0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MK21DX128AVMC5

MK21DX128AVMC5

  • 厂商:

    NXP(恩智浦)

  • 封装:

    121-LFBGA

  • 描述:

    IC MCU 32BIT 128KB FLASH 121BGA

  • 数据手册
  • 价格&库存
MK21DX128AVMC5 数据手册
Freescale Semiconductor Data Sheet: Technical Data Document Number: K21P80M50SF4 Rev. 4.1, 08/2013 K21P80M50SF4 K21 Sub-Family Supports the following: MK21DX128VLK5, MK21DX256VLK5, MK21DN512VLK5 Features • Operating Characteristics – Voltage range: 1.71 to 3.6 V – Flash write voltage range: 1.71 to 3.6 V – Temperature range (ambient): -40 to 105°C • Performance – Up to 50 MHz ARM Cortex-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz • Memories and memory interfaces – Up to 512 KB of program flash for devices without FlexNVM. – Up to 256 KB program flash for devices with FlexNVM. – 64 KB FlexNVM on FlexMemory devices – 4 KB FlexRAM on FlexMemory devices – Up to 64 KB RAM – Serial programming interface (EzPort) • Clocks – 3 to 32 MHz crystal oscillator – 32 kHz crystal oscillator – Multi-purpose clock generator • System peripherals – Multiple low-power modes to provide power optimization based on application requirements – 16-channel DMA controller, supporting up to 63 request sources – External watchdog monitor – Software watchdog – Low-leakage wakeup unit • Security and integrity modules – Hardware CRC module to support fast cyclic redundancy checks – Tamper detect and secure storage – Hardware random-number generator – Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms – 128-bit unique identification (ID) number per chip • Human-machine interface – General-purpose input/output • Analog modules – 16-bit SAR ADC – Two analog comparators (CMP) containing a 6-bit DAC and programmable reference input • Timers – Programmable delay block – Eight-channel motor control/general purpose/PWM timer – Two 2-channel general purpose timers, one with quadrature decoder functionality – Periodic interrupt timers – 16-bit low-power timer – Carrier modulator transmitter – Real-time clock • Communication interfaces – USB full-/low-speed On-the-Go controller with onchip transceiver – USB Device Charger detect – Two SPI modules – Two I2C modules – Four UART modules – I2S module Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2012–2013 Freescale Semiconductor, Inc. Table of Contents 1 Ordering parts...........................................................................3 5.4.1 Thermal operating requirements...........................21 1.1 Determining valid orderable parts......................................3 5.4.2 Thermal attributes.................................................21 2 Part identification......................................................................3 6 Peripheral operating requirements and behaviors....................22 2.1 Description.........................................................................3 6.1 Core modules....................................................................22 2.2 Format...............................................................................3 6.1.1 JTAG electricals....................................................22 2.3 Fields.................................................................................3 6.2 System modules................................................................25 2.4 Example............................................................................4 6.3 Clock modules...................................................................25 2.5 Small package marking.....................................................4 6.3.1 MCG specifications...............................................25 3 Terminology and guidelines......................................................5 6.3.2 Oscillator electrical specifications.........................27 3.1 Definition: Operating requirement......................................5 6.3.3 32 kHz oscillator electrical characteristics.............30 3.2 Definition: Operating behavior...........................................5 6.4 Memories and memory interfaces.....................................30 3.3 Definition: Attribute............................................................6 6.4.1 Flash electrical specifications................................30 3.4 Definition: Rating...............................................................6 6.4.2 EzPort switching specifications.............................33 3.5 Result of exceeding a rating..............................................7 3.6 Relationship between ratings and operating requirements......................................................................7 6.5 Security and integrity modules..........................................34 6.5.1 DryIce Tamper Electrical Specifications................34 6.6 Analog...............................................................................35 3.7 Guidelines for ratings and operating requirements............8 6.6.1 ADC electrical specifications.................................35 3.8 Definition: Typical value.....................................................8 6.6.2 CMP and 6-bit DAC electrical specifications.........39 3.9 Typical value conditions....................................................9 6.7 Timers................................................................................42 4 Ratings......................................................................................9 