input pulse rejection i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 68 NXP Semiconductors Electrical characteristics Table 65. MIPI low power receiver AC specifications (continued) TMIN-RX3 1 2 3 Minimum pulse width response 20 — — ns VINT Peak Interference amplitude — — 200 mV fINT Interference frequency 450 — — MHz Time-voltage integration of a spike above VIL when being in LP-0 state or below VIH when being in LP-1 state. An impulse below this value will not change the receiver state. An input pulse greater than this value will toggle the output. 4.6.1.4 MIPI LP-CD specifications Table 66. MIPI contention detector DC specifications Symbol Parameter Min Typ Max Unit VIHCD Logic 1 contention threshold 450 — — mV VILCD Logic 0 contention threshold — — 200 mV Min Typ Max Unit Pad signal voltage range -50 — 1350 mV Pin leakage current -10 — 10 A Ground shift -50 — 50 mV -0.15 — 1.45 V — — 20 ns 4.6.1.5 MIPI DC specifications Table 67. MIPI input characteristics DC specifications Symbol Parameter VPIN ILEAK1 VGNDSH 1 2 3 VPIN(absmax)2 Maximum pin voltage level TVPIN(absmax)3 Maximum transient time above VPIN(max) or below VPIN(min) When the pad voltage is within the signal voltage range between VGNDSH(min) to VOH + VGNDSH(max) and the Lane Module is in LP receive mode. This value includes ground shift. The voltage overshoot and undershoot beyond the VPIN is only allowed during a single 20 ns window after any LP-0 to LP-1 transition or vice versa. For all other situations it must stay within the VPIN range. 4.6.2 CMOS Sensor Interface (CSI) timing parameters The following sections describe the CSI timing in gated and ungated clock modes. 4.6.2.1 Gated clock mode timing Figure 27 and Figure 28 shows the gated clock mode timings for CSI, and Table 68 describes the timing parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 69 Electrical characteristics (VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock, CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted. CSI_VSYNC P1 CSI_HSYNC P7 P2 P5 P6 CSI_PIXCLK P3 P4 CSI_DATA[23:00] Figure 27. CSI Gated clock mode—sensor data at falling edge, latch data at rising edge CSI_VSYNC P1 CSI_HSYNC P7 P2 P6 P5 CSI_PIXCLK P3 P4 CSI_DATA[23:00] Figure 28. CSI Gated clock mode—sensor data at rising edge, latch data at falling edge Table 68. CSI gated clock mode timing parameters ID Parameter Symbol Min. Max. Units P1 CSI_VSYNC to CSI_HSYNC time tV2H 33.5 — ns P2 CSI_HSYNC setup time tHsu 2.6 — ns P3 CSI DATA setup time tDsu 2.6 — ns i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 70 NXP Semiconductors Electrical characteristics Table 68. CSI gated clock mode timing parameters (continued) ID Parameter Symbol Min. Max. Units tDh 0 — ns P4 CSI DATA hold time P5 CSI pixel clock high time tCLKh 3.75 — ns P6 CSI pixel clock low time tCLKl 3.75 — ns P7 CSI pixel clock frequency fCLK — 80 MHz 4.6.2.2 Ungated clock mode timing Figure 29 shows the ungated clock mode timings of CSI, and Table 69 describes the timing parameters (P1–P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are used, and the CSI_HSYNC signal is ignored. CSI_VSYNC P1 P6 P4 P5 CSI_PIXCLK P2 P3 CSI_DATA[23:00] Figure 29. CSI ungated clock mode—sensor data at falling edge, latch data at rising edge Table 69. CSI ungated clock mode timing parameters ID Parameter Symbol Min. Max. Units tVSYNC 33.5 — ns P1 CSI_VSYNC to pixel clock time P2 CSI DATA setup time tDsu 2.6 — ns P3 CSI DATA hold time tDh 0 — ns P4 CSI pixel clock high time tCLKh 3.75 — ns P5 CSI pixel clock low time tCLKl 3.75 — ns P6 CSI pixel clock frequency fCLK — 80 MHz The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as dumb or smart as follows: • Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync (HSYNC)) and output-only Bayer and statistics data. • Smart sensors support CCIR656 video decoder formats and perform additional processing of the image (for example, image compression, image pre-filtering, and various data output formats). i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 71 Electrical characteristics 4.6.3 LCD Controller timing parameters Figure 30 shows the LCD timing and Table 70 lists the timing parameters. L1 L2 L3 LCDn_CLK (falling edge capture) LCDn_CLK (rising edge capture) LCDn_DATA[23:00] LCDn Control Signals L4 L5 L6 L7 Figure 30. LCD timing Table 70. LCD timing parameters ID 1 Parameter Symbol Min Max Unit tCLK(LCD) — 75/1501 MHz L1 LCD pixel clock frequency L2 LCD pixel clock high (falling edge capture) tCLKH(LCD) 3 — ns L3 LCD pixel clock low (rising edge capture) tCLKL(LCD) 3 — ns L4 LCD pixel clock high to data valid (falling edge capture) td(CLKH-DV) -1 1 ns L5 LCD pixel clock low to data valid (rising edge capture) td(CLKL-DV) -1 1 ns L6 LCD pixel clock high to control signal valid (falling edge capture) td(CLKH-CTRLV) -1 1 ns L7 LCD pixel clock low to control signal valid (rising edge capture) td(CLKL-CTRLV) -1 1 ns For eLCDIF or LCDIFv2, the maximum pixel clock frequency of parallel IO interface is 75 MHz, while it is 150 MHz for MIPI DSI interface. 4.7 Audio This section provides information about SAI/I2S. 4.7.1 SAI/I2S switching specifications This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes. All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 72 NXP Semiconductors Electrical characteristics Table 71. Master mode SAI timing Num Characteristic Min Max Unit S1 SAI_MCLK cycle time 15 — ns S2 SAI_MCLK pulse width high/low 40% 60% MCLK period S3 SAI_BCLK cycle time 40 — ns S4 SAI_BCLK pulse width high/low 40% 60% BCLK period S5 SAI_BCLK to SAI_FS output valid — 8.4 ns S6 SAI_BCLK to SAI_FS output invalid 0 — ns S7 SAI_BCLK to SAI_TXD valid — 10 ns S8 SAI_BCLK to SAI_TXD invalid 1 — ns S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 14 — ns S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 — ns Figure 31. SAI timing—Master modes Table 72. Slave mode SAI timing Num Characteristic Min Max Unit S11 SAI_BCLK cycle time (input) 40 — ns S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period S13 SAI_FS input setup before SAI_BCLK 6 — ns S14 SAI_FA input hold after SAI_BCLK 2 — ns S15 SAI_BCLK to SAI_TXD/SAI_FS output valid — 20 ns S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid -1.5 — ns i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 73 Electrical characteristics Table 72. Slave mode SAI timing Num Characteristic Min Max Unit S17 SAI_RXD setup before SAI_BCLK 6 — ns S18 SAI_RXD hold after SAI_BCLK 2 — ns Figure 32. SAI timing—Slave mode 4.8 Analog The following sections provide information about analog interfaces. 4.8.1 12-bit ADC electrical specifications All ADC channels meet the 12-bit single-ended accuracy specifications. Table 73. ADC electrical specifications (VREFH = VDDA_ADC_1P81 and VADINmax ≤ VREFH)2 Symbol Description Min Typ Max Unit Notes VADIN Input voltage VREFL — VREFH V — CADIN Input capacitance — 4.5 — pF — RADIN Input resistance — 500 —  — RAS Analog source resistance — — 5 K 3 fADCK ADC conversion clock frequency 8 — 88 MHz — Csample Sample cycles 3.5 — 131.5 Cycles 4 Ccompare Fixed compare cycles — 17.5 — Cycles — Cconversion Conversion cycles Cconversion = Csample + Ccompare Cycles — DNL Differential nonlinearity — ±0.7 ±1 LSB 5,6,7 INL Integral nonlinearity — ±0.8 ±1 LSB 5,6,7 i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 74 NXP Semiconductors Electrical characteristics Table 73. ADC electrical specifications (VREFH = VDDA_ADC_1P81 and VADINmax ≤ VREFH)2 (continued) Symbol ENOB Description Min Typ Max Unit Notes 8,9,10 Effective number of bits Single-ended mode Avg = 1 10.0 10.4 — — Avg = 2 10.4 10.6 — — Avg = 16 11.2 11.3 — — Avg = 1 11.0 11.2 — — Avg = 2 — — — — Avg = 16 — — — — Differential mode SINAD Signal to noise plus distortion SINAD = 6.02 x ENOB + 1.76 11 dB — EG Gain error — -0.16 -0.56 %FSV 12 EO Offset error — ±0.01 ±0.02 %FSV 13 lin_ext_leak External channel leakage current — 30 500 nA — EIL Input leakage error RAS * lin_ext_leak mV — tADCSTUP Setup time — s — 5 — 1 The range is from 1.71 V to 1.89 V. Values in this table are based on test with limited matrix samples in lab environment. 3 This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. 4 See Figure 33, "Sample time VS. RAS". 5 1 LSB = (VREFH - VREFL) / 2^N, N = 12 6 ADC conversion clock at max frequency and using linear histogram. 7 No missing code 8 Input data used for test is 1 kHz sine wave. 9 Measured at VREFH = 1.8 V and pwrsel = 2. 10 ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content. 11 Gain error is FSE-ZSE (same as FSE-EO). 12 Error measured at full scale at 1.8 V. 13 Offset error is same as ZSE, error measured at 0 V with zero scale. 2 Table 74. ADC electrical specifications (VREFH = 1.68 V and VADINmax ≤ NVCC_GPIOmax)1 Symbol Description Typ2 Min Max Unit Notes VADIN Input voltage VREFL — NVCC_GPIOmax V — CADIN Input capacitance — 2.25 — pF — RADIN Input resistance — 1 — K — i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 75 Electrical characteristics Table 74. ADC electrical specifications (VREFH = 1.68 V and VADINmax ≤ NVCC_GPIOmax)1 (continued) Symbol Description Typ2 Min Max Unit Notes RAS Analog source resistance — — 5 K 3 fADCK ADC conversion clock frequency 8 — 88 MHz — Csample Sample cycles 3.5 — 131.5 Cycles 4 Ccompare Fixed compare cycles — 17.5 — Cycles — Cconversion Conversion cycles Cconversion = Csample + Ccompare Cycles — DNL Differential nonlinearity — ±0.7 ±1 LSB 5,6,7 INL Integral nonlinearity — ±0.8 ±1 LSB 5,6,7 ENOB Effective number of bits 8,9,10 Single-ended mode Avg = 1 10.0 10.3 — — Avg = 2 10.4 10.6 — — Avg = 16 11.2 11.3 — — Avg = 1 11.0 11.2 — — Avg = 2 — — — — Avg = 16 — — — — SINAD Signal to noise plus distortion SINAD = 6.02 x ENOB + 1.76 EG Gain error11 — -0.16 EO Offset error — lin_ext_leak External channel leakage current — EIL Input leakage error RAS * lin_ext_leak tADCSTUP Setup time — Differential mode dB — -0.56 %FSV 12 ±0.01 ±0.02 %FSV 13 30 500 nA — mV — s — 5 — 1 Values in this table are based on test with limited matrix samples in lab environment. Typical values assume Temp = 25 °C and fACLK = Max, unless otherwise stated. Typical values are for reference only, and are not tested in production. 3 This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. 