Freescale Semiconductor
Document Number: MPC8548EEC
Rev. 10, 06/2014
Technical Data
MPC8548E PowerQUICC III
Integrated Processor
Hardware Specifications
1
Overview
This section provides a high-level overview of the device
features. The following figure shows the major functional
units within the device.
Although this document is written from the perspective of
the MPC8548E, most of the material applies to the other
family members, such as MPC8547E, MPC8545E, and
MPC8543E. When specific differences occur, such as pinout
differences and processor frequency ranges, they are
identified as such.
For specific PVR and SVR numbers, see the MPC8548E
PowerQUICC III Integrated Host Processor Reference
Manual.
Freescale reserves the right to change the detail specifications as may be required
to permit improvements in the design of its products.
© 2007-2012, 2014 Freescale Semiconductor, Inc. All rights reserved.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
Contents
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 10
Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 15
Input Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
RESET Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 19
DDR and DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . 20
DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Enhanced Three-Speed Ethernet (eTSEC) . . . . . . . . 27
Ethernet Management Interface Electrical
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Programmable Interrupt Controller . . . . . . . . . . . . . 53
JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
GPOUT/GPIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
PCI/PCI-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
High-Speed Serial Interfaces (HSSI) . . . . . . . . . . . . 65
PCI Express . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Serial RapidIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Package Description . . . . . . . . . . . . . . . . . . . . . . . . . 91
Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
System Design Information . . . . . . . . . . . . . . . . . . 135
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 145
Document Revision History . . . . . . . . . . . . . . . . . . 148
Overview
DDR
SDRAM
DDR/DDR2/
Memory Controller
Security
Engine
Flash
SDRAM
GPIO
Local Bus Controller
XOR
Engine
IRQs
Serial
Programmable Interrupt
Controller (PIC)
DUART
I2C
I2C
Controller
I2C
I2C
Controller
MII, GMII, TBI,
RTBI, RGMII,
RMII
MII, GMII, TBI,
RTBI, RGMII,
RMII
MII, GMII, TBI,
RTBI, RGMII,
RMII
RTBI, RGMII,
RMII
eTSEC
10/100/1Gb
eTSEC
10/100/1Gb
eTSEC
10/100/1Gb
eTSEC
10/100/1Gb
e500
Coherency
Module
512-Kbyte
L2 Cache/
SRAM
Core Complex
Bus
e500 Core
32-Kbyte L1
Instruction
Cache
32-Kbyte
L1 Data
Cache
Serial RapidIO
or
PCI Express
OceaN
Switch
Fabric
4x RapidIO
x8 PCI Express
32-bit PCI Bus Interface
(If 64-bit not used)
PCI 32-bit
66 MHz
32-bit PCI/
64-bit PCI/PCI-X
Bus Interface
PCI/PCI-X
133 MHz
4-Channel DMA
Controller
Figure 1. Device Block Diagram
1.1
Key Features
The following list provides an overview of the device feature set:
• High-performance 32-bit core built on Power Architecture® technology.
— 32-Kbyte L1 instruction cache and 32-Kbyte L1 data cache with parity protection. Caches can
be locked entirely or on a per-line basis, with separate locking for instructions and data.
— Signal-processing engine (SPE) APU (auxiliary processing unit). Provides an extensive
instruction set for vector (64-bit) integer and fractional operations. These instructions use both
the upper and lower words of the 64-bit GPRs as they are defined by the SPE APU.
— Double-precision floating-point APU. Provides an instruction set for double-precision (64-bit)
floating-point instructions that use the 64-bit GPRs.
— 36-bit real addressing
— Embedded vector and scalar single-precision floating-point APUs. Provide an instruction set
for single-precision (32-bit) floating-point instructions.
— Memory management unit (MMU). Especially designed for embedded applications. Supports
4-Kbyte to 4-Gbyte page sizes.
— Enhanced hardware and software debug support
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
2
Freescale Semiconductor
Overview
— Performance monitor facility that is similar to, but separate from, the device performance
monitor
The e500 defines features that are not implemented on this device. It also generally defines some features
that this device implements more specifically. An understanding of these differences can be critical to
ensure proper operations.
•
•
•
512-Kbyte L2 cache/SRAM
— Flexible configuration.
— Full ECC support on 64-bit boundary in both cache and SRAM modes
— Cache mode supports instruction caching, data caching, or both.
— External masters can force data to be allocated into the cache through programmed memory
ranges or special transaction types (stashing).
— 1, 2, or 4 ways can be configured for stashing only.
— Eight-way set-associative cache organization (32-byte cache lines)
— Supports locking entire cache or selected lines. Individual line locks are set and cleared through
Book E instructions or by externally mastered transactions.
— Global locking and Flash clearing done through writes to L2 configuration registers
— Instruction and data locks can be Flash cleared separately.
— SRAM features include the following:
– I/O devices access SRAM regions by marking transactions as snoopable (global).
– Regions can reside at any aligned location in the memory map.
– Byte-accessible ECC is protected using read-modify-write transaction accesses for
smaller-than-cache-line accesses.
Address translation and mapping unit (ATMU)
— Eight local access windows define mapping within local 36-bit address space.
— Inbound and outbound ATMUs map to larger external address spaces.
– Three inbound windows plus a configuration window on PCI/PCI-X and PCI Express
– Four inbound windows plus a default window on RapidIO™
– Four outbound windows plus default translation for PCI/PCI-X and PCI Express
– Eight outbound windows plus default translation for RapidIO with segmentation and
sub-segmentation support
DDR/DDR2 memory controller
— Programmable timing supporting DDR and DDR2 SDRAM
— 64-bit data interface
— Four banks of memory supported, each up to 4 Gbytes, to a maximum of 16 Gbytes
— DRAM chip configurations from 64 Mbits to 4 Gbits with ×8/×16 data ports
— Full ECC support
— Page mode support
– Up to 16 simultaneous open pages for DDR
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
3
Overview
•
•
– Up to 32 simultaneous open pages for DDR2
— Contiguous or discontiguous memory mapping
— Read-modify-write support for RapidIO atomic increment, decrement, set, and clear
transactions
— Sleep mode support for self-refresh SDRAM
— On-die termination support when using DDR2
— Supports auto refreshing
— On-the-fly power management using CKE signal
— Registered DIMM support
— Fast memory access via JTAG port
— 2.5-V SSTL_2 compatible I/O (1.8-V SSTL_1.8 for DDR2)
— Support for battery-backed main memory
Programmable interrupt controller (PIC)
— Programming model is compliant with the OpenPIC architecture.
— Supports 16 programmable interrupt and processor task priority levels
— Supports 12 discrete external interrupts
— Supports 4 message interrupts with 32-bit messages
— Supports connection of an external interrupt controller such as the 8259 programmable
interrupt controller
— Four global high-resolution timers/counters that can generate interrupts
— Supports a variety of other internal interrupt sources
— Supports fully nested interrupt delivery
— Interrupts can be routed to external pin for external processing.
— Interrupts can be routed to the e500 core’s standard or critical interrupt inputs.
— Interrupt summary registers allow fast identification of interrupt source.
Integrated security engine (SEC) optimized to process all the algorithms associated with IPSec,
IKE, WTLS/WAP, SSL/TLS, and 3GPP
— Four crypto-channels, each supporting multi-command descriptor chains
– Dynamic assignment of crypto-execution units via an integrated controller
– Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
— PKEU—public key execution unit
– RSA and Diffie-Hellman; programmable field size up to 2048 bits
– Elliptic curve cryptography with F2m and F(p) modes and programmable field size up to
511 bits
— DEU—Data Encryption Standard execution unit
– DES, 3DES
– Two key (K1, K2) or three key (K1, K2, K3)
– ECB and CBC modes for both DES and 3DES
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
4
Freescale Semiconductor
Overview
•
•
•
•
— AESU—Advanced Encryption Standard unit
– Implements the Rijndael symmetric key cipher
– ECB, CBC, CTR, and CCM modes
– 128-, 192-, and 256-bit key lengths
— AFEU—ARC four execution unit
– Implements a stream cipher compatible with the RC4 algorithm
– 40- to 128-bit programmable key
— MDEU—message digest execution unit
– SHA with 160- or 256-bit message digest
– MD5 with 128-bit message digest
– HMAC with either algorithm
— KEU—Kasumi execution unit
– Implements F8 algorithm for encryption and F9 algorithm for integrity checking
– Also supports A5/3 and GEA-3 algorithms
— RNG—random number generator
— XOR engine for parity checking in RAID storage applications
Dual I2C controllers
— Two-wire interface
— Multiple master support
— Master or slave I2C mode support
— On-chip digital filtering rejects spikes on the bus
Boot sequencer
— Optionally loads configuration data from serial ROM at reset via the I2C interface
— Can be used to initialize configuration registers and/or memory
— Supports extended I2C addressing mode
— Data integrity checked with preamble signature and CRC
DUART
— Two 4-wire interfaces (SIN, SOUT, RTS, CTS)
— Programming model compatible with the original 16450 UART and the PC16550D
Local bus controller (LBC)
— Multiplexed 32-bit address and data bus operating at up to 133 MHz
— Eight chip selects support eight external slaves
— Up to eight-beat burst transfers
— The 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller.
— Three protocol engines available on a per chip select basis:
– General-purpose chip select machine (GPCM)
– Three user programmable machines (UPMs)
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
5
Overview
•
– Dedicated single data rate SDRAM controller
— Parity support
— Default boot ROM chip select with configurable bus width (8, 16, or 32 bits)
Four enhanced three-speed Ethernet controllers (eTSECs)
— Three-speed support (10/100/1000 Mbps)
— Four controllers designed to comply with IEEE Std. 802.3®, 802.3u, 802.3x, 802.3z, 802.3ac,
and 802.3ab
— Support for various Ethernet physical interfaces:
– 1000 Mbps full-duplex IEEE 802.3 GMII, IEEE 802.3z TBI, RTBI, and RGMII
– 10/100 Mbps full and half-duplex IEEE 802.3 MII, IEEE 802.3 RGMII, and RMII
— Flexible configuration for multiple PHY interface configurations. See Section 8.1, “Enhanced
Three-Speed Ethernet Controller (eTSEC)
(10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI/RMII Electrical Characteristics,” for
more information.
— TCP/IP acceleration and QoS features available
– IP v4 and IP v6 header recognition on receive
– IP v4 header checksum verification and generation
– TCP and UDP checksum verification and generation
– Per-packet configurable acceleration
– Recognition of VLAN, stacked (queue in queue) VLAN, IEEE Std 802.2™, PPPoE session,
MPLS stacks, and ESP/AH IP-security headers
– Supported in all FIFO modes
— Quality of service support:
– Transmission from up to eight physical queues
– Reception to up to eight physical queues
— Full- and half-duplex Ethernet support (1000 Mbps supports only full duplex):
– IEEE 802.3 full-duplex flow control (automatic PAUSE frame generation or
software-programmed PAUSE frame generation and recognition)
— Programmable maximum frame length supports jumbo frames (up to 9.6 Kbytes) and
IEEE Std. 802.1™ virtual local area network (VLAN) tags and priority
— VLAN insertion and deletion
– Per-frame VLAN control word or default VLAN for each eTSEC
– Extracted VLAN control word passed to software separately
— Retransmission following a collision
— CRC generation and verification of inbound/outbound frames
— Programmable Ethernet preamble insertion and extraction of up to 7 bytes
— MAC address recognition:
– Exact match on primary and virtual 48-bit unicast addresses
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
6
Freescale Semiconductor
Overview
•
•
•
– VRRP and HSRP support for seamless router fail-over
– Up to 16 exact-match MAC addresses supported
– Broadcast address (accept/reject)
– Hash table match on up to 512 multicast addresses
– Promiscuous mode
— Buffer descriptors backward compatible with MPC8260 and MPC860T 10/100 Ethernet
programming models
— RMON statistics support
— 10-Kbyte internal transmit and 2-Kbyte receive FIFOs
— MII management interface for control and status
— Ability to force allocation of header information and buffer descriptors into L2 cache
OCeaN switch fabric
— Full crossbar packet switch
— Reorders packets from a source based on priorities
— Reorders packets to bypass blocked packets
— Implements starvation avoidance algorithms
— Supports packets with payloads of up to 256 bytes
Integrated DMA controller
— Four-channel controller
— All channels accessible by both the local and remote masters
— Extended DMA functions (advanced chaining and striding capability)
— Support for scatter and gather transfers
— Misaligned transfer capability
— Interrupt on completed segment, link, list, and error
— Supports transfers to or from any local memory or I/O port
— Selectable hardware-enforced coherency (snoop/no snoop)
— Ability to start and flow control each DMA channel from external 3-pin interface
— Ability to launch DMA from single write transaction
Two PCI/PCI-X controllers
— PCI 2.2 and PCI-X 1.0 compatible
— One 32-/64-bit PCI/PCI-X port with support for speeds of up to 133 MHz (maximum PCI-X
frequency in synchronous mode is 110 MHz)
— One 32-bit PCI port with support for speeds from 16 to 66 MHz (available when the other port
is in 32-bit mode)
— Host and agent mode support
— 64-bit dual address cycle (DAC) support
— PCI-X supports multiple split transactions
— Supports PCI-to-memory and memory-to-PCI streaming
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
7
Overview
•
•
— Memory prefetching of PCI read accesses
— Supports posting of processor-to-PCI and PCI-to-memory writes
— PCI 3.3-V compatible
— Selectable hardware-enforced coherency
Serial RapidIO™ interface unit
— Supports RapidIO™ Interconnect Specification, Revision 1.2
— Both 1× and 4× LP-serial link interfaces
— Long- and short-haul electricals with selectable pre-compensation
— Transmission rates of 1.25, 2.5, and 3.125 Gbaud (data rates of 1.0, 2.0, and 2.5 Gbps) per lane
— Auto detection of 1- and 4-mode operation during port initialization
— Link initialization and synchronization
— Large and small size transport information field support selectable at initialization time
— 34-bit addressing
— Up to 256 bytes data payload
— All transaction flows and priorities
— Atomic set/clr/inc/dec for read-modify-write operations
— Generation of IO_READ_HOME and FLUSH with data for accessing cache-coherent data at
a remote memory system
— Receiver-controlled flow control
— Error detection, recovery, and time-out for packets and control symbols as required by the
RapidIO specification
— Register and register bit extensions as described in part VIII (Error Management) of the
RapidIO specification
— Hardware recovery only
— Register support is not required for software-mediated error recovery.
— Accept-all mode of operation for fail-over support
— Support for RapidIO error injection
— Internal LP-serial and application interface-level loopback modes
— Memory and PHY BIST for at-speed production test
RapidIO-compatible message unit
— 4 Kbytes of payload per message
— Up to sixteen 256-byte segments per message
— Two inbound data message structures within the inbox
— Capable of receiving three letters at any mailbox
— Two outbound data message structures within the outbox
— Capable of sending three letters simultaneously
— Single segment multicast to up to 32 devIDs
— Chaining and direct modes in the outbox
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
8
Freescale Semiconductor
Overview
•
•
•
•
•
•
— Single inbound doorbell message structure
— Facility to accept port-write messages
PCI Express interface
— PCI Express 1.0a compatible
— Supports x8,x4,x2, and x1 link widths
— Auto-detection of number of connected lanes
— Selectable operation as root complex or endpoint
— Both 32- and 64-bit addressing
— 256-byte maximum payload size
— Virtual channel 0 only
— Traffic class 0 only
— Full 64-bit decode with 32-bit wide windows
Pin multiplexing for the high-speed I/O interfaces supports one of the following configurations:
— 8 PCI Express
— 4 PCI Express and 4 serial RapidIO
Power management
— Supports power saving modes: doze, nap, and sleep
— Employs dynamic power management, which automatically minimizes power consumption of
blocks when they are idle
System performance monitor
— Supports eight 32-bit counters that count the occurrence of selected events
— Ability to count up to 512 counter-specific events
— Supports 64 reference events that can be counted on any of the eight counters
— Supports duration and quantity threshold counting
— Burstiness feature that permits counting of burst events with a programmable time between
bursts
— Triggering and chaining capability
— Ability to generate an interrupt on overflow
System access port
— Uses JTAG interface and a TAP controller to access entire system memory map
— Supports 32-bit accesses to configuration registers
— Supports cache-line burst accesses to main memory
— Supports large block (4-Kbyte) uploads and downloads
— Supports continuous bit streaming of entire block for fast upload and download
JTAG boundary scan, designed to comply with IEEE Std. 1149.1™
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
9
Electrical Characteristics
2
Electrical Characteristics
This section provides the AC and DC electrical specifications and thermal characteristics for the device.
This device is currently targeted to these specifications. Some of these specifications are independent of
the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design
specifications.
2.1
Overall DC Electrical Characteristics
This section covers the ratings, conditions, and other characteristics.
2.1.1
Absolute Maximum Ratings
The following table provides the absolute maximum ratings.