6.8 Communication interfaces.................................................42 4.1 Thermal handling ratings...................................................9 6.8.1 USB electrical specifications.................................42 4.2 Moisture handling ratings..................................................10 6.8.2 USB DCD electrical specifications........................42 4.3 ESD handling ratings.........................................................10 6.8.3 VREG electrical specifications..............................43 4.4 Voltage and current operating ratings...............................10 6.8.4 DSPI switching specifications (limited voltage 5 General.....................................................................................10 range)....................................................................43 5.1 AC electrical characteristics..............................................11 6.8.5 DSPI switching specifications (full voltage range).45 5.2 Nonswitching electrical specifications...............................11 6.8.6 I2C switching specifications..................................47 5.2.1 Voltage and current operating requirements.........11 6.8.7 UART switching specifications..............................47 5.2.2 LVD and POR operating requirements.................12 6.8.8 Normal Run, Wait and Stop mode performance 5.2.3 Voltage and current operating behaviors..............13 5.2.4 Power mode transition operating behaviors..........13 5.2.5 Power consumption operating behaviors..............14 over the full operating voltage range.....................49 5.2.6 EMC radiated emissions operating behaviors.......18 7 Dimensions...............................................................................51 5.2.7 Designing with radiated emissions in mind...........19 7.1 Obtaining package dimensions.........................................51 5.2.8 Capacitance attributes..........................................19 8 Pinout........................................................................................51 5.3 Switching specifications.....................................................19 8.1 K21 Signal Multiplexing and Pin Assignments..................51 over the full operating voltage range.....................47 6.8.9 VLPR, VLPW, and VLPS mode performance 5.3.1 Device clock specifications...................................19 8.2 K21 Pinouts.......................................................................54 5.3.2 General switching specifications...........................20 9 Revision History........................................................................56 5.4 Thermal specifications.......................................................21 K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 2 Freescale Semiconductor, Inc. Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK21 and MK21 . 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q K## A M FFF R T PP CC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification K## Kinetis family • K21 A Key attribute • D = Cortex-M4 w/ DSP • F = Cortex-M4 w/ DSP and FPU M Flash memory type • N = Program flash only • X = Program flash and FlexMemory Table continues on the next page... K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 3 Part identification Field Description Values FFF Program flash memory size • • • • • • • 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB 2M0 = 2 MB R Silicon revision • Z = Initial • (Blank) = Main • A = Revision after main T Temperature range (°C) • V = –40 to 105 • C = –40 to 85 PP Package identifier • • • • • • • • • • FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) CC Maximum CPU frequency (MHz) • • • • • • 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz 18 = 180 MHz N Packaging type • R = Tape and reel • (Blank) = Trays 2.4 Example This is an example part number: MK21DX128VLK5 2.5 Small package marking In an effort to save space, small package devices use special marking on the chip. These markings have the following format: Q ## C F T PP This table lists the possible values for each field in the part number for small packages (not all combinations are valid): K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 4 Freescale Semiconductor, Inc. Terminology and guidelines Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification ## Kinetis family • 1# = K11/K12 • 2# = K21/K22 C Speed • G = 50 MHz F Flash memory configuration • G = 128 KB + Flex • H = 256 KB + Flex • 9 = 512 KB T Temperature range (°C) • V = –40 to 105 PP Package identifier • MC = 121 MAPBGA This tables lists some examples of small package marking along with the original part numbers: Original part number Alternate part number MK21DX128VMC5 M21GGVMC MK21DX256VMC5 M21GHVMC MK21DN512VMC5 M21G9VMC 3 Terminology and guidelines 3.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. 3.1.1 Example This is an example of an operating requirement: Symbol VDD Description 1.0 V core supply voltage Min. 0.9 Max. 1.1 Unit V K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 5 Terminology and guidelines 3.2 Definition: Operating behavior An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 3.2.1 Example This is an example of an operating behavior: Symbol IWP Description Min. Digital I/O weak pullup/ 10 pulldown current Max. 130 Unit µA 3.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. 