4 See Figure 33, "Sample time VS. RAS". 5 1 LSB = (VREFH - VREFL) / 2^N, N = 12 6 ADC conversion clock at max frequency and using linear histogram. 7 No missing code 8 Input data used for test is 1 kHz sine wave. 9 Measured at VREFH = 1.68 V and pwrsel = 2. 10 ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content. 2 i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 76 NXP Semiconductors Electrical characteristics 11 Gain error is FSE-ZSE (same as FSE-EO). measured at full scale at 3.6 V. 13 Offset error is same as ZSE, error measured at 0 V with zero scale. 12 Error Table 75. ADC electrical specifications (1 V ≤ VREFH < 1.71 V and VADINmax ≤ VREFH)1 Symbol Description Typ2 Min Max Unit Notes VADIN Input voltage VREFL — VREFH V — CADIN Input capacitance — 4.5 — pF — RADIN Input resistance — 500 —  — RAS Analog source resistance — — 5 K 3 fADCK ADC conversion clock frequency 8 — 88 MHz — Csample Sample cycles 3.5 — 131.5 Cycles 4 Ccompare Fixed compare cycles — 17.5 — Cycles — Cconversion Conversion cycles Cconversion = Csample + Ccompare Cycles — DNL Differential nonlinearity — ±0.7 ±1 LSB 5,6,7 INL Integral nonlinearity — ±0.8 ±1 LSB 5,6,7 ENOB Effective number of bits 8,9,10 Single-ended mode Avg = 1 10.0 10.3 — — Avg = 2 10.4 10.6 — — Avg = 16 11.2 11.3 — — Avg = 1 11.0 11.2 — — Avg = 2 — — — — Avg = 16 — — — — Differential mode SINAD Signal to noise plus distortion SINAD = 6.02 x ENOB + 1.76 dB — EG Gain error — -0.16 -0.56 %FSV 12 EO Offset error — ±0.01 ±0.02 %FSV 13 lin_ext_leak External channel leakage current — 30 500 nA — EIL Input leakage error RAS * lin_ext_leak mV — tADCSTUP Setup time — s — 1 2 3 11 5 — Values in this table are based on test with limited matrix samples in lab environment. Typical values assume Temp = 25 °C and fACLK = Max, unless otherwise stated. Typical values are for reference only, and are not tested in production. This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 77 Electrical characteristics 4 See Figure 33, "Sample time VS. RAS". 1 LSB = (VREFH - VREFL) / 2^N, N = 12 6 ADC conversion clock at max frequency and using linear histogram. 7 No missing code 8 Input data used for test is 1 kHz sine wave. 9 Measured at VREFH = 1.0 V and pwrsel = 2. 10 ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content. 11 Gain error is FSE-ZSE (same as FSE-EO). 12 Error measured at full scale at 1.0 V. 13 Offset error is same as ZSE, error measured at 0 V with zero scale. 5 The following figure shows a plot of the ADC sample time versus RAS. Figure 33. Sample time VS. RAS 4.8.1.1 12-bit ADC input impedance equivalent circuit diagram There is an additional RIOMUX of 350  (from 295 to 405 ) resistance if an input goes through the MUX inside the IO and CP of 2.5 pF as shown in Figure 34. To calculate the sample request time, using the following equation where RADCtotal = RADIN + RIOMUX, RIOMUX = 350 , CP = 2.5 pF and B = 11 for 1/4 LSB settling. Tsmp_req = B [RAS (CAS + CP + CADIN) + (RAS + RADCtotal) CADIN] i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 78 NXP Semiconductors Electrical characteristics SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT RIOMUX ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection ZAS RAS ADC SAR ENGINE RADIN VADIN Ilkg CAS VAS CP RADIN INPUT PIN RADIN INPUT PIN RADIN INPUT PIN CADIN Figure 34. ADC input impedance equivalent circuit diagram 4.8.2 12-bit DAC electrical characteristics 4.8.2.1 12-bit DAC operating requirements Table 76. 12-bit DAC operating conditions Symbol Description Min Typ Max Unit Notes CL Output load capacitance — 50 100 pF 1 IL Output load current — — 1 mA 2 1 2 The DAC output can drive R and C loading. The user should consider both DC and dynamic application requirements. 50 pF CL provides the best dynamic performance, while 100 pF provides the best DC performance. Sink or source current ability. Table 77. DAC characteristics Symbol Description VDACOUTL DAC low level output voltage VDACOUTH DAC high level output voltage DNL Differential nonlinearity error Test Conditions Min Typ ADC_VREFH selected, VSS — Rload = 18 k, Cload = 50 pF VDDA_AD — C_1P8 0.15 Code 100h — F00h best fit — curve ±0.5 Max Unit 0.15 V VDDA_AD C_1P8 V ±1 LSB Notes 1 — i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 79 Electrical characteristics Table 77. DAC characteristics (continued) Symbol Description Test Conditions Min Typ Max Unit Notes Integral nonlinearity error Code 100h — F00h best fit — curve — ±1 — LSB 2 ±2 — LSB 3 EO Offset error Code 100h — ±0.6 — %FSR (Full-sc ale range) — TEO Offset error temperature Code 100h coefficient — ±30 — V/oC — EG Gain error Code F00h — ±0.4 — %FSR — TEG Gain error temperature coefficient Code F00h — ±10 — ppm of — FSR/oC INL i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 80 NXP Semiconductors Electrical characteristics Table 77. DAC characteristics (continued) Symbol TFS_LS TFS_MS TFS_HS TCC_LS TCC_MS TCC_HS Description Full scale setting time in Low Speed mode Test Conditions Min Typ Max Code 100h — F00h or F00h — 100h @ZTC current — 5 — Code 100h — F00h or F00h —100h @PTAT current — 5 — Code 100h — F00h or F00h — 100h @ZTC current — 1 — Code 100h — F00h or F00h — 100h @PTAT current — 1 — Code 100h — F00h or F00h — 100h @ZTC current — 0.5 — Code 100h — F00h or F00h — 100h @PTAT current — 0.5 — Code to code setting Code 7F7h — 807h or time in Low Speed mode 807h — 7F7h @ZTC current — 1 — Code 7F7h — 807h or 807h — 7F7h @PTAT current — 1 — Code 7F7h — 807h or 807h — 7F7h @ZTC current — 0.5 — Code 7F7h — 807h or 807h — 7F7h @PTAT current — 0.5 — Code 7F7h — 807h or 807h — 7F7h @ZTC current — 0.3 — Code 7F7h — 807h or 807h — 7F7h @PTAT current — 0.3 — Full scale setting time in Middle Speed mode Full scale setting time in High Speed mode Code to code setting time in Middle Speed mode Code to code setting time in Middle Speed mode Unit s Notes 4 i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 81 Electrical characteristics Table 77. DAC characteristics (continued) Symbol SR_LS SR_MS SR_HS Description Slew rate in Low Speed mode Test Conditions Min Typ Max Code 100h — F00h or F00h — 100h @ZTC current — 0.24 — Code 100h — F00h or F00h —100h @PTAT current — 0.24 — Code 100h — F00h or F00h — 100h @ZTC current — 1.2 — Code 100h — F00h or F00h —100h @PTAT current — 1.2 — Slew rate in High Speed Code 100h — F00h or mode F00h — 100h @ZTC current — 2.4 — Code 100h — F00h or F00h —100h @PTAT current — 2.4 — Slew rate in Middle Speed mode Unit Notes V/s 5 PSRR Power supply rejection ratio Code 800h, — ΔVDD_ANA18 = 100 mV, VREFH_ANA12 selected 70 — dB 6 Glitch Glitch energy Code 100h — F00h — 100h — 30 — nV-s — Code 7FFh — 800h — 7FFh — 30 — CT Channel to channel crosstalk — — — -80 dB 7 ROP Output resistance Code 100h — F00h and Rload = 18 k — 200 —  8 1 2 3 4 5 6 7 8 It is recommended to operate the DAC in the output voltage range between 0.15 V and (VDDA_ADC_1P8 - 0.15 V) for best accuracy. Linearity of the output voltage outside this range will be affected as current load increases. When ADC_VREFH is selected as the reference (DAC_CR[DACRFS] = 0b). When the internal 1.2 V source is selected as the reference (DAC_CR[DACRFS] = 1b). The DAC output remains within ±0.5 LSB of the final measured value for digital input code change. Noise on the power supply can cause this performance to degrade to ±1 LSB. This parameter represents both rising edge and falling edge settling time. Time for the DAC output to transition from 10% to 90% signal amplitude (rising edge or falling edge). PSRR = 20 x log{ΔVDD_ANA18 /ΔVDAC_OUT} If two DACs are used and sharing the same VREFH. Based on design simulation. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 82 NXP Semiconductors Electrical characteristics 4.8.3 ACMP electrical specifications Table 78. ACMP operating conditions Symbol Description Min Typ Max Unit VREFH_EXT External reference voltage 1 — 1.98 V VREFH_INT1 Internal reference voltage — 1.3 — V 1 This is an internal reference voltage generated by PMC0. Table 79. ACMP characteristics Symbol Description Condition Min Typ Max Unit VAIN Analog input voltage — 0 — NVCC_GPIO1 V VAIO Analog input offset voltage — — — 20 mV VH Analog comparator hysteresis Hystrl[1:0] = 00 — 5 — mV Hystrl[1:0] = 01 — 10 — mV Hystrl[1:0] = 10 — 20 — mV Hystrl[1:0] = 11 — 30 — mV TDHS Propagation delay, high-speed mode Normal supply — — 50 ns TDHS Propagation delay, low-speed mode — — — 5 s — Analog comparator initialization delay — — — 20 s INL 8-bit DAC integral non-linearity — -1 — 1 LSB DNL 8-bit DAC differential non-linearity — -1 — 1 LSB 1 The maximum input voltage for CMP analog inputs associated with GPIO_AD bank is NVCC_GPIO. 4.8.4 Temperature sensor Table 80 lists the parameters of temperature sensor. Table 80. Temperature sensor parameters Parameter Temperature range1 1 Min Max Unit -40 125 C Accuracy of measurement: ± 5C for 25C and above, while ± 10C for below 25C. 4.9 Communication interfaces The following sections provide the information about communication interfaces. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 83 Electrical characteristics 4.9.1 LPSPI timing parameters The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic LPSPI timing modes. All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins. Table 81. LPSPI Master mode timing Number Symbol 1 fSCK Frequency of operation 2 tSCK SCK period 3 tLead 4 tLag 5 tWSCK 6 tSU 7 1 2 Description Min. Max. Units Note — fperiph / 2 MHz 1 2 x tperiph — ns 2 Enable lead time 1 — tperiph — Enable lag time 1 — tperiph — tSCK / 2 - 3 — ns — Data setup time (inputs) 10 — ns — tHI Data hold time (inputs) 2 — ns — 8 tV Data valid (after SCK edge) — 8 ns — 9 tHO Data hold time (outputs) 0 — ns — Clock (SCK) high or low time Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must guaranteed this limit is not exceeded. tperiph = 1000 / fperiph 1 PCS (OUTPUT) 3 2 SCK (CPOL=0) (OUTPUT) 4 5 5 SCK (CPOL=1) (OUTPUT) 6 SIN (INPUT) 7 MSB IN 2 BIT 6 . . . 1 LSB IN 8 SOUT (OUTPUT) MSB OUT 2 BIT 6 . . . 1 9 LSB OUT 1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 35. LPSPI Master mode timing (CPHA = 0) i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 84 NXP Semiconductors Electrical characteristics 1 PCS (OUTPUT) 2 3 4 SCK (CPOL=0) (OUTPUT) 5 SCK (CPOL=1) (OUTPUT) 5 6 SIN (INPUT) 7 2 MSB IN LSB IN 9 8 SOUT (OUTPUT) BIT 6 . . . 