Table 1. Absolute Maximum Ratings 1
Characteristic
Symbol
Max Value
Unit
Notes
Core supply voltage
VDD
–0.3 to 1.21
V
—
PLL supply voltage
AVDD
–0.3 to 1.21
V
—
Core power supply for SerDes transceivers
SVDD
–0.3 to 1.21
V
—
Pad power supply for SerDes transceivers
XVDD
–0.3 to 1.21
V
—
DDR and DDR2 DRAM I/O voltage
GVDD
–0.3 to 2.75
–0.3 to 1.98
V
2
LVDD (for eTSEC1
and eTSEC2)
–0.3 to 3.63
–0.3 to 2.75
V
TVDD (for eTSEC3
and eTSEC4)
–0.3 to 3.63
–0.3 to 2.75
PCI/PCI-X, DUART, system control and power management,
I2C, Ethernet MII management, and JTAG I/O voltage
OVDD
–0.3 to 3.63
V
—
Local bus I/O voltage
BVDD
–0.3 to 3.63
–0.3 to 2.75
V
—
Input voltage
MVIN
–0.3 to (GVDD + 0.3)
V
4
MVREF
–0.3 to
(GVDD/2 + 0.3)
V
—
Three-speed Ethernet I/O signals
LVIN
TVIN
–0.3 to (LVDD + 0.3)
–0.3 to (TVDD + 0.3)
V
4
Local bus signals
BVIN
–0.3 to (BVDD + 0.3)
—
—
DUART, SYSCLK, system control and power
management, I2C, Ethernet MII management,
and JTAG signals
OVIN
–0.3 to (OVDD + 0.3)
V
4
PCI/PCI-X
OVIN
–0.3 to (OVDD + 0.3)
V
4
Three-speed Ethernet I/O voltage
DDR/DDR2 DRAM signals
DDR/DDR2 DRAM reference
3
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
10
Freescale Semiconductor
Electrical Characteristics
Table 1. Absolute Maximum Ratings 1 (continued)
Characteristic
Symbol
Max Value
Unit
Notes
TSTG
–55 to 150
°C
—
Storage temperature range
Notes:
1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and
functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause
permanent damage to the device.
2. The –0.3 to 2.75 V range is for DDR and –0.3 to 1.98 V range is for DDR2.
3. The 3.63 V maximum is only supported when the port is configured in GMII, MII, RMII, or TBI modes; otherwise the 2.75 V
maximum applies. See Section 8.2, “FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications,” for details on
the recommended operating conditions per protocol.
4. (M,L,O)VIN may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
2.1.2
Recommended Operating Conditions
The following table provides the recommended operating conditions for this device. Note that the values
in this table are the recommended and tested operating conditions. Proper device operation outside these
conditions is not guaranteed.
Table 2. Recommended Operating Conditions
Symbol
Recommended
Value
Unit
Notes
Core supply voltage
VDD
1.1 V ± 55 mV
V
—
PLL supply voltage
AVDD
1.1 V ± 55 mV
V
1
Core power supply for SerDes transceivers
SVDD
1.1 V ± 55 mV
V
—
Pad power supply for SerDes transceivers
XVDD
1.1 V ± 55 mV
V
—
DDR and DDR2 DRAM I/O voltage
GVDD
2.5 V ± 125 mV
1.8 V ± 90 mV
V
—
Three-speed Ethernet I/O voltage
LVDD
3.3 V ± 165 mV
2.5 V ± 125 mV
V
4
TVDD
3.3 V ± 165 mV
2.5 V ± 125 mV
—
4
PCI/PCI-X, DUART, system control and power management, I2C,
Ethernet MII management, and JTAG I/O voltage
OVDD
3.3 V ± 165 mV
V
3
Local bus I/O voltage
BVDD
3.3 V ± 165 mV
2.5 V ± 125 mV
V
—
Input voltage
MVIN
GND to GVDD
V
2
MVREF
GND to GVDD/2
V
2
Three-speed Ethernet signals
LVIN
TVIN
GND to LVDD
GND to TVDD
V
4
Local bus signals
BVIN
GND to BVDD
V
—
PCI, DUART, SYSCLK, system control and power
management, I2C, Ethernet MII management, and
JTAG signals
OVIN
GND to OVDD
V
3
Characteristic
DDR and DDR2 DRAM signals
DDR and DDR2 DRAM reference
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
11
Electrical Characteristics
Table 2. Recommended Operating Conditions (continued)
Characteristic
Junction temperature range
Symbol
Recommended
Value
Unit
Notes
Tj
0 to 105
°C
—
Notes:
1. This voltage is the input to the filter discussed in Section 22.2, “PLL Power Supply Filtering,” and not necessarily the voltage
at the AVDD pin, which may be reduced from VDD by the filter.
2. Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during
power-on reset and power-down sequences.
3. Caution: OVIN must not exceed OVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during
power-on reset and power-down sequences.
4. Caution: L/TVIN must not exceed L/TVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during
power-on reset and power-down sequences.
The following figure shows the undershoot and overshoot voltages at the interfaces of this device.
B/G/L/O/TVDD + 20%
B/G/L/O/TVDD + 5%
B/G/L/O/TVDD
VIH
GND
GND – 0.3 V
VIL
GND – 0.7 V
Not to Exceed 10%
of tCLOCK1
Notes:
1. tCLOCK refers to the clock period associated with the respective interface:
For I2C and JTAG, tCLOCK references SYSCLK.
For DDR, tCLOCK references MCLK.
For eTSEC, tCLOCK references EC_GTX_CLK125.
For LBIU, tCLOCK references LCLK.
For PCI, tCLOCK references PCIn_CLK or SYSCLK.
For SerDes, tCLOCK references SD_REF_CLK.
2. Note that with the PCI overshoot allowed (as specified above), the device
does not fully comply with the maximum AC ratings and device protection
guideline outlined in the PCI rev. 2.2 standard (section 4.2.2.3).
Figure 2. Overshoot/Undershoot Voltage for GVDD/OVDD/LVDD/BVDD/TVDD
The core voltage must always be provided at nominal 1.1 V. Voltage to the processor interface I/Os are
provided through separate sets of supply pins and must be provided at the voltages shown in Table 2. The
input voltage threshold scales with respect to the associated I/O supply voltage. OVDD and LVDD based
receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR
SDRAM interface uses a single-ended differential receiver referenced the externally supplied MVREF
signal (nominally set to GVDD/2) as is appropriate for the SSTL2 electrical signaling standard.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
12
Freescale Semiconductor
Electrical Characteristics
2.1.3
Output Driver Characteristics
The following table provides information on the characteristics of the output driver strengths. The values
are preliminary estimates.
Table 3. Output Drive Capability
Driver Type
Programmable
Output Impedance
(Ω)
Supply
Voltage
25
25
BVDD = 3.3 V
BVDD = 2.5 V
45(default)
45(default)
BVDD = 3.3 V
BVDD = 2.5 V
25
OVDD = 3.3 V
2
Local bus interface utilities signals
PCI signals
Notes
1
45(default)
DDR signal
18
36 (half strength mode)
GVDD = 2.5 V
3
DDR2 signal
18
36 (half strength mode)
GVDD = 1.8 V
3
TSEC/10/100 signals
45
L/TVDD = 2.5/3.3 V
—
DUART, system control, JTAG
45
OVDD = 3.3 V
—
I2C
150
OVDD = 3.3 V
—
Notes:
1. The drive strength of the local bus interface is determined by the configuration of the appropriate bits in PORIMPSCR.
2. The drive strength of the PCI interface is determined by the setting of the PCI_GNT1 signal at reset.
3. The drive strength of the DDR interface in half-strength mode is at Tj = 105°C and at GVDD (min).
2.2
Power Sequencing
The device requires its power rails to be applied in a specific sequence in order to ensure proper device
operation. These requirements are as follows for power-up:
1. VDD, AVDD_n, BVDD, LVDD, OVDD, SVDD, TVDD, XVDD
2. GVDD
All supplies must be at their stable values within 50 ms.
NOTE
Items on the same line have no ordering requirement with respect to one
another. Items on separate lines must be ordered sequentially such that
voltage rails on a previous step must reach 90% of their value before the
voltage rails on the current step reach 10% of theirs.
NOTE
In order to guarantee MCKE low during power-up, the above sequencing for
GVDD is required. If there is no concern about any of the DDR signals being
in an indeterminate state during power-up, then the sequencing for GVDD is
not required.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
13
Electrical Characteristics
NOTE
From a system standpoint, if any of the I/O power supplies ramp prior to the
VDD core supply, the I/Os associated with that I/O supply may drive a logic
one or zero during power-up, and extra current may be drawn by the device.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
14
Freescale Semiconductor
Power Characteristics
3
Power Characteristics
The estimated typical power dissipation for the core complex bus (CCB) versus the core frequency for this
family of PowerQUICC III devices is shown in the following table.
Table 4. Device Power Dissipation
CCB Frequency1
Core Frequency
SLEEP2
Typical-653
Typical-1054
Maximum5
Unit
400
800
2.7
4.6
7.5
8.1
W
1000
2.7
5.0
7.9
8.5
W
1200
2.7
5.4
8.3
8.9
500
1500
11.5
13.6
16.5
18.6
W
533
1333
6.2
7.9
10.8
12.8
W
Notes:
1. CCB frequency is the SoC platform frequency, which corresponds to the DDR data rate.
2. SLEEP is based on VDD = 1.1 V, Tj = 65°C.
3. Typical-65 is based on VDD = 1.1 V, Tj = 65°C, running Dhrystone.
4. Typical-105 is based on VDD = 1.1 V, Tj = 105°C, running Dhrystone.
5. Maximum is based on VDD = 1.1 V, Tj = 105°C, running a smoke test.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
15
Input Clocks
4
Input Clocks
This section discusses the timing for the input clocks.
4.1
System Clock Timing
The following table provides the system clock (SYSCLK) AC timing specifications for the device.
Table 5. SYSCLK AC Timing Specifications
At recommended operating conditions (see Table 2) with OVDD = 3.3 V ± 165 mV.
Parameter/Condition
Symbol
Min
Typ
Max
Unit
Notes
SYSCLK frequency
fSYSCLK
16
—
133
MHz
1, 6, 7, 8
SYSCLK cycle time
tSYSCLK
7.5
—
60
ns
6, 7, 8
SYSCLK rise and fall time
tKH, tKL
0.6
1.0
1.2
ns
2
tKHK/tSYSCLK
40
—
60
%
3
—
—
—
±150
ps
4, 5
SYSCLK duty cycle
SYSCLK jitter
Notes:
1. Caution: The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the resulting
SYSCLK frequency, e500 (core) frequency, and CCB clock frequency do not exceed their respective maximum or minimum
operating frequencies.See Section 20.2, “CCB/SYSCLK PLL Ratio,” and Section 20.3, “e500 Core PLL Ratio,” for ratio
settings.
2. Rise and fall times for SYSCLK are measured at 0.6 and 2.7 V.
3. Timing is guaranteed by design and characterization.
4. This represents the total input jitter—short term and long term—and is guaranteed by design.
5. The SYSCLK driver’s closed loop jitter bandwidth must be = VTX-DIFFp-p-MIN >= 505 mV (4 dB)
0.07 UI = UI – 0.3 UI (JTX-TOTAL-MAX)
[Transition Bit]
VTX-DIFFp-p-MIN = 800 mV
Figure 48. Minimum Transmitter Timing and Voltage Output Compliance Specifications
17.4.3
Differential Receiver (RX) Input Specifications
Table 57 defines the specifications for the differential input at all receivers (RXs). The parameters are
specified at the component pins.
Table 57. Differential Receiver (RX) Input Specifications
Symbol
Parameter
Min
Nom
Max
Unit
Comments
UI
Unit interval
399.88
400
400.12
ps
Each UI is 400 ps ± 300 ppm. UI does not account
for spread spectrum clock dictated variations.
See Note 1.
VRX-DIFFp-p
Differential
peak-to-peak
input voltage
0.175
—
1.200
V
VRX-DIFFp-p = 2 × |VRX-D+ – VRX-D–|. See Note 2.
TRX-EYE
Minimum
receiver eye
width
0.4
—
—
UI
The maximum interconnect media and transmitter
jitter that can be tolerated by the receiver can be
derived as TRX-MAX-JITTER = 1 – TRX-EYE = 0.6 UI.
See Notes 2 and 3.
TRX-EYE-MEDIAN-to-
Maximum time
between the
jitter median and
maximum
deviation from
the median
—
—
0.3
UI
Jitter is defined as the measurement variation of
the crossing points (VRX-DIFFp-p = 0 V) in relation
to a recovered TX UI. A recovered TX UI is
calculated over 3500 consecutive unit intervals of
sample data. Jitter is measured using all edges of
the 250 consecutive UI in the center of the
3500 UI used for calculating the TX UI.
See Notes 2, 3, and 7.
MAX-JITTER
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
77
PCI Express
Table 57. Differential Receiver (RX) Input Specifications (continued)
Symbol
Parameter
Min
Nom
Max
Unit
VRX-CM-ACp
AC peak
common mode
input voltage
—
—
150
mV
VRX-CM-ACp = |VRXD+ – VRXD-|/2 + VRX-CM-DC
VRX-CM-DC = DC(avg) of |VRX-D+ + VRX-D–| ÷ 2.
See Note 2.
RLRX-DIFF
Differential
return loss
15
—
—
dB
Measured over 50 MHz to 1.25 GHz with the D+
and D– lines biased at +300 mV and –300 mV,
respectively. See Note 4.
RLRX-CM
Common mode
return loss
6
—
—
dB
Measured over 50 MHz to 1.25 GHz with the D+
and D– lines biased at 0 V. See Note 4.
ZRX-DIFF-DC
DC differential
input impedance
80
100
120
Ω
RX DC differential mode impedance. See Note 5.
ZRX-DC
DC input
impedance
40
50
60
Ω
Required RX D+ as well as D– DC impedance
(50 ± 20% tolerance). See Notes 2 and 5.
ZRX-HIGH-IMP-DC
Powered down
DC input
impedance
200 k
—
—
Ω
Required RX D+ as well as D– DC impedance
when the receiver terminations do not have
power. See Note 6.
VRX-IDLE-DET-DIFFp-p
Electrical idle
detect threshold
65
—
175
mV
VRX-IDLE-DET-DIFFp-p = 2 × |VRX-D+ –VRX-D–|.
Measured at the package pins of the receiver
TRX-IDLE-DET-DIFF-
Unexpected
electrical idle
enter detect
threshold
integration time
—
—
10
ms
An unexpected electrical idle (VRX-DIFFp-p <
VRX-IDLE-DET-DIFFp-p) must be recognized no
longer than TRX-IDLE-DET-DIFF-ENTERING to signal
an unexpected idle condition.
ENTERTIME
Comments
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
78
Freescale Semiconductor
PCI Express
Table 57. Differential Receiver (RX) Input Specifications (continued)
Symbol
Parameter
Min
Nom
Max
Unit
Comments
LTX-SKEW
Total Skew
—
—
20
ns
Skew across all lanes on a Link. This includes
variation in the length of SKP ordered set (for
example, COM and one to five symbols) at the RX
as well as any delay differences arising from the
interconnect itself.
Notes:
1. No test load is necessarily associated with this value.
2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 50 must be used
as the RX device when taking measurements (also see the receiver compliance eye diagram shown in Figure 49). If the
clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must
be used as a reference for the eye diagram.
3. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and
interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution
in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over
any 250 consecutive TX UIs. Note that the median is not the same as the mean. The jitter median describes the point in time
where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks
to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be
used as the reference for the eye diagram.
4. The receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased
to 300 mV and the D– line biased to –{300 mV and a common mode return loss greater than or equal to 6 dB (no bias
required) over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels.
The reference impedance for return loss measurements for is 50 Ω to ground for both the D+ and D– line (that is, as
measured by a vector network analyzer with 50-Ω probes—see Figure 50). Note: that the series capacitors CTX is optional
for the return loss measurement.
5. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM)
there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.
6. The RX DC common mode Impedance that exists when no power is present or fundamental reset is asserted. This helps
ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be
measured at 300 mV above the RX ground.
7. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit
algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental
and simulated data.
17.5
Receiver Compliance Eye Diagrams
The RX eye diagram in Figure 49 is specified using the passive compliance/test measurement load (see
Figure 50) in place of any real PCI Express RX component.
Note: In general, the minimum receiver eye diagram measured with the compliance/test measurement load
(see Figure 50) is larger than the minimum receiver eye diagram measured over a range of systems at the
input receiver of any real PCI Express component. The degraded eye diagram at the input receiver is due
to traces internal to the package as well as silicon parasitic characteristics which cause the real PCI Express
component to vary in impedance from the compliance/test measurement load. The input receiver eye
diagram is implementation specific and is not specified. RX component designer must provide additional
margin to adequately compensate for the degraded minimum receiver eye diagram (shown in Figure 49)
expected at the input receiver based on some adequate combination of system simulations and the return
loss measured looking into the RX package and silicon. The RX eye diagram must be aligned in time using
the jitter median to locate the center of the eye diagram.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
79
PCI Express
The eye diagram must be valid for any 250 consecutive UIs.
A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is
created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the
TX UI.