3.3.1 Example This is an example of an attribute: Symbol CIN_D Description Input capacitance: digital pins Min. — Max. 7 Unit pF 3.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 6 Freescale Semiconductor, Inc. Terminology and guidelines 3.4.1 Example This is an example of an operating rating: Symbol VDD Description Min. 1.0 V core supply voltage Max. –0.3 Unit 1.2 V 3.5 Result of exceeding a rating 40 Failures in time (ppm) 30 The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. 20 10 0 Operating rating Measured characteristic 3.6 Relationship between ratings and operating requirements ra pe tin gr g tin ( in. t (m ) n. mi a gr tin ra pe ) O O t (m e ir qu e n me gr tin O ra pe ax .) e ir qu e n me a gr tin ra pe g tin ax (m .) O Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) n Ha ng dli ng ati ) in. (m r nd Ha g lin ing rat ax (m .) Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ Handling (power off) ∞ K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 7 Terminology and guidelines 3.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 3.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. 3.8.1 Example 1 This is an example of an operating behavior that includes a typical value: Symbol IWP Description Digital I/O weak pullup/pulldown current Min. 10 Typ. 70 Max. 130 Unit µA 3.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 8 Freescale Semiconductor, Inc. Ratings 5000 4500 4000 TJ IDD_STOP (μA) 3500 150 °C 3000 105 °C 2500 25 °C 2000 –40 °C 1500 1000 500 0 0.90 0.95 1.00 1.05 1.10 VDD (V) 3.9 Typical value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V 4 Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 9 General 4.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 4.4 Voltage and current operating ratings Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 155 mA VDIO Digital input voltage (except RESET, EXTAL, and XTAL) –0.3 VAIO Analog1, RESET, EXTAL, and XTAL input voltage –0.3 VDD + 0.3 V Maximum current single pin limit (applies to all digital pins) –25 25 mA VDD – 0.3 VDD + 0.3 V ID VDDA Analog supply voltage V VUSB0_DP USB0_DP input voltage –0.3 3.63 V VUSB0_DM USB0_DM input voltage –0.3 3.63 V VREGIN USB regulator input –0.3 6.0 V RTC battery supply voltage –0.3 3.8 V VBAT 1. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 5 General K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 10 Freescale Semiconductor, Inc. General 5.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. Figure 1. Input signal measurement reference 5.2 Nonswitching electrical specifications 5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V 1.71 3.6 V • 2.7 V ≤ VDD ≤ 3.6 V 0.7 × VDD — V • 1.7 V ≤ VDD ≤ 2.7 V 0.75 × VDD — V • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.7 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V 0.06 × VDD — V VBAT VIH VIL RTC battery supply voltage Notes Input high voltage Input low voltage VHYS Input hysteresis IICIO I/O pin DC injection current — single pin • VIN < VSS-0.3V (Negative current injection) • VIN > VDD+0.3V (Positive current injection) 1 mA -3 — — +3 Table continues on the next page... K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 11 General Table 1. Voltage and current operating requirements (continued) Symbol IICcont Description Min. Max. Unit -25 — mA — +25 1.2 — V VPOR_VBAT — V Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection • Positive current injection VRAM VRFVBAT VDD voltage required to retain RAM VBAT voltage required to retain the VBAT register file Notes 1. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or greater than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VIN-VAIO_MAX)/|IICAIO|. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents. 5.2.2 LVD and POR operating requirements Table 2. VDD supply LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V Low-voltage warning thresholds — high range 1 VLVW1H • Level 1 falling (LVWV=00) 2.62 2.70 2.78 V VLVW2H • Level 2 falling (LVWV=01) 2.72 2.80 2.88 V VLVW3H • Level 3 falling (LVWV=10) 2.82 2.90 2.98 V VLVW4H • Level 4 falling (LVWV=11) 2.92 3.00 3.08 V — 80 — mV 1.54 1.60 1.66 V VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV=00) 1.74 1.80 1.86 V VLVW2L • Level 2 falling (LVWV=01) 1.84 1.90 1.96 V VLVW3L • Level 3 falling (LVWV=10) 1.94 2.00 2.06 V VLVW4L • Level 4 falling (LVWV=11) 2.04 2.10 2.16 V — 60 — mV VHYSL Low-voltage inhibit reset/recover hysteresis — low range Notes VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period — factory trimmed 900 1000 1100 μs K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 12 Freescale Semiconductor, Inc. General 1. Rising threshold is the sum of falling threshold and hysteresis voltage Table 3. VBAT power operating requirements Symbol Description VPOR_VBAT Falling VBAT supply POR detect voltage Min. Typ. Max. Unit 0.8 1.1 1.5 V Notes 5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol VOH Description Min. Max. Unit • 2.7 V ≤ VDD ≤ 3.6 V, IOH = - 9 mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3 mA VDD – 0.5 — V • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2 mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6 mA VDD – 0.5 — V — 100 mA • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9 mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3 mA — 0.5 V • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6 mA — 0.5 V — 100 mA • @ full