0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MKV44F128VLF16

MKV44F128VLF16

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LQFP48_7X7MM

  • 描述:

    IC MCU 32BIT 128KB FLASH 48LQFP

  • 数据手册
  • 价格&库存
MKV44F128VLF16 数据手册
NXP Semiconductors Data Sheet: Technical Data KV4XP100M168 Rev. 4, 09/2019 KV4x Data Sheet MKV46FxxxVLy16 MKV44FxxxVLy16 MKV42FxxxVLy16 MKV46FxxxVLy16z MKV42FxxxVLy16z 168 MHz Arm Cortex-M4 core based Microcontroller with FPU The Kinetis KV4x MCU family is a member of the Kinetis V series and provides a high-performance solution for motor control and Digital Power Conversion. Built upon the Arm® Cortex®-M4 core operating at up to 168 MHz with DSP and floating point unit, features include; dual 12-bit analog-to-digital converters with 240ns conversion time, up to 30 PWM channels for support of multi-motor systems, eFlexPWM module with 312 ps resolution for digital power conversion applications, programmable delay block, memory protection unit, dual FlexCAN modules and 64 to 256 KB of flash memory. KV4x MCUs are offered in 48LQFP, 64LQFP, and 100LQFP packages. All Kinetis V series MCUs are supported by a comprehensive enablement suite from NXP and third-party resources including reference designs, software libraries and motor configuration tools. Core • Arm® Cortex®-M4 core up to 168 MHz with single precision Floating Point Unit (FPU) Memories • Up to 256 KB of program flash memory • Up to 32 KB of RAM System peripherals • 16-channel DMA controller • Low-leakage wakeup unit • SWD interface • Advanced independent clocked watchdog Clocks • 32 to 40 kHz or 3 to 32 MHz crystal oscillator • Multipurpose clock generator (MCG) with frequencylocked loop and phase-locked loop referencing either internal or external reference clock Operating Characteristics • Voltage range: 1.71 to 3.6 V • Temperature range: –40 to 105 °C Human-machine interface • General-purpose input/output 100 LQFP 64 LQFP 14 x 14 x 1.4 Pitch 0.5 10 x 10 x 1.4 Pitch 0.5 mm mm 48 LQFP 7 x 7 x 1.4 Pitch 0.5 mm Communication interfaces • Two Universal Asynchronous Receiver/Transmitter (UART) / FlexSCI modules with programmable 8- or 9-bit data format • One 16-bit SPI module • One I2C module • Two FlexCAN modules Analog Modules • Two 12-bit cyclic ADCs • Four analog comparator (CMP) containing a 6-bit DAC and programmable reference input • One 12-bit DAC Timers • One eFlexPWM with 4 sub-modules, providing 12 PWM outputs • Two 8-channel FlexTimers (FTM0 and FTM3) • One 2-channel FlexTimers (FTM1) • Four Periodic interrupt timers (PIT) • Two Programmable Delay Blocks (PDB) • Quadrature Encoder/Decoder (ENC) • Ratio of timer input clock frequency vs. core frequency is 1:2 when core frequency is 168 Mhz, and 1:1 when core frequency is less than or equal to 100 Mhz NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. Security and integrity modules • Hardware CRC module to support fast cyclic redundancy checks • External Watchdog Monitor (EWM) Orderable part numbers summary1 NXP part number CPU Pin Total SRA coun flash M freq t memo (KB) uenc ry y (KB) (MHz ) ADC ADC A ADC B eFlexPWM PW MB PW M Nan oEdg e PW MA PW MX Flex Timers FTM 0 FTM 3 FTM 1 DA C FlexCAN CA N0 CA N1 MKV46F256VLL 16 168 100 256 32 18ch 20ch 1x8ch 1x4ch Yes 1x8ch 1x8ch 1x2ch 1 1 1 MKV46F256VLH 16 168 64 256 32 13ch 16ch 1x8ch Yes 1x8ch 1x8ch 1x2ch 1 1 1 MKV46F128VLL 16 168 100 128 24 18ch 20ch 1x8ch 1x4ch Yes 1x8ch 1x8ch 1x2ch 1 1 1 MKV46F128VLH 16 168 64 128 24 13ch 16ch 1x8ch Yes 1x8ch 1x8ch 1x2ch 1 1 1 MKV44F256VLL 16 168 100 256 32 18ch 20ch 1x8ch 1x4ch Yes — — — 1 1 1 MKV44F256VLH 16 168 64 256 32 13ch 16ch 1x8ch Yes — — — 1 1 1 MKV44F128VLL 16 168 100 128 24 18ch 20ch 1x8ch 1x4ch Yes — — — 1 1 1 MKV44F128VLH 16 168 64 128 24 13ch 16ch 1x8ch — Yes — — — 1 1 1 MKV44F128VLF 16 168 48 128 24 11ch 10ch 1x8ch — Yes — — — 1 1 — MKV44F64VLH1 6 168 64 64 16 13ch 16ch 1x8ch — Yes — — — 1 1 1 MKV44F64VLF1 6 168 48 64 16 11ch 10ch 1x8ch — Yes — — — 1 1 — MKV42F256VLL 16 168 100 256 32 18ch 20ch — — — 1x8ch 1x8ch 1x2ch — 1 1 MKV42F256VLH 16 168 64 256 32 13ch 16ch — — — 1x8ch 1x8ch 1x2ch — 1 1 MKV42F128VLL 16 168 100 128 24 18ch 20ch — — — 1x8ch 1x8ch 1x2ch — 1 1 MKV42F128VLH 16 168 64 128 24 13ch 16ch — — — 1x8ch 1x8ch 1x2ch — 1 1 MKV42F128VLF 16 168 48 128 24 11ch 10ch — — — 1x8ch 1x8ch 1x2ch — 1 — MKV42F64VLH1 6 168 64 64 16 13ch 16ch — — — 1x8ch 1x8ch 1x2ch — 1 1 — — — Table continues on the next page... 2 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Orderable part numbers summary1 (continued) NXP part number CPU Pin Total SRA coun flash M freq t memo (KB) uenc ry y (KB) (MHz ) MKV42F64VLF1 6 168 48 64 16 ADC ADC A eFlexPWM ADC B PW MA PW MX PW MB 11ch 10ch — — PW M Nan oEdg e — Flex Timers FTM 0 FTM 3 FTM 1 1x8ch 1x8ch 1x2ch DA C FlexCAN CA N0 CA N1 1 — — 1. To confirm current availability of ordererable part numbers, go to http://www.nxp.com and perform a part number search. Device Revision Number Device Mask Set Number SIM_SDID[REVID] JTAG ID Register[PRN] 1N72K 0001 0001 Related Resources Type Description Resource Selector Guide The Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector. Solution Advisor Reference Manual The Reference Manual contains a comprehensive description of the structure and function (operation) of a device. KV4XP100M168RM1 Data Sheet The Data Sheet includes electrical characteristics and signal connections. KV4XP100M1681 Chip Errata The chip mask set Errata provides additional or corrective information for a particular device mask set. Kinetis_V_1N72K1 Package drawing Package dimensions are provided in package drawings. • LQFP 100-pin: 98ASS23308W1 • LQFP 64-pin: 98ASS23234W1 • LQFP 48-pin: 98ASH00962A1 1. To find the associated resource, go to http://www.nxp.com and perform a search using this term. KV4x Data Sheet, Rev. 4, 09/2019 3 NXP Semiconductors MCG Arm Cortex M4 32 kHz RC JTAG/SWD 3 2 -b it C P U 168 MHz 16 -ch DMA SPFPU 8 MHz RC PLL 100-240 MHz Osc Low range: 32 kHz High range: 4-20 MHz MCM Crossbar switch (AXBS-Lite) FMC GPIO Up to 70 32 RCM SIM PMC 128 Peripheral bridge P-Flash Up to 256 KB SRAM Up to 32 KB eFlexPWM 8ch + 4ch 12 bit ADC (4.1 MSPS) nano-edge 1x 12 bit DAC FlexSCI FlexSCI 12 bit ADC (4.1 MSPS) 4 x HSCMP with 6bit DAC LPTMR SPI FlexTimer 8ch + 8ch +2ch ENC I2C SMBUS EWM FlexCAN x2 2 x PDB WDOG CRC 4 - ch PIT IRQ XBARA XBARB AOI Figure 1. KV4x block diagram 4 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Table of Contents 1 Ratings.................................................................................. 6 1.1 Thermal handling ratings............................................... 6 1.2 Moisture handling ratings...............................................6 1.3 ESD handling ratings..................................................... 6 1.4 Voltage and current operating ratings............................6 1.5 Absolute Maximum Ratings........................................... 7 2 General................................................................................. 8 2.1 AC electrical characteristics...........................................8 2.2 Nonswitching electrical specifications............................9 2.2.1 Recommended Operating Conditions................9 2.2.2 LVD and POR operating requirements.............. 10 2.2.3 Voltage and current operating behaviors........... 10 2.2.4 Power mode transition operating behaviors.......11 2.2.5 Power consumption operating behaviors...........12 2.2.6 EMC radiated emissions operating behaviors... 17 2.2.7 Designing with radiated emissions in mind........ 18 2.2.8 Capacitance attributes....................................... 18 2.3 Switching specifications................................................. 18 2.3.1 Typical device clock specifications.................... 18 2.3.2 General switching specifications........................19 2.4 Thermal specifications................................................... 20 2.4.1 Thermal operating requirements........................20 2.4.2 Thermal attributes.............................................. 20 3 Peripheral operating requirements and behaviors................ 21 3.1 Core modules................................................................ 21 3.1.1 SWD Electricals ................................................ 21 3.1.2 JTAG electricals.................................................22 3.2 System modules............................................................ 25 3.3 Clock modules............................................................... 25 3.3.1 MCG specifications............................................ 25 3.3.2 Oscillator electrical specifications...................... 28 3.4 Memories and memory interfaces................................. 30 3.4.1 Flash electrical specifications............................ 30 3.5 Security and integrity modules.......................................31 3.6 Analog............................................................................31 3.6.1 12-bit cyclic Analog-to-Digital Converter (ADC) parameters.........................................................31 KV4x Data Sheet, Rev. 4, 09/2019 4 5 6 7 8 3.6.2 CMP and 6-bit DAC electrical specifications......34 3.6.3 12-bit DAC electrical characteristics.................. 