NOTE
The reference impedance for return loss measurements is 50. to ground for
both the D+ and D– line (that is, as measured by a vector network analyzer
with 50-Ω probes—see Figure 50). Note that the series capacitors, CTX, are
optional for the return loss measurement.
VRX-DIFF = 0 mV
(D+ D– Crossing Point)
VRX-DIFF = 0 mV
(D+ D– Crossing Point)
VRX-DIFFp-p-MIN > 175 mV
0.4 UI = TRX-EYE-MIN
Figure 49. Minimum Receiver Eye Timing and Voltage Compliance Specification
17.5.1
Compliance Test and Measurement Load
The AC timing and voltage parameters must be verified at the measurement point, as specified within
0.2 inches of the package pins, into a test/measurement load shown in Figure 50.
NOTE
The allowance of the measurement point to be within 0.2 inches of the
package pins is meant to acknowledge that package/board routing may
benefit from D+ and D– not being exactly matched in length at the package
pin boundary.
D+ Package
Pin
C = CTX
TX
Silicon
+ Package
D– Package
Pin
C = CTX
R = 50 Ω
R = 50 Ω
Figure 50. Compliance Test/Measurement Load
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
80
Freescale Semiconductor
Serial RapidIO
18
Serial RapidIO
This section describes the DC and AC electrical specifications for the RapidIO interface of the
MPC8548E, for the LP-Serial physical layer. The electrical specifications cover both single- and
multiple-lane links. Two transmitters (short and long run) and a single receiver are specified for each of
three baud rates, 1.25, 2.50, and 3.125 GBaud.
Two transmitter specifications allow for solutions ranging from simple board-to-board interconnect to
driving two connectors across a backplane. A single receiver specification is given that accepts signals
from both the short- and long-run transmitter specifications.
The short-run transmitter must be used mainly for chip-to-chip connections on either the same
printed-circuit board or across a single connector. This covers the case where connections are made to a
mezzanine (daughter) card. The minimum swings of the short-run specification reduce the overall power
used by the transceivers.
The long-run transmitter specifications use larger voltage swings that are capable of driving signals across
backplanes. This allows a user to drive signals across two connectors and a backplane. The specifications
allow a distance of at least 50 cm at all baud rates.
All unit intervals are specified with a tolerance of ±100 ppm. The worst case frequency difference between
any transmit and receive clock is 200 ppm.
To ensure interoperability between drivers and receivers of different vendors and technologies, AC
coupling at the receiver input must be used.
18.1
DC Requirements for Serial RapidIO SD_REF_CLK and
SD_REF_CLK
For more information, see Section 16.2, “SerDes Reference Clocks.”
18.2
AC Requirements for Serial RapidIO SD_REF_CLK and
SD_REF_CLK
Table 58 lists the Serial RapidIO SD_REF_CLK and SD_REF_CLK AC requirements.
Table 58. SD_REF_CLK and SD_REF_CLK AC Requirements
Symbol
Min
Typ
Max
Unit
Comments
REFCLK cycle time
—
10(8)
—
ns
8 ns applies only to serial
RapidIO with 125-MHz reference
clock
tREFCJ
REFCLK cycle-to-cycle jitter. Difference in the
period of any two adjacent REFCLK cycles.
—
—
80
ps
—
tREFPJ
Phase jitter. Deviation in edge location with
respect to mean edge location.
–40
—
40
ps
—
tREF
Parameter Description
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
81
Serial RapidIO
18.3
Signal Definitions
LP-serial links use differential signaling. This section defines terms used in the description and
specification of differential signals. Figure 51 shows how the signals are defined. The figures show
waveforms for either a transmitter output (TD and TD) or a receiver input (RD and RD). Each signal
swings between A volts and B volts where A > B. Using these waveforms, the definitions are as follows:
1. The transmitter output signals and the receiver input signals TD, TD, RD, and RD each have a
peak-to-peak swing of A – B volts.
2. The differential output signal of the transmitter, VOD, is defined as VTD – VTD.
3. The differential input signal of the receiver, VID, is defined as VRD – VRD.
4. The differential output signal of the transmitter and the differential input signal of the receiver
each range from A – B to –(A – B) volts.
5. The peak value of the differential transmitter output signal and the differential receiver input
signal is A – B volts.
6. The peak-to-peak value of the differential transmitter output signal and the differential receiver
input signal is 2 × (A – B) volts.
A Volts
B Volts
TD or RD
TD or RD
Differential Peak-to-Peak = 2 × (A – B)
Figure 51. Differential Peak–Peak Voltage of Transmitter or Receiver
To illustrate these definitions using real values, consider the case of a CML (current mode logic)
transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing
that goes between 2.5 and 2.0 V. Using these values, the peak-to-peak voltage swing of the signals TD and
TD is 500 mVp-p. The differential output signal ranges between 500 and –500 mV. The peak differential
voltage is 500 mV. The peak-to-peak differential voltage is 1000 mVp-p.
18.4
Equalization
With the use of high-speed serial links, the interconnect media causes degradation of the signal at the
receiver. Effects such as inter-symbol interference (ISI) or data dependent jitter are produced. This loss can
be large enough to degrade the eye opening at the receiver beyond what is allowed in the specification. To
negate a portion of these effects, equalization can be used. The most common equalization techniques that
can be used are:
• A passive high pass filter network placed at the receiver. This is often referred to as passive
equalization.
• The use of active circuits in the receiver. This is often referred to as adaptive equalization.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
82
Freescale Semiconductor
Serial RapidIO
18.5
Explanatory Note on Transmitter and Receiver Specifications
AC electrical specifications are given for transmitter and receiver. Long- and short-run interfaces at three
baud rates (a total of six cases) are described.
The parameters for the AC electrical specifications are guided by the XAUI electrical interface specified
in Clause 47 of IEEE 802.3ae-2002.
XAUI has similar application goals to Serial RapidIO, as described in Section 8.1. The goal of this
standard is that electrical designs for Serial RapidIO can reuse electrical designs for XAUI, suitably
modified for applications at the baud intervals and reaches described herein.
18.6
Transmitter Specifications
LP-serial transmitter electrical and timing specifications are stated in the text and tables of this section.
The differential return loss, S11, of the transmitter in each case shall be better than:
• –10 dB for (baud frequency)/10 < Freq(f) < 625 MHz, and
• –10 dB + 10log(f/625 MHz) dB for 625 MHz ≤ Freq(f) ≤ baud frequency
The reference impedance for the differential return loss measurements is 100-Ω resistive. Differential
return loss includes contributions from on-chip circuitry, chip packaging, and any off-chip components
related to the driver. The output impedance requirement applies to all valid output levels.
It is recommended that the 20%–80% rise/fall time of the transmitter, as measured at the transmitter output,
in each case have a minimum value 60 ps.
It is recommended that the timing skew at the output of an LP-serial transmitter between the two signals
that comprise a differential pair not exceed 25 ps at 1.25 GB, 20 ps at 2.50 GB, and 15 ps at 3.125 GB.
Table 59. Short Run Transmitter AC Timing Specifications—1.25 GBaud
Range
Characteristic
Symbol
Unit
Notes
Min
Max
VO
–0.40
2.30
V
VDIFFPP
500
1000
mV p-p
—
Deterministic jitter
JD
—
0.17
UI p-p
—
Total jitter
JT
—
0.35
UI p-p
—
SMO
—
1000
ps
Skew at the transmitter output between lanes of a
multilane link
UI
800
800
ps
±100 ppm
Output voltage
Differential output voltage
Multiple output skew
Unit Interval
Voltage relative to COMMON of either signal
comprising a differential pair
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
83
Serial RapidIO
Table 60. Short Run Transmitter AC Timing Specifications—2.5 GBaud
Range
Characteristic
Symbol
Unit
Notes
Min
Max
VO
–0.40
2.30
V
VDIFFPP
500
1000
mV p-p
—
Deterministic jitter
JD
—
0.17
UI p-p
—
Total jitter
JT
—
0.35
UI p-p
—
SMO
—
1000
ps
Skew at the transmitter output between lanes of a
multilane link
UI
400
400
ps
±100 ppm
Output voltage
Differential output voltage
Multiple output skew
Unit interval
Voltage relative to COMMON of either signal
comprising a differential pair
Table 61. Short Run Transmitter AC Timing Specifications—3.125 GBaud
Range
Characteristic
Symbol
Unit
Notes
Min
Max
VO
–0.40
2.30
V
VDIFFPP
500
1000
mVp-p
—
Deterministic jitter
JD
—
0.17
UI p-p
—
Total jitter
JT
—
0.35
UI p-p
—
SMO
—
1000
ps
Skew at the transmitter output between lanes of a
multilane link
UI
320
320
ps
±100 ppm
Output voltage
Differential output voltage
Multiple output skew
Unit interval
Voltage relative to COMMON of either signal
comprising a differential pair
Table 62. Long Run Transmitter AC Timing Specifications—1.25 GBaud
Range
Characteristic
Symbol
Unit
Notes
Min
Max
VO
–0.40
2.30
V
VDIFFPP
800
1600
mVp-p
—
Deterministic jitter
JD
—
0.17
UI p-p
—
Total jitter
JT
—
0.35
UI p-p
—
SMO
—
1000
ps
Skew at the transmitter output between lanes of a
multilane link
UI
800
800
ps
±100 ppm
Output voltage
Differential output voltage
Multiple output skew
Unit interval
Voltage relative to COMMON of either signal
comprising a differential pair
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
84
Freescale Semiconductor
Serial RapidIO
Table 63. Long Run Transmitter AC Timing Specifications—2.5 GBaud
Range
Characteristic
Symbol
Unit
Notes
Min
Max
VO
–0.40
2.30
V
VDIFFPP
800
1600
mVp-p
—
Deterministic jitter
JD
—
0.17
UI p-p
—
Total jitter
JT
—
0.35
UI p-p
—
SMO
—
1000
ps
Skew at the transmitter output between lanes of a
multilane link
UI
400
400
ps
±100 ppm
Output voltage
Differential output voltage
Multiple output skew
Unit interval
Voltage relative to COMMON of either signal
comprising a differential pair
Table 64. Long Run Transmitter AC Timing Specifications—3.125 GBaud
Range
Characteristic
Symbol
Unit
Notes
Min
Max
VO
–0.40
2.30
V
VDIFFPP
800
1600
mVp-p
—
Deterministic jitter
JD
—
0.17
UI p-p
—
Total jitter
JT
—
0.35
UI p-p
—
SMO
—
1000
ps
Skew at the transmitter output between lanes of a
multilane link
UI
320
320
ps
±100 ppm
Output voltage
Differential output voltage
Multiple output skew
Unit interval
Voltage relative to COMMON of either signal
comprising a differential pair
For each baud rate at which an LP-serial transmitter is specified to operate, the output eye pattern of the
transmitter shall fall entirely within the unshaded portion of the transmitter output compliance mask shown
in Figure 52 with the parameters specified in Table 65 when measured at the output pins of the device and
the device is driving a 100-Ω ± 5% differential resistive load. The output eye pattern of an LP-serial
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
85
Serial RapidIO
Transmitter Differential Output Voltage
transmitter that implements pre-emphasis (to equalize the link and reduce inter-symbol interference) need
only comply with the transmitter output compliance mask when pre-emphasis is disabled or minimized.
VDIFF max
VDIFF min
0
–VDIFF min
–VDIFF max
0
A
B
1-B
1-A
1
Time in UI
Figure 52. Transmitter Output Compliance Mask
Table 65. Transmitter Differential Output Eye Diagram Parameters
Transmitter Type
18.7
VDIFFmin (mV)
VDIFFmax (mV)
A (UI)
B (UI)
1.25 GBaud short range
250
500
0.175
0.39
1.25 GBaud long range
400
800
0.175
0.39
2.5 GBaud short range
250
500
0.175
0.39
2.5 GBaud long range
400
800
0.175
0.39
3.125 GBaud short range
250
500
0.175
0.39
3.125 GBaud long range
400
800
0.175
0.39
Receiver Specifications
LP-serial receiver electrical and timing specifications are stated in the text and tables of this section.
Receiver input impedance shall result in a differential return loss better that 10 dB and a common mode
return loss better than 6 dB from 100 MHz to (0.8) × (baud frequency). This includes contributions from
on-chip circuitry, the chip package, and any off-chip components related to the receiver. AC coupling
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
86
Freescale Semiconductor
Serial RapidIO
components are included in this requirement. The reference impedance for return loss measurements is
100-Ω resistive for differential return loss and 25-Ω resistive for common mode.
Table 66. Receiver AC Timing Specifications—1.25 GBaud
Range
Characteristic
Symbol
Unit
Min
Max
Notes
Differential input voltage
VIN
200
1600
mVp-p
Measured at receiver
Deterministic jitter tolerance
JD
0.37
—
UI p-p
Measured at receiver
Combined deterministic and random
jitter tolerance
JDR
0.55
—
UI p-p
Measured at receiver
Total jitter tolerance1
JT
0.65
—
UI p-p
Measured at receiver
Multiple input skew
SMI
—
24
ns
Skew at the receiver input between lanes
of a multilane link
Bit error rate
BER
—
10–12
—
—
Unit interval
UI
800
800
ps
±100 ppm
Note:
1. Total jitter is composed of three components, deterministic jitter, random jitter, and single frequency sinusoidal jitter. The
sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 53. The sinusoidal jitter component
is included to ensure margin for low frequency jitter, wander, noise, crosstalk, and other variable system effects.
Table 67. Receiver AC Timing Specifications—2.5 GBaud
Range
Characteristic
Symbol
Unit
Min
Max
Notes
Differential input voltage
VIN
200
1600
mVp-p
Measured at receiver
Deterministic jitter tolerance
JD
0.37
—
UI p-p
Measured at receiver
Combined deterministic and random
jitter tolerance
JDR
0.55
—
UI p-p
Measured at receiver
Total jitter tolerance1
JT
0.65
—
UI p-p
Measured at receiver
Multiple input skew
SMI
—
24
ns
Bit error rate
BER
—
10–12
Unit interval
UI
400
400
Skew at the receiver input between lanes
of a multilane link
—
ps
±100 ppm
Note:
1. Total jitter is composed of three components, deterministic jitter, random jitter, and single frequency sinusoidal jitter. The
sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 53. The sinusoidal jitter component
is included to ensure margin for low frequency jitter, wander, noise, crosstalk, and other variable system effects.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
87
Serial RapidIO
Table 68. Receiver AC Timing Specifications—3.125 GBaud
Range
Characteristic
Symbol
Unit
Min
Max
Notes
Differential input voltage
VIN
200
1600
mVp-p
Measured at receiver
Deterministic jitter tolerance
JD
0.37
—
UI p-p
Measured at receiver
Combined deterministic and random
jitter tolerance
JDR
0.55
—
UI p-p
Measured at receiver
Total jitter tolerance1
JT
0.65
—
UI p-p
Measured at receiver
Multiple input skew
SMI
—
22
ns
Bit error rate
BER
—
10-12
Unit interval
UI
320
320
Skew at the receiver input between lanes
of a multilane link
—
ps
±100 ppm
Note:
1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The
sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 53. The sinusoidal jitter component
is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
Sinusoidal Jitter Amplitude
8.5 UI p-p
0.10 UI p-p
22.1 kHz
Frequency
1.875 MHz
20 MHz
Figure 53. Single Frequency Sinusoidal Jitter Limits
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
88
Freescale Semiconductor
Serial RapidIO
18.8
Receiver Eye Diagrams
For each baud rate at which an LP-serial receiver is specified to operate, the receiver shall meet the
corresponding bit error rate specification (Table 66, Table 67, and Table 68) when the eye pattern of the
receiver test signal (exclusive of sinusoidal jitter) falls entirely within the unshaded portion of the receiver
input compliance mask shown in Figure 54 with the parameters specified in Table 69. The eye pattern of
the receiver test signal is measured at the input pins of the receiving device with the device replaced with
a 100-Ω ± 5% differential resistive load.
Receiver Differential Input Voltage
VDIFF max
VDIFF min
0
–VDIFF min
–VDIFF max
0
A
B
1-B
1-A
1
Time (UI)
Figure 54. Receiver Input Compliance Mask
Table 69. Receiver Input Compliance Mask Parameters Exclusive of Sinusoidal Jitter
VDIFFmin
(mV)
VDIFFmax
(mV)
A (UI)
B (UI)
1.25 GBaud
100
800
0.275
0.400
2.5 GBaud
100
800
0.275
0.400
3.125 GBaud
100
800
0.275
0.400
Receiver Type
18.9
Measurement and Test Requirements
Since the LP-serial electrical specification are guided by the XAUI electrical interface specified in
Clause 47 of IEEE Std. 802.3ae-2002, the measurement and test requirements defined here are similarly
guided by Clause 47. Additionally, the CJPAT test pattern defined in Annex 48A of IEEE Std.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
89
Serial RapidIO
802.3ae-2002 is specified as the test pattern for use in eye pattern and jitter measurements. Annex 48B of
IEEE Std. 802.3ae-2002 is recommended as a reference for additional information on jitter test methods.