temperature range — 1.0 μA • @ 25 °C — 0.1 μA Notes Output high voltage — high drive strength Output high voltage — low drive strength IOHT Output high current total for all ports VOL Output low voltage — high drive strength Output low voltage — low drive strength IOLT IIN Output low current total for all ports Input leakage current (per pin) 1 IOZ Hi-Z (off-state) leakage current (per pin) — 1 μA IOZ Total Hi-Z (off-state) leakage current (all input pins) — 4 μA RPU Internal pullup resistors 22 50 kΩ 2 RPD Internal pulldown resistors 22 50 kΩ 3 1. Tested by ganged leakage method 2. Measured at Vinput = VSS 3. Measured at Vinput = VDD K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 13 General 5.2.4 Power mode transition operating behaviors All specifications except tPOR, and VLLSx→RUN recovery times in the following table assume this clock configuration: • • • • CPU and system clocks = 50 MHz Bus clock = 50 MHz Flash clock = 25 MHz MCG mode: FEI Table 5. Power mode transition operating behaviors Symbol tPOR Description Min. Max. After a POR event, amount of time from the point VDD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. • 1.71 V/(VDD slew rate) ≤ 300 μs • 1.71 V/(VDD slew rate) > 300 μs • VLLS0 → RUN • VLLS1 → RUN • VLLS2 → RUN • VLLS3 → RUN • LLS → RUN • VLPS → RUN • STOP → RUN Unit Notes μs 1 — 300 — 1.7 V / (VDD slew rate) — 135 μs — 135 μs — 85 μs — 85 μs — 6 μs — 5.2 μs — 5.2 μs 1. Normal boot (FTFL_OPT[LPBOOT]=1) 5.2.5 Power consumption operating behaviors Table 6. Power consumption operating behaviors Symbol IDDA IDD_RUN Description Analog supply current Min. Typ. Max. Unit Notes — — See note mA 1 Run mode current — all peripheral clocks disabled, code executing from flash • @ 1.8 V • @ 3.0 V 2 — 12.98 14 mA — 12.93 13.8 mA Table continues on the next page... K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 14 Freescale Semiconductor, Inc. General Table 6. Power consumption operating behaviors (continued) Symbol Description Min. IDD_RUN Run mode current — all peripheral clocks enabled, code executing from flash • @ 1.8 V Typ. Max. Unit Notes 3, 4 — 17.04 19.3 mA — 17.01 18.9 mA — 19.8 21.3 mA • @ 3.0 V • @ 25°C • @ 125°C IDD_WAIT Wait mode high frequency current at 3.0 V — all peripheral clocks disabled — 7.95 9.5 mA 2 IDD_WAIT Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled — 5.88 7.4 mA 5 IDD_STOP Stop mode current at 3.0 V • @ –40 to 25°C • @ 50°C • @ 70°C • @ 105°C — 320 436 360 489 410 620 610 1100 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — 754 — μA 6 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — 1.1 — mA 7 IDD_VLPW Very-low-power wait mode current at 3.0 V — 437 — μA 8 IDD_VLPS Very-low-power stop mode current at 3.0 V • @ –40 to 25°C • @ 50°C • @ 70°C • @ 105°C — 7.33 24.2 14 32 28 48 110 280 3.14 4.8 6.48 28.3 13.85 44.6 55.53 71.3 2.19 3.4 4.35 4.35 8.92 24.6 35.33 45.3 1.77 3.1 2.81 13.8 5.20 22.3 19.88 34.2 IDD_LLS IDD_VLLS3 Low leakage stop mode current at 3.0 V • @ –40 to 25°C • @ 50°C • @ 70°C • @ 105°C Very low-leakage stop mode 3 current at 3.0 V • • • • IDD_VLLS2 — — @ –40 to 25°C @ 50°C @ 70°C @ 105°C Very low-leakage stop mode 2 current at 3.0 V • @ –40 to 25°C • @ 50°C • @ 70°C • @ 105°C — μA μA μA μA μA Table continues on the next page... K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 15 General Table 6. Power consumption operating behaviors (continued) Symbol IDD_VLLS1 IDD_VLLS0 IDD_VLLS0 IDD_VBAT Description Min. Very low-leakage stop mode 1 current at 3.0 V • @ –40 to 25°C • @ 50°C • @ 70°C • @ 105°C — Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled • @ –40 to 25°C • @ 50°C • @ 70°C • @ 105°C — Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled • @ –40 to 25°C • @ 50°C • @ 70°C • @ 105°C — Average current when CPU is not accessing RTC registers at 3.0 V • @ –40 to 25°C • @ 50°C • @ 70°C • @ 105°C — Typ. Max. 1.03 1.8 1.92 7.5 4.03 15.9 17.43 28.7 0.543 1.1 1.36 7.58 3.39 14.3 16.52 24.1 0.359 0.95 1.03 6.8 2.87 15.4 15.20 25.3 0.91 1.1 1.1 1.35 1.5 1.85 4.3 5.7 Unit Notes μA μA μA μA 9 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral clocks disabled. 3. 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled, and peripherals are in active operation. 4. Max values are measured with CPU executing DSP instructions 5. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz flash clock. MCG configured for FEI mode. 6. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash. 7. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash. 8. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 9. Includes 32 kHz oscillator current and RTC operation. 5.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • • • • • MCG in FBE mode USB regulator disabled No GPIOs toggled Code execution from flash with cache enabled For the ALLOFF curve, all peripheral clocks are disabled except FTFL K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 16 Freescale Semiconductor, Inc. General Figure 2. Run mode supply current vs. core frequency K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 17 General Figure 3. VLPR mode supply current vs. core frequency 5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors 1 Symbol Description Frequency band (MHz) Typ. Unit Notes 2, 3 VRE1 Radiated emissions voltage, band 1 0.15–50 19 dBμV VRE2 Radiated emissions voltage, band 2 50–150 21 dBμV VRE3 Radiated emissions voltage, band 3 150–500 19 dBμV VRE4 Radiated emissions voltage, band 4 500–1000 11 dBμV IEC level 0.15–1000 L — VRE_IEC 3, 4 1. This data was collected on a MK20DN128VLH5 64pin LQFP device. 2. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 18 Freescale Semiconductor, Inc. General 3. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 48 MHz, fBUS = 48MHz 4. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method 5.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.freescale.com. 2. Perform a keyword search for “EMC design.” 5.2.8 Capacitance attributes Table 8. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF 5.3 Switching specifications 5.3.1 Device clock specifications Table 9. Device clock specifications Symbol Description Min. Max. Unit System and core clock — 50 MHz System and core clock when Full Speed USB in operation 20 — MHz Bus clock — 50 MHz fFLASH Flash clock — 25 MHz fLPTMR LPTMR clock — 25 MHz Notes Normal run mode fSYS fBUS VLPR mode1 fSYS System and core clock — 4 MHz fBUS Bus clock — 4 MHz fFLASH Flash clock — 1 MHz fERCLK External reference clock — 16 MHz LPTMR clock — 25 MHz fLPTMR_pin Table continues on the next page... K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 19 General Table 9. Device clock specifications (continued) Symbol Description Min. Max. Unit LPTMR external reference clock — 16 MHz fI2S_MCLK I2S master clock — 12.5 MHz fI2S_BCLK I2S bit clock — 4 MHz fLPTMR_ERCLK Notes 1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. 5.3.2 General switching specifications These general purpose specifications apply to all pins configured for: • GPIO signaling • Other peripheral module signaling not explicitly stated elsewhere Table 10. General switching specifications Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1, 2 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path 100 — ns 3 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 50 — ns 3 External reset pulse width (digital glitch filter disabled) 100 — ns 3 Port rise and fall time (high drive strength) 4 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 13 ns • 2.7 ≤ VDD ≤ 3.6V — 7 ns • 1.71 ≤ VDD ≤ 2.7V — 36 ns • 2.7 ≤ VDD ≤ 3.6V — 24 ns • Slew enabled Port rise and fall time (low drive strength) 5 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 12 ns • 2.7 ≤ VDD ≤ 3.6V — 6 ns • 1.71 ≤ VDD ≤ 2.7V — 36 ns • 2.7 ≤ VDD ≤ 3.6V — 24 ns • Slew enabled 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case. 2. The greater synchronous and asynchronous timing must be met. K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 20 Freescale Semiconductor, Inc. General 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes. 4. 75 pF load 5. 15 pF load 5.4 Thermal specifications 5.4.1 Thermal operating requirements Table 11. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C 5.4.2 Thermal attributes Board type Symbol Description Single-layer (1s) RθJA Four-layer (2s2p) 80 LQFP Unit Notes Thermal 50 resistance, junction to ambient (natural convection) °C/W 1, 2 RθJA Thermal 35 resistance, junction to ambient (natural convection) °C/W 1, 3 Single-layer (1s) RθJMA Thermal 39 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1,3 Four-layer (2s2p) RθJMA Thermal 29 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1,3 — RθJB Thermal 19 resistance, junction to board °C/W 4 — RθJC Thermal 8 resistance, junction to case °C/W 5 Table continues on the next page... K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 21 Peripheral operating requirements and behaviors Board type Symbol Description — ΨJT Thermal 2 characterization parameter, junction to package top outside center (natural convection) 1. 2. 3. 4. 5. 6. 80 LQFP Unit Notes °C/W 6 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental Conditions—Forced Convection (Moving Air) with the board horizontal. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 6 Peripheral operating requirements and behaviors 6.1 Core modules 6.1.1 JTAG electricals Table 12. JTAG limited voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 3.6 V TCLK frequency of operation • Boundary Scan 0 10 • JTAG and CJTAG 0 25 • Serial Wire Debug 0 50 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 20 — ns • Serial Wire Debug 10 — ns TCLK rise and fall times — 3 ns J2 TCLK cycle period J3 TCLK clock pulse width J4 MHz Table continues on the next page... K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 22 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 12. JTAG limited voltage range electricals (continued) Symbol Description Min. Max. Unit J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J11 TCLK low to TDO data valid — 17 ns J12 TCLK low to TDO high-Z J13 TRST assert time J14 TRST setup time (negation) to TCLK high — 17 ns 100 — ns 8 — ns Table 13. JTAG full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 20 • Serial Wire Debug 0 40 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 25 — ns • Serial Wire Debug 12.5 — ns J2 TCLK cycle period J3 TCLK clock pulse width J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1.4 — ns J11 TCLK low to TDO data valid — 22.1 ns J12 TCLK low to TDO high-Z — 22.1 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 23 Peripheral operating requirements and behaviors J2 J3 J3 TCLK (input) J4 J4 Figure 4. Test clock input timing TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 5. Boundary scan (JTAG) timing K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 24 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 6. Test Access Port timing TCLK J14 J13 TRST Figure 7. TRST timing 6.2 System modules There are no specifications necessary for the device's system modules. 