35 3.7 Timers............................................................................ 38 3.8 Enhanced NanoEdge PWM characteristics................... 38 3.9 Communication interfaces............................................. 39 3.9.1 SPI (DSPI) switching specifications (limited voltage range).................................................... 39 3.9.2 SPI (DSPI) switching specifications (full voltage range).................................................................43 3.9.3 I2C..................................................................... 46 3.9.4 UART................................................................. 46 Dimensions........................................................................... 46 4.1 Obtaining package dimensions......................................47 Pinout.................................................................................... 47 5.1 KV4x Signal Multiplexing and Pin Assignments............ 47 5.2 Pinout diagrams............................................................. 51 Ordering parts....................................................................... 54 6.1 Determining valid orderable parts.................................. 54 Part identification...................................................................55 7.1 Description..................................................................... 55 7.2 Format........................................................................... 55 7.3 Fields............................................................................. 55 7.4 Example......................................................................... 56 Terminology and guidelines.................................................. 56 8.1 Definition: Operating requirement.................................. 56 8.2 Definition: Operating behavior....................................... 56 8.3 Definition: Attribute........................................................ 57 8.4 Definition: Rating........................................................... 57 8.5 Result of exceeding a rating.......................................... 58 8.6 Relationship between ratings and operating requirements.................................................................. 58 8.7 Guidelines for ratings and operating requirements........ 58 8.8 Definition: Typical value................................................. 59 8.9 Typical Value Conditions............................................... 60 9 Revision history.....................................................................60 5 NXP Semiconductors Ratings 1 Ratings 1.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human-body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105 °C -100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-up Test. 1.4 Voltage and current operating ratings 6 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Ratings Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 120 VIO ID VDDA mA 0.31 Digital pin input voltage (except open drain pins) –0.3 VDD + Open drain pins (PTC6 and PTC7) –0.3 5.5 V Instantaneous maximum current single pin limit (applies to all port pins) –25 25 mA VDD – 0.3 VDD + 0.3 V Analog supply voltage V 1. Maximum value of VIO (except open drain pins) must be 3.8 V. 1.5 Absolute Maximum Ratings Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 1 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section. Table 1. Absolute Maximum Ratings (VSS = 0 V, VSSA = 0 V) Symbol Description VDD Notes1 Min Max Unit Supply Voltage Range -0.3 4.0 V VDDA Analog Supply Voltage Range -0.3 4.0 V VREFHx ADC High Voltage Reference -0.3 4.0 V VREFLx ADC Low Voltage Reference -0.3 0.3 V ΔVDD Voltage difference VDD to VDDA -0.3 0.3 V ΔVSS Voltage difference VSS to VSSA -0.3 0.3 V VIN Digital Input Voltage Range Pin Groups 1, 2 -0.3 4.0 V VOSC Oscillator Input Voltage Range Pin Group 4 -0.4 4.0 V VINA Analog Input Voltage Range Pin Group 3 -0.3 4.0 V IIC Input clamp current, per pin (VIN < 0) — -20.0 mA — -20.0 mA IOC Output clamp current, per pin (VO < 0)2 VOUT Output Voltage Range (Normal Push-Pull mode) Pin Group 1 -0.3 4.0 V VOUTOD Output Voltage Range (Open Drain mode) Pin Group 2 -0.3 5.5 V VOUT_DAC DAC Output Voltage Range Pin Group 5 -0.3 4.0 V TA Ambient Temperature Industrial -40 105 °C TSTG Storage Temperature Range (Extended Industrial) -55 150 °C 1. Default Mode • Pin Group 1: GPIO, TDI, TDO, TMS, TCK • Pin Group 2: RESET, PORTC6, and PORTC7 • Pin Group 3: ADC and Comparator Analog Inputs KV4x Data Sheet, Rev. 4, 09/2019 7 NXP Semiconductors General • Pin Group 4: XTAL, EXTAL • Pin Group 5: DAC analog output 2. Continuous clamp current per pin is -2.0 mA 2 General Electromagnetic compatibility (EMC) performance depends on the environment in which the MCU resides. Board design and layout, circuit topology choices, location, characteristics of external components, and MCU software operation play a significant role in EMC performance. See the following applications notes available on nxp.com for guidelines on optimizing EMC performance. • AN2321: Designing for Board Level Electromagnetic Compatibility • AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers • AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers • AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications • AN1259: System Design and Layout Techniques for Noise Reduction in MCUBased Systems 2.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. VIH Input Signal Low High 80% 50% 20% Midpoint1 Fall Time VIL Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 2. Input signal measurement reference 8 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 General All digital I/O switching characteristics, unless otherwise specified, assume: 1. output pins • have CL=30pF loads, • are slew rate disabled, and • are normal drive strength 2.2 Nonswitching electrical specifications 2.2.1 Recommended Operating Conditions This section includes information about recommended operating conditions. NOTE Recommended VDD ramp rate is between 1 ms and 200 ms. Table 2. Recommended Operating Conditions (VREFLx=0V, VSSA=0V, VSS=0V) Description Notes1 Min VDD Supply Voltage Digital 2, 3 1.71 VDDA Supply voltage (analog) 2, 3 2.7 Symbol Typ 3.0 Max Unit 3.6 V 3.6 V VDDA V VREFHx ADC (Cyclic) Reference Voltage High 2.7 ΔVDD Voltage difference VDD to VDDA -0.1 0 0.1 V ΔVSS Voltage difference VSS to VSSA -0.1 0 0.1 V 0.04 168 MHz 0 168 0.7 x VDD 3.6 V 0.35 x VDD V – V F_MCGO UT • • Device Clock Frequency using internal RC oscillator using external clock source VIH Input Voltage High (digital inputs) Pin Groups 1, 2 VIL Input Voltage Low (digital inputs) Pin Groups 1, 2 VHYS VIHOSC Input hystersis Oscillator Input Voltage High 0.06 x VDD – Pin Group 4 2.0 VDD + 0.3 V Oscillator Input Voltage Low Pin Group 4 -0.3 0.8 V DAC Output Current Drive Strength Pin Group 5 1 mA 105 °C XTAL driven by an external clock source VILOSC Cout TA Ambient Operating Temperature -40 1. Default Mode • Pin Group 1: GPIO, TDI, TDO, TMS, TCK • Pin Group 2: RESET • Pin Group 3: ADC and Comparator Analog Inputs • Pin Group 4: XTAL, EXTAL • Pin Group 5: DAC analog output KV4x Data Sheet, Rev. 4, 09/2019 9 NXP Semiconductors General • Pin Group 6: PTB0, PTB1, PTD4, PTD5, PTD6, PTD7, PTC3, and PTC4. have high output current capability • Pin Group 7: PTC6 and PTC7 are true open drain pins and have no P-chanl transistor. A external pull-up resistor is required when these pins are outputs. 2. If the ADC is enabled, minimum VDD is 2.7 V and minimum VDDA is 2.7 V. ADCA and ADCB are not guaranteed to operate below 2.7 V. All other analog modules besides the ADC and Nano-edge will operate down to 1.71 V. 3. If the Nano-edge is enabled, minimum VDD is 3.0 V and minimum VDDA is 3.0 V. Nano-edge is not guaranteed to operate below 3.0 V. All other analog modules besides the ADC and Nano-edge will operate down to 1.71 V. 2.2.2 LVD and POR operating requirements Table 3. VDD supply LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V Low-voltage warning thresholds — high range 1 VLVW1H • Level 1 falling (LVWV=00) 2.62 2.70 2.78 V VLVW2H • Level 2 falling (LVWV=01) 2.72 2.80 2.88 V VLVW3H • Level 3 falling (LVWV=10) 2.82 2.90 2.98 V VLVW4H • Level 4 falling (LVWV=11) 2.92 3.00 3.08 V — ±80 — mV 1.54 1.60 1.66 V VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV=00) 1.74 1.80 1.86 V VLVW2L • Level 2 falling (LVWV=01) 1.84 1.90 1.96 V VLVW3L • Level 3 falling (LVWV=10) 1.94 2.00 2.06 V VLVW4L • Level 4 falling (LVWV=11) 2.04 2.10 2.16 V — ±60 — mV VHYSL Low-voltage inhibit reset/recover hysteresis — low range Notes VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period — factory trimmed 900 1000 1100 μs 1. Rising thresholds are falling threshold + hysteresis voltage 2.