1 PORT DATA MASTER MSB OUT BIT 6 . . . 1 PORT DATA MASTER LSB OUT 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 36. LPSPI Master mode timing (CPHA = 1) Table 82. LPSPI Slave mode timing s 1 2 3 4 Number Symbol Description Min. Max. Units Note 1 fSCK Frequency of operation 0 fperiph / 2 MHz 1 2 tSCK SCK period 2 x tperiph — ns 2 3 tLead Enable lead time 1 — tperiph — 4 tLag Enable lag time 1 — tperiph — 5 tWSCK tSCK / 2 - 5 — ns — 6 tSU Data setup time (inputs) 2.7 — ns — 7 tHI Data hold time (inputs) 3.8 — ns — 8 ta Slave access time — tperiph ns 3 9 tdis Slave MISO disable time — tperiph ns 4 10 tV Data valid (after SCK edge) — 14.5 ns — 11 tHO Data hold time (outputs) 0 — ns — Clock (SCK) high or low time Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be guaranteed this limit is not exceeded. tperiph = 1000 / fperiph Time to data active from high-impedance state Hold time to high-impedance state i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 85 Electrical characteristics PCS (INPUT) 2 4 SCK (CPOL=0) (INPUT) 5 3 SCK (CPOL=1) (INPUT) 5 9 8 10 see note SIN (OUTPUT) 6 SOUT (INPUT) BIT 6 . . . 1 SLAVE MSB 11 11 SEE NOTE SLAVE LSB OUT 7 MSB IN LSB IN BIT 6 . . . 1 NOTE: Not defined Figure 37. LPSPI Slave mode timing (CPHA = 0) PCS (INPUT) 4 2 3 SCK (CPOL=0) (INPUT) 5 5 SCK (CPOL=1) (INPUT) 11 10 SIN (OUTPUT) see note 8 SOUT (INPUT) SLAVE MSB OUT 6 9 BIT 6 . . . 1 SLAVE LSB OUT BIT 6 . . . 1 LSB IN 7 MSB IN NOTE: Not defined Figure 38. LPSPI Slave mode timing (CPHA = 1) i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 86 NXP Semiconductors Electrical characteristics 4.9.2 LPI2C module timing parameters This section describes the timing parameters of the LPI2C module. Table 83. LPI2C module timing parameters Symbol fSCL 1 Description SCL clock frequency Min Max Standard mode (Sm) 0 100 Fast mode (Fm) 0 400 Fast mode Plus (Fm+) 0 1000 High speed mode (Hs-mode) 0 3400 Ultra Fast mode (UFm) 0 5000 Unit kHz Notes 1 Hs-mode and Ultra Fast mode are supported in slave mode. 4.9.3 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC timing This section describes the electrical information of the uSDHC, which includes SD3.0 (Single Data Rate) timing and eMMC5.0 (up to 200 MHz) timing. 4.9.3.1 SD3.0/eMMC4.3 (Single Data Rate) specifications Figure 39 depicts the timing of SD3.0/eMMC4.3, and Table 84 lists the SD/eMMC4.3 timing characteristics. SD4 SD2 SD1 SD5 SDx_CLK SD3 SD6 Output from uSDHC to card SDx_DATA[7:0] SD7 SD8 Input from card to uSDHC SDx_DATA[7:0] Figure 39. SD/eMMC4.3 timing i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 87 Electrical characteristics Table 84. SD/eMMC4.3 interface timing specification ID Parameter Symbols Min Max Unit Clock Frequency (Low Speed) fPP1 0 400 kHz Clock Frequency (SD/SDIO Full Speed/High Speed) fPP2 0 25/50 MHz Clock Frequency (MMC Full Speed/High Speed) fPP3 0 20/52 MHz Clock Frequency (Identification Mode) fOD 100 400 kHz SD2 Clock Low Time tWL 7 — ns SD3 Clock High Time tWH 7 — ns SD4 Clock Rise Time tTLH — 3 ns SD5 Clock Fall Time tTHL — 3 ns 3.6 ns Card Input Clock SD1 uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD6 uSDHC Output Delay tOD -6.6 uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) 1 2 3 4 SD7 uSDHC Input Setup Time tISU 2.5 — ns SD8 Time4 tIH 1.5 — ns uSDHC Input Hold In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V. In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock frequency can be any value between 0–50 MHz. In normal (full) speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In high-speed mode, clock frequency can be any value between 0–52 MHz. To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns. 4.9.3.2 eMMC4.4/4.41/SD3.0 (Dual Data Rate) AC timing) Figure 40 depicts the timing of eMMC4.4/4.41/SD3.0. Table 85 lists the eMMC4.4/4.41/SD3.0 timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD). i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 88 NXP Semiconductors Electrical characteristics SD1 SDx_CLK SD2 SD2 Output from eSDHCv3 to card SDx_DATA[7:0] ...... SD3 SD4 Input from card to eSDHCv3 SDx_DATA[7:0] ...... Figure 40. eMMC4.4/4.41/SD3.0 timing Table 85. eMMC4.4/4.41/SD3.0 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency (eMMC4.4/4.41 DDR) fPP 0 52 MHz SD1 Clock Frequency (SD3.0 DDR) fPP 0 50 MHz 6.8 ns uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD2 uSDHC Output Delay tOD 2.8 uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) SD3 uSDHC Input Setup Time tISU 2.4 — ns SD4 uSDHC Input Hold Time tIH 1.2 — ns 4.9.3.3 SDR50/SDR104 AC timing Figure 41 depicts the timing of SDR50/SDR104, and Table 86 lists the SDR50/SDR104 timing characteristics. SD1 SD2 SD3 SCK SD4/SD5 4-bit output from uSDHC to card SD6 SD7 4-bit input from card to uSDHC SD8 Figure 41. SDR50/SDR104 timing i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 89 Electrical characteristics Table 86. SDR50/SDR104 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period tCLK 5.0 — ns SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD4 uSDHC Output Delay tOD –3 1 ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK) SD5 uSDHC Output Delay tOD –1.6 1 ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD6 uSDHC Input Setup Time tISU 2.5 — ns SD7 uSDHC Input Hold Time tIH 1.5 — ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1 SD8 Card Output Data Window tODW 0.5 x tCLK — ns 1 Data window in SDR104 mode is variable. 4.9.3.4 HS200 mode timing Figure 42 depicts the timing of HS200 mode, and Table 87 lists the HS200 timing characteristics. SD1 SD2 SD3 SCK SD5 8-bit output from uSDHC to eMMC 8-bit input from eMMC to uSDHC SD8 Figure 42. HS200 mode timing i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 90 NXP Semiconductors Electrical characteristics Table 87. HS200 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period tCLK 5.0 — ns SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK) uSDHC Output Delay SD5 tOD –1.6 0.74 ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1 Card Output Data Window SD8 tODW 0.5 x tCLK — ns 1 HS200 is for 8 bits while SDR104 is for 4 bits. 4.9.3.5 HS400 specifications - eMMC 5.0 only Be aware that only data are sampled on both edges of the clock (not applicable to CMD). The CMD input/output timing for HS400 mode is the same as CMD input/output timing for HS200 mode. Check SD5 and SD8 parameters in the HS200 interface timing specifications table for CMD input/output timing of HS400 mode. Table 87 lists the HS400 timing characteristics. Table 88. HS400 interface timing specification Symbol Description Operating voltage Min Max Unit 1.71 1.95 V 0 200 MHz 5.0 — ns Card input clock Clock frequency SD1 Clock period SD2 Clock Low time 0.46 x SD1 0.54 x SD1 ns SD3 Clock High time 0.46 x SD1 0.54 x SD1 ns SDHC output / card Inputs SDHC_CMD, SDHC_Dn (reference to SDHC_CLK) SD4 Output skew from data to edge of SCK 0.45 — ns SD5 Output skew from edge of SCK to data 0.45 — ns SDHC input / card outputs (reference to strobe) SD6 SDHC input skew — 0.45 ns SD7 SDHC hold skew — 0.45 ns i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 91 Electrical characteristics Figure 42 depicts the timing of HS400. SD1 SD3 SD2 SCK SD4 SD5 SD4 SD5 DAT0 DAT1 ... Output from uSDHC to eMMC DAT7 Strobe Input from 4.9.3.6 DAT0 DAT1 SD6 SD7 Figure 43. HS400 timing Bus operation condition for 3.3 V and 1.8 V signaling Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50/HS200/HS400 mode is 1.8 V. 4.9.4 4.9.4.1 Ethernet controller (ENET) AC electrical specifications ENET MII mode timing This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings. 4.9.4.1.1 MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK) The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 92 NXP Semiconductors Electrical characteristics Figure 44 shows MII receive signal timings. Table 89 describes the timing parameters (M1–M4) shown in the figure. M3 ENET_RX_CLK (input) M4 ENET_RX_DATA3,2,1,0 (inputs) ENET_RX_EN ENET_RX_ER M1 M2 Figure 44. MII receive signal timing diagram Table 89. MII receive signal timing Characteristic1 ID Min. Max. Unit M1 ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to ENET_RX_CLK setup 5 — ns M2 ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER hold 5 — ns M3 ENET_RX_CLK pulse width high 35% 65% ENET_RX_CLK period M4 ENET_RX_CLK pulse width low 35% 65% ENET_RX_CLK period 1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode. 4.9.4.1.2 MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK) The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_TX_CLK frequency. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 93 Electrical characteristics Figure 45 shows MII transmit signal timings. Table 90 describes the timing parameters (M5–M8) shown in the figure. M7 ENET_TX_CLK (input) M5 ENET_TX_DATA3,2,1,0 (outputs) ENET_TX_EN ENET_TX_ER M8 M6 Figure 45. MII transmit signal timing diagram Table 90. MII transmit signal timing Characteristic1 ID Min. Max. Unit M5 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER invalid 5 — ns M6 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER valid — 20 ns M7 ENET_TX_CLK pulse width high 35% 65% ENET_TX_CLK period M8 ENET_TX_CLK pulse width low 35% 65% ENET_TX_CLK period 1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode. 4.9.4.1.3 MII asynchronous inputs signal timing (ENET_CRS and ENET_COL) Figure 46 shows MII asynchronous input timings. Table 91 describes the timing parameter (M9) shown in the figure. ENET_CRS, ENET_COL M9 Figure 46. MII asynchronous inputs timing diagram Table 91. MII asynchronous inputs signal timing ID M91 1 Characteristic ENET_CRS to ENET_COL minimum pulse width Min. Max. Unit 1.5 — ENET_TX_CLK period ENET_COL has the same timing in 10-Mbit 7-wire interface mode. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 94 NXP Semiconductors Electrical characteristics 4.9.4.1.4 MII serial management channel timing (ENET_MDIO and ENET_MDC) The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz. Figure 47 shows MII asynchronous input timings. Table 92 describes the timing parameters (M10–M15) shown in the figure. M14 M15 ENET_MDC (output) M10 ENET_MDIO (output) M11 ENET_MDIO (input) M12 M13 Figure 47. MII serial management channel timing diagram Table 92. MII serial management channel timing ID Characteristic Min. Max. Unit M10 ENET_MDC falling edge to ENET_MDIO output invalid (min. propagation delay) 0 — ns M11 ENET_MDC falling edge to ENET_MDIO output valid (max. propagation delay) — 5 ns M12 ENET_MDIO (input) to ENET_MDC rising edge setup 18 — ns M13 ENET_MDIO (input) to ENET_MDC rising edge hold 0 — ns M14 ENET_MDC pulse width high 40% 60% ENET_MDC period M15 ENET_MDC pulse width low 40% 60% ENET_MDC period 4.9.4.2 RMII mode timing In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference clock. Figure 48 shows RMII mode timings. Table 93 describes the timing parameters (M16–M21) shown in the figure. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 95 Electrical characteristics M16 M17 ENET_CLK (input) M18 ENET_TX_DATA (output) ENET_TX_EN M19 ENET_RX_EN (input) ENET_RX_DATA[1:0] ENET_RX_ER M20 M21 Figure 48. RMII mode signal timing diagram Table 93. RMII signal timing ID Characteristic Min. Max. Unit M16 ENET_CLK pulse width high 35% 65% ENET_CLK period M17 ENET_CLK pulse width low 35% 65% ENET_CLK period M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid 4 — ns M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid — 13 ns M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup 2 — ns M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold 2 — ns 4.9.4.3 RGMII signal switching specifications The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices. Table 94. RGMII signal switching specifications1 Symbol Tcyc2 Description Clock cycle duration TskewT3 Data to clock output skew at transmitter Min. Max. Unit 7.2 8.8 ns -500 500 ps i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 96 NXP Semiconductors Electrical characteristics Table 94. RGMII signal switching specifications1 (continued) Symbol TskewR3 2 3 4 Min. Max. Unit Data to clock input skew at receiver 1 2.6 ns 4 Duty cycle for Gigabit 45 85 % 4 Duty_T Duty cycle for 10/100T 40 90 % Tr/Tf Rise/fall time (20–80%) — 0.98 ns Duty_G 1 Description The timings assume the following configuration: DDR_SEL = (11)b DSE (drive-strength) = (111)b For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively. For all versions of RGMII prior to 2.0; this implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value is unspecified. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between. 2'-))?48#ATTRANSMITTER 4SKEW4 2'-))?48$NNTO 2'-))?48?#4, 48%. 48%22 4SKEW2 2'-))?48#ATRECEIVER Figure 49. RGMII transmit signal timing diagram 2'-))?28#ATTRANSMITTER 4SKEW4 2'-))?28$NNTO 2'-))?28?#4, 28$6 28%22 4SKEW2 2'-))?28#ATRECEIVER Figure 50. RGMII receive signal timing diagram i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 97 Electrical characteristics 2'-))?28#SOURCEOFDATA )NTERNALDELAY 4SETUP4 4HOLD4 4SETUP2 4HOLD2 2'-))?28$NNTO 2'-))?28?#4, 28$6 28%22 2'-))?28#ATRECEIVER Figure 51. RGMII receive signal timing diagram with internal delay 4.9.5 Controller Area Network (CAN) AC electrical specifications The Controller Area Network (CAN) module is a communication controller implementing the CAN protocol according to the CAN with Flexible Data rate (CAN FD) protocol and the CAN 2.0B protocol specification. The processor has three CAN modules available. Tx and Rx ports are multiplexed with other I/O pins. See the IOMUXC chapter of the device reference manual to see which pins expose Tx and Rx pins; these ports are named CAN_TX and CAN_RX, respectively. Please refer to Section 4.3.2.1, General purpose I/O (GPIO) AC parameters. 4.9.6 LPUART electrical specifications Please refer to Section 4.3.2.1, General purpose I/O (GPIO) AC parameters. 4.9.7 USB PHY parameters This section describes the USB-OTG PHY parameters. The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG with the following amendments. • USB ENGINEERING CHANGE NOTICE — Title: 5V Short Circuit Withstand Requirement Change — Applies to: Universal Serial Bus Specification, Revision 2.0 • Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000 • USB ENGINEERING CHANGE NOTICE — Title: Pull-up/Pull-down resistors — Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE — Title: Suspend Current Limit Changes — Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 98 NXP Semiconductors Electrical characteristics • • — Title: USB 2.0 Phase Locked SOFs — Applies to: Universal Serial Bus Specification, Revision 2.0 On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification — Revision 2.0 plus errata and ecn June 4, 2010 Battery Charging Specification (available from USB-IF) — Revision 1.2, December 7, 2010 — Portable device only 4.10 Timers This section provides information on timers. 4.10.1 Pulse Width Modulator (PWM) characteristics This section describes the electrical information of the PWM. Table 95. PWM timing parameters Parameter Symbol Typ Max Unit PWM Clock Frequency — — 240 MHz Output skew — — 2 ns 4.10.2 Quad timer timing Table 96 lists the quad timer parameters. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 99 Electrical characteristics Table 96. Quad timer timing Symbo Min1 Max Unit TIN 2T + 6 — ns Timer input high/low period TINHL 1T + 3 — ns Timer output period TOUT 33 — ns TOUTHL 16.7 — ns Characteristic Timer input period Timer output high/low period 1 See Figure T = clock cycle. For 60 MHz operation, T = 16.7 ns. 4IMER)NPUTS 4 ). 4 ).(, 4 ).(, 4 /54 4 /54(, 4 /54(, 4IMER/UTPUTS Figure 52. Quad timer timing i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 100 NXP Semiconductors Boot mode configuration 5 Boot mode configuration This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation. 5.1 Boot mode configuration pins Table 97 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX RT1160 Fuse Map and the System Boot chapter in i.MX RT1160 Reference Manual (IMXRT1160RM). Table 97. Fuses and associated pins used for boot Pad Default setting on reset eFuse name GPIO_LPSR_02 35 K pull-down BOOT_MODE[0] GPIO_LPSR_03 35 K pull-down BOOT_MODE[1] GPIO_DISP_B1_06 HighZ BT_CFG[0] GPIO_DISP_B1_07 HighZ BT_CFG[1] GPIO_DISP_B1_08 HighZ BT_CFG[2] GPIO_DISP_B1_09 HighZ BT_CFG[3] GPIO_DISP_B1_10 HighZ BT_CFG[4] GPIO_DISP_B1_11 HighZ BT_CFG[5] GPIO_DISP_B2_00 HighZ BT_CFG[6] GPIO_DISP_B2_01 HighZ BT_CFG[7] GPIO_DISP_B2_02 HighZ BT_CFG[8] GPIO_DISP_B2_03 HighZ BT_CFG[9] GPIO_DISP_B2_04 HighZ BT_CFG[10] GPIO_DISP_B2_05 HighZ BT_CFG[11] 5.2 Details Boot Options, Pin value overrides fuse settings for BT_FUSE_SEL = ‘0’. Signal Configuration as Fuse Override Input at Power Up. These are special I/O lines that control the boot up configuration during product development. In production, the boot configuration can be controlled by fuses. Boot device interface allocation The following tables list the interfaces that can be used by the boot process in accordance with the specific boot mode configuration. The tables also describe the interface’s specific modes and IOMUXC allocation, which are configured during boot when appropriate. Table 98. Boot through NAND PAD Name IO Function ALT Comments GPIO_EMC_B1_00 semc.DATA[0] ALT 0 — GPIO_EMC_B1_01 semc.DATA[1] ALT 0 — GPIO_EMC_B2_02 semc.DATA[2] ALT 0 — i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 101 Boot mode configuration Table 98. Boot through NAND GPIO_EMC_B1_03 semc.DATA[3] ALT 0 — GPIO_EMC_B1_04 semc.DATA[4] ALT 0 — GPIO_EMC_B1_05 semc.DATA[5] ALT 0 — GPIO_EMC_B1_06 semc.DATA[6] ALT 0 — GPIO_EMC_B1_07 semc.DATA[7] ALT 0 — GPIO_EMC_B1_30 semc.DATA[8] ALT 0 — GPIO_EMC_B1_31 semc.DATA[9] ALT 0 — GPIO_EMC_B1_32 semc.DATA[10] ALT 0 — GPIO_EMC_B1_33 semc.DATA[11] ALT 0 — GPIO_EMC_B1_34 semc.DATA[12] ALT 0 — GPIO_EMC_B1_35 semc.DATA[13] ALT 0 — GPIO_EMC_B1_36 semc.DATA[14] ALT 0 — GPIO_EMC_B1_37 semc.DATA[15] ALT 0 — GPIO_EMC_B1_18 semc.ADDR[9] ALT 0 — GPIO_EMC_B1_19 semc.ADDR[11] ALT 0 — GPIO_EMC_B1_20 semc.ADDR[12] ALT 0 — GPIO_EMC_B1_22 semc.BA1 ALT 0 — GPIO_EMC_B1_41 semc.CSX[0] ALT 0 — Table 99. Boot through FlexSPI1 PAD Name IO Function Mux Mode Comments GPIO_SD_B2_00 flexspi1.B_DATA[3] ALT 1 — GPIO_SD_B2_01 flexspi1.B_DATA[2] ALT 1 — GPIO_SD_B2_02 flexspi1.B_DATA[1] ALT 1 — GPIO_SD_B2_03 flexspi1.B_DATA[0] ALT 1 — GPIO_SD_B2_04 flexspi1.B_SCLK ALT 1 — GPIO_SD_B1_05 flexspi1.B_DQS ALT 8 — GPIO_SD_B1_04 flexspi1.B_SS0_B ALT 8 — GPIO_SD_B1_03 flexspi1.B_SS1_B ALT 9 — GPIO_SD_B2_05 flexspi1.A_DQS ALT 1 — GPIO_EMC_B2_18 flexspi1.A_DQS ALT 6 Secondary option for DQS GPIO_SD_B2_06 flexspi1.A_SS0_B ALT 1 — GPIO_SD_B1_02 flexspi1.A_SS1_B ALT 9 — i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 102 NXP Semiconductors Boot mode configuration Table 99. Boot through FlexSPI1 (continued) PAD Name IO Function Mux Mode Comments GPIO_SD_B2_07 flexspi1.A_SCLK ALT 1 — GPIO_SD_B2_08 flexspi1.A_DATA[0] ALT 1 — GPIO_SD_B2_09 flexspi1.A_DATA[1] ALT 1 — GPIO_SD_B2_10 flexspi1.A_DATA[2] ALT 1 — GPIO_SD_B2_11 flexspi1.A_DATA[3] ALT 1 — Table 100. Boot through FlexSPI2 (QSPI/HyperFLASH) PAD Name IO Function ALT Comments GPIO_EMC_B1_41 flexspi2.B_DATA[7] ALT 4 — GPIO_EMC_B2_00 flexspi2.B_DATA[6] ALT 4 — GPIO_EMC_B2_01 flexspi2.B_DATA[5] ALT 4 — GPIO_EMC_B2_02 flexspi2.B_DATA[4] ALT 4 — GPIO_EMC_B2_03 flexspi2.B_DATA[3] ALT 4 — GPIO_EMC_B2_04 flexspi2.B_DATA[2] ALT 4 — GPIO_EMC_B2_05 flexspi2.B_DATA[1] ALT 4 — GPIO_EMC_B2_06 flexspi2.B_DATA[0] ALT 4 — GPIO_EMC_B2_07 flexspi2.B_DQS ALT 4 — GPIO_EMC_B2_08 flexspi2.B_SS0_B ALT 4 — GPIO_EMC_B2_09 flexspi2.B_SCLK ALT 4 — GPIO_EMC_B2_10 flexspi2.A_SCLK ALT 4 — GPIO_EMC_B2_11 flexspi2.A_SS0_B ALT 4 — GPIO_EMC_B2_12 flexspi2.A_DQS ALT 4 — GPIO_EMC_B2_13 flexspi2.A_DATA[0] ALT 4 — GPIO_EMC_B2_14 flexspi2.A_DATA[1] ALT 4 — GPIO_EMC_B2_15 flexspi2.A_DATA[2] ALT 4 — GPIO_EMC_B2_16 flexspi2.A_DATA[3] ALT 4 — GPIO_EMC_B2_17 flexspi2.A_DATA[4] ALT 4 — GPIO_EMC_B2_18 flexspi2.A_DATA[5] ALT 4 — GPIO_EMC_B2_19 flexspi2.A_DATA[6] ALT 4 — GPIO_EMC_B2_20 flexspi2.A_DATA[7] ALT 4 — i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 103 Boot mode configuration Table 101. FlexSPI reset PAD Name IO Function Mux Mode Comments GPIO_SD_B1_00 gpio_mux4.IO[3] ALT 5 — GPIO_EMC_B1_40 gpio_mux2.IO[8] ALT 5 Secondary option Table 102. Boot through SAI1 PAD Name IO Function Mux Mode Comments GPIO_AD_17 sai1.MCLK ALT 0 — GPIO_AD_18 sai1.RX_SYNC ALT 0 — GPIO_AD_19 sai1.RX_BCLK ALT 0 — GPIO_AD_20 sai1.RX_DATA[0] ALT 0 — GPIO_AD_21 