6.3 Clock modules K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 25 Peripheral operating requirements and behaviors 6.3.1 MCG specifications Table 14. MCG specifications Symbol Description Min. Typ. Max. Unit — 32.768 — kHz 31.25 — 39.0625 kHz Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.3 ± 0.6 %fdco 1 Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco 1 fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C fints_t Internal reference frequency (slow clock) — user trimmed Notes Δfdco_t Total deviation of trimmed average DCO output frequency over voltage and temperature — +0.5/-0.7 ±2 %fdco 1, 2 Δfdco_t Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 0.3 ±1 %fdco 1, 2 fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C — 4 — MHz fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 3, 4 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX32 DCO output frequency Low range (DRS=00) 5, 6 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Table continues on the next page... K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 26 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 14. MCG specifications (continued) Symbol Jcyc_fll Description FLL period jitter • fDCO = 48 MHz • fDCO = 98 MHz tfll_acquire FLL target frequency acquisition time Min. Typ. Max. Unit — 180 — — 150 — — — 1 ms 48.0 — 100 MHz — 1060 — µA — 600 — µA 2.0 — 4.0 MHz Notes ps 7 PLL fvco VCO operating frequency Ipll PLL operating current • PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 48) Ipll PLL operating current • PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 24) fpll_ref PLL reference frequency range Jcyc_pll PLL period jitter (RMS) Jacc_pll • fvco = 48 MHz — 120 — ps • fvco = 100 MHz — 50 — ps PLL accumulated jitter over 1µs (RMS) 9 • fvco = 48 MHz — 1350 — ps • fvco = 100 MHz — 600 — ps Lock entry frequency tolerance ± 1.49 — ± 2.98 % Dunl Lock exit frequency tolerance ± 4.47 — ± 5.97 % Lock detector detection time 8 9 Dlock tpll_lock 8 — — 10-6 150 × + 1075(1/ fpll_ref) s 10 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. 2 V 3.6 V • Run mode • Standby mode VReg33out Notes 2 1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated. 2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad. K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 43 Peripheral operating requirements and behaviors 6.8.4 DSPI switching specifications (limited voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 29. Master mode DSPI timing (limited voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit 2.7 3.6 V Notes — 25 MHz 2 x tBUS — ns DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 2 — ns 1 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 2 — ns 2 DS5 DSPI_SCK to DSPI_SOUT valid — 8.5 ns DS6 DSPI_SCK to DSPI_SOUT invalid −2 — ns DS7 DSPI_SIN to DSPI_SCK input setup 15 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns DS1 DSPI_SCK output cycle time DS2 1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DS1 DS2 DS4 DSPI_SCK DS8 DS7 (CPOL=0) DSPI_SIN Data First data Last data DS5 DSPI_SOUT First data DS6 Data Last data Figure 14. DSPI classic SPI timing — master mode Table 30. Slave mode DSPI timing (limited voltage range) Num Description Operating voltage Min. Max. Unit 2.7 3.6 V 12.5 MHz — ns Frequency of operation DS9 DSPI_SCK input cycle time 4 x tBUS Table continues on the next page... K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 44 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 30. Slave mode DSPI timing (limited voltage range) (continued) Num Description Min. Max. Unit (tSCK/2) − 2 (tSCK/2) + 2 ns DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 10 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 14 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 14 ns DSPI_SS DS10 DS9 DSPI_SCK DS15 (CPOL=0) DS12 DSPI_SOUT First data DS13 DS16 DS11 Last data Data DS14 DSPI_SIN First data Data Last data Figure 15. DSPI classic SPI timing — slave mode 6.8.5 DSPI switching specifications (full voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 31. Master mode DSPI timing (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit Notes 1.71 3.6 V 1 — 12.5 MHz 4 x tBUS — ns DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 4 — ns 2 Table continues on the next page... K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 45 Peripheral operating requirements and behaviors Table 31. Master mode DSPI timing (full voltage range) (continued) Num Description Min. Max. Unit Notes (tBUS x 2) − 4 — ns 3 — 10 ns DS4 DSPI_SCK to DSPI_PCSn invalid delay DS5 DSPI_SCK to DSPI_SOUT valid DS6 DSPI_SCK to DSPI_SOUT invalid -4.5 — ns DS7 DSPI_SIN to DSPI_SCK input setup 20.5 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DS1 DS2 DS4 DSPI_SCK DS8 DS7 (CPOL=0) DSPI_SIN Data First data Last data DS5 DSPI_SOUT First data DS6 Data Last data Figure 16. DSPI classic SPI timing — master mode Table 32. Slave mode DSPI timing (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit 1.71 3.6 V — 6.25 MHz 8 x tBUS — ns (tSCK/2) - 4 (tSCK/2) + 4 ns DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 20 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 19 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 19 ns K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 46 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors DSPI_SS DS10 DS9 DSPI_SCK DS15 (CPOL=0) DS12 DSPI_SOUT First data DS13 DS16 DS11 Last data Data DS14 DSPI_SIN First data Data Last data Figure 17. DSPI classic SPI timing — slave mode 6.8.6 I2C switching specifications See General switching specifications. 