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol VOH Description Min. Typ. Max. Unit Notes Output high voltage — normal drive pad Table continues on the next page... 10 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 General Table 4. Voltage and current operating behaviors (continued) Symbol Description Min. Typ. Max. Unit • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -10mA VDD – 0.5 — — V • 1.71 V ≤VDD ≤ 2.7 V, IOH = -5mA VDD – 0.5 — — V Output high voltage — High drive pad Notes 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -20mA VDD – 0.5 — — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -10mA VDD – 0.5 — — V — — 100 mA — — 0.5 V — — 0.5 V — — 0.5 V — — 0.5 V — — 0.5 V — — 0.5 V Output low current total for all ports — — 100 mA Input leakage current, analog and digital pins • VSS ≤ VIN ≤ VDD — 0.002 0.5 µA 3 RPU Internal pullup resistors(except RTC_WAKEUP pins) 20 — 50 kΩ 4 RPD Internal pulldown resistors 20 — 50 kΩ 5 IOHT Output high current total for all ports VOL Output low voltage — open drain pad • 2.7 V ≤ VDD ≤ 3.6 V, IOH = 3 mA 2 • 1.71 V ≤ VDD ≤ 2.7 V, IOH = 1 mA VOL Output low voltage — normal drive pad • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10 mA • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 5 mA Output low voltage — high drive pad • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA 1 • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA IOLT IIN 1. 2. 3. 4. 5. High drive pads are PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6 and PTD7. Open drain pads are PTC6 and PTC7. Measured at VDD=3.6V Measured at VDD supply voltage = VDD min and Vinput = VSS Measured at VDD supply voltage = VDD min and Vinput = VDD 2.2.4 Power mode transition operating behaviors All specifications except tPOR and VLLSx→RUN recovery times in the following table assume this clock configuration: • CPU and system clocks = 100 MHz • Bus and flash clock = 25 MHz • FEI clock mode KV4x Data Sheet, Rev. 4, 09/2019 11 NXP Semiconductors General Table 5. Power mode transition operating behaviors Symbol tPOR Description Min. Typ. Max. Unit — — 300 μs — — 173 μs — — 172 μs — — 96 μs — — 96 μs — — 5.4 μs — — 5.4 μs After a POR event, amount of time from the point VDD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. Notes • VLLS0 → RUN • VLLS1 → RUN • VLLS2 → RUN • VLLS3 → RUN • VLPS → RUN • STOP → RUN 2.2.5 Power consumption operating behaviors NOTE The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean+3σ) Table 6. Power consumption operating behaviors (All IDDs are Target values) Symbol Description Min. IDD_RUN Run mode current — all peripheral clocks disabled, code executing from flash, excludes IDDA • @ 1.8V • @ 3.0V IDD_RUN Typ. Max. Unit Notes 1 — 6.8 17.2 mA — 6.9 17.4 mA Run mode current — all peripheral clocks disabled, code executing from flash, excludes IDDA 2 • @ 1.8V • @ 3.0V — 9.9 19.7 mA Table continues on the next page... 12 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 General Table 6. Power consumption operating behaviors (All IDDs are Target values) (continued) Symbol IDD_RUN Description Min. Typ. Max. Unit — 10.0 19.8 mA Run mode current — all peripheral clocks disabled, code executing from flash, excludes IDDA Notes 3 • @ 1.8V — 17.0 25.9 mA • @ 3.0V — 17.2 26.1 mA IDD_HSRUN Run mode current — all peripheral clocks disabled, code executing from flash, excludes IDDA 4 • @ 1.8V — 26.3 45.3 mA • @ 3.0V — 26.5 45.5 mA IDD_HSRUN Run mode current — all peripheral clocks enabled, code executing from flash,excludes IDDA 5 • @ 3.0V • @ 25°C — 34.0 45.5 mA • @ 105°C — 39.0 53.2 mA IDD_WAIT Wait mode high frequency current at 3.0 V — all peripheral clocks disabled — 8.9 14.93 mA 6 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — 0.58 1.88 mA 7 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — 0.83 2.11 mA 8 — 0.34 1.59 mA 9 • @ –40 to 25°C — 0.43 2.03 • @ 70°C — 1.16 4.27 • @ 105°C — 3.05 10.13 • @ –40 to 25°C — 58 218 μA • @ 70°C — 280 1340 μA • @ 105°C — 924 2870 μA • @ –40 to 25°C — 2.8 5.3 μA • @ 70°C — 9.6 35.1 μA • @ 105°C — 37.4 134.8 μA IDD_VLPW Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled IDD_STOP Stop mode current at 3.0 V IDD_VLPS mA mA mA Very-low-power stop mode current at 3.0 V IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V Table continues on the next page... KV4x Data Sheet, Rev. 4, 09/2019 13 NXP Semiconductors General Table 6. Power consumption operating behaviors (All IDDs are Target values) (continued) Symbol Description Min. Typ. Max. Unit • @ –40 to 25°C — 2.7 3.3 μA • @ 70°C — 6.6 12.2 μA • @ 105°C — 25.9 50.5 μA • @ –40 to 25°C — 740 1200 nA • @ 70°C — 2.5 10.6 μA • @ 105°C — 11.1 26.5 μA — 420 832 nA — 1.9 9.4 μA — 10.8 26.3 μA — 200 599 nA — 1.8 10.5 μA — 10.8 26.3 μA Notes IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V IDD_VLLS0B Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled • @ –40 to 25°C • @ 70°C • @ 105°C IDD_VLLS0A Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled • @ –40 to 25°C • @ 70°C • @ 105°C 1. 2. 3. 4. 5. 6. Core frequency of 25 MHz. Core frequency of 50 MHz. Core frequency of 100 MHz. Core frequency of 168 MHz. Core frequency of 168 MHz. Nanoedge module at 84 MHz. 100 MHz core and system clock, 100 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral clocks disabled. CACHE is Enabled and Clock Gate (CG) = ALLOFF 7. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash. 8. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash. 9. 2 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Table 7. Low power mode peripheral adders — typical value Symbol Description Temperature (°C) Unit -40 25 50 70 85 105 IIREFSTEN4MHz 4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled. 56 56 56 56 56 56 µA IIREFSTEN32KHz 32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled. 52 52 52 52 52 52 µA Table continues on the next page... 14 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 General Table 7. Low power mode peripheral adders — typical value (continued) Symbol Description IEREFSTEN4MHz External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled. Temperature (°C) Unit -40 25 50 70 85 105 206 228 237 245 251 258 IEREFSTEN32KHz External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled. uA nA VLLS1 VLLS3 440 490 540 560 570 580 VLPS 440 490 540 560 570 580 STOP 510 560 560 560 610 680 510 560 560 560 610 680 22 22 22 22 22 22 ICMP CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption. IUART UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. MCGIRCLK (4 MHz internal reference clock) OSCERCLK (4 MHz external crystal) IBG 2.2.5.1 Bandgap adder when BGEN bit is set and device is placed in VLPx or VLLSx mode. µA µA 66 66 66 66 66 66 214 234 246 254 260 268 45 45 45 45 45 45 µA Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • • • • MCG in FBE for run mode, and BLPE for VLPR mode No GPIOs toggled Code execution from flash with cache enabled For the ALLOFF curve, all peripheral clocks are disabled except FTFA KV4x Data Sheet, Rev. 4, 09/2019 15 NXP Semiconductors General Figure 3. Run mode supply current vs. core frequency 16 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 General Very Low Power Run (VLPR) Current vs Core Frequency Temp (C)=25,VDD=3.6V,CACHE=ENABLE,Code Residence=Flash 1.00E-03 900.00E-06 800.00E-06 Current Consumption on VDD (A) 700.00E-06 600.00E-06 All Peripheral Clk Gates 500.00E-06 ALLOFF ALLON 400.00E-06 300.00E-06 200.00E-06 100.00E-06 000.00E+00 '1-1-2 '1-1-1 '1-2-4 1 '1-1-4 '1-1-2 '1-2-4 2 '1-1-4 4 Clk Ratio Core-Bus-Flash Core Freq (Mhz) Figure 4. VLPR mode current vs. core frequency 2.2.6 EMC radiated emissions operating behaviors NOTE EMC measurements to IC-level IEC standards are available from NXP on request. Table 8. EMC radiated emissions operating behaviors Symbol Description Frequency band (MHz) Typ. Unit Notes 1, 2 VRE1 Radiated emissions voltage, band 1 0.15–50 20 dBμV VRE2 Radiated emissions voltage, band 2 50–150 18 dBμV VRE3 Radiated emissions voltage, band 3 150–500 14 dBμV VRE4 Radiated emissions voltage, band 4 500–1000 8 dBμV IEC level 0.15–1000 L — VRE_IEC KV4x Data Sheet, Rev. 4, 09/2019 2, 3 17 NXP Semiconductors General 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. 2. VDD = 3.3 V, TA = 25 °C, fOSC = 10 MHz (crystal), fSYS = 75 MHz, fBUS = 25 MHz 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method 2.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.nxp.com. 2. Perform a keyword search for “EMC design.” 2.2.8 Capacitance attributes Table 9. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF 2.3 Switching specifications 2.3.1 Typical device clock specifications Table 10. Typical device clock specifications Symbol Description Min. Max. Unit Notes High Speed RUN mode fSYS System and core clock — 168 MHz fBUS Bus and Flash clock — 24 MHz fFPCK Fast peripheral clock — 84 MHz fNANO Nano-edge clock — 168 MHz Normal run mode fSYS System and core clock — 100 MHz fBUS Bus and Flash clock — 25 MHz Table continues on the next page... 18 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 General Table 10. Typical device clock specifications (continued) Symbol Description Min. Max. Unit fFPCK Fast peripheral clock — 100 MHz fNANO Nano-edge clock — 200 MHz Notes Low Speed RUN mode fSYS System and core clock — 50 MHz fBUS Bus and Flash clock — 25 MHz fFPCK Fast peripheral clock — 100 MHz fNANO Nano-edge clock — 200 MHz NOTE When NaneEdge circuit is enabled, the following clock set must be followed: 1. NanoEdge clock source must be from the PLL output 2. NanoEdge clock must be 2x the fast peripheral clock 3. NanoEdge clock must in the range of 164 Mhz ~232 Mhz 2.3.2 General switching specifications These general purpose specifications apply to all signals configured for GPIO, UART, and I2C signals. Table 11. General switching specifications Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1 External RESET and NMI pin interrupt pulse width — Asynchronous path 100 — ns 2 GPIO pin interrupt pulse width — Asynchronous path 16 — ns 2 Port rise and fall time 3 Fast slew rate 1.71≤ VDD ≤ 2.7 V 2.7 ≤ VDD ≤ 3.6 V — 8 ns — 7 ns — 25 ns — 15 ns Port rise and fall time Slow slew rate 1.71≤ VDD ≤ 2.7 V 2.7 ≤ VDD ≤ 3.6 V KV4x Data Sheet, Rev. 4, 09/2019 19 NXP Semiconductors General 1. The greater synchronous and asynchronous timing must be met. 2. This is the shortest pulse that is guaranteed to be recognized. 3. For high drive pins with high drive enabled, load is 75pF; other pins load (low drive) is 25pF. 2.4 Thermal specifications 2.4.1 Thermal operating requirements Table 12. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C 2.4.2 Thermal attributes Table 13. Thermal attributes Board type Symbol Description 100 LQFP 64 LQFP 48 LQFP Unit Notes Single-layer (1S) RθJA Thermal resistance, junction to ambient (natural convection) 62 64 71 °C/W 1 Four-layer (2s2p) RθJA Thermal resistance, junction to ambient (natural convection) 49 46 47 °C/W Single-layer (1S) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 52 52 58 °C/W Four-layer (2s2p) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 43 39 41 °C/W — RθJB Thermal resistance, junction to board 35 28 24 °C/W 2 — RθJC Thermal resistance, junction to case 17 15 18 °C/W 3 — ΨJT Thermal characterization parameter, junction to package top outside center (natural convection) 3 2 2 °C/W 4 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air). 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. 3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 20 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Peripheral operating requirements and behaviors 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 3 Peripheral operating requirements and behaviors 3.1 Core modules 3.1.1 SWD Electricals Table 14. SWD full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V — 25 MHz 1/J1 — ns 20 — ns SWD_CLK frequency of operation • Serial wire debug J2 SWD_CLK cycle period J3 SWD_CLK clock pulse width • Serial wire debug J4 SWD_CLK rise and fall times — 3 ns J9 SWD_DIO input data setup time to SWD_CLK rise 10 — ns J10 SWD_DIO input data hold time after SWD_CLK rise 0 — ns J11 SWD_CLK high to SWD_DIO data valid — 32 ns J12 SWD_CLK high to SWD_DIO high-Z 5 — ns J2 J3 J3 SWD_CLK (input) J4 J4 Figure 5. Serial wire clock input timing KV4x Data Sheet, Rev. 4, 09/2019 21 NXP Semiconductors Peripheral operating requirements and behaviors SWD_CLK J9 SWD_DIO J10 Input data valid J11 SWD_DIO Output data valid J12 SWD_DIO J11 SWD_DIO Output data valid Figure 6. Serial wire data timing 3.1.2 JTAG electricals Table 15. JTAG limited voltage range electricals Symbol J1 Description Min. Max. Operating voltage 2.7 3.6 TCLK frequency of operation Unit V MHz • Boundary Scan — 10 • JTAG and CJTAG — 25 • Serial Wire Debug — 50 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 20 — ns • Serial Wire Debug 10 — ns J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 2.0 — ns J7 TCLK low to boundary scan output data valid — 28 ns J2 TCLK cycle period J3 TCLK clock pulse width Table continues on the next page... 22 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Peripheral operating requirements and behaviors Table 15. JTAG limited voltage range electricals (continued) Symbol Description Min. Max. Unit J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J11 TCLK low to TDO data valid — 19 ns J12 TCLK low to TDO high-Z — 17 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns Table 16. JTAG full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 20 • Serial Wire Debug 0 40 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 25 — ns • Serial Wire Debug 12.5 — ns — 3 ns J2 TCLK cycle period J3 TCLK clock pulse width J4 TCLK rise and fall times J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 2.0 — ns J7 TCLK low to boundary scan output data valid — 30.6 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1.0 — ns J11 TCLK low to TDO data valid — 19.0 ns J12 TCLK low to TDO high-Z — 17.0 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns KV4x Data Sheet, Rev. 4, 09/2019 23 NXP Semiconductors Peripheral operating requirements and behaviors J2 J3 J3 TCLK (input) J4 J4 Figure 7. Test clock input timing TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 8. Boundary scan (JTAG) timing 24 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Peripheral operating requirements and behaviors TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 9. Test Access Port timing TCLK J14 J13 TRST Figure 10. TRST timing 3.2 System modules There are no specifications necessary for the device's system modules. 3.3 Clock modules KV4x Data Sheet, Rev. 4, 09/2019 25 NXP Semiconductors Peripheral operating requirements and behaviors 3.3.1 MCG specifications Table 17. MCG specifications Symbol Description Min. Typ. Max. Unit Notes fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C — 32.768 — kHz Δfints_t Total deviation of internal reference frequency (slow clock) over voltage and temperature — +0.5/-0.7 ±2 % 31.25 — 39.0625 kHz Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.3 ± 0.6 %fdco 1 Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco 1 ± 0.5 ±2 %fdco 1 ±1 %fdco 1 fints_t Internal reference frequency (slow clock) — user trimmed Δfdco_t Total deviation of trimmed average DCO output frequency over voltage and temperature — Δfdco_t Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C — 4 — MHz Δfintf_ft Frequency deviation of internal reference frequency (fast clock) over voltage and temperature — factory trimmed at nominal VDD and 25 °C — +1/-2 ±5 % fintf_ft fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz fintf_ft floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 2, 3 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX3 DCO output frequency 2 Low range (DRS=00) 4, 5 732 × ffll_ref Table continues on the next page... 26 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Peripheral operating requirements and behaviors Table 17. MCG specifications (continued) Symbol Description Mid range (DRS=01) Min. Typ. Max. Unit — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz — 180 — — 150 — — — 1 ms 8 — 16 MHz Notes 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter • fDCO = 48 MHz • fDCO = 98 MHz tfll_acquire FLL target frequency acquisition time ps 6 PLL fpll_ref PLL reference frequency range fvcoclk_2x VCO output frequency 220 — 480 MHz fvcoclk PLL output frequency 110 — 240 MHz PLL quadrature output frequency 110 — 240 MHz — 2.8 — mA — 4.7 — mA fvcoclk_90 Ipll PLL operating current • VCO @ 176 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 22) Ipll PLL operating current • VCO @ 360 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 45) Jcyc_pll Jacc_pll PLL period jitter (RMS) 7 7 8 • fvco = 48 MHz — 120 — ps • fvco = 120 MHz — 75 — ps PLL accumulated jitter over 1µs (RMS) 8 • fvco = 48 MHz — 1350 — ps • fvco = 120 MHz — 600 — ps Dunl Lock exit frequency tolerance ± 4.47 — ± 5.97 % tpll_lock Lock detector detection time — — 150 × 10-6 + 1075(1/ fpll_ref) s 9 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 7. Excludes any oscillator currents that are also consuming power while PLL is in operation. KV4x Data Sheet, Rev. 4, 09/2019 27 NXP Semiconductors Peripheral operating requirements and behaviors 8. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 3.3.2 Oscillator electrical specifications 3.3.2.1 Oscillator DC electrical specifications Table 18. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC IDDOSC Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Supply current — high gain mode (HGO=1) 1 • 4 MHz — 400 — μA • 8 MHz — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ RS 2, 4 Table continues on the next page... 28 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Peripheral operating requirements and behaviors Table 18. Oscillator DC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit — — — kΩ — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V Series resistor — high-frequency, low-power mode (HGO=0) Notes Series resistor — high-frequency, high-gain mode (HGO=1) 5 Vpp 1. VDD=3.3 V, Temperature =25 °C 2. See crystal or resonator manufacturer's recommendation 3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used. 4. When low power mode is selected, RF is integrated and must not be attached externally. 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. 