18.9.1
Eye Template Measurements
For the purpose of eye template measurements, the effects of a single-pole high pass filter with a 3 dB point
at (baud frequency)/1667 is applied to the jitter. The data pattern for template measurements is the
continuous jitter test pattern (CJPAT) defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-serial
link shall be active in both the transmit and receive directions, and opposite ends of the links shall use
asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane
implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The
amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10–12.
The eye pattern shall be measured with AC coupling and the compliance template centered at 0 V
differential. The left and right edges of the template shall be aligned with the mean zero crossing points of
the measured data eye. The load for this test shall be 100-Ω resistive ± 5% differential to 2.5 GHz.
18.9.2
Jitter Test Measurements
For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (baud
frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter test
pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-serial link shall be
active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous
clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations
shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured
with AC coupling and at 0 V differential. Jitter measurement for the transmitter (or for calibration of a jitter
tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described
in Annex 48B of IEEE 802.3ae.
18.9.3
Transmit Jitter
Transmit jitter is measured at the driver output when terminated into a load of 100 Ω resistive ± 5%
differential to 2.5 GHz.
18.9.4
Jitter Tolerance
Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first
producing the sum of deterministic and random jitter defined in Section 18.7, “Receiver Specifications,”
and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening
of the receive template shown in Figure 54 and Table 69. Note that for this to occur, the test signal must
have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter)
about the mean zero crossing. Eye template measurement requirements are as defined above. Random
jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade
roll-off below this. The required sinusoidal jitter specified in Section 18.7, “Receiver Specifications,” is
then added to the signal and the test load is replaced by the receiver being tested.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
90
Freescale Semiconductor
Package Description
19 Package Description
This section details package parameters, pin assignments, and dimensions.
19.1
Package Parameters
The package parameters for both the HiCTE FC-CBGA and FC-PBGA are provided in Table 70.
Table 70. Package Parameters
CBGA1
PBGA2
29 mm × 29 mm
29 mm × 29 mm
783
783
1 mm
1 mm
Ball diameter (typical)
0.6 mm
0.6 mm
Solder ball
63% Sn
37% Pb
0% Ag
63% Sn
37% Pb
0% Ag
Solder ball (lead-free)
95% Sn
4.5% Ag
0.5% Cu
96.5% Sn
3.5% Ag
Parameter
Package outline
Interconnects
Ball pitch
Notes:
1. The HiCTE FC-CBGA package is available on only Version 2.0 of the device.
2. The FC-PBGA package is available on only versions 2.1.1 and 2.1.2, and 3.0
of the device.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
91
Package Description
19.2
Mechanical Dimensions of the HiCTE FC-CBGA and FC-PBGA
with Full Lid
The following figures show the mechanical dimensions and bottom surface nomenclature for the
MPC8548E HiCTE FC-CBGA and FC-PBGA packages.
Figure 55. Mechanical Dimensions and Bottom Surface Nomenclature of
the HiCTE FC-CBGA and FC-PBGA with Full Lid
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
92
Freescale Semiconductor
Package Description
Notes:
1. All dimensions are in millimeters.
2. Dimensioning and tolerancing per ASME Y14.5M-1994.
3. Maximum solder ball diameter measured parallel to datum A.
4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
5. Parallelism measurement shall exclude any effect of mark on top surface of package.
6. All dimensions are symmetric across the package center lines unless dimensioned otherwise.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
93
Package Description
Notes:
1. All dimensions are in millimeters.
2. Dimensioning and tolerancing per ASME Y14.5M-1994.
3. Maximum solder ball diameter measured parallel to datum A.
4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
5. Capacitors may not be present on all devices.
6. Caution must be taken not to short capacitors or exposed metal capacitor pads on package top.
7. Parallelism measurement shall exclude any effect of mark on top surface of package.
8. All dimensions are symmetric across the package center lines unless dimensioned otherwise.
Figure 56. Mechanical Dimensions and Bottom Surface Nomenclature of the FC-PBGA with Stamped Lid
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
94
Freescale Semiconductor
Package Description
19.3
Pinout Listings
NOTE
The DMA_DACK[0:1] and TEST_SEL/TEST_SEL pins must be set to a
proper state during POR configuration. See the pinlist table of the individual
device for more details.
For MPC8548/47/45, GPIOs are still available on
PCI1_AD[63:32]/PC2_AD[31:0] pins if they are not used for PCI
functionality.
For MPC8545/43, eTSEC does not support 16 bit FIFO mode.
Table 71 provides the pinout listing for the MPC8548E 783 FC-PBGA package.
Table 71. MPC8548E Pinout Listing
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
PCI1 and PCI2 (One 64-Bit or Two 32-Bit)
PCI1_AD[63:32]/PCI2_AD[31:0]
AB14, AC15, AA15, Y16, W16, AB16, AC16,
AA16, AE17, AA18, W18, AC17, AD16, AE16,
Y17, AC18, AB18, AA19, AB19, AB21, AA20,
AC20, AB20, AB22, AC22, AD21, AB23, AF23,
AD23, AE23, AC23, AC24
I/O
OVDD
17
PCI1_AD[31:0]
AH6, AE7, AF7, AG7, AH7, AF8, AH8, AE9,
AH9, AC10, AB10, AD10, AG10, AA10, AH10,
AA11, AB12, AE12, AG12, AH12, AB13, AA12,
AC13, AE13, Y14, W13, AG13, V14, AH13,
AC14, Y15, AB15
I/O
OVDD
17
PCI1_C_BE[7:4]/PCI2_C_BE[3:0]
AF15, AD14, AE15, AD15
I/O
OVDD
17
PCI1_C_BE[3:0]
AF9, AD11, Y12, Y13
I/O
OVDD
17
PCI1_PAR64/PCI2_PAR
W15
I/O
OVDD
PCI1_GNT[4:1]
AG6, AE6, AF5, AH5
O
OVDD
5, 9, 35
PCI1_GNT0
AG5
I/O
OVDD
—
PCI1_IRDY
AF11
I/O
OVDD
2
PCI1_PAR
AD12
I/O
OVDD
—
PCI1_PERR
AC12
I/O
OVDD
2
PCI1_SERR
V13
I/O
OVDD
2, 4
PCI1_STOP
W12
I/O
OVDD
2
PCI1_TRDY
AG11
I/O
OVDD
2
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
95
Package Description
Table 71. MPC8548E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
PCI1_REQ[4:1]
AH2, AG4, AG3, AH4
I
OVDD
—
—
—
—
—
PCI1_REQ0
AH3
I/O
OVDD
—
PCI1_CLK
AH26
I
OVDD
39
PCI1_DEVSEL
AH11
I/O
OVDD
2
PCI1_FRAME
AE11
I/O
OVDD
2
PCI1_IDSEL
AG9
I
OVDD
—
PCI1_REQ64/PCI2_FRAME
AF14
I/O
OVDD
2, 5, 10
PCI1_ACK64/PCI2_DEVSEL
V15
I/O
OVDD
2
PCI2_CLK
AE28
I
OVDD
39
PCI2_IRDY
AD26
I/O
OVDD
2
PCI2_PERR
AD25
I/O
OVDD
2
PCI2_GNT[4:1]
AE26, AG24, AF25, AE25
O
OVDD
5, 9, 35
PCI2_GNT0
AG25
I/O
OVDD
—
PCI2_SERR
AD24
I/O
OVDD
2, 4
PCI2_STOP
AF24
I/O
OVDD
2
PCI2_TRDY
AD27
I/O
OVDD
2
PCI2_REQ[4:1]
AD28, AE27, W17, AF26
I
OVDD
—
PCI2_REQ0
AH25
I/O
OVDD
—
DDR SDRAM Memory Interface
MDQ[0:63]
L18, J18, K14, L13, L19, M18, L15, L14, A17,
B17, A13, B12, C18, B18, B13, A12, H18, F18,
J14, F15, K19, J19, H16, K15, D17, G16, K13,
D14, D18, F17, F14, E14, A7, A6, D5, A4, C8,
D7, B5, B4, A2, B1, D1, E4, A3, B2, D2, E3, F3,
G4, J5, K5, F6, G5, J6, K4, J1, K2, M5, M3, J3,
J2, L1, M6
I/O
GVDD
—
MECC[0:7]
H13, F13, F11, C11, J13, G13, D12, M12
I/O
GVDD
—
MDM[0:8]
M17, C16, K17, E16, B6, C4, H4, K1, E13
O
GVDD
—
MDQS[0:8]
M15, A16, G17, G14, A5, D3, H1, L2, C13
I/O
GVDD
—
MDQS[0:8]
L17, B16, J16, H14, C6, C2, H3, L4, D13
I/O
GVDD
—
MA[0:15]
A8, F9, D9, B9, A9, L10, M10, H10, K10, G10,
B8, E10, B10, G6, A10, L11
O
GVDD
—
MBA[0:2]
F7, J7, M11
O
GVDD
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
96
Freescale Semiconductor
Package Description
Table 71. MPC8548E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
MWE
E7
O
GVDD
—
MCAS
H7
O
GVDD
—
MRAS
L8
O
GVDD
—
MCKE[0:3]
F10, C10, J11, H11
O
GVDD
11
MCS[0:3]
K8, J8, G8, F8
O
GVDD
—
MCK[0:5]
H9, B15, G2, M9, A14, F1
O
GVDD
—
MCK[0:5]
J9, A15, G1, L9, B14, F2
O
GVDD
—
MODT[0:3]
E6, K6, L7, M7
O
GVDD
—
MDIC[0:1]
A19, B19
I/O
GVDD
36
Local Bus Controller Interface
LAD[0:31]
E27, B20, H19, F25, A20, C19, E28, J23, A25,
K22, B28, D27, D19, J22, K20, D28, D25, B25,
E22, F22, F21, C25, C22, B23, F20, A23, A22,
E19, A21, D21, F19, B21
I/O
BVDD
—
LDP[0:3]
K21, C28, B26, B22
I/O
BVDD
—
LA[27]
H21
O
BVDD
5, 9
LA[28:31]
H20, A27, D26, A28
O
BVDD
5, 7, 9
LCS[0:4]
J25, C20, J24, G26, A26
O
BVDD
LCS5/DMA_DREQ2
D23
I/O
BVDD
1
LCS6/DMA_DACK2
G20
O
BVDD
1
LCS7/DMA_DDONE2
E21
O
BVDD
1
LWE0/LBS0/LSDDQM[0]
G25
O
BVDD
5, 9
LWE1/LBS1/LSDDQM[1]
C23
O
BVDD
5, 9
LWE2/LBS2/LSDDQM[2]
J21
O
BVDD
5, 9
LWE3/LBS3/LSDDQM[3]
A24
O
BVDD
5, 9
LALE
H24
O
BVDD
5, 8, 9
LBCTL
G27
O
BVDD
5, 8, 9
LGPL0/LSDA10
F23
O
BVDD
5, 9
LGPL1/LSDWE
G22
O
BVDD
5, 9
LGPL2/LOE/LSDRAS
B27
O
BVDD
5, 8, 9
LGPL3/LSDCAS
F24
O
BVDD
5, 9
LGPL4/LGTA/LUPWAIT/LPBSE
H23
I/O
BVDD
—
LGPL5
E26
O
BVDD
5, 9
LCKE
E24
O
BVDD
—
LCLK[0:2]
E23, D24, H22
O
BVDD
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
97
Package Description
Table 71. MPC8548E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
LSYNC_IN
F27
I
BVDD
—
LSYNC_OUT
F28
O
BVDD
—
DMA
DMA_DACK[0:1]
AD3, AE1
O
OVDD
5, 9,
102
DMA_DREQ[0:1]
AD4, AE2
I
OVDD
—
DMA_DDONE[0:1]
AD2, AD1
O
OVDD
—
Programmable Interrupt Controller
UDE
AH16
I
OVDD
—
MCP
AG19
I
OVDD
—
IRQ[0:7]
AG23, AF18, AE18, AF20, AG18, AF17, AH24,
AE20
I
OVDD
—
IRQ[8]
AF19
I
OVDD
—
IRQ[9]/DMA_DREQ3
AF21
I
OVDD
1
IRQ[10]/DMA_DACK3
AE19
I/O
OVDD
1
IRQ[11]/DMA_DDONE3
AD20
I/O
OVDD
1
IRQ_OUT
AD18
O
OVDD
2, 4
Ethernet Management Interface
EC_MDC
AB9
O
OVDD
5, 9
EC_MDIO
AC8
I/O
OVDD
—
I
LVDD
—
Gigabit Reference Clock
EC_GTX_CLK125
V11
Three-Speed Ethernet Controller (Gigabit Ethernet 1)
TSEC1_RXD[7:0]
R5, U1, R3, U2, V3, V1, T3, T2
I
LVDD
—
TSEC1_TXD[7:0]
T10, V7, U10, U5, U4, V6, T5, T8
O
LVDD
5, 9
TSEC1_COL
R4
I
LVDD
—
TSEC1_CRS
V5
I/O
LVDD
20
TSEC1_GTX_CLK
U7
O
LVDD
—
TSEC1_RX_CLK
U3
I
LVDD
—
TSEC1_RX_DV
V2
I
LVDD
—
TSEC1_RX_ER
T1
I
LVDD
—
TSEC1_TX_CLK
T6
I
LVDD
—
TSEC1_TX_EN
U9
O
LVDD
30
TSEC1_TX_ER
T7
O
LVDD
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
98
Freescale Semiconductor
Package Description
Table 71. MPC8548E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
Three-Speed Ethernet Controller (Gigabit Ethernet 2)
TSEC2_RXD[7:0]
P2, R2, N1, N2, P3, M2, M1, N3
I
LVDD
—
TSEC2_TXD[7:0]
N9, N10, P8, N7, R9, N5, R8, N6
O
LVDD
5, 9, 33
TSEC2_COL
P1
I
LVDD
—
TSEC2_CRS
R6
I/O
LVDD
20
TSEC2_GTX_CLK
P6
O
LVDD
TSEC2_RX_CLK
N4
I
LVDD
—
TSEC2_RX_DV
P5
I
LVDD
—
TSEC2_RX_ER
R1
I
LVDD
—
TSEC2_TX_CLK
P10
I
LVDD
—
TSEC2_TX_EN
P7
O
LVDD
30
TSEC2_TX_ER
R10
O
LVDD
5, 9, 33
Three-Speed Ethernet Controller (Gigabit Ethernet 3)
TSEC3_TXD[3:0]
V8, W10, Y10, W7
O
TVDD
5, 9, 29
TSEC3_RXD[3:0]
Y1, W3, W5, W4
I
TVDD
—
TSEC3_GTX_CLK
W8
O
TVDD
—
TSEC3_RX_CLK
W2
I