6.8.7 UART switching specifications See General switching specifications. 6.8.8 Normal Run, Wait and Stop mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes. Table 33. I2S/SAI master mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK (as an input) pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 15 ns Table continues on the next page... K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 47 Peripheral operating requirements and behaviors Table 33. I2S/SAI master mode timing (continued) Num. Characteristic Min. Max. Unit S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 25 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 18. I2S/SAI timing — master modes Table 34. I2S/SAI slave mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 10 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 29 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 10 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 — 21 ns 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 48 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 19. I2S/SAI timing — slave modes 6.8.9 VLPR, VLPW, and VLPS mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes. Table 35. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 62.5 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 45 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 45 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 75 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 49 Peripheral operating requirements and behaviors S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 20. I2S/SAI timing — master modes Table 36. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 30 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 87 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 30 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 72 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 50 Freescale Semiconductor, Inc. Dimensions S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 21. I2S/SAI timing — slave modes 7 Dimensions 7.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package 80-pin LQFP Then use this document number 98ASS23174W 8 Pinout 8.1 K21 Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. NOTE • The analog input signals ADC0_SE10, ADC0_SE11, ADC0_DP1, and ADC0_DM1 are available only for K11, K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 51 Pinout • • • • • 80 LQFP K12, K21, and K22 devices and are not present on K10 and K20 devices. The TRACE signals on PTE0, PTE1, PTE2, PTE3, and PTE4 are available only for K11, K12, K21, and K22 devices and are not present on K10 and K20 devices. If the VBAT pin is not used, the VBAT pin should be left floating. Do not connect VBAT pin to VSS. The FTM_CLKIN signals on PTB16 and PTB17 are available only for K11, K12, K21, and K22 devices and is not present on K10 and K20 devices. For K22D devices this signal is on ALT4, and for K22F devices, this signal is on ALT7. The FTM0_CH2 signal on PTC5/LLWU_P9 is available only for K11, K12, K21, and K22 devices and is not present on K10 and K20 devices. The I2C0_SCL signal on PTD2/LLWU_P13 and I2C0_SDA signal on PTD3 are available only for K11, K12, K21, and K22 devices and are not present on K10 and K20 devices. Default ALT0 1 ADC0_SE10 ADC0_SE10 2 ADC0_SE11 3 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 PTE0 SPI1_PCS1 UART1_TX TRACE_CLKOUT I2C1_SDA RTC_CLKOUT ADC0_SE11 PTE1/ LLWU_P0 SPI1_SOUT UART1_RX TRACE_D3 SPI1_SIN ADC0_DP1 ADC0_DP1 PTE2/ LLWU_P1 SPI1_SCK UART1_CTS_b TRACE_D2 4 ADC0_DM1 ADC0_DM1 PTE3 SPI1_SIN UART1_RTS_b TRACE_D1 5 DISABLED PTE4/ LLWU_P2 SPI1_PCS0 UART3_TX TRACE_D0 6 DISABLED PTE5 SPI1_PCS2 UART3_RX 7 VDD VDD 8 VSS VSS 9 USB0_DP USB0_DP 10 USB0_DM USB0_DM 11 VOUT33 VOUT33 12 VREGIN VREGIN 13 ADC0_DP0 ADC0_DP0 14 ADC0_DM0 ADC0_DM0 15 ADC0_DP3 ADC0_DP3 16 ADC0_DM3 ADC0_DM3 17 VDDA VDDA 18 VREFH VREFH 19 VREFL VREFL I2C1_SCL ALT7 EzPort SPI1_SOUT K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 52 Freescale Semiconductor, Inc. Pinout 80 LQFP Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort 20 VSSA VSSA 21 TAMPER0/ RTC_WAKEUP_ B TAMPER0/ RTC_WAKEUP_ B 22 TAMPER1 TAMPER1 23 XTAL32 XTAL32 24 EXTAL32 EXTAL32 25 VBAT VBAT 26 JTAG_TCLK/ SWD_CLK/ EZP_CLK PTA0 UART0_CTS_b/ UART0_COL_b FTM0_CH5 JTAG_TCLK/ SWD_CLK EZP_CLK 27 JTAG_TDI/ EZP_DI PTA1 UART0_RX FTM0_CH6 JTAG_TDI EZP_DI 28 JTAG_TDO/ TRACE_SWO/ EZP_DO PTA2 UART0_TX FTM0_CH7 JTAG_TDO/ TRACE_SWO EZP_DO 29 JTAG_TMS/ SWD_DIO PTA3 UART0_RTS_b FTM0_CH0 JTAG_TMS/ SWD_DIO 30 NMI_b/ EZP_CS_b PTA4/ LLWU_P3 FTM0_CH1 NMI_b 31 DISABLED PTA5 FTM0_CH2 I2S0_TX_BCLK JTAG_TRST_b 32 DISABLED PTA12 FTM1_CH0 I2S0_TXD0 FTM1_QD_PHA 33 DISABLED PTA13/ LLWU_P4 FTM1_CH1 I2S0_TX_FS FTM1_QD_PHB 34 DISABLED PTA14 SPI0_PCS0 UART0_TX I2S0_RX_BCLK I2S0_TXD1 35 DISABLED PTA15 SPI0_SCK UART0_RX I2S0_RXD0 36 DISABLED PTA16 SPI0_SOUT UART0_CTS_b/ UART0_COL_b I2S0_RX_FS 37 DISABLED PTA17 SPI0_SIN