3.3.2.2 Symbol Oscillator frequency specifications Table 19. Oscillator frequency specifications Min. Typ. Max. Unit Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fec_extal Input clock frequency (external clock mode) — — 48 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 1000 — ms fosc_lo tcst Description Notes 1, 2 3, 4 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL. 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. 3. Proper PC board layout procedures must be followed to achieve specifications. 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. KV4x Data Sheet, Rev. 4, 09/2019 29 NXP Semiconductors Peripheral operating requirements and behaviors NOTE The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode. 3.4 Memories and memory interfaces 3.4.1 Flash electrical specifications This section describes the electrical characteristics of the flash memory module. 3.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 20. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit Notes thvpgm4 Longword Program high-voltage time — 7.5 18 μs — thversscr Sector Erase high-voltage time — 13 113 ms 1 thversall Erase All high-voltage time — 208 1808 ms 1 1. Maximum time based on expectations at cycling end-of-life. 3.4.1.2 Flash timing specifications — commands Table 21. Flash command timing specifications Symbol Description Min. Typ. Max. Unit Notes trd1sec4k Read 1s Section execution time (flash sector) — — 60 μs 1 tpgmchk Program Check execution time — — 45 μs 1 trdrsrc Read Resource execution time — — 30 μs 1 tpgm4 Program Longword execution time — 65 145 μs — tersscr Erase Flash Sector execution time — 14 114 ms 2 trd1all Read 1s All Blocks execution time — — 0.9 ms 1 trdonce Read Once execution time — — 25 μs 1 Program Once execution time — 65 — μs — tersall Erase All Blocks execution time — 280 2100 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 tpgmonce 1. Assumes 25 MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 30 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Peripheral operating requirements and behaviors 3.4.1.3 Flash high voltage current behaviors Table 22. Flash high voltage current behaviors Symbol Description IDD_PGM IDD_ERS 3.4.1.4 Symbol Min. Typ. Max. Unit Average current adder during high voltage flash programming operation — 2.5 6.0 mA Average current adder during high voltage flash erase operation — 1.5 4.0 mA Reliability specifications Table 23. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 50 — years — tnvmretp1k Data retention after up to 1 K cycles 20 100 — years — nnvmcycp Cycling endurance 10 K 50 K — cycles 2 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C. 3.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 3.6 Analog 3.6.1 12-bit cyclic Analog-to-Digital Converter (ADC) parameters NOTE The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean+3σ). KV4x Data Sheet, Rev. 4, 09/2019 31 NXP Semiconductors Peripheral operating requirements and behaviors Table 24. 12-bit ADC electrical specifications Characteristic Symbol Min Typ Max Unit VDDA 2.7 3.3 3.6 V Recommended Operating Conditions Supply Voltage1 Vrefh Supply Voltage, 2 ADC Conversion Clock3 Conversion Range Input Voltage Range Vrefhx 2.7 VDDA V fADCCLK 0.6 25 MHz RAD VREFL VREFH V VADIN V External Reference VREFL VREFH Internal Reference VSSA VDDA Timing and Power Conversion Time tADC 6 ADC Clock Cycles ADC Power-Up Time (from adc_pdn) tADPU 13 ADC Clock Cycles ADC RUN Current (per ADC block) IADRUN mA • at 666.7 kHz ADC Clock, LP mode 1.1 1.36 • ≤ 8.33 MHz ADC Clock, 00 mode 6.9 8.09 • ≤ 12.5 MHz ADC Clock, 01 mode 11.9 14.05 • ≤ 16.67 MHz ADC Clock, 10 mode 20.4 23.86 • ≤ 20 MHz ADC Clock, 11 mode 25.9 31.03 • ≤ 25 MHz ADC Clock, 11 mode 26.3 31.40 ADC Powerdown Current (adc_pdn enabled) IADPWRDWN 0.02 µA IVREFH 0.001 µA Integral non-Linearity4 INL +/- 3 +/- 5 LSB5 Differential non-Linearity4 DNL +/- 0.6 +/- 0.9 LSB5 VREFH Current Accuracy (DC or Absolute) Monotonicity Offset6 LSB4 VOFFSET +/- 25 • 1x gain mode +/- 20 • 2x gain mode +50, -10 • 4x gain mode Gain Error EGAIN 0.0002 % AC Specifications7 Signal to Noise Ratio SNR 59 dB Total Harmonic Distortion THD 64 dB Spurious Free Dynamic Range SFDR 65 dB Signal to Noise plus Distortion SINAD 59 dB Effective Number of Bits ENOB 9.1 bits IIN 0 ADC Inputs Input Leakage Current +/-2 µA Table continues on the next page... 32 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Peripheral operating requirements and behaviors Table 24. 12-bit ADC electrical specifications (continued) Characteristic Symbol Input Injection Current 8 Min Typ IINJ Input Capacitance CADI Max Unit +/-3 mA pF 4.8 Sampling Capacitor 1. If the ADC’s reference is from VDDA: When VDDA is below 2.7 V, then the ADC functions, but the ADC specifications are not guaranteed. 2. When the input is at the Vrefl level, then the resulting output will be all zeros (hex 000), plus any error contribution due to offset and gain error. When the input is at the Vrefh level, then the output will be all ones (hex FFF), minus any error contribution due to offset and gain error. 3. ADC clock duty cycle min/max is 45/55% . 4. DNL and INL conversion accuracy is not guaranteed from VREFL to VREFL + 0025 and VREFH to VREFH-0025. 5. LSB = Least Significant Bit = 0.806 mV at 3.3 V VDDA, x1 Gain Setting 6. Offset over the conversion range of 0025 to 4070, with internal/external reference. 7. Measured when converting a 1 kHz input Full Scale sine wave. 8. The current that can be injected into or sourced from an unselected ADC input, without affecting the performance of the ADC. 3.6.1.1 Equivalent circuit for ADC inputs The following figure shows the ADC input circuit during sample and hold. S1 and S2 are always opened/closed at non-overlapping phases,and both S1 and S2 operate at the ADC clock frequency. The following equation gives equivalent input impedance when the input is selected. 1 -12 (ADC ClockRate) x  1.4x10 + 100ohm + 125ohm C1: Single Ended Mode 2XC1: Differential Mode Analog Input 1 125 ESD Resistor Channel Mux equivalent resistance 100Ohms S1 C1 S1 S/H S1 2 C1 S2 S2 S1 (VREFHx - VREFLx ) / 2 C1: Single Ended Mode 2XC1: Differential Mode 1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling = 1.8pF KV4x Data Sheet, Rev. 4, 09/2019 33 NXP Semiconductors Peripheral operating requirements and behaviors  2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing = 2.04pF 3. Sampling capacitor at the sample and hold circuit. Capacitor C1 (4.8pF) is normally disconnected from the input, and is only connected to the input at sampling time. 4. S1 and S2 switch phases are non-overlapping and operate at the ADC clock frequency S1 S2 Figure 11. Equivalent circuit for A/D loading 3.6.2 CMP and 6-bit DAC electrical specifications Table 25. Comparator and 6-bit DAC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDHS Supply current, high-speed mode (EN = 1, PMODE = 1) — — 200 μA IDDLS Supply current, low-speed mode (EN = 1, PMODE = 0) — — 20 μA VAIN Analog input voltage VSS — VDD V VAIO Analog input offset voltage — — 20 mV • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV VH Analog comparator hysteresis1 VCMPOh Output high VDD – 0.5 — — V VCMPOl Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN = 1, PMODE = 1) 20 50 200 ns tDLS Propagation delay, low-speed mode (EN = 1, PMODE = 0) 80 250 600 ns Analog comparator initialization delay2 — — 40 μs 6-bit DAC current adder (enabled) — 7 — μA IDAC6b INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 1. Typical hysteresis is measured with input voltage range limited to 0.7 to VDD – 0.7 V. 2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level. 34 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Peripheral operating requirements and behaviors 3. 1 LSB = Vreference/64 CMP Hysteresis vs Vinn 90.00E-03 80.00E-03 CMP Hysteresis (V) 70.00E-03 60.00E-03 HYSTCTR Setting 50.00E-03 0 1 2 3 40.00E-03 30.00E-03 20.00E-03 10.00E-03 000.00E+00 0.1 0.4 0.7 1 1.3 1.6 1.9 Vinn (V) 2.2 2.5 2.8 3.1 Figure 12. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0) CMP Hysteresis vs Vinn 180.00E-03 160.00E-03 CMP Hysteresis (V) 140.00E-03 120.00E-03 HYSTCTR Setting 100.00E-03 0 1 2 3 80.00E-03 60.00E-03 40.00E-03 20.00E-03 000.00E+00 -20.00E-03 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Vinn (V) Figure 13. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1) 3.6.3 12-bit DAC electrical characteristics KV4x Data Sheet, Rev. 4, 09/2019 35 NXP Semiconductors Peripheral operating requirements and behaviors 3.6.3.1 Symbol 12-bit DAC operating requirements Table 26. 12-bit DAC operating requirements Desciption Min. Max. Unit VDDA Supply voltage 1.71 3.6 V VDACR Reference voltage Notes 1.13 3.6 V 1 CL Output load capacitance — 100 pF 2 IL Output load current — 1 mA 1. The DAC reference can be selected to be VDDA or VREF_OUT. 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC. 3.6.3.2 Symbol 12-bit DAC operating behaviors Table 27. 