sai1.TX_DATA[0] ALT 0 — GPIO_AD_22 sai1.TX_BCLK ALT 0 — GPIO_AD_23 sai1.TX_SYNC ALT 0 — Table 103. Boot through SD1 PAD Name IO Function Mux Mode Comments GPIO_AD_32 usdhc1.CD_B ALT 4 — GPIO_AD_33 usdhc1.WP ALT 4 — GPIO_AD_34 usdhc1.VSELECT ALT 4 — GPIO_AD_35 usdhc1.RESET_B ALT 4 — GPIO_SD_B1_00 usdhc1.CMD ALT 0 — GPIO_SD_B1_01 usdhc1.CLK ALT 0 — GPIO_SD_B1_02 usdhc1.DATA0 ALT 0 — GPIO_SD_B1_03 usdhc1.DATA1 ALT 0 — GPIO_SD_B1_04 usdhc1.DATA2 ALT 0 — GPIO_SD_B1_05 usdhc1.DATA3 ALT 0 — Table 104. Boot through SD2 PAD Name IO Function Mux Mode Comments GPIO_AD_26 usdhc2.CD_B ALT 11 — GPIO_AD_27 usdhc2.WP ALT 11 — GPIO_AD_28 usdhc2.VSELECT ALT 11 — GPIO_SD_B2_00 usdhc2.DATA3 ALT 0 — GPIO_SD_B2_01 usdhc2.DATA2 ALT 0 — i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 104 NXP Semiconductors Boot mode configuration Table 104. Boot through SD2 (continued) PAD Name IO Function Mux Mode Comments GPIO_SD_B2_02 usdhc2.DATA1 ALT 0 — GPIO_SD_B2_03 usdhc2.DATA0 ALT 0 — GPIO_SD_B2_04 usdhc2.CLK ALT 0 — GPIO_SD_B2_05 usdhc2.CMD ALT 0 — GPIO_SD_B2_06 usdhc2.RESET_B ALT 0 — GPIO_SD_B2_08 usdhc2.DATA4 ALT 0 — GPIO_SD_B2_09 usdhc2.DATA5 ALT 0 — GPIO_SD_B2_10 usdhc2.DATA6 ALT 0 — GPIO_SD_B2_11 usdhc2.DATA7 ALT 0 — Table 105. Boot through SPI1 PAD Name IO Function Mux Mode Comments GPIO_AD_28 lpspi1.SCK ALT 0 — GPIO_AD_29 lpspi1.PCS0 ALT 0 — GPIO_AD_30 lpspi1.SDO ALT 0 — GPIO_AD_31 lpspi1.SDI ALT 0 — Table 106. Boot through SPI2 PAD Name IO Function Mux Mode Comments GPIO_SD_B2_07 lpspi2.SCK ALT 6 — GPIO_SD_B2_08 lpspi2.PCS0 ALT 6 — GPIO_SD_B2_09 lpspi2.SDO ALT 6 — GPIO_SD_B2_10 lpspi2.SDI ALT 6 — Table 107. Boot through SPI3 PAD Name IO Function Mux Mode Comments GPIO_DISP_B1_04 lpspi3.SCK ALT 9 — GPIO_DISP_B1_07 lpspi3.PCS0 ALT 9 — GPIO_DISP_B1_06 lpspi3.SDO ALT 9 — GPIO_DISP_B1_05 lpspi3.SDI ALT 9 — i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 105 Boot mode configuration Table 108. Boot through SPI4 PAD Name IO Function Mux Mode Comments GPIO_DISP_B2_12 lpspi4.SCK ALT 9 — GPIO_DISP_B2_15 lpspi4.PCS0 ALT 9 — GPIO_DISP_B2_14 lpspi4.SDO ALT 9 — GPIO_DISP_B2_13 lpspi4.SDI ALT 9 — Table 109. Boot through UART1 PAD Name IO Function Mux Mode Comments GPIO_AD_24 lpuart1.TX ALT 0 — GPIO_AD_25 lpuart1.RX ALT 0 — GPIO_AD_26 lpuart1.CTS_B ALT 0 — GPIO_AD_27 lpuart1.RTS_B ALT 0 — i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 106 NXP Semiconductors Package information and contact assignments 6 Package information and contact assignments This section includes the contact assignment information and mechanical package drawing. 6.1 6.1.1 14 x 14 mm package information 14 x 14 mm, 0.8 mm pitch, ball matrix Figure 53 shows the top, bottom, and side views of the 14 x 14 mm MAPBGA package. Figure 53. 14 x 14 mm BGA, case x package top, bottom, and side Views i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 107 Package information and contact assignments 6.1.2 14 x 14 mm supplies contact assignments and functional contact assignments Table 110 shows the device connection list for ground, sense, and reference contact signals. Table 110. 14 x 14 mm supplies contact assignment Supply Rail Name Ball(s) Position(s) Remark ADC_VREFH G16 — DAC_OUT H16 — DCDC_ANA M7, M8 — DCDC_ANA_SENSE M6 — DCDC_DIG K8, K9, L8 — DCDC_DIG_SENSE L7 — DCDC_GND K6, K7, L6 — DCDC_IN M5, N5 — DCDC_IN_Q L5 — DCDC_LN T4, U4 — DCDC_LP T3, U3 — DCDC_MODE N4 — DCDC_PSWITCH P3 — NVCC_DISP1 D12 — NVCC_DISP2 E7 — NVCC_EMC1 F6, F7, G6 — NVCC_EMC2 H6, J6 — NVCC_GPIO M12 — NVCC_LPSR P7 — NVCC_SNVS U11 — NVCC_SD1 D14 — NVCC_SD2 G13 — VDD_LPSR_ANA P12 — VDD_LPSR_DIG P11 — VDD_LPSR_IN R12 — VDD_MIPI_1P0 F10 — VDD_MIPI_1P8 F9 — VDD_USB_1P8 H12 — VDD_USB_3P3 G12 — i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 108 NXP Semiconductors Package information and contact assignments Table 110. 14 x 14 mm supplies contact assignment (continued) Supply Rail Name Ball(s) Position(s) Remark VDD_SOC_IN H8, H9, H10, J8, J9, J10, K10 VDD_SNVS_ANA U14 — VDD_SNVS_DIG T14 — VDD_SNVS_IN U12 — VDDA_1P0 N11 — VDDA_1P8_IN M11 — VDDA_ADC_1P8 K15 VDDA_ADC_3P3 J13 — VSS A1, A17, B7, C8, C10, C12, C14, D4, F11, F12, F13, G3, G7, G8, G9, G10, G11, G15, H7, H11, J7, J11, K11, L3, L10, L11, L15, P4, P14, R4, R7, T12, U1, U17 — Table 111 shows an alpha-sorted list of functional contact assignments of the 14 x 14 mm package. Table 111. 14 x 14 mm functional contact assignment Ball name 14 x 14 ball Power group Ball Types Default setting Default modes Default function Input/ output Nominal value CLK1_N T15 — — — — — CLK1_P U15 — — — — — GPIO_AD_00 N12 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX2_IO31 Input 35K PU1 GPIO_AD_01 R14 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO0 Input 35K PU GPIO_AD_02 R13 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO1 Input 35K PD2 GPIO_AD_03 P15 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO2 Input 35K PD GPIO_AD_04 M13 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO3 Input 35K PD GPIO_AD_05 P13 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO4 Input 35K PD GPIO_AD_06 N13 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO5 Input 35K PD GPIO_AD_07 T17 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO6 Input 35K PD GPIO_AD_08 R15 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO7 Input 35K PD i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 109 Package information and contact assignments Table 111. 14 x 14 mm functional contact assignment (continued) Ball name 14 x 14 ball Power group Ball Types Default setting Default modes Default function Input/ output Nominal value GPIO_AD_09 R16 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO8 Input 35K PD GPIO_AD_10 R17 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO9 Input 35K PD GPIO_AD_11 P16 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO10 Input 35K PD GPIO_AD_12 P17 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO11 Input 35K PD GPIO_AD_13 L12 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO12 Input 35K PD GPIO_AD_14 N14 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO13 Input 35K PD GPIO_AD_15 M14 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO14 Input 35K PD GPIO_AD_16 N17 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO15 Input 35K PD GPIO_AD_17 N15 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO16 Input 35K PD GPIO_AD_18 M16 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO17 Input 35K PU GPIO_AD_19 L16 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO18 Input 35K PD GPIO_AD_20 K13 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO19 Input 35K PD GPIO_AD_21 K14 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO20 Input 35K PD GPIO_AD_22 K12 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO21 Input 35K PD GPIO_AD_23 J12 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO22 Input 35K PD GPIO_AD_24 L13 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO23 Input 35K PD GPIO_AD_25 M15 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO24 Input 35K PD GPIO_AD_26 L14 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO25 Input 35K PU GPIO_AD_27 N16 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO26 Input 35K PU i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 110 NXP Semiconductors Package information and contact assignments Table 111. 14 x 14 mm functional contact assignment (continued) Ball name 14 x 14 ball Power group Ball Types Default setting Default modes Default function Input/ output Nominal value GPIO_AD_28 L17 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO27 Input 35K PD GPIO_AD_29 M17 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO28 Input 35K PD GPIO_AD_30 K17 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO29 Input 35K PD GPIO_AD_31 J17 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO30 Input 35K PD GPIO_AD_32 K16 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX3_IO31 Input 35K PD GPIO_AD_33 H17 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX4_IO0 Input 35K PD GPIO_AD_34 J16 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX4_IO1 Input 35K PD GPIO_AD_35 G17 NVCC_GPIO Digital GPIO ALT 5 GPIO_MUX4_IO2 Input 35K PU GPIO_DISP_B1_00 E13 NVCC_DISP1 Digital GPIO ALT 5 GPIO_MUX4_IO21 Input 50/35K PD3 GPIO_DISP_B1_01 D13 NVCC_DISP1 Digital GPIO ALT 5 GPIO_MUX4_IO22 Input 50/35K PD GPIO_DISP_B1_02 D11 NVCC_DISP1 Digital GPIO ALT 5 GPIO_MUX4_IO23 Input 50/35K PD GPIO_DISP_B1_03 E11 NVCC_DISP1 Digital GPIO ALT 5 GPIO_MUX4_IO24 Input 50/35K PD GPIO_DISP_B1_04 E10 NVCC_DISP1 Digital GPIO ALT 5 GPIO_MUX4_IO25 Input 50/35K PD GPIO_DISP_B1_05 C11 NVCC_DISP1 Digital GPIO ALT 5 GPIO_MUX4_IO26 Input 50/35K PD GPIO_DISP_B1_06 D10 NVCC_DISP1 Digital GPIO ALT 5 GPIO_MUX4_IO27 Input Highz GPIO_DISP_B1_07 E12 NVCC_DISP1 Digital GPIO ALT 5 GPIO_MUX4_IO28 Input Highz GPIO_DISP_B1_08 A15 NVCC_DISP1 Digital GPIO ALT 5 GPIO_MUX4_IO29 Input Highz GPIO_DISP_B1_09 C13 NVCC_DISP1 Digital GPIO ALT 5 GPIO_MUX4_IO30 Input Highz GPIO_DISP_B1_10 B14 NVCC_DISP1 Digital GPIO ALT 5 GPIO_MUX4_IO31 Input Highz i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 111 Package information and contact assignments Table 111. 14 x 14 mm functional contact assignment (continued) Ball name 14 x 14 ball Power group Ball Types Default setting Default modes Default function Input/ output Nominal value GPIO_DISP_B1_11 A14 NVCC_DISP1 Digital GPIO ALT 5 GPIO_MUX5_IO0 Input Highz GPIO_DISP_B2_00 E8 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO1 Input Highz GPIO_DISP_B2_01 F8 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO2 Input Highz GPIO_DISP_B2_02 E9 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO3 Input Highz GPIO_DISP_B2_03 D7 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO4 Input Highz GPIO_DISP_B2_04 C7 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO5 Input Highz GPIO_DISP_B2_05 C9 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO6 Input Highz GPIO_DISP_B2_06 C6 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO7 Input 35K PD GPIO_DISP_B2_07 D6 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO8 Input 35K PD GPIO_DISP_B2_08 B5 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO9 Input 35K PD GPIO_DISP_B2_09 D8 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO10 Input 35K PD GPIO_DISP_B2_10 D9 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO11 Input 35K PD GPIO_DISP_B2_11 A6 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO12 Input 35K PD GPIO_DISP_B2_12 B6 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO13 Input 35K PD GPIO_DISP_B2_13 A5 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO14 Input 35K PD GPIO_DISP_B2_14 A7 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO15 Input 35K PD GPIO_DISP_B2_15 A4 NVCC_DISP2 Digital GPIO ALT 5 GPIO_MUX5_IO16 Input 35K PU GPIO_EMC_B1_00 F3 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO0 Input 50/35K PD GPIO_EMC_B1_01 F2 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO1 Input 50/35K PD i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 112 NXP Semiconductors Package information and contact assignments Table 111. 