TVDD
—
TSEC3_RX_DV
W1
I
TVDD
—
TSEC3_RX_ER
Y2
I
TVDD
—
TSEC3_TX_CLK
V10
I
TVDD
—
TSEC3_TX_EN
V9
O
TVDD
30
Three-Speed Ethernet Controller (Gigabit Ethernet 4)
TSEC4_TXD[3:0]/TSEC3_TXD[7:4]
AB8, Y7, AA7, Y8
O
TVDD
1, 5, 9,
29
TSEC4_RXD[3:0]/TSEC3_RXD[7:4]
AA1, Y3, AA2, AA4
I
TVDD
1
TSEC4_GTX_CLK
AA5
O
TVDD
—
TSEC4_RX_CLK/TSEC3_COL
Y5
I
TVDD
1
TSEC4_RX_DV/TSEC3_CRS
AA3
I/O
TVDD
1, 31
TSEC4_TX_EN/TSEC3_TX_ER
AB6
O
TVDD
1, 30
DUART
UART_CTS[0:1]
AB3, AC5
I
OVDD
—
UART_RTS[0:1]
AC6, AD7
O
OVDD
—
UART_SIN[0:1]
AB5, AC7
I
OVDD
—
UART_SOUT[0:1]
AB7, AD8
O
OVDD
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
99
Package Description
Table 71. MPC8548E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
I2C interface
IIC1_SCL
AG22
I/O
OVDD
4, 27
IIC1_SDA
AG21
I/O
OVDD
4, 27
IIC2_SCL
AG15
I/O
OVDD
4, 27
IIC2_SDA
AG14
I/O
OVDD
4, 27
SerDes
SD_RX[0:7]
M28, N26, P28, R26, W26, Y28, AA26, AB28
I
XVDD
—
SD_RX[0:7]
M27, N25, P27, R25, W25, Y27, AA25, AB27
I
XVDD
—
SD_TX[0:7]
M22, N20, P22, R20, U20, V22, W20, Y22
O
XVDD
—
SD_TX[0:7]
M23, N21, P23, R21, U21, V23, W21, Y23
O
XVDD
—
SD_PLL_TPD
U28
O
XVDD
24
SD_REF_CLK
T28
I
XVDD
3
SD_REF_CLK
T27
I
XVDD
3
Reserved
AC1, AC3
—
—
2
Reserved
M26, V28
—
—
32
Reserved
M25, V27
—
—
34
Reserved
M20, M21, T22, T23
—
—
38
O
BVDD
—
General-Purpose Output
GPOUT[24:31]
K26, K25, H27, G28, H25, J26, K24, K23
System Control
HRESET
AG17
I
OVDD
—
HRESET_REQ
AG16
O
OVDD
29
SRESET
AG20
I
OVDD
—
CKSTP_IN
AA9
I
OVDD
—
CKSTP_OUT
AA8
O
OVDD
2, 4
Debug
TRIG_IN
AB2
I
OVDD
—
TRIG_OUT/READY/QUIESCE
AB1
O
OVDD
6, 9,
19, 29
MSRCID[0:1]
AE4, AG2
O
OVDD
5, 6, 9
MSRCID[2:4]
AF3, AF1, AF2
O
OVDD
6, 19,
29
MDVAL
AE5
O
OVDD
6
CLK_OUT
AE21
O
OVDD
11
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
100
Freescale Semiconductor
Package Description
Table 71. MPC8548E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
Clock
RTC
AF16
I
OVDD
—
SYSCLK
AH17
I
OVDD
—
JTAG
TCK
AG28
I
OVDD
—
TDI
AH28
I
OVDD
12
TDO
AF28
O
OVDD
—
TMS
AH27
I
OVDD
12
TRST
AH23
I
OVDD
12
DFT
L1_TSTCLK
AC25
I
OVDD
25
L2_TSTCLK
AE22
I
OVDD
25
LSSD_MODE
AH20
I
OVDD
25
TEST_SEL
AH14
I
OVDD
25
Thermal Management
THERM0
AG1
—
—
14
THERM1
AH1
—
—
14
O
OVDD
9, 19,
29
Power Management
ASLEEP
AH18
Power and Ground Signals
GND
A11, B7, B24, C1, C3, C5, C12, C15, C26, D8,
D11, D16, D20, D22, E1, E5, E9, E12, E15, E17,
F4, F26, G12, G15, G18, G21, G24, H2, H6, H8,
H28, J4, J12, J15, J17, J27, K7, K9, K11, K27,
L3, L5, L12, L16, N11, N13, N15, N17, N19, P4,
P9, P12, P14, P16, P18, R11, R13, R15, R17,
R19, T4, T12, T14, T16, T18, U8, U11, U13,
U15, U17, U19, V4, V12, V18, W6, W19, Y4, Y9,
Y11, Y19, AA6, AA14, AA17, AA22, AA23, AB4,
AC2, AC11, AC19, AC26, AD5, AD9, AD22,
AE3, AE14, AF6, AF10, AF13, AG8, AG27,
K28, L24, L26, N24, N27, P25, R28, T24, T26,
U24, V25, W28, Y24, Y26, AA24, AA27, AB25,
AC28, L21, L23, N22, P20, R23, T21, U22, V20,
W23, Y21, U27
—
—
—
OVDD
V16, W11, W14, Y18, AA13, AA21, AB11,
AB17, AB24, AC4, AC9, AC21, AD6, AD13,
AD17, AD19, AE10, AE8, AE24, AF4, AF12,
AF22, AF27, AG26
Power for PCI
and other
standards
(3.3 V)
OVDD
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
101
Package Description
Table 71. MPC8548E Pinout Listing (continued)
Power
Supply
Notes
Power for
TSEC1 and
TSEC2
(2.5 V, 3.3 V)
LVDD
—
W9, Y6
Power for
TSEC3 and
TSEC4
(2,5 V, 3.3 V)
TVDD
—
GVDD
B3, B11, C7, C9, C14, C17, D4, D6, D10, D15,
E2, E8, E11, E18, F5, F12, F16, G3, G7, G9,
G11, H5, H12, H15, H17, J10, K3, K12, K16,
K18, L6, M4, M8, M13
Power for
DDR1 and
DDR2 DRAM
I/O voltage
(1.8 V, 2.5)
GVDD
—
BVDD
C21, C24, C27, E20, E25, G19, G23, H26, J20 Power for local
bus (1.8 V,
2.5 V, 3.3 V)
BVDD
—
VDD
M19, N12, N14, N16, N18, P11, P13, P15, P17, Power for core
P19, R12, R14, R16, R18, T11, T13, T15, T17,
(1.1 V)
T19, U12, U14, U16, U18, V17, V19
VDD
—
Signal
Package Pin Number
Pin Type
LVDD
N8, R7, T9, U6
TVDD
SVDD
L25, L27, M24, N28, P24, P26, R24, R27, T25,
V24, V26, W24, W27, Y25, AA28, AC27
Core Power
for SerDes
transceivers
(1.1 V)
SVDD
—
XVDD
L20, L22, N23, P21, R22, T20, U23, V21, W22,
Y20
Pad Power for
SerDes
transceivers
(1.1 V)
XVDD
—
AVDD_LBIU
J28
Power for local
bus PLL
(1.1 V)
—
26
AVDD_PCI1
AH21
Power for
PCI1 PLL
(1.1 V)
—
26
AVDD_PCI2
AH22
Power for
PCI2 PLL
(1.1 V)
—
26
AVDD_CORE
AH15
Power for
e500 PLL (1.1
V)
—
26
AVDD_PLAT
AH19
Power for CCB
PLL (1.1 V)
—
26
AVDD_SRDS
U25
Power for
SRDSPLL
(1.1 V)
—
26
SENSEVDD
M14
O
VDD
13
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
102
Freescale Semiconductor
Package Description
Table 71. MPC8548E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
SENSEVSS
M16
—
—
13
Analog Signals
MVREF
A18
I
Reference
voltage signal
for DDR
MVREF
—
SD_IMP_CAL_RX
L28
I
200Ω to
GND
—
SD_IMP_CAL_TX
AB26
I
100Ω to
GND
—
SD_PLL_TPA
U26
O
—
24
Notes:
1. All multiplexed signals are listed only once and do not re-occur. For example, LCS5/DMA_REQ2 is listed only once in the
local bus controller section, and is not mentioned in the DMA section even though the pin also functions as DMA_REQ2.
2. Recommend a weak pull-up resistor (2–10 kΩ) be placed on this pin to OVDD.
3. A valid clock must be provided at POR if TSEC4_TXD[2] is set = 1.
4. This pin is an open drain signal.
5. This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the processor is in the
reset state. This pull-up is designed such that it can be overpowered by an external 4.7-kΩ pull-down resistor. However, if
the signal is intended to be high after reset, and if there is any device on the net which might pull down the value of the net
at reset, then a pullup or active driver is needed.
6. Treat these pins as no connects (NC) unless using debug address functionality.
7. The value of LA[28:31] during reset sets the CCB clock to SYSCLK PLL ratio. These pins require 4.7-kΩ pull-up or pull-down
resistors. See Section 20.2, “CCB/SYSCLK PLL Ratio.”
8. The value of LALE, LGPL2, and LBCTL at reset set the e500 core clock to CCB clock PLL ratio. These pins require 4.7-kΩ
pull-up or pull-down resistors. See the Section 20.3, “e500 Core PLL Ratio.”
9. Functionally, this pin is an output, but structurally it is an I/O because it either samples configuration input during reset or
because it has other manufacturing test functions. This pin therefore is described as an I/O for boundary scan.
10.This pin functionally requires a pull-up resistor, but during reset it is a configuration input that controls 32- vs. 64-bit PCI
operation. Therefore, it must be actively driven low during reset by reset logic if the device is to be configured to be a 64-bit
PCI device. See the PCI Specification.
11.This output is actively driven during reset rather than being three-stated during reset.
12.These JTAG pins have weak internal pull-up P-FETs that are always enabled.
13.These pins are connected to the VDD/GND planes internally and may be used by the core power supply to improve tracking
and regulation.
14.Internal thermally sensitive resistor.
15.No connections must be made to these pins if they are not used.
16.These pins are not connected for any use.
17.PCI specifications recommend that a weak pull-up resistor (2–10 kΩ) be placed on the higher order pins to OVDD when using
64-bit buffer mode (pins PCI_AD[63:32] and PCI1_C_BE[7:4]).
19.If this pin is connected to a device that pulls down during reset, an external pull-up is required to drive this pin to a safe state
during reset.
20.This pin is only an output in FIFO mode when used as Rx flow control.
24.Do not connect.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
103
Package Description
Table 71. MPC8548E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
25.These are test signals for factory use only and must be pulled up (100 Ω–1 kΩ) to OVDD for normal machine operation.
26.Independent supplies derived from board VDD.
27.Recommend a pull-up resistor (~1 kΩ) be placed on this pin to OVDD.
29. The following pins must NOT be pulled down during power-on reset: TSEC3_TXD[3], TSEC4_TXD3/TSEC3_TXD7,
HRESET_REQ, TRIG_OUT/READY/QUIESCE, MSRCID[2:4], ASLEEP.
30.This pin requires an external 4.7-kΩ pull-down resistor to prevent PHY from seeing a valid transmit enable before it is actively
driven.
31.This pin is only an output in eTSEC3 FIFO mode when used as Rx flow control.
32.These pins must be connected to XVDD.
33.TSEC2_TXD1, TSEC2_TX_ER are multiplexed as cfg_dram_type[0:1]. They must be valid at power-up, even before
HRESET assertion.
34.These pins must be pulled to ground through a 300-Ω (±10%) resistor.
35.When a PCI block is disabled, either the POR config pin that selects between internal and external arbiter must be pulled
down to select external arbiter if there is any other PCI device connected on the PCI bus, or leave the PCIn_AD pins as ‘no
connect’ or terminated through 2–10 kΩ pull-up resistors with the default of internal arbiter if the PCIn_AD pins are not
connected to any other PCI device. The PCI block drives the PCIn_AD pins if it is configured to be the PCI arbiter—through
POR config pins—irrespective of whether it is disabled via the DEVDISR register or not. It may cause contention if there is
any other PCI device connected on the bus.
36.MDIC0 is grounded through an 18.2-Ω precision 1% resistor and MDIC1 is connected to GVDD through an 18.2-Ω precision
1% resistor. These pins are used for automatic calibration of the DDR IOs.
38.These pins must be left floating.
39. If PCI1 or PCI2 is configured as PCI asynchronous mode, a valid clock must be provided on pin PCI1_CLK or PCI2_CLK.
Otherwise the processor will not boot up.
40.These pins must be connected to GND.
101.This pin requires an external 4.7-kΩ resistor to GND.
102.For Rev. 2.x silicon, DMA_DACK[0:1] must be 0b11 during POR configuration; for rev. 1.x silicon, the pin values during
POR configuration are don’t care.
103.If these pins are not used as GPINn (general-purpose input), they must be pulled low (to GND) or high (to LVDD) through
2–10 kΩ resistors.
104.These must be pulled low to GND through 2–10 kΩ resistors if they are not used.
105.These must be pulled low or high to LVDD through 2–10 kΩ resistors if they are not used.
106.For rev. 2.x silicon, DMA_DACK[0:1] must be 0b10 during POR configuration; for rev. 1.x silicon, the pin values during POR
configuration are don’t care.
107.For rev. 2.x silicon, DMA_DACK[0:1] must be 0b01 during POR configuration; for rev. 1.x silicon, the pin values during POR
configuration are don’t care.
108.For rev. 2.x silicon, DMA_DACK[0:1] must be 0b11 during POR configuration; for rev. 1.x silicon, the pin values during POR
configuration are don’t care.
109.This is a test signal for factory use only and must be pulled down (100 Ω – 1 kΩ) to GND for normal machine operation.
110.These pins must be pulled high to OVDD through 2–10 kΩ resistors.
111.If these pins are not used as GPINn (general-purpose input), they must be pulled low (to GND) or high (to OVDD) through
2–10 kΩ resistors.
112.This pin must not be pulled down during POR configuration.