12-bit DAC operating behaviors Description IDDA_DACL Supply current — low-power mode Min. Typ. Max. Unit — — 330 μA — — 1200 μA Notes P IDDA_DACH Supply current — high-speed mode P tDACLP Full-scale settling time (0x080 to 0xF7F) — low-power mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — high-power mode — 15 30 μs 1 μs 1 tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) • High-speed mode • Low speed mode — 1 5 Vdacoutl DAC output voltage range low — highspeed mode, no load, DAC set to 0x000 — — 100 mV Vdacouth DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V — — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VREF_OUT — — ±1 LSB 4 VOFFSET Offset error — ±0.4 ±0.8 %FSR 5 Gain error — ±0.1 ±0.6 %FSR 5 Power supply rejection ratio, VDDA ≥ 2.4 V 60 — 90 dB TCO Temperature coefficient offset voltage — 3.7 — μV/C TGE Temperature coefficient gain error — 0.000421 — %FSR/C Rop Output resistance (load = 3 kΩ) — — 250 Ω SR Slew rate -80h→ F7Fh→ 80h EG PSRR 6 V/μs Table continues on the next page... 36 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Peripheral operating requirements and behaviors Table 27. 12-bit DAC operating behaviors (continued) Symbol Description BW 1. 2. 3. 4. 5. 6. Min. Typ. Max. • High power (SPHP) 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — 3dB bandwidth Unit Notes kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Settling within ±1 LSB The INL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device 8 6 4 DAC12 INL (LSB) 2 0 -2 -4 -6 -8 0 500 1000 1500 2000 2500 3000 3500 4000 Digital Code Figure 14. Typical INL error vs. digital code KV4x Data Sheet, Rev. 4, 09/2019 37 NXP Semiconductors Peripheral operating requirements and behaviors 1.499 DAC12 Mid Level Code Voltage 1.4985 1.498 1.4975 1.497 1.4965 1.496 55 25 -40 85 105 125 Temperature °C Figure 15. Offset at half scale vs. temperature 3.7 Timers See General switching specifications. 3.8 Enhanced NanoEdge PWM characteristics Table 28. NanoEdge PWM timing parameters - 100 Mhz operating frequency Characteristic Symbol Min. PWM clock frequency NanoEdge Placement (NEP) Step Size1, 2 pwmp Delay for fault input activating to PWM output deactivated 1 Typ. Max. Unit 100 MHz 312 ps ns Table continues on the next page... 38 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Peripheral operating requirements and behaviors Table 28. NanoEdge PWM timing parameters - 100 Mhz operating frequency (continued) Characteristic Power-up Symbol Time3 Min. tpu Typ. Max. Unit 25 μs 1. Reference 100 MHz in NanoEdge Placement mode. 2. Temperature and voltage variations do not affect NanoEdge Placement step size. 3. Powerdown to NanoEdge mode transition. Table 29. NanoEdge PWM timing parameters - 84 Mhz operating frequency Characteristic Symbol Min. PWM clock frequency NanoEdge Placement (NEP) Step Size1, 2 pwmp Delay for fault input activating to PWM output deactivated Typ. tpu Unit 84 MHz 372 ps 1 Power-up Time3 Max. ns 30 μs 1. Reference 84 MHz in NanoEdge Placement mode. 2. Temperature and voltage variations do not affect NanoEdge Placement step size. 3. Powerdown to NanoEdge mode transition. 3.9 Communication interfaces 3.9.1 SPI (DSPI) switching specifications (limited voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Fast pads: • SIN: PTE19 • SOUT: PTE18 • SCK: PTE17 • PCS: PTE16 NOTE Open drain pads: KV4x Data Sheet, Rev. 4, 09/2019 39 NXP Semiconductors Peripheral operating requirements and behaviors • SIN: PTC7 • SOUT: PTC6 Table 30. Master mode DSPI timing for normal pads (limited voltage range) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — 25 MHz 2 x tBUS — ns Notes DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns DS3 DSPI_PCSn to DSPI_SCK output valid (tBUS x 2) − 2 — ns 1 DS4 DSPI_SCK to DSPI_PCSn output hold (tBUS x 2) − 2 — ns 2 DS5 DSPI_SCK to DSPI_SOUT valid — 8.5 ns DS6 DSPI_SCK to DSPI_SOUT invalid −2 — ns DS7 DSPI_SIN to DSPI_SCK input setup 17 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. Table 31. Master mode DSPI timing for fast pads (limited voltage range) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — 37.5 MHz 2 x tBUS — ns Notes DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns DS3 DSPI_PCSn to DSPI_SCK output valid (tBUS x 2) − 2 — ns 1 DS4 DSPI_SCK to DSPI_PCSn output hold (tBUS x 2) − 2 — ns 2 DS5 DSPI_SCK to DSPI_SOUT valid — 8.5 ns DS6 DSPI_SCK to DSPI_SOUT invalid −2 — ns DS7 DSPI_SIN to DSPI_SCK input setup 13 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. Table 32. Master mode DSPI timing for open drain pads (limited voltage range) Num Description Operating voltage Min. Max. Unit 2.7 3.6 V Notes Table continues on the next page... 40 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Peripheral operating requirements and behaviors Table 32. Master mode DSPI timing for open drain pads (limited voltage range) (continued) Num Description Min. Max. Unit — 25 MHz 2 x tBUS — ns Frequency of operation Notes DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns DS3 DSPI_PCSn to DSPI_SCK output valid (tBUS x 2) − 2 — ns 1 DS4 DSPI_SCK to DSPI_PCSn output hold (tBUS x 2) − 2 — ns 2 DS5 DSPI_SCK to DSPI_SOUT valid — 15.5 ns DS6 DSPI_SCK to DSPI_SOUT invalid −3 — ns DS7 DSPI_SIN to DSPI_SCK input setup 17 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. SPI_PCSn DS3 SPI_SCK (CPOL=0) DS7 SPI_SIN DS1 DS2 DS4 DS8 First data SPI_SOUT Data Last data DS5 First data DS6 Data Last data Figure 16. DSPI classic SPI timing — master mode Table 33. Slave mode DSPI timing for normal pads (limited voltage range) Num Description Operating voltage Min. Max. Unit 2.7 3.6 V 12.5 MHz 4 x tBUS — ns (tSCK/2) − 2 (tSCK/2) + 2 ns Frequency of operation DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 21 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 15 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 15 ns KV4x Data Sheet, Rev. 4, 09/2019 41 NXP Semiconductors Peripheral operating requirements and behaviors Table 34. Slave mode DSPI timing for fast pads (limited voltage range) Num Description Operating voltage Min. Max. Unit 2.7 3.6 V 25 MHz 4 x tBUS — ns Frequency of operation DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns DS11 DSPI_SCK to DSPI_SOUT valid — 17 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 11 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 11 ns Table 35. Slave mode DSPI timing for open drain pads (limited voltage range) Num Description Operating voltage Min. Max. Unit 2.7 3.6 V 12.5 MHz 4 x tBUS — ns (tSCK/2) − 2 (tSCK/2) + 2 ns Frequency of operation DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 28 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 22 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 22 ns SPI_SS DS10 DS9 SPI_SCK (POL=0) DS15 SPI_SOUT First data DS13 SPI_SIN DS12 DS16 DS11 Data Last data DS14 First data Data Last data Figure 17. DSPI classic SPI timing — slave mode 42 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Peripheral operating requirements and behaviors 3.9.2 SPI (DSPI) switching specifications (full voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Fast pads: • SIN: PTE19 • SOUT: PTE18 • SCK: PTE17 • PCS: PTE16 NOTE Open drain pads: • SIN: PTC7 • SOUT: PTC6 Table 36. Master mode DSPI timing for normal pads (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit Notes 1.71 3.6 V 1 — 18.75 MHz 4 x tBUS — ns DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 4 — ns 2 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 4 — ns 3 DS5 DSPI_SCK to DSPI_SOUT valid — 10 ns DS6 DSPI_SCK to DSPI_SOUT invalid -7.8 — ns DS7 DSPI_SIN to DSPI_SCK input setup 24 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. KV4x Data Sheet, Rev. 4, 09/2019 43 NXP Semiconductors Peripheral operating requirements and behaviors Table 37. Master mode DSPI timing fast pads (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit Notes 1.71 3.6 V 1 — 25 MHz 4 x tBUS — ns DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 4 — ns 2 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 4 — ns 3 DS5 DSPI_SCK to DSPI_SOUT valid — 10 ns DS6 DSPI_SCK to DSPI_SOUT invalid -7.8 — ns DS7 DSPI_SIN to DSPI_SCK input setup 17 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. Table 38. Master mode DSPI timing open drain pads (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit Notes 1.71 3.6 V 1 — 18.75 MHz 4 x tBUS — ns DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 4 — ns 2 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 4 — ns 3 DS5 DSPI_SCK to DSPI_SOUT valid — 26 ns DS6 DSPI_SCK to DSPI_SOUT invalid -7.8 — ns DS7 DSPI_SIN to DSPI_SCK input setup 24 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. 