UART0_RTS_b I2S0_MCLK 38 VDD VDD 39 VSS VSS 40 EXTAL0 EXTAL0 PTA18 FTM0_FLT2 FTM_CLKIN0 41 XTAL0 XTAL0 PTA19 FTM1_FLT0 FTM_CLKIN1 42 RESET_b RESET_b 43 ADC0_SE8 ADC0_SE8 PTB0/ LLWU_P5 I2C0_SCL FTM1_CH0 FTM1_QD_PHA 44 ADC0_SE9 ADC0_SE9 PTB1 I2C0_SDA FTM1_CH1 FTM1_QD_PHB 45 ADC0_SE12 ADC0_SE12 PTB2 I2C0_SCL UART0_RTS_b FTM0_FLT3 46 ADC0_SE13 ADC0_SE13 PTB3 I2C0_SDA UART0_CTS_b/ UART0_COL_b FTM0_FLT0 47 DISABLED PTB10 SPI1_PCS0 UART3_RX FTM0_FLT1 48 DISABLED PTB11 SPI1_SCK UART3_TX FTM0_FLT2 49 DISABLED PTB12 UART3_RTS_b FTM1_CH0 FTM0_CH4 FTM1_QD_PHA 50 DISABLED PTB13 UART3_CTS_b FTM1_CH1 FTM0_CH5 FTM1_QD_PHB 51 DISABLED PTB16 SPI1_SOUT UART0_RX USB_CLKIN EZP_CS_b I2S0_RXD1 LPTMR0_ALT1 EWM_IN FTM_CLKIN0 K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 53 Pinout 80 LQFP Default ALT0 ALT1 ALT2 ALT4 ALT5 UART0_TX ALT6 52 DISABLED PTB17 53 DISABLED PTB18 FTM2_CH0 I2S0_TX_BCLK 54 DISABLED PTB19 FTM2_CH1 I2S0_TX_FS 55 ADC0_SE14 ADC0_SE14 PTC0 SPI0_PCS4 PDB0_EXTRG 56 ADC0_SE15 ADC0_SE15 PTC1/ LLWU_P6 SPI0_PCS3 UART1_RTS_b FTM0_CH0 I2S0_TXD0 57 ADC0_SE4b/ CMP1_IN0 ADC0_SE4b/ CMP1_IN0 PTC2 SPI0_PCS2 UART1_CTS_b FTM0_CH1 I2S0_TX_FS 58 CMP1_IN1 CMP1_IN1 PTC3/ LLWU_P7 SPI0_PCS1 UART1_RX FTM0_CH2 59 VSS VSS 60 VDD VDD 61 DISABLED PTC4/ LLWU_P8 SPI0_PCS0 UART1_TX FTM0_CH3 CMP1_OUT 62 DISABLED PTC5/ LLWU_P9 SPI0_SCK LPTMR0_ALT2 I2S0_RXD0 CMP0_OUT 63 CMP0_IN0 CMP0_IN0 PTC6/ LLWU_P10 SPI0_SOUT PDB0_EXTRG I2S0_RX_BCLK I2S0_MCLK 64 CMP0_IN1 CMP0_IN1 PTC7 SPI0_SIN USB_SOF_OUT I2S0_RX_FS 65 CMP0_IN2 CMP0_IN2 PTC8 I2S0_MCLK 66 CMP0_IN3 CMP0_IN3 PTC9 I2S0_RX_BCLK 67 DISABLED PTC10 I2C1_SCL I2S0_RX_FS 68 DISABLED PTC11/ LLWU_P11 I2C1_SDA I2S0_RXD1 69 DISABLED PTC12 70 DISABLED PTC13 71 DISABLED PTC16 UART3_RX 72 DISABLED PTC17 UART3_TX 73 DISABLED PTD0/ LLWU_P12 SPI0_PCS0 UART2_RTS_b 74 ADC0_SE5b PTD1 SPI0_SCK UART2_CTS_b 75 DISABLED PTD2/ LLWU_P13 SPI0_SOUT UART2_RX I2C0_SCL 76 DISABLED PTD3 SPI0_SIN UART2_TX I2C0_SDA 77 ADC0_SE21 ADC0_SE21 PTD4/ LLWU_P14 SPI0_PCS1 UART0_RTS_b FTM0_CH4 EWM_IN 78 ADC0_SE6b ADC0_SE6b PTD5 SPI0_PCS2 UART0_CTS_b/ UART0_COL_b FTM0_CH5 EWM_OUT_b 79 ADC0_SE7b ADC0_SE7b PTD6/ LLWU_P15 SPI0_PCS3 UART0_RX FTM0_CH6 FTM0_FLT0 80 ADC0_SE22 ADC0_SE22 PTD7 CMT_IRO UART0_TX FTM0_CH7 FTM0_FLT1 ADC0_SE5b SPI1_SIN ALT3 EWM_OUT_b ALT7 EzPort FTM_CLKIN1 I2S0_TXD1 CLKOUT I2S0_TX_BCLK FTM0_CH2 FTM2_FLT0 K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 54 Freescale Semiconductor, Inc. Pinout 8.2 K21 Pinouts PTD7 PTD6/LLWU_P15 PTD5 PTD4/LLWU_P14 PTD3 PTD2/LLWU_P13 PTD1 PTD0/LLWU_P12 PTC17 PTC16 PTC13 PTC12 PTC11/LLWU_P11 PTC10 PTC9 PTC8 PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. VOUT33 11 50 PTB13 VREGIN 12 49 PTB12 ADC0_DP0 13 48 PTB11 ADC0_DM0 14 47 PTB10 ADC0_DP3 15 46 PTB3 ADC0_DM3 16 45 PTB2 VDDA 17 44 PTB1 VREFH 18 43 PTB0/LLWU_P5 VREFL 19 42 RESET_b VSSA 20 41 PTA19 40 PTB16 PTA18 51 39 10 VSS USB0_DM 38 PTB17 VDD 52 37 9 PTA17 USB0_DP 36 PTB18 PTA16 53 35 8 PTA15 VSS 34 PTB19 PTA14 54 33 7 PTA13/LLWU_P4 VDD PTA12 PTC0 32 55 31 6 PTA5 PTE5 30 PTC1/LLWU_P6 PTA4/LLWU_P3 56 29 5 PTA3 PTE4/LLWU_P2 28 PTC2 PTA2 57 27 4 PTA1 PTE3 26 PTC3/LLWU_P7 PTA0 58 25 3 VBAT PTE2/LLWU_P1 24 VSS EXTAL32 59 23 2 XTAL32 PTE1/LLWU_P0 22 VDD TAMPER1 60 21 1 TAMPER0/RTC_WAKEUP_B PTE0 Figure 22. K21 80 LQFP Pinout Diagram K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. Freescale Semiconductor, Inc. 55 Revision History 9 Revision History The following table provides a revision history for this document. Table 37. Revision History Rev. No. Date Substantial Changes 1 6/2012 Alpha customer release. 1.1 6/2012 In Table 6, "Power consumption operating behaviors", changed the units of IDD_VLLS2, IDD_VLLS1, IDD_VLLS0, and IDD_VBAT from nA to μA. 2 7/2012 • • • • • • Updated section "Power consumption operating behaviors". Updated section "Flash timing specifications — program and erase". Updated section "Flash timing specifications — commands". Removed the 32K ratio from "Write endurance" in section "Reliability specifications". Updated IDDstby maximum value in section "VREG electrical specifications". Added the charts in section "Diagram: Typical IDD_RUN operating behavior". 3 8/2012 • • • • Updated section "Power consumption operating behaviors". Updated section "EMC radiated emissions operating behaviors". Updated section "MCG specifications". Added applicable notes in section "Signal Multiplexing and Pin Assignments". 4 12/2012 • Updated section "Power consumption operating behaviors" • Updated section "MCG specifications" • Updated section "16-bit ADC operating conditions" 4.1 08/2013 • Added section "Small package marking" • To section "MCG Specifications", added row for "Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C" K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013. 56 Freescale Semiconductor, Inc. How to Reach Us: Information in this document is provided solely to enable system and software Home Page: freescale.com implementers to use Freescale products. There are no express or implied copyright Web Support: freescale.com/support information in this document. licenses granted hereunder to design or fabricate any integrated circuits based on the Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are the registered trademarks of ARM Limited. © 2012-2013 Freescale Semiconductor, Inc. Document Number: K21P80M50SF4 Rev. 4.1 08/2013
MK21DX128AVMC5 价格&库存

很抱歉,暂时无法提供与“MK21DX128AVMC5”相匹配的价格&库存,您可以联系我们找货

免费人工找货