113.These should be pulled low or high to OVDD through 2–10 kΩ resistors.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
104
Freescale Semiconductor
Package Description
Table 72 provides the pin-out listing for the MPC8547E 783 FC-PBGA package.
NOTE
All note references in the following table use the same numbers as those for
Table 71. See Table 71 for the meanings of these notes.
Table 72. MPC8547E Pinout Listing
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
PCI1 (One 64-Bit or One 32-Bit)
PCI1_AD[63:32]
AB14, AC15, AA15, Y16, W16, AB16, AC16,
AA16, AE17, AA18, W18, AC17, AD16, AE16,
Y17, AC18, AB18, AA19, AB19, AB21, AA20,
AC20, AB20, AB22, AC22, AD21, AB23, AF23,
AD23, AE23, AC23, AC24
I/O
OVDD
17
PCI1_AD[31:0]
AH6, AE7, AF7, AG7, AH7, AF8, AH8, AE9,
AH9, AC10, AB10, AD10, AG10, AA10, AH10,
AA11, AB12, AE12, AG12, AH12, AB13, AA12,
AC13, AE13, Y14, W13, AG13, V14, AH13,
AC14, Y15, AB15
I/O
OVDD
17
PCI1_C_BE[7:4]
AF15, AD14, AE15, AD15
I/O
OVDD
17
PCI1_C_BE[3:0]
AF9, AD11, Y12, Y13
I/O
OVDD
17
PCI1_PAR64
W15
I/O
OVDD
—
PCI1_GNT[4:1]
AG6, AE6, AF5, AH5
O
OVDD
5, 9, 35
PCI1_GNT0
AG5
I/O
OVDD
—
PCI1_IRDY
AF11
I/O
OVDD
2
PCI1_PAR
AD12
I/O
OVDD
—
PCI1_PERR
AC12
I/O
OVDD
2
PCI1_SERR
V13
I/O
OVDD
2, 4
PCI1_STOP
W12
I/O
OVDD
2
PCI1_TRDY
AG11
I/O
OVDD
2
PCI1_REQ[4:1]
AH2, AG4, AG3, AH4
I
OVDD
—
PCI1_REQ0
AH3
I/O
OVDD
—
PCI1_CLK
AH26
I
OVDD
39
PCI1_DEVSEL
AH11
I/O
OVDD
2
PCI1_FRAME
AE11
I/O
OVDD
2
PCI1_IDSEL
AG9
I
OVDD
—
PCI1_REQ64
AF14
I/O
OVDD
2, 5,10
PCI1_ACK64
V15
I/O
OVDD
2
Reserved
AE28
—
—
2
Reserved
AD26
—
—
2
Reserved
AD25
—
—
2
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
105
Package Description
Table 72. MPC8547E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
Reserved
AE26
—
—
2
cfg_pci1_clk
AG24
I
OVDD
5
Reserved
AF25
—
—
101
Reserved
AE25
—
—
2
Reserved
AG25
—
—
2
Reserved
AD24
—
—
2
Reserved
AF24
—
—
2
Reserved
AD27
—
—
2
Reserved
AD28, AE27, W17, AF26
—
—
2
Reserved
AH25
—
—
2
DDR SDRAM Memory Interface
MDQ[0:63]
L18, J18, K14, L13, L19, M18, L15, L14, A17,
B17, A13, B12, C18, B18, B13, A12, H18, F18,
J14, F15, K19, J19, H16, K15, D17, G16, K13,
D14, D18, F17, F14, E14, A7, A6, D5, A4, C8,
D7, B5, B4, A2, B1, D1, E4, A3, B2, D2, E3, F3,
G4, J5, K5, F6, G5, J6, K4, J1, K2, M5, M3, J3,
J2, L1, M6
I/O
GVDD
—
MECC[0:7]
H13, F13, F11, C11, J13, G13, D12, M12
I/O
GVDD
—
MDM[0:8]
M17, C16, K17, E16, B6, C4, H4, K1, E13
O
GVDD
—
MDQS[0:8]
M15, A16, G17, G14, A5, D3, H1, L2, C13
I/O
GVDD
—
MDQS[0:8]
L17, B16, J16, H14, C6, C2, H3, L4, D13
I/O
GVDD
—
MA[0:15]
A8, F9, D9, B9, A9, L10, M10, H10, K10, G10,
B8, E10, B10, G6, A10, L11
O
GVDD
—
MBA[0:2]
F7, J7, M11
O
GVDD
—
MWE
E7
O
GVDD
—
MCAS
H7
O
GVDD
—
MRAS
L8
O
GVDD
—
MCKE[0:3]
F10, C10, J11, H11
O
GVDD
11
MCS[0:3]
K8, J8, G8, F8
O
GVDD
—
MCK[0:5]
H9, B15, G2, M9, A14, F1
O
GVDD
—
MCK[0:5]
J9, A15, G1, L9, B14, F2
O
GVDD
—
MODT[0:3]
E6, K6, L7, M7
O
GVDD
—
MDIC[0:1]
A19, B19
I/O
GVDD
36
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
106
Freescale Semiconductor
Package Description
Table 72. MPC8547E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
Local Bus Controller Interface
LAD[0:31]
E27, B20, H19, F25, A20, C19, E28, J23, A25,
K22, B28, D27, D19, J22, K20, D28, D25, B25,
E22, F22, F21, C25, C22, B23, F20, A23, A22,
E19, A21, D21, F19, B21
I/O
BVDD
—
LDP[0:3]
K21, C28, B26, B22
I/O
BVDD
—
LA[27]
H21
O
BVDD
5, 9
LA[28:31]
H20, A27, D26, A28
O
BVDD
5, 7, 9
LCS[0:4]
J25, C20, J24, G26, A26
O
BVDD
—
LCS5/DMA_DREQ2
D23
I/O
BVDD
1
LCS6/DMA_DACK2
G20
O
BVDD
1
LCS7/DMA_DDONE2
E21
O
BVDD
1
LWE0/LBS0/LSDDQM[0]
G25
O
BVDD
5, 9
LWE1/LBS1/LSDDQM[1]
C23
O
BVDD
5, 9
LWE2/LBS2/LSDDQM[2]
J21
O
BVDD
5, 9
LWE3/LBS3/LSDDQM[3]
A24
O
BVDD
5, 9
LALE
H24
O
BVDD
5, 8, 9
LBCTL
G27
O
BVDD
5, 8, 9
LGPL0/LSDA10
F23
O
BVDD
5, 9
LGPL1/LSDWE
G22
O
BVDD
5, 9
LGPL2/LOE/LSDRAS
B27
O
BVDD
5, 8, 9
LGPL3/LSDCAS
F24
O
BVDD
5, 9
LGPL4/LGTA/LUPWAIT/LPBSE
H23
I/O
BVDD
—
LGPL5
E26
O
BVDD
5, 9
LCKE
E24
O
BVDD
—
LCLK[0:2]
E23, D24, H22
O
BVDD
—
LSYNC_IN
F27
I
BVDD
—
LSYNC_OUT
F28
O
BVDD
—
DMA
DMA_DACK[0:1]
AD3, AE1
O
OVDD
5, 9,
107
DMA_DREQ[0:1]
AD4, AE2
I
OVDD
—
DMA_DDONE[0:1]
AD2, AD1
O
OVDD
—
Programmable Interrupt Controller
UDE
AH16
I
OVDD
—
MCP
AG19
I
OVDD
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
107
Package Description
Table 72. MPC8547E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
IRQ[0:7]
AG23, AF18, AE18, AF20, AG18, AF17, AH24,
AE20
I
OVDD
—
IRQ[8]
AF19
I
OVDD
—
IRQ[9]/DMA_DREQ3
AF21
I
OVDD
1
IRQ[10]/DMA_DACK3
AE19
I/O
OVDD
1
IRQ[11]/DMA_DDONE3
AD20
I/O
OVDD
1
IRQ_OUT
AD18
O
OVDD
2, 4
Ethernet Management Interface
EC_MDC
AB9
O
OVDD
5, 9
EC_MDIO
AC8
I/O
OVDD
—
I
LVDD
—
Gigabit Reference Clock
EC_GTX_CLK125
V11
Three-Speed Ethernet Controller (Gigabit Ethernet 1)
TSEC1_RXD[7:0]
R5, U1, R3, U2, V3, V1, T3, T2
I
LVDD
—
TSEC1_TXD[7:0]
T10, V7, U10, U5, U4, V6, T5, T8
O
LVDD
5, 9
TSEC1_COL
R4
I
LVDD
—
TSEC1_CRS
V5
I/O
LVDD
20
TSEC1_GTX_CLK
U7
O
LVDD
—
TSEC1_RX_CLK
U3
I
LVDD
—
TSEC1_RX_DV
V2
I
LVDD
—
TSEC1_RX_ER
T1
I
LVDD
—
TSEC1_TX_CLK
T6
I
LVDD
—
TSEC1_TX_EN
U9
O
LVDD
30
TSEC1_TX_ER
T7
O
LVDD
—
Three-Speed Ethernet Controller (Gigabit Ethernet 2)
TSEC2_RXD[7:0]
P2, R2, N1, N2, P3, M2, M1, N3
I
LVDD
—
TSEC2_TXD[7:0]
N9, N10, P8, N7, R9, N5, R8, N6
O
LVDD
5, 9, 33
TSEC2_COL
P1
I
LVDD
—
TSEC2_CRS
R6
I/O
LVDD
20
TSEC2_GTX_CLK
P6
O
LVDD
—
TSEC2_RX_CLK
N4
I
LVDD
—
TSEC2_RX_DV
P5
I
LVDD
—
TSEC2_RX_ER
R1
I
LVDD
—
TSEC2_TX_CLK
P10
I
LVDD
—
TSEC2_TX_EN
P7
O
LVDD
30
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
108
Freescale Semiconductor
Package Description
Table 72. MPC8547E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
TSEC2_TX_ER
R10
O
LVDD
5, 9, 33
Three-Speed Ethernet Controller (Gigabit Ethernet 3)
TSEC3_TXD[3:0]
V8, W10, Y10, W7
O
TVDD
5, 9, 29
TSEC3_RXD[3:0]
Y1, W3, W5, W4
I
TVDD
—
TSEC3_GTX_CLK
W8
O
TVDD
—
TSEC3_RX_CLK
W2
I
TVDD
—
TSEC3_RX_DV
W1
I
TVDD
—
TSEC3_RX_ER
Y2
I
TVDD
—
TSEC3_TX_CLK
V10
I
TVDD
—
TSEC3_TX_EN
V9
O
TVDD
30
Three-Speed Ethernet Controller (Gigabit Ethernet 4)
TSEC4_TXD[3:0]/TSEC3_TXD[7:4]
AB8, Y7, AA7, Y8
O
TVDD
1, 5, 9,
29
TSEC4_RXD[3:0]/TSEC3_RXD[7:4]
AA1, Y3, AA2, AA4
I
TVDD
1
TSEC4_GTX_CLK
AA5
O
TVDD
TSEC4_RX_CLK/TSEC3_COL
Y5
I
TVDD
1
TSEC4_RX_DV/TSEC3_CRS
AA3
I/O
TVDD
1, 31
TSEC4_TX_EN/TSEC3_TX_ER
AB6
O
TVDD
1, 30
DUART
UART_CTS[0:1]
AB3, AC5
I
OVDD
—
UART_RTS[0:1]
AC6, AD7
O
OVDD
—
UART_SIN[0:1]
AB5, AC7
I
OVDD
—
AB7, AD8
O
OVDD
—
UART_SOUT[0:1]
I2C
Interface
IIC1_SCL
AG22
I/O
OVDD
4, 27
IIC1_SDA
AG21
I/O
OVDD
4, 27
IIC2_SCL
AG15
I/O
OVDD
4, 27
IIC2_SDA
AG14
I/O
OVDD
4, 27
SerDes
SD_RX[0:3]
M28, N26, P28, R26
I
XVDD
—
SD_RX[0:3]
M27, N25, P27, R25
I
XVDD
—
SD_TX[0:3]
M22, N20, P22, R20
O
XVDD
—
SD_TX[0:3]
M23, N21, P23, R21
O
XVDD
—
Reserved
W26, Y28, AA26, AB28
—
—
40
Reserved
W25, Y27, AA25, AB27
—
—
40
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
109
Package Description
Table 72. MPC8547E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
Reserved
U20, V22, W20, Y22
—
—
15
Reserved
U21, V23, W21, Y23
—
—
15
SD_PLL_TPD
U28
O
XVDD
24
SD_REF_CLK
T28
I
XVDD
—
SD_REF_CLK
T27
I
XVDD
—
Reserved
AC1, AC3
—
—
2
Reserved
M26, V28
—
—
32
Reserved
M25, V27
—
—
34
Reserved
M20, M21, T22, T23
—
—
38
O
BVDD
—
General-Purpose Output
GPOUT[24:31]
K26, K25, H27, G28, H25, J26, K24, K23
System Control
HRESET
AG17
I
OVDD
—
HRESET_REQ
AG16
O
OVDD
29
SRESET
AG20
I
OVDD
—
CKSTP_IN
AA9
I
OVDD
—
CKSTP_OUT
AA8
O
OVDD
2, 4
Debug
TRIG_IN
AB2
I
OVDD
—
TRIG_OUT/READY/QUIESCE
AB1
O
OVDD
6, 9,
19, 29
MSRCID[0:1]
AE4, AG2
O
OVDD
5, 6, 9
MSRCID[2:4]
AF3, AF1, AF2
O
OVDD
6, 19,
29
MDVAL
AE5
O
OVDD
6
CLK_OUT
AE21
O
OVDD
11
Clock
RTC
AF16
I
OVDD
—
SYSCLK
AH17
I
OVDD
—
JTAG
TCK
AG28
I
OVDD
—
TDI
AH28
I
OVDD
12
TDO
AF28
O
OVDD
—
TMS
AH27
I
OVDD
12
TRST
AH23
I
OVDD
12
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
110
Freescale Semiconductor
Package Description
Table 72. MPC8547E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
DFT
L1_TSTCLK
AC25
I
OVDD
25
L2_TSTCLK
AE22
I
OVDD
25
LSSD_MODE
AH20
I
OVDD
25
TEST_SEL
AH14
I
OVDD
25
Thermal Management
THERM0
AG1
—
—
14
THERM1
AH1
—
—
14
O
OVDD
9, 19,
29
Power Management
ASLEEP
AH18
Power and Ground Signals
GND
A11, B7, B24, C1, C3, C5, C12, C15, C26, D8,
D11, D16, D20, D22, E1, E5, E9, E12, E15, E17,
F4, F26, G12, G15, G18, G21, G24, H2, H6, H8,
H28, J4, J12, J15, J17, J27, K7, K9, K11, K27,
L3, L5, L12, L16, N11, N13, N15, N17, N19, P4,
P9, P12, P14, P16, P18, R11, R13, R15, R17,
R19, T4, T12, T14, T16, T18, U8, U11, U13,
U15, U17, U19, V4, V12, V18, W6, W19, Y4, Y9,
Y11, Y19, AA6, AA14, AA17, AA22, AA23, AB4,
AC2, AC11, AC19, AC26, AD5, AD9, AD22,
AE3, AE14, AF6, AF10, AF13, AG8, AG27,
K28, L24, L26, N24, N27, P25, R28, T24, T26,
U24, V25, W28, Y24, Y26, AA24, AA27, AB25,
AC28, L21, L23, N22, P20, R23, T21, U22, V20,
W23, Y21, U27
—
—
—
OVDD
V16, W11, W14, Y18, AA13, AA21, AB11,
AB17, AB24, AC4, AC9, AC21, AD6, AD13,
AD17, AD19, AE10, AE8, AE24, AF4, AF12,
AF22, AF27, AG26
Power for PCI
and other
standards
(3.3 V)
OVDD
—
LVDD
N8, R7, T9, U6
Power for
TSEC1 and
TSEC2
(2.5 V, 3.3 V)
LVDD
—
TVDD
W9, Y6
Power for
TSEC3 and
TSEC4
(2,5 V, 3.3 V)
TVDD
—
GVDD
B3, B11, C7, C9, C14, C17, D4, D6, D10, D15,
E2, E8, E11, E18, F5, F12, F16, G3, G7, G9,
G11, H5, H12, H15, H17, J10, K3, K12, K16,
K18, L6, M4, M8, M13
Power for
DDR1 and
DDR2 DRAM
I/O voltage
(1.8 V, 2.5 V)
GVDD
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
111
Package Description
Table 72. MPC8547E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
BVDD
C21, C24, C27, E20, E25, G19, G23, H26, J20 Power for local
bus (1.8 V,
2.5 V, 3.3 V)
BVDD
—
VDD
M19, N12, N14, N16, N18, P11, P13, P15, P17, Power for core
P19, R12, R14, R16, R18, T11, T13, T15, T17,
(1.1 V)
T19, U12, U14, U16, U18, V17, V19
VDD
—
SVDD
L25, L27, M24, N28, P24, P26, R24, R27, T25, Core power for
V24, V26, W24, W27, Y25, AA28, AC27
SerDes
transceivers
(1.1 V)
SVDD
—
XVDD
L20, L22, N23, P21, R22, T20, U23, V21, W22,
Y20
Pad Power for
SerDes
transceivers
(1.1 V)
XVDD
—
AVDD_LBIU
J28
Power for local
bus PLL
(1.1 V)
—
26
AVDD_PCI1
AH21
Power for
PCI1 PLL
(1.1 V)
—
26
AVDD_PCI2
AH22
Power for
PCI2 PLL
(1.1 V)
—
26
AVDD_CORE
AH15
Power for
e500 PLL (1.1
V)
—
26
AVDD_PLAT
AH19
Power for CCB
PLL (1.1 V)
—
26
AVDD_SRDS
U25
Power for
SRDSPLL
(1.1 V)
—
26
SENSEVDD
M14
O
VDD
13
SENSEVSS
M16
—
—
13
Analog Signals
MVREF
A18
I
Reference
voltage signal
for DDR
MVREF
—
SD_IMP_CAL_RX
L28
I
200 Ω to
GND
—
SD_IMP_CAL_TX
AB26
I
100 Ω to
GND
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
112
Freescale Semiconductor
Package Description
Table 72. MPC8547E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
SD_PLL_TPA
U26
O
—
24
Note: All note references in this table use the same numbers as those for Table 71. See Table 71 for the meanings of these
notes.
Table 73 provides the pin-out listing for the MPC8545E 783 FC-PBGA package.
NOTE
All note references in the following table use the same numbers as those for
Table 71. See Table 71 for the meanings of these notes.