44 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Peripheral operating requirements and behaviors SPI_PCSn DS3 SPI_SCK DS7 (CPOL=0) SPI_SIN DS1 DS2 DS4 DS8 First data SPI_SOUT Data Last data DS5 First data DS6 Data Last data Figure 18. DSPI classic SPI timing — master mode Table 39. Slave mode DSPI timing for normal pads (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit 1.71 3.6 V — 12.5 MHz 8 x tBUS — ns (tSCK/2) - 4 (tSCK/2) + 4 ns DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 27.5 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2.5 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 22 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 22 ns Table 40. Slave mode DSPI timing for fast pads (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit 1.71 3.6 V — 18.75 MHz 8 x tBUS — ns DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS11 DSPI_SCK to DSPI_SOUT valid — 20.5 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2.5 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 15 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 15 ns KV4x Data Sheet, Rev. 4, 09/2019 45 NXP Semiconductors Dimensions Table 41. Slave mode DSPI timing for open drain pads (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit 1.71 3.6 V — 9.375 MHz 8 x tBUS — ns DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS11 DSPI_SCK to DSPI_SOUT valid — 43.5 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2.5 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 38 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 38 ns SPI_SS DS10 DS9 SPI_SCK DS15 (POL=0) SPI_SOUT DS12 First data DS13 SPI_SIN DS16 DS11 Data Last data DS14 First data Data Last data Figure 19. DSPI classic SPI timing — slave mode 3.9.3 I2C See General switching specifications. 3.9.4 UART See General switching specifications. 4 Dimensions 46 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Pinout 4.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to www.nxp.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 48-pin LQFP 98ASH00962A 64-pin LQFP 98ASS23234W 100-pin LQFP 98ASS23308W 5 Pinout 5.1 KV4x Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. 100 64 48 LQFP LQFP LQFP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 1 1 — PTE0 ADCB_CH6f ADCB_CH6f PTE0 UART1_TX XBAR0_ OUT10 XBAR0_IN11 2 2 — PTE1/ LLWU_P0 ADCB_CH7f ADCB_CH7f PTE1/ LLWU_P0 UART1_RX XBAR0_ OUT11 XBAR0_IN7 3 — — PTE2/ LLWU_P1 ADCB_CH6g ADCB_CH6g PTE2/ LLWU_P1 UART1_ CTS_b 4 — — PTE3 ADCB_CH7g ADCB_CH7g PTE3 UART1_ RTS_b 5 — — PTE4/ LLWU_P2 DISABLED PTE4/ LLWU_P2 6 — — PTE5 DISABLED PTE5 FTM3_CH0 7 — — PTE6/ LLWU_P16 DISABLED PTE6/ LLWU_P16 FTM3_CH1 8 3 1 VDD VDD VDD 9 4 2 VSS VSS VSS 10 5 3 PTE16 ADCA_CH0 ADCA_CH0 KV4x Data Sheet, Rev. 4, 09/2019 PTE16 SPI0_PCS0 UART1_TX FTM_CLKIN0 ALT7 FTM0_FLT3 47 NXP Semiconductors Pinout 100 64 48 LQFP LQFP LQFP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 11 6 4 PTE17/ LLWU_P19 ADCA_CH1 ADCA_CH1 PTE17/ LLWU_P19 SPI0_SCK UART1_RX FTM_CLKIN1 12 7 5 PTE18/ LLWU_P20 ADCB_CH0 ADCB_CH0 PTE18/ LLWU_P20 SPI0_SOUT UART1_ CTS_b I2C0_SDA 13 8 6 PTE19 ADCB_CH1 ADCB_CH1 PTE19 SPI0_SIN UART1_ RTS_b I2C0_SCL 14 — — ADCA_CH6a ADCA_CH6a ADCA_CH6a 15 — — ADCA_CH7a ADCA_CH7a ADCA_CH7a 16 — 7 PTE20 ADCA_CH6b ADCA_CH6b PTE20 FTM1_CH0 UART0_TX 17 — 8 PTE21 ADCA_CH7b ADCA_CH7b PTE21 FTM1_CH1 UART0_RX 18 9 — ADCA_CH2 ADCA_CH2 ADCA_CH2 19 10 — ADCA_CH3 ADCA_CH3 ADCA_CH3 20 11 — ADCA_CH6c ADCA_CH6c ADCA_CH6c 21 12 — ADCA_CH7c ADCA_CH7c ADCA_CH7c 22 13 9 VDDA VDDA VDDA 23 14 10 VREFH VREFH VREFH 24 15 11 VREFL VREFL VREFL 25 16 12 VSSA VSSA VSSA 26 17 13 PTE29 ADCA_CH4/ CMP1_IN5/ CMP0_IN5 ADCA_CH4/ CMP1_IN5/ CMP0_IN5 PTE29 FTM0_CH2 FTM_CLKIN0 27 18 14 PTE30 DAC0_OUT/ CMP1_IN3/ ADCA_CH5 DAC0_OUT/ CMP1_IN3/ ADCA_CH5 PTE30 FTM0_CH3 FTM_CLKIN1 28 19 — ADCA_CH6d/ ADCA_CH6d/ ADCA_CH6d/ CMP0_IN4/ CMP0_IN4/ CMP0_IN4/ CMP2_IN3 CMP2_IN3 CMP2_IN3 29 — — VSS VSS VSS 30 — — VDD VDD VDD 31 20 15 PTE24 ADCB_CH4 ADCB_CH4 PTE24 CAN1_TX FTM0_CH0 XBAR0_IN2 I2C0_SCL EWM_OUT_b XBAR0_ OUT4 32 21 16 PTE25/ LLWU_P21 ADCB_CH5 ADCB_CH5 PTE25/ LLWU_P21 CAN1_RX FTM0_CH1 XBAR0_IN3 I2C0_SDA EWM_IN 33 — — PTE26 DISABLED PTE26 34 22 17 PTA0 JTAG_TCLK/ SWD_CLK PTA0 UART0_ CTS_b/ UART0_ COL_b FTM0_CH5 XBAR0_IN4 EWM_IN 35 23 18 PTA1 JTAG_TDI PTA1 UART0_RX FTM0_CH6 CMP0_OUT FTM1_CH1 JTAG_TDI 36 24 19 PTA2 JTAG_TDO/ TRACE_ SWO PTA2 UART0_TX FTM0_CH7 CMP1_OUT FTM1_CH0 JTAG_TDO/ TRACE_ SWO 37 25 20 PTA3 JTAG_TMS/ SWD_DIO PTA3 UART0_ RTS_b FTM0_CH0 XBAR0_IN9 EWM_OUT_b FLEXPWMA_ JTAG_TMS/ A0 SWD_DIO 48 NXP Semiconductors LPTMR0_ ALT3 CMP3_OUT XBAR0_ OUT5 JTAG_TCLK/ SWD_CLK KV4x Data Sheet, Rev. 4, 09/2019 Pinout 100 64 48 LQFP LQFP LQFP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 38 26 21 PTA4/ LLWU_P3 NMI_b PTA4/ LLWU_P3 FTM0_CH1 XBAR0_IN10 FTM0_FLT3 39 27 — PTA5 DISABLED PTA5 FTM0_CH2 CMP2_OUT 40 — 22 VDD VDD VDD 41 — 23 VSS VSS VSS 42 28 — PTA12 CMP2_IN0 CMP2_IN0 PTA12 CAN0_TX FTM1_CH0 FTM1_QD_ PHA 43 29 — PTA13/ LLWU_P4 CMP2_IN1 CMP2_IN1 PTA13/ LLWU_P4 CAN0_RX FTM1_CH1 FTM1_QD_ PHB 44 — — PTA14 CMP3_IN0 CMP3_IN0 PTA14 SPI0_PCS0 UART0_TX 45 — — PTA15 CMP3_IN1 CMP3_IN1 PTA15 SPI0_SCK UART0_RX 46 — — PTA16 CMP3_IN2 CMP3_IN2 PTA16 SPI0_SOUT UART0_ CTS_b/ UART0_ COL_b 47 — — PTA17 ADCA_CH7e ADCA_CH7e PTA17 SPI0_SIN UART0_ RTS_b 48 30 — VDD VDD VDD 49 31 — VSS VSS VSS 50 32 24 PTA18 EXTAL0 EXTAL0 PTA18 XBAR0_IN7 FTM0_FLT2 FTM_CLKIN0 XBAR0_ OUT8 FTM3_CH2 51 33 25 PTA19 XTAL0 XTAL0 PTA19 XBAR0_IN8 FTM1_FLT0 FTM_CLKIN1 XBAR0_ OUT9 LPTMR0_ ALT1 52 34 26 RESET_b RESET_b RESET_b 53 35 27 PTB0/ LLWU_P5 ADCB_CH2 ADCB_CH2 PTB0/ LLWU_P5 I2C0_SCL FTM1_CH0 54 36 28 PTB1 ADCB_CH3 ADCB_CH3 PTB1 I2C0_SDA FTM1_CH1 FTM0_FLT2 55 37 29 PTB2 ADCA_CH6e/ ADCA_CH6e/ PTB2 CMP2_IN2 CMP2_IN2 I2C0_SCL UART0_ RTS_b FTM0_FLT1 56 38 30 PTB3 ADCB_CH7e/ ADCB_CH7e/ PTB3 CMP3_IN5 CMP3_IN5 I2C0_SDA UART0_ CTS_b/ UART0_ COL_b 57 — — PTB9 DISABLED 58 — — PTB10 ADCB_CH6a ADCB_CH6a PTB10 FTM0_FLT1 59 — — PTB11 ADCB_CH7a ADCB_CH7a PTB11 FTM0_FLT2 60 — — VSS VSS VSS 61 — — VDD VDD VDD 62 39 31 PTB16 DISABLED PTB16 63 40 32 PTB17 DISABLED PTB17 64 41 — PTB18 DISABLED PTB18 CAN0_TX FTM3_CH2 65 42 — PTB19 DISABLED PTB19 CAN0_RX FTM3_CH3 KV4x Data Sheet, Rev. 4, 09/2019 EWM_IN FLEXPWMA_ NMI_b B0 JTAG_TRST_ b FTM1_QD_ PHA UART0_RX FTM1_QD_ PHB UART0_TX FTM0_FLT3 FTM0_FLT0 PTB9 UART0_RX FTM_CLKIN2 CAN0_TX EWM_IN UART0_TX FTM_CLKIN1 CAN0_RX EWM_OUT_b XBAR0_IN5 49 NXP Semiconductors Pinout 100 64 48 LQFP LQFP LQFP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 66 — — PTB20 DISABLED PTB20 FLEXPWMA_ CMP0_OUT X0 67 — — PTB21 DISABLED PTB21 FLEXPWMA_ CMP1_OUT X1 68 — — PTB22 DISABLED PTB22 FLEXPWMA_ CMP2_OUT X2 69 — — PTB23 DISABLED PTB23 70 43 33 PTC0 ADCB_CH6b ADCB_CH6b PTC0 SPI0_PCS4 PDB0_ EXTRG 71 44 34 PTC1/ LLWU_P6 ADCB_CH7b ADCB_CH7b PTC1/ LLWU_P6 SPI0_PCS3 UART1_ RTS_b FTM0_CH0 FLEXPWMA_ XBAR0_IN11 A3 72 45 35 PTC2 ADCB_CH6c/ ADCB_CH6c/ PTC2 CMP1_IN0 CMP1_IN0 SPI0_PCS2 UART1_ CTS_b FTM0_CH1 FLEXPWMA_ XBAR0_IN6 B3 73 46 36 PTC3/ LLWU_P7 CMP1_IN1 CMP1_IN1 PTC3/ LLWU_P7 SPI0_PCS1 UART1_RX FTM0_CH2 CLKOUT 74 47 — VSS VSS VSS 75 48 — VDD VDD VDD 76 49 37 PTC4/ LLWU_P8 DISABLED PTC4/ LLWU_P8 SPI0_PCS0 UART1_TX FTM0_CH3 CMP1_OUT 77 50 38 PTC5/ LLWU_P9 DISABLED PTC5/ LLWU_P9 SPI0_SCK LPTMR0_ ALT2 XBAR0_IN2 CMP0_OUT FTM0_CH2 78 51 39 PTC6/ LLWU_P10 CMP2_IN4/ CMP0_IN0 CMP2_IN4/ CMP0_IN0 PTC6/ LLWU_P10 SPI0_SOUT PDB0_ EXTRG XBAR0_IN3 UART0_RX XBAR0_ OUT6 I2C0_SCL 79 52 40 PTC7 CMP3_IN4/ CMP0_IN1 CMP3_IN4/ CMP0_IN1 PTC7 SPI0_SIN XBAR0_IN4 UART0_TX XBAR0_ OUT7 I2C0_SDA 80 53 — PTC8 ADCB_CH7c/ ADCB_CH7c/ PTC8 CMP0_IN2 CMP0_IN2 FTM3_CH4 81 54 — PTC9 ADCB_CH6d/ ADCB_CH6d/ PTC9 CMP0_IN3 CMP0_IN3 FTM3_CH5 82 55 — PTC10 ADCB_CH7d ADCB_CH7d PTC10 FTM3_CH6 83 56 — PTC11/ LLWU_P11 ADCB_CH6e ADCB_CH6e PTC11/ LLWU_P11 FTM3_CH7 84 — — PTC12 DISABLED PTC12 85 — — PTC13 DISABLED PTC13 86 — — PTC14 DISABLED PTC14 I2C0_SCL 87 — — PTC15 DISABLED PTC15 I2C0_SDA 88 — — VSS VSS VSS 89 — — VDD VDD VDD 90 — — PTC16 DISABLED PTC16 CAN1_RX 91 — — PTC17 DISABLED PTC17 CAN1_TX 92 — — PTC18 DISABLED PTC18 93 57 41 PTD0/ LLWU_P12 DISABLED PTD0/ LLWU_P12 50 NXP Semiconductors SPI0_PCS5 FLEXPWMA_ CMP3_OUT X3 FTM0_FLT1 FTM_CLKIN0 SPI0_PCS0 FTM3_FLT0 FTM3_FLT0 FTM_CLKIN1 SPI0_PCS0 FTM3_CH0 FTM0_CH0 FLEXPWMA_ A0 KV4x Data Sheet, Rev. 4, 09/2019 Pinout 100 64 48 LQFP LQFP LQFP Pin Name Default ALT0 ADCA_CH7f 94 58 42 PTD1 ADCA_CH7f 95 59 43 PTD2/ LLWU_P13 96 60 44 97 61 98 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 PTD1 SPI0_SCK FTM3_CH1 FTM0_CH1 FLEXPWMA_ B0 DISABLED PTD2/ LLWU_P13 SPI0_SOUT FTM3_CH2 FTM0_CH2 FLEXPWMA_ I2C0_SCL A1 PTD3 DISABLED PTD3 SPI0_SIN FTM3_CH3 FTM0_CH3 FLEXPWMA_ I2C0_SDA B1 45 PTD4/ LLWU_P14 DISABLED PTD4/ LLWU_P14 SPI0_PCS1 UART0_ RTS_b FTM0_CH4 FLEXPWMA_ EWM_IN A2 62 46 PTD5 ADCA_CH6g ADCA_CH6g PTD5 SPI0_PCS2 UART0_ CTS_b/ UART0_ COL_b FTM0_CH5 FLEXPWMA_ EWM_OUT_b SPI0_SCK B2 99 63 47 PTD6/ LLWU_P15 ADCA_CH7g ADCA_CH7g PTD6/ LLWU_P15 SPI0_PCS3 UART0_RX FTM0_CH6 FTM1_CH0 FTM0_FLT0 SPI0_SOUT 100 64 48 PTD7 DISABLED UART0_TX FTM0_CH7 FTM1_CH1 FTM0_FLT1 SPI0_SIN PTD7 SPI0_PCS0 5.2 Pinout diagrams The following diagrams show pinouts for the packages. For each pin, the diagrams show the default function. However, many signals may be multiplexed onto a single pin. KV4x Data Sheet, Rev. 4, 09/2019 51 NXP Semiconductors PTC17 PTC16 VDD VSS PTC15 PTC14 PTC13 PTC12 PTC11/LLWU_P11 PTC10 PTC9 PTC8 90 89 88 87 86 85 84 83 82 81 80 PTC4/LLWU_P8 PTC18 92 91 PTC5/LLWU_P9 PTD0/LLWU_P12 76 PTD1 94 93 77 PTD2/LLWU_P13 PTC7 PTD3 96 95 PTC6/LLWU_P10 PTD4/LLWU_P14 97 79 PTD5 98 78 PTD6/LLWU_P15 99 100 PTD7 Pinout PTE0 1 75 VDD PTE1/LLWU_P0 2 74 VSS PTE2/LLWU_P1 3 73 PTC3/LLWU_P7 PTE3 4 72 PTC2 PTE4/LLWU_P2 5 71 PTC1/LLWU_P6 PTE5 6 70 PTC0 PTE6/LLWU_P16 7 69 PTB23 VDD 8 68 PTB22 9 67 PTB21 10 66 PTB20 VSS PTE16 PTE17/LLWU_P19 11 65 PTB19 PTE18/LLWU_P20 12 64 PTB18 PTE19 13 63 PTB17 ADCA_CH6a 14 62 PTB16 ADCA_CH7a 15 61 VDD PTE20 16 60 VSS PTE21 17 59 PTB11 ADCA_CH2 18 58 PTB10 ADCA_CH3 19 57 PTB9 ADCA_CH6c 20 56 PTB3 ADCA_CH7c 21 55 PTB2 35 36 37 38 39 40 41 42 43 44 45 46 47 48 PTA1 PTA2 PTA3 PTA4/LLWU_P3 PTA5 VDD VSS PTA12 PTA13/LLWU_P4 PTA14 PTA15 PTA16 PTA17 VDD 49 34 PTA0 50 33 PTE26 VSS 32 PTE25/LLWU_P21 PTA18 31 PTE29 30 PTA19 VDD RESET_b 51 PTE24 52 25 VSS 24 VSSA 29 VREFL 28 PTB0/LLWU_P5 27 PTB1 53 PTE30 54 ADCA_CH6d/CMP0_IN4/CMP2_IN3 22 23 26 VDDA VREFH Figure 20. 