14 x 14 mm functional contact assignment (continued) Ball name 14 x 14 ball Power group Ball Types Default setting Default modes Default function Input/ output Nominal value GPIO_EMC_B1_02 G4 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO2 Input 50/35K PD GPIO_EMC_B1_03 E4 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO3 Input 50/35K PD GPIO_EMC_B1_04 H5 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO4 Input 50/35K PD GPIO_EMC_B1_05 F4 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO5 Input 50/35K PD GPIO_EMC_B1_06 H4 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO6 Input 50/35K PD GPIO_EMC_B1_07 H3 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO7 Input 50/35K PD GPIO_EMC_B1_08 F5 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO8 Input 50/35K PD GPIO_EMC_B1_09 A3 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO9 Input 50/35K PD GPIO_EMC_B1_10 A2 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO10 Input 50/35K PD GPIO_EMC_B1_11 C2 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO11 Input 50/35K PD GPIO_EMC_B1_12 C5 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO12 Input 50/35K PD GPIO_EMC_B1_13 D5 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO13 Input 50/35K PD GPIO_EMC_B1_14 B1 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO14 Input 50/35K PD GPIO_EMC_B1_15 C1 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO15 Input 50/35K PD GPIO_EMC_B1_16 D3 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO16 Input 50/35K PD GPIO_EMC_B1_17 B3 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO17 Input 50/35K PD GPIO_EMC_B1_18 B4 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO18 Input 50/35K PD GPIO_EMC_B1_19 C4 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO19 Input 50/35K PD GPIO_EMC_B1_20 C3 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO20 Input 50/35K PD i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 113 Package information and contact assignments Table 111. 14 x 14 mm functional contact assignment (continued) Ball name 14 x 14 ball Power group Ball Types Default setting Default modes Default function Input/ output Nominal value GPIO_EMC_B1_21 G2 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO21 Input 50/35K PD GPIO_EMC_B1_22 H2 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO22 Input 50/35K PD GPIO_EMC_B1_23 B2 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO23 Input 50/35K PD GPIO_EMC_B1_24 J5 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO24 Input 50/35K PD GPIO_EMC_B1_25 J4 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO25 Input 50/35K PD GPIO_EMC_B1_26 J3 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO26 Input 50/35K PD GPIO_EMC_B1_27 G5 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO27 Input 50/35K PD GPIO_EMC_B1_28 E5 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO28 Input 50/35K PD GPIO_EMC_B1_29 E6 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO29 Input 50/35K PD GPIO_EMC_B1_30 E3 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO30 Input 50/35K PD GPIO_EMC_B1_31 D2 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX1_IO31 Input 50/35K PD GPIO_EMC_B1_32 D1 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX2_IO0 Input 50/35K PD GPIO_EMC_B1_33 E2 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX2_IO1 Input 50/35K PD GPIO_EMC_B1_34 E1 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX2_IO2 Input 50/35K PD GPIO_EMC_B1_35 F1 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX2_IO3 Input 50/35K PD GPIO_EMC_B1_36 G1 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX2_IO4 Input 50/35K PD GPIO_EMC_B1_37 H1 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX2_IO5 Input 50/35K PD GPIO_EMC_B1_38 J1 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX2_IO6 Input 50/35K PD GPIO_EMC_B1_39 J2 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX2_IO7 Input 50/35K PD i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 114 NXP Semiconductors Package information and contact assignments Table 111. 14 x 14 mm functional contact assignment (continued) Ball name 14 x 14 ball Power group Ball Types Default setting Default modes Default function Input/ output Nominal value GPIO_EMC_B1_40 K1 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX2_IO8 Input 50/35K PD GPIO_EMC_B1_41 L1 NVCC_EMC1 Digital GPIO ALT 5 GPIO_MUX2_IO9 Input 50/35K PD GPIO_EMC_B2_00 K2 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO10 Input 50/35K PD GPIO_EMC_B2_01 K4 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO11 Input 50/35K PD GPIO_EMC_B2_02 K3 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO12 Input 50/35K PD GPIO_EMC_B2_03 R1 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO13 Input 50/35K PD GPIO_EMC_B2_04 M1 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO14 Input 50/35K PD GPIO_EMC_B2_05 N1 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO15 Input 50/35K PD GPIO_EMC_B2_06 T1 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO16 Input 50/35K PD GPIO_EMC_B2_07 M3 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO17 Input 50/35K PD GPIO_EMC_B2_08 P1 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO18 Input 50/35K PU GPIO_EMC_B2_09 N2 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO19 Input 50/35K PD GPIO_EMC_B2_10 R2 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO20 Input 50/35K PD GPIO_EMC_B2_11 L4 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO21 Input 50/35K PU GPIO_EMC_B2_12 M2 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO22 Input 50/35K PD GPIO_EMC_B2_13 K5 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO23 Input 50/35K PD GPIO_EMC_B2_14 M4 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO24 Input 50/35K PD GPIO_EMC_B2_15 L2 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO25 Input 50/35K PD GPIO_EMC_B2_16 P2 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO26 Input 50/35K PD i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 115 Package information and contact assignments Table 111. 14 x 14 mm functional contact assignment (continued) Ball name 14 x 14 ball Power group Ball Types Default setting Default modes Default function Input/ output Nominal value GPIO_EMC_B2_17 T2 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO27 Input 50/35K PD GPIO_EMC_B2_18 N3 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO28 Input 50/35K PD GPIO_EMC_B2_19 U2 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO29 Input 50/35K PD GPIO_EMC_B2_20 R3 NVCC_EMC2 Digital GPIO ALT 5 GPIO_MUX2_IO30 Input 50/35K PD GPIO_LPSR_00 N6 NVCC_LPSR Digital GPIO ALT 10 GPIO12_IO0 Input 35K PD GPIO_LPSR_01 R6 NVCC_LPSR Digital GPIO ALT 10 GPIO12_IO1 Input 35K PD GPIO_LPSR_02 P6 NVCC_LPSR Digital GPIO ALT 0 BOOT_MODE0 Input 35K PD GPIO_LPSR_03 T7 NVCC_LPSR Digital GPIO ALT 0 BOOT_MODE1 Input 35K PD GPIO_LPSR_04 N7 NVCC_LPSR Digital GPIO ALT 10 GPIO12_IO4 Input 35K PD GPIO_LPSR_05 N8 NVCC_LPSR Digital GPIO ALT 10 GPIO12_IO5 Input 35K PD GPIO_LPSR_06 P8 NVCC_LPSR Digital GPIO ALT 10 GPIO12_IO6 Input 35K PD GPIO_LPSR_07 R8 NVCC_LPSR Digital GPIO ALT 10 GPIO12_IO7 Input 35K PD GPIO_LPSR_08 U8 NVCC_LPSR Digital GPIO ALT 10 GPIO12_IO8 Input 35K PD GPIO_LPSR_09 P5 NVCC_LPSR Digital GPIO ALT 10 GPIO12_IO9 Input 35K PD GPIO_LPSR_10 R5 NVCC_LPSR Digital GPIO ALT 0 JTAG_MUX_TRSTB Input 35K PU GPIO_LPSR_11 T5 NVCC_LPSR Digital GPIO ALT 0 JTAG_MUX_TDO Input Highz GPIO_LPSR_12 U5 NVCC_LPSR Digital GPIO ALT 0 JTAG_MUX_TDI Input 35K PU GPIO_LPSR_13 U6 NVCC_LPSR Digital GPIO ALT 0 JTAG_MUX_MOD Input 35K PD GPIO_LPSR_14 T6 NVCC_LPSR Digital GPIO ALT 0 JTAG_MUX_TCK Input 35K PD i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 116 NXP Semiconductors Package information and contact assignments Table 111. 14 x 14 mm functional contact assignment (continued) Ball name 14 x 14 ball Power group Ball Types Default setting Default modes Default function Input/ output Nominal value GPIO_LPSR_15 U7 NVCC_LPSR Digital GPIO ALT 0 JTAG_MUX_TMS Input 35K PU GPIO_SD_B1_00 B16 NVCC_SD1 Digital GPIO ALT 5 GPIO_MUX4_IO3 Input 50/35K PU GPIO_SD_B1_01 D15 NVCC_SD1 Digital GPIO ALT 5 GPIO_MUX4_IO4 Input 50/35K PD GPIO_SD_B1_02 C15 NVCC_SD1 Digital GPIO ALT 5 GPIO_MUX4_IO5 Input 50/35K PU GPIO_SD_B1_03 B17 NVCC_SD1 Digital GPIO ALT 5 GPIO_MUX4_IO6 Input 50/35K PU GPIO_SD_B1_04 B15 NVCC_SD1 Digital GPIO ALT 5 GPIO_MUX4_IO7 Input 50/35K PU GPIO_SD_B1_05 A16 NVCC_SD1 Digital GPIO ALT 5 GPIO_MUX4_IO8 Input 50/35K PD GPIO_SD_B2_00 J15 NVCC_SD2 Digital GPIO ALT 5 GPIO_MUX4_IO9 Input 50/35K PD GPIO_SD_B2_01 J14 NVCC_SD2 Digital GPIO ALT 5 GPIO_MUX4_IO10 Input 50/35K PD GPIO_SD_B2_02 H13 NVCC_SD2 Digital GPIO ALT 5 GPIO_MUX4_IO11 Input 50/35K PD GPIO_SD_B2_03 E15 NVCC_SD2 Digital GPIO ALT 5 GPIO_MUX4_IO12 Input 50/35K PD GPIO_SD_B2_04 F14 NVCC_SD2 Digital GPIO ALT 5 GPIO_MUX4_IO13 Input 50/35K PU GPIO_SD_B2_05 E14 NVCC_SD2 Digital GPIO ALT 5 GPIO_MUX4_IO14 Input 50/35K PU GPIO_SD_B2_06 F17 NVCC_SD2 Digital GPIO ALT 5 GPIO_MUX4_IO15 Input 50/35K PU GPIO_SD_B2_07 G14 NVCC_SD2 Digital GPIO ALT 5 GPIO_MUX4_IO16 Input 50/35K PD GPIO_SD_B2_08 F15 NVCC_SD2 Digital GPIO ALT 5 GPIO_MUX4_IO17 Input 50/35K PD GPIO_SD_B2_09 H15 NVCC_SD2 Digital GPIO ALT 5 GPIO_MUX4_IO18 Input 50/35K PD GPIO_SD_B2_10 H14 NVCC_SD2 Digital GPIO ALT 5 GPIO_MUX4_IO19 Input 50/35K PD GPIO_SD_B2_11 F16 NVCC_SD2 Digital GPIO ALT 5 GPIO_MUX4_IO20 Input 50/35K PD i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 117 Package information and contact assignments Table 111. 