Table 73. MPC8545E Pinout Listing
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
PCI1 and PCI2 (One 64-Bit or Two 32-Bit)
PCI1_AD[63:32]/PCI2_AD[31:0]
AB14, AC15, AA15, Y16, W16, AB16, AC16,
AA16, AE17, AA18, W18, AC17, AD16, AE16,
Y17, AC18, AB18, AA19, AB19, AB21, AA20,
AC20, AB20, AB22, AC22, AD21, AB23, AF23,
AD23, AE23, AC23, AC24
I/O
OVDD
17
PCI1_AD[31:0]
AH6, AE7, AF7, AG7, AH7, AF8, AH8, AE9,
AH9, AC10, AB10, AD10, AG10, AA10, AH10,
AA11, AB12, AE12, AG12, AH12, AB13, AA12,
AC13, AE13, Y14, W13, AG13, V14, AH13,
AC14, Y15, AB15
I/O
OVDD
17
PCI1_C_BE[7:4]/PCI2_C_BE[3:0]
AF15, AD14, AE15, AD15
I/O
OVDD
17
PCI1_C_BE[3:0]
AF9, AD11, Y12, Y13
I/O
OVDD
17
PCI1_PAR64/PCI2_PAR
W15
I/O
OVDD
—
PCI1_GNT[4:1]
AG6, AE6, AF5, AH5
O
OVDD
5, 9, 35
PCI1_GNT0
AG5
I/O
OVDD
—
PCI1_IRDY
AF11
I/O
OVDD
2
PCI1_PAR
AD12
I/O
OVDD
—
PCI1_PERR
AC12
I/O
OVDD
2
PCI1_SERR
V13
I/O
OVDD
2, 4
PCI1_STOP
W12
I/O
OVDD
2
PCI1_TRDY
AG11
I/O
OVDD
2
PCI1_REQ[4:1]
AH2, AG4, AG3, AH4
I
OVDD
—
PCI1_REQ0
AH3
I/O
OVDD
—
PCI1_CLK
AH26
I
OVDD
39
PCI1_DEVSEL
AH11
I/O
OVDD
2
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
113
Package Description
Table 73. MPC8545E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
PCI1_FRAME
AE11
I/O
OVDD
2
PCI1_IDSEL
AG9
I
OVDD
—
PCI1_REQ64/PCI2_FRAME
AF14
I/O
OVDD
2, 5, 10
PCI1_ACK64/PCI2_DEVSEL
V15
I/O
OVDD
2
PCI2_CLK
AE28
I
OVDD
39
PCI2_IRDY
AD26
I/O
OVDD
2
PCI2_PERR
AD25
I/O
OVDD
2
PCI2_GNT[4:1]
AE26, AG24, AF25, AE25
O
OVDD
5, 9, 35
PCI2_GNT0
AG25
I/O
OVDD
—
PCI2_SERR
AD24
I/O
OVDD
2,4
PCI2_STOP
AF24
I/O
OVDD
2
PCI2_TRDY
AD27
I/O
OVDD
2
PCI2_REQ[4:1]
AD28, AE27, W17, AF26
I
OVDD
—
PCI2_REQ0
AH25
I/O
OVDD
—
DDR SDRAM Memory Interface
MDQ[0:63]
L18, J18, K14, L13, L19, M18, L15, L14, A17,
B17, A13, B12, C18, B18, B13, A12, H18, F18,
J14, F15, K19, J19, H16, K15, D17, G16, K13,
D14, D18, F17, F14, E14, A7, A6, D5, A4, C8,
D7, B5, B4, A2, B1, D1, E4, A3, B2, D2, E3, F3,
G4, J5, K5, F6, G5, J6, K4, J1, K2, M5, M3, J3,
J2, L1, M6
I/O
GVDD
—
MECC[0:7]
H13, F13, F11, C11, J13, G13, D12, M12
I/O
GVDD
—
MDM[0:8]
M17, C16, K17, E16, B6, C4, H4, K1, E13
O
GVDD
—
MDQS[0:8]
M15, A16, G17, G14, A5, D3, H1, L2, C13
I/O
GVDD
—
MDQS[0:8]
L17, B16, J16, H14, C6, C2, H3, L4, D13
I/O
GVDD
—
MA[0:15]
A8, F9, D9, B9, A9, L10, M10, H10, K10, G10,
B8, E10, B10, G6, A10, L11
O
GVDD
—
MBA[0:2]
F7, J7, M11
O
GVDD
—
MWE
E7
O
GVDD
—
MCAS
H7
O
GVDD
—
MRAS
L8
O
GVDD
—
MCKE[0:3]
F10, C10, J11, H11
O
GVDD
11
MCS[0:3]
K8, J8, G8, F8
O
GVDD
—
MCK[0:5]
H9, B15, G2, M9, A14, F1
O
GVDD
—
MCK[0:5]
J9, A15, G1, L9, B14, F2
O
GVDD
—
MODT[0:3]
E6, K6, L7, M7
O
GVDD
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
114
Freescale Semiconductor
Package Description
Table 73. MPC8545E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
MDIC[0:1]
A19, B19
I/O
GVDD
36
Local Bus Controller Interface
LAD[0:31]
E27, B20, H19, F25, A20, C19, E28, J23, A25,
K22, B28, D27, D19, J22, K20, D28, D25, B25,
E22, F22, F21, C25, C22, B23, F20, A23, A22,
E19, A21, D21, F19, B21
I/O
BVDD
—
LDP[0:3]
K21, C28, B26, B22
I/O
BVDD
—
LA[27]
H21
O
BVDD
5, 9
LA[28:31]
H20, A27, D26, A28
O
BVDD
5, 7, 9
LCS[0:4]
J25, C20, J24, G26, A26
O
BVDD
—
LCS5/DMA_DREQ2
D23
I/O
BVDD
1
LCS6/DMA_DACK2
G20
O
BVDD
1
LCS7/DMA_DDONE2
E21
O
BVDD
1
LWE0/LBS0/LSDDQM[0]
G25
O
BVDD
5, 9
LWE1/LBS1/LSDDQM[1]
C23
O
BVDD
5, 9
LWE2/LBS2/LSDDQM[2]
J21
O
BVDD
5, 9
LWE3/LBS3/LSDDQM[3]
A24
O
BVDD
5, 9
LALE
H24
O
BVDD
5, 8, 9
LBCTL
G27
O
BVDD
5, 8, 9
LGPL0/LSDA10
F23
O
BVDD
5, 9
LGPL1/LSDWE
G22
O
BVDD
5, 9
LGPL2/LOE/LSDRAS
B27
O
BVDD
5, 8, 9
LGPL3/LSDCAS
F24
O
BVDD
5, 9
LGPL4/LGTA/LUPWAIT/LPBSE
H23
I/O
BVDD
—
LGPL5
E26
O
BVDD
5, 9
LCKE
E24
O
BVDD
—
LCLK[0:2]
E23, D24, H22
O
BVDD
—
LSYNC_IN
F27
I
BVDD
—
LSYNC_OUT
F28
O
BVDD
—
DMA
DMA_DACK[0:1]
AD3, AE1
O
OVDD
5, 9,
106
DMA_DREQ[0:1]
AD4, AE2
I
OVDD
—
DMA_DDONE[0:1]
AD2, AD1
O
OVDD
—
Programmable Interrupt Controller
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
115
Package Description
Table 73. MPC8545E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
UDE
AH16
I
OVDD
—
MCP
AG19
I
OVDD
—
IRQ[0:7]
AG23, AF18, AE18, AF20, AG18, AF17, AH24,
AE20
I
OVDD
—
IRQ[8]
AF19
I
OVDD
—
IRQ[9]/DMA_DREQ3
AF21
I
OVDD
1
IRQ[10]/DMA_DACK3
AE19
I/O
OVDD
1
IRQ[11]/DMA_DDONE3
AD20
I/O
OVDD
1
IRQ_OUT
AD18
O
OVDD
2, 4
Ethernet Management Interface
EC_MDC
AB9
O
OVDD
5, 9
EC_MDIO
AC8
I/O
OVDD
—
I
LVDD
—
Gigabit Reference Clock
EC_GTX_CLK125
V11
Three-Speed Ethernet Controller (Gigabit Ethernet 1)
TSEC1_RXD[7:0]
R5, U1, R3, U2, V3, V1, T3, T2
I
LVDD
—
TSEC1_TXD[7:0]
T10, V7, U10, U5, U4, V6, T5, T8
O
LVDD
5, 9
TSEC1_COL
R4
I
LVDD
—
TSEC1_CRS
V5
I/O
LVDD
20
TSEC1_GTX_CLK
U7
O
LVDD
—
TSEC1_RX_CLK
U3
I
LVDD
—
TSEC1_RX_DV
V2
I
LVDD
—
TSEC1_RX_ER
T1
I
LVDD
—
TSEC1_TX_CLK
T6
I
LVDD
—
TSEC1_TX_EN
U9
O
LVDD
30
TSEC1_TX_ER
T7
O
LVDD
—
GPIN[0:7]
P2, R2, N1, N2, P3, M2, M1, N3
I
LVDD
103
GPOUT[0:5]
N9, N10, P8, N7, R9, N5
O
LVDD
—
cfg_dram_type0/GPOUT6
R8
O
LVDD
5, 9
GPOUT7
N6
O
LVDD
—
Reserved
P1
—
—
104
Reserved
R6
—
—
104
Reserved
P6
—
—
15
Reserved
N4
—
—
105
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
116
Freescale Semiconductor
Package Description
Table 73. MPC8545E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
FIFO1_RXC2
P5
I
LVDD
104
Reserved
R1
—
—
104
Reserved
P10
—
—
105
FIFO1_TXC2
P7
O
LVDD
15
cfg_dram_type1
R10
I
LVDD
5
Three-Speed Ethernet Controller (Gigabit Ethernet 3)
TSEC3_TXD[3:0]
V8, W10, Y10, W7
O
TVDD
5, 9, 29
TSEC3_RXD[3:0]
Y1, W3, W5, W4
I
TVDD
—
TSEC3_GTX_CLK
W8
O
TVDD
—
TSEC3_RX_CLK
W2
I
TVDD
—
TSEC3_RX_DV
W1
I
TVDD
—
TSEC3_RX_ER
Y2
I
TVDD
—
TSEC3_TX_CLK
V10
I
TVDD
—
TSEC3_TX_EN
V9
O
TVDD
30
TSEC3_TXD[7:4]
AB8, Y7, AA7, Y8
O
TVDD
5, 9, 29
TSEC3_RXD[7:4]
AA1, Y3, AA2, AA4
I
TVDD
—
Reserved
AA5
—
—
15
TSEC3_COL
Y5
I
TVDD
—
TSEC3_CRS
AA3
I/O
TVDD
31
TSEC3_TX_ER
AB6
O
TVDD
—
DUART
UART_CTS[0:1]
AB3, AC5
I
OVDD
—
UART_RTS[0:1]
AC6, AD7
O
OVDD
—
UART_SIN[0:1]
AB5, AC7
I
OVDD
—
AB7, AD8
O
OVDD
—
UART_SOUT[0:1]
2C
I
interface
IIC1_SCL
AG22
I/O
OVDD
4, 27
IIC1_SDA
AG21
I/O
OVDD
4, 27
IIC2_SCL
AG15
I/O
OVDD
4, 27
IIC2_SDA
AG14
I/O
OVDD
4, 27
SerDes
SD_RX[0:3]
M28, N26, P28, R26
I
XVDD
—
SD_RX[0:3]
M27, N25, P27, R25
I
XVDD
—
SD_TX[0:3]
M22, N20, P22, R20
O
XVDD
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
117
Package Description
Table 73. MPC8545E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
SD_TX[0:3]
M23, N21, P23, R21
O
XVDD
—
Reserved
W26, Y28, AA26, AB28
—
—
40
Reserved
W25, Y27, AA25, AB27
—
—
40
Reserved
U20, V22, W20, Y22
—
—
15
Reserved
U21, V23, W21, Y23
—
—
15
SD_PLL_TPD
U28
O
XVDD
24
SD_REF_CLK
T28
I
XVDD
—
SD_REF_CLK
T27
I
XVDD
—
Reserved
AC1, AC3
—
—
2
Reserved
M26, V28
—
—
32
Reserved
M25, V27
—
—
34
Reserved
M20, M21, T22, T23
—
—
38
O
BVDD
—
General-Purpose Output
GPOUT[24:31]
K26, K25, H27, G28, H25, J26, K24, K23
System Control
HRESET
AG17
I
OVDD
—
HRESET_REQ
AG16
O
OVDD
29
SRESET
AG20
I
OVDD
—
CKSTP_IN
AA9
I
OVDD
—
CKSTP_OUT
AA8
O
OVDD
2, 4
Debug
TRIG_IN
AB2
I
OVDD
—
TRIG_OUT/READY/QUIESCE
AB1
O
OVDD
6, 9,
19, 29
MSRCID[0:1]
AE4, AG2
O
OVDD
5, 6, 9
MSRCID[2:4]
AF3, AF1, AF2
O
OVDD
6, 19,
29
MDVAL
AE5
O
OVDD
6
CLK_OUT
AE21
O
OVDD
11
Clock
RTC
AF16
I
OVDD
—
SYSCLK
AH17
I
OVDD
—
JTAG
TCK
AG28
I
OVDD
—
TDI
AH28
I
OVDD
12
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
118
Freescale Semiconductor
Package Description
Table 73. MPC8545E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
TDO
AF28
O
OVDD
—
TMS
AH27
I
OVDD
12
TRST
AH23
I
OVDD
12
DFT
L1_TSTCLK
AC25
I
OVDD
25
L2_TSTCLK
AE22
I
OVDD
25
LSSD_MODE
AH20
I
OVDD
25
TEST_SEL
AH14
I
OVDD
25
Thermal Management
THERM0
AG1
—
—
14
THERM1
AH1
—
—
14
O
OVDD
9, 19,
29
Power Management
ASLEEP
AH18
Power and Ground Signals
GND
A11, B7, B24, C1, C3, C5, C12, C15, C26, D8,
D11, D16, D20, D22, E1, E5, E9, E12, E15, E17,
F4, F26, G12, G15, G18, G21, G24, H2, H6, H8,
H28, J4, J12, J15, J17, J27, K7, K9, K11, K27,
L3, L5, L12, L16, N11, N13, N15, N17, N19, P4,
P9, P12, P14, P16, P18, R11, R13, R15, R17,
R19, T4, T12, T14, T16, T18, U8, U11, U13,
U15, U17, U19, V4, V12, V18, W6, W19, Y4, Y9,
Y11, Y19, AA6, AA14, AA17, AA22, AA23, AB4,
AC2, AC11, AC19, AC26, AD5, AD9, AD22,
AE3, AE14, AF6, AF10, AF13, AG8, AG27,
K28, L24, L26, N24, N27, P25, R28, T24, T26,
U24, V25, W28, Y24, Y26, AA24, AA27, AB25,
AC28, L21, L23, N22, P20, R23, T21, U22, V20,
W23, Y21, U27
—
—
—
OVDD
V16, W11, W14, Y18, AA13, AA21, AB11,
AB17, AB24, AC4, AC9, AC21, AD6, AD13,
AD17, AD19, AE10, AE8, AE24, AF4, AF12,
AF22, AF27, AG26
Power for PCI
and other
standards
(3.3 V)
OVDD
—
LVDD
N8, R7, T9, U6
Power for
TSEC1 and
TSEC2
(2.5 V, 3.3 V)
LVDD
—
TVDD
W9, Y6
Power for
TSEC3 and
TSEC4
(2,5 V, 3.3 V)
TVDD
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
119
Package Description
Table 73. MPC8545E Pinout Listing (continued)
Power
Supply
Notes
Power for
DDR1 and
DDR2 DRAM
I/O voltage
(1.8 V, 2.5 V)
GVDD
—
BVDD
C21, C24, C27, E20, E25, G19, G23, H26, J20 Power for local
bus (1.8 V,
2.5 V, 3.3 V)
BVDD
—
VDD
M19, N12, N14, N16, N18, P11, P13, P15, P17, Power for core
P19, R12, R14, R16, R18, T11, T13, T15, T17,
(1.1 V)
T19, U12, U14, U16, U18, V17, V19
VDD
—
SVDD
L25, L27, M24, N28, P24, P26, R24, R27, T25, Core power for
V24, V26, W24, W27, Y25, AA28, AC27
SerDes
transceivers
(1.1 V)
SVDD
—
XVDD
L20, L22, N23, P21, R22, T20, U23, V21, W22,
Y20
Pad power for
SerDes
transceivers
(1.1 V)
XVDD
—
AVDD_LBIU
J28
Power for local
bus PLL
(1.1 V)
—
26
AVDD_PCI1
AH21
Power for
PCI1 PLL
(1.1 V)
—
26
AVDD_PCI2
AH22
Power for
PCI2 PLL
(1.1 V)
—
26
AVDD_CORE
AH15
Power for
e500 PLL (1.1
V)
—
26
AVDD_PLAT
AH19
Power for CCB
PLL (1.1 V)
—
26
AVDD_SRDS
U25
Power for
SRDSPLL (1.1
V)
—
26
SENSEVDD
M14
O
VDD
13
SENSEVSS
M16
—
—
13
I
Reference
voltage signal
for DDR
MVREF
—
Signal
Package Pin Number
Pin Type
GVDD
B3, B11, C7, C9, C14, C17, D4, D6, D10, D15,
E2, E8, E11, E18, F5, F12, F16, G3, G7, G9,
G11, H5, H12, H15, H17, J10, K3, K12, K16,
K18, L6, M4, M8, M13
Analog Signals
MVREF
A18
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
120
Freescale Semiconductor
Package Description
Table 73. MPC8545E Pinout Listing (continued)
Power
Supply
Signal
Package Pin Number
Pin Type
Notes
SD_IMP_CAL_RX
L28
I
200 Ω to
GND
—
SD_IMP_CAL_TX
AB26
I
100 Ω to
GND
—
SD_PLL_TPA
U26
O
—
24
Note: All note references in this table use the same numbers as those for Table 71. See Table 71 for the meanings of these
notes.
Table 74 provides the pin-out listing for the MPC8543E 783 FC-PBGA package.
NOTE
All note references in the following table use the same numbers as those for
Table 71. See Table 71 for the meanings of these notes.