100-pin LQFP 52 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 PTD7 PTD6/LLWU_P15 PTD5 PTD4/LLWU_P14 PTD3 PTD2/LLWU_P13 PTD1 PTD0/LLWU_P12 PTC11/LLWU_P11 PTC10 PTC9 PTC8 PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Pinout ADCA_CH2 9 40 PTB17 ADCA_CH3 10 39 PTB16 ADCA_CH6c 11 38 PTB3 ADCA_CH7c 12 37 PTB2 VDDA 13 36 PTB1 VREFH 14 35 PTB0/LLWU_P5 VREFL 15 34 RESET_b VSSA 16 33 PTA19 32 PTB18 PTA18 41 31 8 VSS PTE19 30 PTB19 VDD 42 29 7 PTA13/LLWU_P4 PTE18/LLWU_P20 28 PTC0 PTA12 43 27 6 PTA5 PTE17/LLWU_P19 26 PTC1/LLWU_P6 PTA4/LLWU_P3 44 25 5 PTA3 PTE16 24 PTC2 PTA2 45 23 4 PTA1 VSS 22 PTC3/LLWU_P7 PTA0 46 21 3 PTE25/LLWU_P21 VDD 20 VSS PTE24 47 19 2 ADCA_CH6d/CMP0_IN4/CMP2_IN3 PTE1/LLWU_P0 18 VDD PTE30 48 17 1 PTE29 PTE0 Figure 21. 64-pin LQFP KV4x Data Sheet, Rev. 4, 09/2019 53 NXP Semiconductors PTD7 PTD6/LLWU_P15 PTD5 PTD4/LLWU_P14 PTD3 PTD2/LLWU_P13 PTD1 PTD0/LLWU_P12 PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 48 47 46 45 44 43 42 41 40 39 38 37 Ordering parts PTE20 7 30 PTB3 PTE21 8 29 PTB2 VDDA 9 28 PTB1 VREFH 10 27 PTB0/LLWU_P5 VREFL 11 26 RESET_b VSSA 12 25 PTA19 24 PTB16 PTA18 31 23 6 VSS PTE19 22 PTB17 VDD 32 21 5 PTA4/LLWU_P3 PTE18/LLWU_P20 20 PTC0 PTA3 33 19 4 PTA2 PTE17/LLWU_P19 18 PTC1/LLWU_P6 PTA1 34 17 3 PTA0 PTE16 16 PTC2 PTE25/LLWU_P21 35 15 2 PTE24 VSS 14 PTC3/LLWU_P7 PTE30 36 13 1 PTE29 VDD Figure 22. 48-pin LQFP 6 Ordering parts 54 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Part identification 6.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.nxp.com and perform a part number search for the MKV4x device numbers. 7 Part identification 7.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 7.2 Format Part numbers for this device have the following format: Q KV## A FFF T PP CC S N 7.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification KV## Kinetis family • KV42 • KV44 • KV46 A Key attribute • F = Cortex-M4 w/ DSP and FPU FFF Program flash memory size • 64 = 64 KB • 128 = 128 KB • 256 = 256 KB T Temperature range (°C) • V = –40 to 105 PP Package identifier • LF = 48 LQFP (7 mm x 7 mm) • LH = 64 LQFP (10 mm x 10 mm) • LL = 100 LQFP (14 mm x 14 mm) CC Maximum CPU frequency (MHz) • 16 = 168 MHz Table continues on the next page... KV4x Data Sheet, Rev. 4, 09/2019 55 NXP Semiconductors Terminology and guidelines Field Description Values S Software type • (Blank) = Not software enabled N Packaging type • R = Tape and reel • (Blank) = Trays 7.4 Example This is an example part number: MKV46F256VLL16 8 Terminology and guidelines 8.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. 8.1.1 Example This is an example of an operating requirement: Symbol VDD Description 1.0 V core supply voltage Min. 0.9 Max. 1.1 Unit V 8.2 Definition: Operating behavior Unless otherwise specified, an operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 56 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Terminology and guidelines 8.2.1 Example This is an example of an operating behavior: Symbol IWP Description Min. Digital I/O weak pullup/ 10 pulldown current Max. 130 Unit µA 8.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. 8.3.1 Example This is an example of an attribute: Symbol CIN_D Description Input capacitance: digital pins Min. — Max. 7 Unit pF 8.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. 8.4.1 Example This is an example of an operating rating: Symbol VDD Description 1.0 V core supply voltage KV4x Data Sheet, Rev. 4, 09/2019 Min. –0.3 Max. 1.2 Unit V 57 NXP Semiconductors Terminology and guidelines 8.5 Result of exceeding a rating Failures in time (ppm) 40 30 The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. 20 10 0 Operating rating Measured characteristic 8.6 Relationship between ratings and operating requirements ng ati r ing rat e Op ( ) in. (m nt me n.) mi t era Op ing e uir req g tin era Op nt me ire u req ax (m .) t era Op ng ati ax (m .) r ing Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) dli n Ha ng ng ati ) in. (m r li nd Ha ng ati x.) a (m r ng Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ ∞ Handling (power off) 8.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. 58 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Terminology and guidelines • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 8.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. 8.8.1 Example 1 This is an example of an operating behavior that includes a typical value: Symbol IWP Description Digital I/O weak pullup/pulldown current Min. 10 Typ. 70 Max. 130 Unit µA 8.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: KV4x Data Sheet, Rev. 4, 09/2019 59 NXP Semiconductors Revision history 5000 4500 4000 TJ IDD_STOP (μA) 3500 150 °C 3000 105 °C 2500 25 °C 2000 –40 °C 1500 1000 500 0 0.90 0.95 1.05 1.00 1.10 VDD (V) 8.9 Typical Value Conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V 9 Revision history The following table provides a revision history for this document. Table 42. Revision history Rev. No. Date 0 7/2014 1 2/2015 Substantial Changes Initial NDA release. • Added information about 48 LQFP package in the following sections: • Ordering information • Fields Table continues on the next page... 60 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 Revision history Table 42. Revision history (continued) Rev. No. Date Substantial Changes • Obtaining package dimensions • Pinout • In table "Power consumption operating behaviors", removed the text "Maximum core fequency of 150 Mhz" from note for IDDA. • In table "Typical device clock specifications", removed information about High Speed run mode. 2 8/2015 • Updated instances of operating frequency from 150 MHz to 168 Mhz • Changed document number from "KV4XP100M150" to "KV4XP100M168" due to the change in operating frequency • Part numbers ending with "15" changed to ending with "16" • Removed instances of MKV45, MKV43, and MKV40 part numbers • Updated MKV41 part numbers to MKV42 • Added part numbers MKV44F256VLL16 and MKV44F256VLH16 • Updated table "Orderable part numbers summary" • In table Recommended Operating Conditions : • Updated minimum digital supply voltage to 1.71 V • Added footnote numbers 2 and 3 • Removed rows for IOH, IOL, NF, TR, and tFLRET • Updated table Voltage and current operating behaviors • Updated table Power mode transition operating behaviors • Updated table Power consumption operating behaviors • Updated table EMC radiated emissions operating behaviors • Updated table Typical device clock specifications • Updated table Thermal attributes • Updated the PLL section of table MCG specifications • Updated tersall value in table Flash timing specifications — commands • Added note to section 12-bit cyclic Analog-to-Digital Converter (ADC) parameters • Updated IDDA_DACL P and IDDA_DACH P values in table 12-bit DAC operating behaviors • Updated the pinouts • Added section Enhanced NanoEdge PWM characteristics 3 06/2016 • • • • • 4 09/2019 • In Introduction, added this table table • Updated ARM to Arm as per branding guidelines • Removed Package Your Way Note for 48 LQFP package all over the document • Removed KMS content all over document • Removed Debug trace timing specifications • Added VHYS in Recommended Operating Conditions table • Added ∆fints_t and ∆fintf_ft in MCG specifications table • Updated minimum value of J1 parameter in SWD full voltage range electricals and JTAG limited voltage range electricals KV4x Data Sheet, Rev. 4, 09/2019 Changed occurences of Freescale to NXP In the features list, added a section for "Kinetis Motor Suite" Added KMS orderable part numbers Added section Kinetis Motor Suite (KMS) In table 12-bit ADC electrical specifications, changed typical value of ENOB from 9.5 to 9.1 61 NXP Semiconductors Revision history Table 42. Revision history Rev. No. Date Substantial Changes • Updated the values of GAIN error parameter in 12-bit ADC electrical specifications • ADded maximum values of IADRUN in 12-bit ADC electrical specifications • ADded the maximum values and footnotes to IDDs in Power Consumption operating behaviors table • Updated the footnote from VREFH to VREF_OUT in 12-bit DAC operating requirements 62 NXP Semiconductors KV4x Data Sheet, Rev. 4, 09/2019 How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, UMEMS, eIQ, Immersiv3D, EdgeLock, and EdgeScale are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2014–2017 NXP B.V. Document Number KV4XP100M168 Revision 4, 09/2019
MKV44F128VLF16 价格&库存

很抱歉,暂时无法提供与“MKV44F128VLF16”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MKV44F128VLF16
    •  国内价格
    • 1+69.85440
    • 10+66.49560
    • 30+60.69600

    库存:0