14 x 14 mm functional contact assignment (continued) Ball name 14 x 14 ball Power group Ball Types Default setting Default modes Default function Input/ output Nominal value GPIO_SNVS_00 R10 NVCC_SNVS ANALOG ALT 5 GPIO GPIO13_IO3 Input PD GPIO_SNVS_01 P10 NVCC_SNVS ANALOG ALT 5 GPIO GPIO13_IO4 Input PD GPIO_SNVS_02 L9 NVCC_SNVS ANALOG ALT 5 GPIO GPIO13_IO5 Input PD GPIO_SNVS_03 M10 NVCC_SNVS ANALOG ALT 5 GPIO GPIO13_IO6 Input PD GPIO_SNVS_04 N10 NVCC_SNVS ANALOG ALT 5 GPIO GPIO13_IO7 Input PD GPIO_SNVS_05 P9 NVCC_SNVS ANALOG ALT 5 GPIO GPIO13_IO8 Input PD GPIO_SNVS_06 M9 NVCC_SNVS ANALOG ALT 5 GPIO GPIO13_IO9 Input PD GPIO_SNVS_07 R9 NVCC_SNVS ANALOG ALT 5 GPIO GPIO13_IO10 Input PD GPIO_SNVS_08 N9 NVCC_SNVS ANALOG ALT 5 GPIO GPIO13_IO11 Input PD GPIO_SNVS_09 R11 NVCC_SNVS ANALOG ALT 5 GPIO GPIO13_IO12 Input PD MIPI_CSI_CKP B12 VDD_MIPI_1P8 CSI — — — — MIPI_CSI_CKN A12 VDD_MIPI_1P8 CSI — — — — MIPI_CSI_DN0 A11 VDD_MIPI_1P8 CSI — — — — MIPI_CSI_DN1 A13 VDD_MIPI_1P8 CSI — — — — MIPI_CSI_DP0 B11 VDD_MIPI_1P8 CSI — — — — MIPI_CSI_DP1 B13 VDD_MIPI_1P8 CSI — — — — MIPI_DSI_CKP B9 VDD_MIPI_1P8 DSI — — — — MIPI_DSI_CKN A9 VDD_MIPI_1P8 DSI — — — — MIPI_DSI_DN0 A8 VDD_MIPI_1P8 DSI — — — — MIPI_DSI_DN1 A10 VDD_MIPI_1P8 DSI — — — — MIPI_DSI_DP0 B8 VDD_MIPI_1P8 DSI — — — — MIPI_DSI_DP1 B10 VDD_MIPI_1P8 DSI — — — — ONOFF U10 NVCC_SNVS ANALOG ALT 0 GPIO RESET_B Input PU PMIC_ON_REQ U9 NVCC_SNVS ANALOG ALT 0 GPIO SNVS_LP_PMIC_ON _REQ Output Output high i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 118 NXP Semiconductors Package information and contact assignments Table 111. 14 x 14 mm functional contact assignment (continued) Ball name 14 x 14 ball Power group Ball Types Default setting Default modes Default function Input/ output PMIC_STBY_REQ T9 NVCC_SNVS ANALOG ALT 0 GPIO CCM_PMIC_VSTBY_ REQ POR_B T10 NVCC_SNVS ANALOG ALT 0 GPIO POR_B RTC_XTALI T13 — — — — — — RTC_XTALO U13 — — — — — — TEST_MODE T11 USB1_DN E16 — — — — — — USB1_DP E17 — — — — — — USB2_DN C16 — — — — — — USB2_DP C17 — — — — — — USB1_VBUS D17 — — — — — — USB2_VBUS D16 — — — — — — XTALI U16 — — — — — — XTALO T16 — — — — — — WAKEUP T8 ANALOG ALT 5 GPIO GPIO13_IO0 1 2 3 NVCC_SNVS NVCC_SNVS ANALOG ALT 0 GPIO Output Nominal value — TEST_MODE Input Input Output low PU PD PU Pull-up Pull-down Typical resistance value is 50 k for 3.3 V and 35 k for 1.8 V. The range is from 10 k to 100 k (3.3 V) and 20 k to 50 k (1.8 V). i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 119 Package information and contact assignments 6.1.3 14 x 14 mm, 0.8 mm pitch, ball map Table 112 shows the 14 x 14 mm, 0.8 mm pitch ball map for the i.MX RT1160. Table 112. 14 x 14 mm, 0.8 mm pitch, ball map 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 VSS GPIO_ EMC_ B1_10 GPIO_ EMC_ B1_09 GPIO_ DISP_ B2_15 GPIO_ DISP_ B2_13 GPIO_ DISP_ B2_11 GPIO_ DISP_ B2_14 MIPI_ DSI_ DN0 MIPI_ DSI_ CKN MIPI_ DSI_ DN1 MIPI_ CSI_ DN0 MIPI_ CSI_ CKN MIPI_ CSI_ DN1 GPIO_ DISP_ B1_11 GPIO_ DISP_ B1_08 GPIO_ SD_ B1_05 VSS B GPIO_ EMC_ B1_14 GPIO_ EMC_ B1_23 GPIO_ EMC_ B1_17 GPIO_ EMC_ B1_18 GPIO_ DISP_ B2_08 GPIO_ DISP_ B2_12 VSS MIPI_ DSI_ DP0 MIPI_ DSI_ CKP MIPI_ DSI_ DP1 MIPI_ CSI_ DP0 MIPI_ CSI_ CKP MIPI_ CSI_ DP1 GPIO_ DISP_ B1_10 GPIO_ SD_ B1_04 GPIO_ SD_ B1_00 GPIO_ SD_ B1_03 C GPIO_ EMC_ B1_15 GPIO_ EMC_ B1_11 GPIO_ EMC_ B1_20 GPIO_ EMC_ B1_19 GPIO_ EMC_ B1_12 GPIO_ DISP_ B2_06 GPIO_ DISP_ B2_04 VSS GPIO_ DISP_ B2_05 VSS GPIO_ DISP_ B1_05 VSS GPIO_ DISP_ B1_09 VSS GPIO_ SD_ B1_02 USB2_ DN USB2_ DP D GPIO_ EMC_ B1_32 GPIO_ EMC_ B1_31 GPIO_ EMC_ B1_16 VSS GPIO_ EMC_ B1_13 GPIO_ DISP_ B2_07 GPIO_ DISP_ B2_03 GPIO_ DISP_ B2_09 GPIO_ DISP_ B2_10 GPIO_ DISP_ B1_06 GPIO_ DISP_ B1_02 NVCC_ DISP1 GPIO_ DISP_ B1_01 NVCC_ SD1 GPIO_ SD_ B1_01 USB2_ VBUS USB1_ VBUS E GPIO_ EMC_ B1_34 GPIO_ EMC_ B1_33 GPIO_ EMC_ B1_30 GPIO_ EMC_ B1_03 GPIO_ EMC_ B1_28 GPIO_ EMC_ B1_29 NVCC_ DISP2 GPIO_ DISP_ B2_00 GPIO_ DISP_ B2_02 GPIO_ DISP_ B1_04 GPIO_ DISP_ B1_03 GPIO_ DISP_ B1_07 GPIO_ DISP_ B1_00 GPIO_ SD_ B2_05 GPIO_ SD_ B2_03 USB1_ DN USB1_ DP F GPIO_ EMC_ B1_35 GPIO_ EMC_ B1_01 GPIO_ EMC_ B1_00 GPIO_ EMC_ B1_05 GPIO_ EMC_ B1_08 NVCC_ EMC1 NVCC_ EMC1 GPIO_ DISP_ B2_01 VDD_ MIPI_ 1P8 VDD_M IPI_ 1P0 VSS VSS VSS GPIO_ SD_ B2_04 GPIO_ SD_ B2_08 GPIO_ SD_ B2_11 GPIO_ SD_ B2_06 G GPIO_ EMC_ B1_36 GPIO_ EMC_ B1_21 VSS GPIO_ EMC_ B1_02 GPIO_ EMC_ B1_27 NVCC_ EMC1 VSS VSS VSS VSS VSS VDD_ USB_ 3P3 NVCC_ SD2 GPIO_ SD_ B2_07 VSS ADC_ VREFH GPIO_ AD_35 H GPIO_ EMC_ B1_37 GPIO_ EMC_ B1_22 GPIO_ EMC_ B1_07 GPIO_ EMC_ B1_06 GPIO_ EMC_ B1_04 NVCC_ EMC2 VSS VDD_ SOC_ IN VDD_ SOC_ IN VDD_ SOC_ IN VSS VDD_ USB_ 1P8 GPIO_ SD_ B2_02 GPIO_ SD_ B2_10 GPIO_ SD_ B2_09 DAC_ OUT GPIO_ AD_33 J GPIO_ EMC_ B1_38 GPIO_ EMC_ B1_39 GPIO_ EMC_ B1_26 GPIO_ EMC_ B1_25 GPIO_ EMC_ B1_24 NVCC_ EMC2 VSS VDD_ SOC_ IN VDD_ SOC_ IN VDD_ SOC_ IN VSS GPIO_ AD_23 VDDA_ ADC_ 3P3 GPIO_ SD_ B2_01 GPIO_ SD_ B2_00 GPIO_ AD_34 GPIO_ AD_31 A i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 120 NXP Semiconductors Package information and contact assignments Table 112. 14 x 14 mm, 0.8 mm pitch, ball map (continued) K GPIO_ EMC_ B1_40 GPIO_ EMC_ B2_00 GPIO_ EMC_ B2_02 GPIO_ EMC_ B2_01 GPIO_ EMC_ B2_13 DCDC _GND DCDC _GND DCDC _DIG DCDC _DIG VDD_ SOC_ IN VSS GPIO_ AD_22 GPIO_ AD_20 GPIO_ AD_21 VDDA_ ADC_ 1P8 GPIO_ AD_32 GPIO_ AD_30 L GPIO_ EMC_ B1_41 GPIO_ EMC_ B2_15 VSS GPIO_ EMC_ B2_11 DCDC _IN_Q DCDC _GND DCDC _DIG_ SENSE DCDC _DIG GPIO_ SNVS_ 02 VSS VSS GPIO_ AD_13 GPIO_ AD_24 GPIO_ AD_26 VSS GPIO_ AD_19 GPIO_ AD_28 M GPIO_ EMC_ B2_04 GPIO_ EMC_ B2_12 GPIO_ EMC_ B2_07 GPIO_ EMC_ B2_14 DCDC _IN DCDC _ANA_ SENSE DCDC _ANA DCDC _ANA GPIO_ SNVS_ 06 GPIO_ SNVS_ 03 VDDA_ 1P8_IN NVCC_ GPIO GPIO_ AD_04 GPIO_ AD_15 GPIO_ AD_25 GPIO_ AD_18 GPIO_ AD_29 N GPIO_ EMC_ B2_05 GPIO_ EMC_ B2_09 GPIO_ EMC_ B2_18 DCDC_ MODE DCDC _IN GPIO_ LPSR_ 00 GPIO_ LPSR_ 04 GPIO_ LPSR_ 05 GPIO_ SNVS_ 08 GPIO_ SNVS_ 04 VDDA_ 1P0 GPIO_ AD_00 GPIO_ AD_06 GPIO_ AD_14 GPIO_ AD_17 GPIO_ AD_27 GPIO_ AD_16 P GPIO_ EMC_ B2_08 GPIO_ EMC_ B2_16 DCDC _PSWI TCH VSS GPIO_ LPSR_ 09 GPIO_ LPSR_ 02 NVCC_ LPSR GPIO_ LPSR_ 06 GPIO_ SNVS_ 05 GPIO_ SNVS_ 01 VDD_ LPSR_ DIG VDD_ LPSR_ ANA GPIO_ AD_05 VSS GPIO_ AD_03 GPIO_ AD_11 GPIO_ AD_12 R GPIO_ EMC_ B2_03 GPIO_ EMC_ B2_10 GPIO_ EMC_ B2_20 VSS GPIO_ LPSR_ 10 GPIO_ LPSR_ 01 VSS GPIO_ LPSR_ 07 GPIO_ SNVS_ 07 GPIO_ SNVS_ 00 GPIO_ SNVS_ 09 VDD_ LPSR_ IN GPIO_ AD_02 GPIO_ AD_01 GPIO_ AD_08 GPIO_ AD_09 GPIO_ AD_10 T GPIO_ EMC_ B2_06 GPIO_ EMC_ B2_17 DCDC _LP DCDC_ LN GPIO_ LPSR_ 11 GPIO_ LPSR_ 14 GPIO_ LPSR_ 03 WAKE UP PMIC_ STBY_ REQ POR_B TEST_ MODE VSS RTC_ XTALI VDD_ SNVS_ DIG CLK1_ N XTALO GPIO_ AD_07 VSS GPIO_ EMC_ B2_19 DCDC _LP DCDC_ LN GPIO_ LPSR_ 12 GPIO_ LPSR_ 13 GPIO_ LPSR_ 15 GPIO_ LPSR_ 08 PMIC_ ON_ REQ ONOFF NVCC_ SNVS VDD_ SNVS_ IN RTC_ XTALO VDD_ SNVS_ ANA CLK1_ P XTALI VSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 U i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 121 Revision history 7 Revision history Table 113 provides a revision history for this data sheet. Table 113. i.MX RT1160 Data Sheet document revision history (continued) Rev. Number Date Substantive Change(s) Rev 3 06/2023 • From Section 5.2, Boot device interface allocation, removed the table describing UART12 as a boot interface. • In Table 58. FlexSPI output timing in SDR mode, updated the value of TDVO max to 4ns and TDHO min to 2ns. • Removed “Pad to IPP_IND” and “IPP_IND” specs from Table 39, AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank. Rev 2.1 01/2023 • Updated the Figure 3. • Changed ‘Power’ to Current’ for DCDC_IN in Table 12, Maximum supply currents. Rev 2 04.2022 • In Table 49, SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x1), changed the TIS Min value from 2 to 0.6. • In Table 4. Special signal considerations, in the signal “RTC_XTALI/RTC_XTALO” changed the tolerance from ±10% to ±25%. • In Table 4. Special signal considerations, for the signal “RTX_XTALI/RTX_XTALO” changed VDD_SNVS_DIG to VDD_SNVS_ANA. • Updated the Figure 3, "i.MX RT1160 system block diagram". • Updated the Table 1. Order information. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 122 NXP Semiconductors Revision history Rev. Number Rev. 1 Date 11/2021 Substantive Change(s) • • • • • • • • • • • • • • • • • • • • • • • • • Updated the note in Section 1.1, Features Updated the format of Table 1. Order information Updated Figure 3, "i.MX RT1160 system block diagram" Updated the SYS OSC and RTC OSC in Table 3. i.MX RT1160 modules list Added Boot_mode/Boot CFG in Table 4. Special signal considerations Updated the on-chip termination of JTAG_TDO in Table 5. JTAG controller interface summary Added the USB VBUS supply in Table 11. Operating ranges Updated the maximum current of DCDC_IN and VDD_MIPI_1P8 in Table 12. Maximum supply currents Updated Figure 4, "Power sequence" Updated the restrictions and first note in Section 4.2.1.1, Power-up sequence Updated the descriptions about on-chip regulators, input voltages, and output voltages in Section 4.2.4, DCDC Updated the comments of loading 1.8 V supply currents and footnote in Table 21. DCDC characteristics Updated the clock output range in Table 26. Arm PLL’s electrical parameters Updated the descriptions about the RTC_XTALI in Section 4.2.6, On-chip oscillators Updated the title and tstart descriptions in Table 27. 24 MHz system oscillator frequency specifications Updated the title and tstart descriptions in Table 28. 32 kHz oscillator specifications Updated the tstart descriptions in Table 29. RC oscillator with 16 MHz internal reference frequency Updated the tstart descriptions in Table 30. RC oscillator with 48 MHz internal reference frequency Updated the tstart descriptions and unit of JPP-CC in Table 31. RC oscillator with 400 MHz internal reference frequency Updated Table 35. DC specification for GPIO_SNVS bank Removed the INPSL values in Table 38. Dynamic input characteristics for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank Added the maximum frequency in Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank Changed the WDOGn_B to WDOG_B in Section 4.4.2, WDOG reset timing parameters Changed the VDD_ANA_18 to VDDA_ADC_1P8 in Table 73. ADC electrical specifications (VREFH = VDDA_ADC_1P8 and VADINmax ≤ VREFH); removed the values of VREFH,TUE, FSE, and ZSE from Table 73. ADC electrical specifications (VREFH = VDDA_ADC_1P8 and VADINmax ≤ VREFH); added gain error, offset error, and footnote in Table 73. ADC electrical specifications (VREFH = VDDA_ADC_1P8 and VADINmax ≤ VREFH); updated INL, DNL, ENOB, and footnote in Table 73. ADC electrical specifications (VREFH = VDDA_ADC_1P8 and VADINmax ≤ VREFH) Removed the values of VREFH, TUE, FSE, and ZSE from Table 74. ADC electrical specifications (VREFH = 1.68 V and VADINmax ≤ NVCC_GPIOmax); updated the typical value of CADIN, INL, DNL, min values of ENOB, and footnote in Table 74. ADC electrical specifications (VREFH = 1.68 V and VADINmax ≤ NVCC_GPIOmax); added gain error, offset error, and footnote in Table 74. ADC electrical specifications (VREFH = 1.68 V and VADINmax ≤ NVCC_GPIOmax) i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 NXP Semiconductors 123 Revision history Rev. Number Date Substantive Change(s) Rev. 1 11/2021 • Updated the table title and footnote of Table 75. ADC electrical specifications (1 V ≤ VREFH < 1.71 V and VADINmax ≤ VREFH); removed the values of VREFH,TUE, FSE, ZSE, and a footnote from Table 75. ADC electrical specifications (1 V ≤ VREFH < 1.71 V and VADINmax ≤ VREFH); added gain error, offset error, and footnote in Table 75. ADC electrical specifications (1 V ≤ VREFH < 1.71 V and VADINmax ≤ VREFH); updated the min values of ENOB, INL and ENL in Table 75. ADC electrical specifications (1 V ≤ VREFH < 1.71 V and VADINmax ≤ VREFH) • Updated Figure 34. ADC input impedance equivalent circuit diagram and added equations in Section 4.8.1.1, 12-bit ADC input impedance equivalent circuit diagram Rev. 0 04/2021 • Initial version i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 124 NXP Semiconductors NXP Semiconductors Legal information 1 Legal information Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] [2] [3] Please consult the most recently issued document before initiating or completing a design. The term 'short data sheet' is explained in section "Definitions". The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. Definitions Disclaimers Draft — A draft status on a document indicates that the content is still Limited warranty and liability — Information in this document is believed under internal review and subject to formal approval, which may result to be accurate and reliable. However, NXP Semiconductors does not give in modifications or additions. NXP Semiconductors does not give any any representations or warranties, expressed or implied, as to the accuracy representations or warranties as to the accuracy or completeness of or completeness of such information and shall have no liability for the information included in a draft version of a document and shall have no consequences of use of such information. NXP Semiconductors takes no liability for the consequences of use of such information. responsibility for the content in this document if provided by an information Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason Product specification — The information and data provided in a Product data whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards sheet shall define the specification of the product as agreed between NXP customer for the products described herein shall be limited in accordance with Semiconductors and its customer, unless NXP Semiconductors and customer the Terms and conditions of commercial sale of NXP Semiconductors. have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to Right to make changes — NXP Semiconductors reserves the right to make offer functions and qualities beyond those described in the Product data sheet. changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 Data Sheet: Technical Data 4/7 NXP Semiconductors Legal information Applications — Applications that are described herein for any of these Bare die — All die are tested on compliance with their related technical products are for illustrative purposes only. NXP Semiconductors makes no specifications as stated in this data sheet up to the point of wafer sawing representation or warranty that such applications will be suitable for the and are handled in accordance with the NXP Semiconductors storage and specified use without further testing or modification. transportation conditions. If there are data sheet limits not guaranteed, these Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers. accepts no liability for any assistance with applications or customer product NXP Semiconductors has no control of third party procedures in the sawing, design. It is customer’s sole responsibility to determine whether the NXP handling, packing or assembly of the die. Accordingly, NXP Semiconductors Semiconductors product is suitable and fit for the customer’s applications and assumes no liability for device functionality or performance of the die or products planned, as well as for the planned application and use of customer’s systems after third party sawing, handling, packing or assembly of the die. It is third party customer(s). Customers should provide appropriate design and the responsibility of the customer to test and qualify their application in which operating safeguards to minimize the risks associated with their applications the die is used. and products. All die sales are conditioned upon and subject to the customer entering NXP Semiconductors does not accept any liability related to any default, into a written die sale agreement with NXP Semiconductors through its damage, costs or problem which is based on any weakness or default in the legal department. customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Suitability for use in non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive are sold subject to the general terms and conditions of commercial sale, applications to automotive specifications and standards, customer (a) shall use as published at http://www.nxp.com/profile/terms, unless otherwise agreed the product without NXP Semiconductors’ warranty of the product for such in a valid written individual agreement. In case an individual agreement automotive applications, use and specifications, and (b) whenever customer is concluded only the terms and conditions of the respective agreement uses the product for automotive applications beyond NXP Semiconductors’ shall apply. NXP Semiconductors hereby expressly objects to applying the specifications such use shall be solely at customer’s own risk, and (c) customer customer’s general terms and conditions with regard to the purchase of NXP fully indemnifies NXP Semiconductors for any liability, damages or failed Semiconductors products by customer. product claims resulting from customer design and use of the product for No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. conveyance or implication of any license under any copyrights, patents or other Translations — A non-English (translated) version of a document, including industrial or intellectual property rights. the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 Data Sheet: Technical Data 5/7 NXP Semiconductors Legal information Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer’s Kinetis — is a trademark of NXP B.V. Layerscape — is a trademark of NXP B.V. MagniV — is a trademark of NXP B.V. Mantis — is a trademark of NXP B.V. MIFARE — is a trademark of NXP B.V. applications. NXP accepts no liability for any vulnerability. Customer should MIFARE Classic — is a trademark of NXP B.V. regularly check security updates from NXP and follow up appropriately. MIFARE4Mobile — is a trademark of NXP B.V. Customer shall select products with security features that best meet rules, MIFARE Plus — is a trademark of NXP B.V. regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible MiGLO — wordmark and logo are trademarks of NXP B.V. for compliance with all legal, regulatory, and security related requirements Mobileye — M, M Mobileye and other Mobileye trademarks or logos appearing concerning its products, regardless of any information or support that may be herein are trademarks of Mobileye Vision Technologies Ltd. in the United provided by NXP. States, the EU and/or other jurisdictions. NXP has a Product Security Incident Response Team (PSIRT) (reachable NTAG — is a trademark of NXP B.V. at PSIRT@nxp.com) that manages the investigation, reporting, and solution NXP SECURE CONNECTIONS FOR A SMARTER WORLD — is a trademark release to security vulnerabilities of NXP products. of NXP B.V. NXP B.V. - NXP B.V. is not an operating company and it does not distribute or sell products. PEG — is a trademark of NXP B.V. Processor Expert — is a trademark of NXP B.V. QorIQ — is a trademark of NXP B.V. Trademarks QorIQ Qonverge — is a trademark of NXP B.V. Notice: All referenced brands, product names, service names, and RoadLINK — wordmark and logo are trademarks of NXP B.V. trademarks are the property of their respective owners. NXP — wordmark and logo are trademarks of NXP B.V. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology SafeAssure — is a trademark of NXP B.V. SafeAssure — logo is a trademark of NXP B.V. SmartMX — is a trademark of NXP B.V. Tower — is a trademark of NXP B.V. UCODE — is a trademark of NXP B.V. VortiQa — is a trademark of NXP B.V. may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Airfast — is a trademark of NXP B.V. CodeWarrior — is a trademark of NXP B.V. ColdFire — is a trademark of NXP B.V. ColdFire+ — is a trademark of NXP B.V. CoolFlux — is a trademark of NXP B.V. EdgeLock — is a trademark of NXP B.V. EdgeScale — is a trademark of NXP B.V. eIQ — is a trademark of NXP B.V. Freescale — is a trademark of NXP B.V. GreenChip — is a trademark of NXP B.V. HITAG — is a trademark of NXP B.V. ICODE and I-CODE — are trademarks of NXP B.V. JCOP — is a trademark of NXP B.V. i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023 Data Sheet: Technical Data 6/7 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. © NXP B.V. 2023. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 06/2023 Document identifier: IMXRT1160XEC
MIMXRT1166XVM5A 价格&库存

很抱歉,暂时无法提供与“MIMXRT1166XVM5A”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MIMXRT1166XVM5A
    •  国内价格
    • 1+210.15335
    • 5+170.74960
    • 10+159.36629
    • 50+137.47532
    • 100+131.34584

    库存:152