Table 74. MPC8543E Pinout Listing
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
PCI1 (One 32-Bit)
Reserved
AB14, AC15, AA15, Y16, W16, AB16, AC16,
AA16, AE17, AA18, W18, AC17, AD16, AE16,
Y17, AC18,
—
—
110
GPOUT[8:15]
AB18, AA19, AB19, AB21, AA20, AC20, AB20,
AB22
O
OVDD
—
GPIN[8:15]
AC22, AD21, AB23, AF23, AD23, AE23, AC23,
AC24
I
OVDD
111
PCI1_AD[31:0]
AH6, AE7, AF7, AG7, AH7, AF8, AH8, AE9,
AH9, AC10, AB10, AD10, AG10, AA10, AH10,
AA11, AB12, AE12, AG12, AH12, AB13, AA12,
AC13, AE13, Y14, W13, AG13, V14, AH13,
AC14, Y15, AB15
I/O
OVDD
17
Reserved
AF15, AD14, AE15, AD15
—
—
110
PCI1_C_BE[3:0]
AF9, AD11, Y12, Y13
I/O
OVDD
17
Reserved
W15
—
—
110
PCI1_GNT[4:1]
AG6, AE6, AF5, AH5
O
OVDD
5, 9, 35
PCI1_GNT0
AG5
I/O
OVDD
—
PCI1_IRDY
AF11
I/O
OVDD
2
PCI1_PAR
AD12
I/O
OVDD
—
PCI1_PERR
AC12
I/O
OVDD
2
PCI1_SERR
V13
I/O
OVDD
2, 4
PCI1_STOP
W12
I/O
OVDD
2
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
121
Package Description
Table 74. MPC8543E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
PCI1_TRDY
AG11
I/O
OVDD
2
PCI1_REQ[4:1]
AH2, AG4, AG3, AH4
I
OVDD
—
PCI1_REQ0
AH3
I/O
OVDD
—
PCI1_CLK
AH26
I
OVDD
39
PCI1_DEVSEL
AH11
I/O
OVDD
2
PCI1_FRAME
AE11
I/O
OVDD
2
PCI1_IDSEL
AG9
I
OVDD
—
cfg_pci1_width
AF14
I/O
OVDD
112
Reserved
V15
—
—
110
Reserved
AE28
—
—
2
Reserved
AD26
—
—
110
Reserved
AD25
—
—
110
Reserved
AE26
—
—
110
cfg_pci1_clk
AG24
I
OVDD
5
Reserved
AF25
—
—
101
Reserved
AE25
—
—
110
Reserved
AG25
—
—
110
Reserved
AD24
—
—
110
Reserved
AF24
—
—
110
Reserved
AD27
—
—
110
Reserved
AD28, AE27, W17, AF26
—
—
110
Reserved
AH25
—
—
110
DDR SDRAM Memory Interface
MDQ[0:63]
L18, J18, K14, L13, L19, M18, L15, L14, A17,
B17, A13, B12, C18, B18, B13, A12, H18, F18,
J14, F15, K19, J19, H16, K15, D17, G16, K13,
D14, D18, F17, F14, E14, A7, A6, D5, A4, C8,
D7, B5, B4, A2, B1, D1, E4, A3, B2, D2, E3, F3,
G4, J5, K5, F6, G5, J6, K4, J1, K2, M5, M3, J3,
J2, L1, M6
I/O
GVDD
—
MECC[0:7]
H13, F13, F11, C11, J13, G13, D12, M12
I/O
GVDD
—
MDM[0:8]
M17, C16, K17, E16, B6, C4, H4, K1, E13
O
GVDD
—
MDQS[0:8]
M15, A16, G17, G14, A5, D3, H1, L2, C13
I/O
GVDD
—
MDQS[0:8]
L17, B16, J16, H14, C6, C2, H3, L4, D13
I/O
GVDD
—
MA[0:15]
A8, F9, D9, B9, A9, L10, M10, H10, K10, G10,
B8, E10, B10, G6, A10, L11
O
GVDD
—
MBA[0:2]
F7, J7, M11
O
GVDD
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
122
Freescale Semiconductor
Package Description
Table 74. MPC8543E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
MWE
E7
O
GVDD
—
MCAS
H7
O
GVDD
—
MRAS
L8
O
GVDD
—
MCKE[0:3]
F10, C10, J11, H11
O
GVDD
11
MCS[0:3]
K8, J8, G8, F8
O
GVDD
—
MCK[0:5]
H9, B15, G2, M9, A14, F1
O
GVDD
—
MCK[0:5]
J9, A15, G1, L9, B14, F2
O
GVDD
—
MODT[0:3]
E6, K6, L7, M7
O
GVDD
—
MDIC[0:1]
A19, B19
I/O
GVDD
36
Local Bus Controller Interface
LAD[0:31]
E27, B20, H19, F25, A20, C19, E28, J23, A25,
K22, B28, D27, D19, J22, K20, D28, D25, B25,
E22, F22, F21, C25, C22, B23, F20, A23, A22,
E19, A21, D21, F19, B21
I/O
BVDD
—
LDP[0:3]
K21, C28, B26, B22
I/O
BVDD
—
LA[27]
H21
O
BVDD
5, 9
LA[28:31]
H20, A27, D26, A28
O
BVDD
5, 7, 9
LCS[0:4]
J25, C20, J24, G26, A26
O
BVDD
—
LCS5/DMA_DREQ2
D23
I/O
BVDD
1
LCS6/DMA_DACK2
G20
O
BVDD
1
LCS7/DMA_DDONE2
E21
O
BVDD
1
LWE0/LBS0/LSDDQM[0]
G25
O
BVDD
5, 9
LWE1/LBS1/LSDDQM[1]
C23
O
BVDD
5, 9
LWE2/LBS2/LSDDQM[2]
J21
O
BVDD
5, 9
LWE3/LBS3/LSDDQM[3]
A24
O
BVDD
5, 9
LALE
H24
O
BVDD
5, 8, 9
LBCTL
G27
O
BVDD
5, 8, 9
LGPL0/LSDA10
F23
O
BVDD
5, 9
LGPL1/LSDWE
G22
O
BVDD
5, 9
LGPL2/LOE/LSDRAS
B27
O
BVDD
5, 8, 9
LGPL3/LSDCAS
F24
O
BVDD
5, 9
LGPL4/LGTA/LUPWAIT/LPBSE
H23
I/O
BVDD
—
LGPL5
E26
O
BVDD
5, 9
LCKE
E24
O
BVDD
—
LCLK[0:2]
E23, D24, H22
O
BVDD
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
123
Package Description
Table 74. MPC8543E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
LSYNC_IN
F27
I
BVDD
—
LSYNC_OUT
F28
O
BVDD
—
DMA
DMA_DACK[0:1]
AD3, AE1
O
OVDD
5, 9, 108
DMA_DREQ[0:1]
AD4, AE2
I
OVDD
—
DMA_DDONE[0:1]
AD2, AD1
O
OVDD
—
Programmable Interrupt Controller
UDE
AH16
I
OVDD
—
MCP
AG19
I
OVDD
—
IRQ[0:7]
AG23, AF18, AE18, AF20, AG18, AF17, AH24,
AE20
I
OVDD
—
IRQ[8]
AF19
I
OVDD
—
IRQ[9]/DMA_DREQ3
AF21
I
OVDD
1
IRQ[10]/DMA_DACK3
AE19
I/O
OVDD
1
IRQ[11]/DMA_DDONE3
AD20
I/O
OVDD
1
IRQ_OUT
AD18
O
OVDD
2, 4
Ethernet Management Interface
EC_MDC
AB9
O
OVDD
5, 9
EC_MDIO
AC8
I/O
OVDD
—
I
LVDD
—
Gigabit Reference Clock
EC_GTX_CLK125
V11
Three-Speed Ethernet Controller (Gigabit Ethernet 1)
TSEC1_RXD[7:0]
R5, U1, R3, U2, V3, V1, T3, T2
I
LVDD
—
TSEC1_TXD[7:0]
T10, V7, U10, U5, U4, V6, T5, T8
O
LVDD
5, 9
TSEC1_COL
R4
I
LVDD
—
TSEC1_CRS
V5
I/O
LVDD
20
TSEC1_GTX_CLK
U7
O
LVDD
—
TSEC1_RX_CLK
U3
I
LVDD
—
TSEC1_RX_DV
V2
I
LVDD
—
TSEC1_RX_ER
T1
I
LVDD
—
TSEC1_TX_CLK
T6
I
LVDD
—
TSEC1_TX_EN
U9
O
LVDD
30
TSEC1_TX_ER
T7
O
LVDD
—
GPIN[0:7]
P2, R2, N1, N2, P3, M2, M1, N3
I
LVDD
103
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
124
Freescale Semiconductor
Package Description
Table 74. MPC8543E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
GPOUT[0:5]
N9, N10, P8, N7, R9, N5
O
LVDD
—
cfg_dram_type0/GPOUT6
R8
O
LVDD
5, 9
GPOUT7
N6
O
LVDD
—
Reserved
P1
—
—
104
Reserved
R6
—
—
104
Reserved
P6
—
—
15
Reserved
N4
—
—
105
FIFO1_RXC2
P5
I
LVDD
104
Reserved
R1
—
—
104
Reserved
P10
—
—
105
FIFO1_TXC2
P7
O
LVDD
15
cfg_dram_type1
R10
O
LVDD
5, 9
Three-Speed Ethernet Controller (Gigabit Ethernet 3)
TSEC3_TXD[3:0]
V8, W10, Y10, W7
O
TVDD
5, 9, 29
TSEC3_RXD[3:0]
Y1, W3, W5, W4
I
TVDD
—
TSEC3_GTX_CLK
W8
O
TVDD
—
TSEC3_RX_CLK
W2
I
TVDD
—
TSEC3_RX_DV
W1
I
TVDD
—
TSEC3_RX_ER
Y2
I
TVDD
—
TSEC3_TX_CLK
V10
I
TVDD
—
TSEC3_TX_EN
V9
O
TVDD
30
TSEC3_TXD[7:4]
AB8, Y7, AA7, Y8
O
TVDD
5, 9, 29
TSEC3_RXD[7:4]
AA1, Y3, AA2, AA4
I
TVDD
—
Reserved
AA5
—
—
15
TSEC3_COL
Y5
I
TVDD
—
TSEC3_CRS
AA3
I/O
TVDD
31
TSEC3_TX_ER
AB6
O
TVDD
—
DUART
UART_CTS[0:1]
AB3, AC5
I
OVDD
—
UART_RTS[0:1]
AC6, AD7
O
OVDD
—
UART_SIN[0:1]
AB5, AC7
I
OVDD
—
UART_SOUT[0:1]
AB7, AD8
O
OVDD
—
I/O
OVDD
4, 27
2C
I
IIC1_SCL
interface
AG22
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
125
Package Description
Table 74. MPC8543E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
IIC1_SDA
AG21
I/O
OVDD
4, 27
IIC2_SCL
AG15
I/O
OVDD
4, 27
IIC2_SDA
AG14
I/O
OVDD
4, 27
SerDes
SD_RX[0:7]
M28, N26, P28, R26, W26, Y28, AA26, AB28
I
XVDD
—
SD_RX[0:7]
M27, N25, P27, R25, W25, Y27, AA25, AB27
I
XVDD
—
SD_TX[0:7]
M22, N20, P22, R20, U20, V22, W20, Y22
O
XVDD
—
SD_TX[0:7]
M23, N21, P23, R21, U21, V23, W21, Y23
O
XVDD
—
SD_PLL_TPD
U28
O
XVDD
24
SD_REF_CLK
T28
I
XVDD
—
SD_REF_CLK
T27
I
XVDD
—
Reserved
AC1, AC3
—
—
2
Reserved
M26, V28
—
—
32
Reserved
M25, V27
—
—
34
Reserved
M20, M21, T22, T23
—
—
38
O
BVDD
—
General-Purpose Output
GPOUT[24:31]
K26, K25, H27, G28, H25, J26, K24, K23
System Control
HRESET
AG17
I
OVDD
—
HRESET_REQ
AG16
O
OVDD
29
SRESET
AG20
I
OVDD
—
CKSTP_IN
AA9
I
OVDD
—
CKSTP_OUT
AA8
O
OVDD
2, 4
Debug
TRIG_IN
AB2
I
OVDD
—
TRIG_OUT/READY/QUIESCE
AB1
O
OVDD
6, 9, 19,
29
MSRCID[0:1]
AE4, AG2
O
OVDD
5, 6, 9
MSRCID[2:4]
AF3, AF1, AF2
O
OVDD
6, 19, 29
MDVAL
AE5
O
OVDD
6
CLK_OUT
AE21
O
OVDD
11
Clock
RTC
AF16
I
OVDD
—
SYSCLK
AH17
I
OVDD
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
126
Freescale Semiconductor
Package Description
Table 74. MPC8543E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
JTAG
TCK
AG28
I
OVDD
—
TDI
AH28
I
OVDD
12
TDO
AF28
O
OVDD
—
TMS
AH27
I
OVDD
12
TRST
AH23
I
OVDD
12
DFT
L1_TSTCLK
AC25
I
OVDD
25
L2_TSTCLK
AE22
I
OVDD
25
LSSD_MODE
AH20
I
OVDD
25
TEST_SEL
AH14
I
OVDD
109
Thermal Management
THERM0
AG1
—
—
14
THERM1
AH1
—
—
14
O
OVDD
9, 19, 29
Power Management
ASLEEP
AH18
Power and Ground Signals
GND
A11, B7, B24, C1, C3, C5, C12, C15, C26, D8,
D11, D16, D20, D22, E1, E5, E9, E12, E15, E17,
F4, F26, G12, G15, G18, G21, G24, H2, H6, H8,
H28, J4, J12, J15, J17, J27, K7, K9, K11, K27,
L3, L5, L12, L16, N11, N13, N15, N17, N19, P4,
P9, P12, P14, P16, P18, R11, R13, R15, R17,
R19, T4, T12, T14, T16, T18, U8, U11, U13,
U15, U17, U19, V4, V12, V18, W6, W19, Y4, Y9,
Y11, Y19, AA6, AA14, AA17, AA22, AA23, AB4,
AC2, AC11, AC19, AC26, AD5, AD9, AD22,
AE3, AE14, AF6, AF10, AF13, AG8, AG27,
K28, L24, L26, N24, N27, P25, R28, T24, T26,
U24, V25, W28, Y24, Y26, AA24, AA27, AB25,
AC28, L21, L23, N22, P20, R23, T21, U22, V20,
W23, Y21, U27
—
—
—
OVDD
V16, W11, W14, Y18, AA13, AA21, AB11,
AB17, AB24, AC4, AC9, AC21, AD6, AD13,
AD17, AD19, AE10, AE8, AE24, AF4, AF12,
AF22, AF27, AG26
Power for
PCI and
other
standards
(3.3 V)
OVDD
—
LVDD
N8, R7, T9, U6
Power for
TSEC1 and
TSEC2
(2.5 V, 3.3 V)
LVDD
—
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
127
Package Description
Table 74. MPC8543E Pinout Listing (continued)
Power
Supply
Notes
Power for
TSEC3 and
TSEC4
(2,5 V, 3.3 V)
TVDD
—
B3, B11, C7, C9, C14, C17, D4, D6, D10, D15,
E2, E8, E11, E18, F5, F12, F16, G3, G7, G9,
G11, H5, H12, H15, H17, J10, K3, K12, K16,
K18, L6, M4, M8, M13
Power for
DDR1 and
DDR2
DRAM I/O
voltage
(1.8 V,2.5 V)
GVDD
—
BVDD
C21, C24, C27, E20, E25, G19, G23, H26, J20
Power for
local bus
(1.8 V, 2.5 V,
3.3 V)
BVDD
—
VDD
M19, N12, N14, N16, N18, P11, P13, P15, P17,
P19, R12, R14, R16, R18, T11, T13, T15, T17,
T19, U12, U14, U16, U18, V17, V19
Power for
core (1.1 V)
VDD
—
SVDD
L25, L27, M24, N28, P24, P26, R24, R27, T25,
V24, V26, W24, W27, Y25, AA28, AC27
Core power
for SerDes
transceivers
(1.1 V)
SVDD
—
XVDD
L20, L22, N23, P21, R22, T20, U23, V21, W22,
Y20
Pad power
for SerDes
transceivers
(1.1 V)
XVDD
—
AVDD_LBIU
J28
Power for
local bus
PLL
(1.1 V)
—
26
AVDD_PCI1
AH21
Power for
PCI1 PLL
(1.1 V)
—
26
AVDD_PCI2
AH22
Power for
PCI2 PLL
(1.1 V)
—
26
AVDD_CORE
AH15
Power for
e500 PLL
(1.1 V)
—
26
AVDD_PLAT
AH19
Power for
CCB PLL
(1.1 V)
—
26
AVDD_SRDS
U25
Power for
SRDSPLL
(1.1 V)
—
26
SENSEVDD
M14
O
VDD
13
Signal
Package Pin Number
Pin Type
TVDD
W9, Y6
GVDD
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
128
Freescale Semiconductor
Package Description
Table 74. MPC8543E Pinout Listing (continued)
Signal
Package Pin Number
Pin Type
Power
Supply
Notes
SENSEVSS
M16
—
—
13
Analog Signals
MVREF
A18
I
Reference
voltage
signal for
DDR
MVREF
—
SD_IMP_CAL_RX
L28
I
200 Ω (±1%)
to GND
—
SD_IMP_CAL_TX
AB26
I
100 Ω (±1%)
to GND
—
SD_PLL_TPA
U26
O
AVDD_SRDS
24
Note: All note references in this table use the same numbers as those for Table 71. See Table 71 for the meanings of these
notes.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
129
Clocking
20 Clocking
This section describes the PLL configuration of the device. Note that the platform clock is identical to the
core complex bus (CCB) clock.
20.1
Clock Ranges
Table 75 through Table 77 provide the clocking specifications for the processor cores and Table 78,
through Table 80 provide the clocking specifications for the memory bus.
Table 75. Processor Core Clocking Specifications (MPC8548E and MPC8547E)
Maximum Processor Core Frequency
Characteristic
e500 core processor frequency
1000 MHz
1200 MHz
1333 MHz
Min
Max
Min
Max
Min
Max
800
1000
800
1200
800
1333
Unit
Notes
MHz
1, 2
Notes:
1. Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK
frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating
frequencies. See Section 20.2, “CCB/SYSCLK PLL Ratio,” and Section 20.3, “e500 Core PLL Ratio,” for ratio settings.
2.)The minimum e500 core frequency is based on the minimum platform frequency of 333 MHz.
Table 76. Processor Core Clocking Specifications (MPC8545E)
Maximum Processor Core Frequency
Characteristic
e500 core processor frequency
800 MHz
1000 MHz
1200 MHz
Min
Max
Min
Max
Min
Max
800
800
800
1000
800
1200
Unit
Notes
MHz
1, 2
Notes:
1. Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK
frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating
frequencies. See Section 20.2, “CCB/SYSCLK PLL Ratio,” and Section 20.3, “e500 Core PLL Ratio,” for ratio settings.
2.)The minimum e500 core frequency is based on the minimum platform frequency of 333 MHz.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
130
Freescale Semiconductor
Clocking
Table 77. Processor Core Clocking Specifications (MPC8543E)
Maximum Processor Core Frequency
Characteristic
e500 core processor frequency
800 MHz
1000 MHz
Min
Max
Min
Max
800
800
800
1000
Unit
Notes
MHz
1, 2
Notes:
1. Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK
frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating
frequencies. See Section 20.2, “CCB/SYSCLK PLL Ratio,” and Section 20.3, “e500 Core PLL Ratio,” for ratio settings.
2.)The minimum e500 core frequency is based on the minimum platform frequency of 333 MHz.
Table 78. Memory Bus Clocking Specifications (MPC8548E and MPC8547E)
Maximum Processor Core Frequency
Characteristic
Memory bus clock speed
1000, 1200, 1333 MHz
Min
Max
166
266
Unit
Notes
MHz
1, 2
Notes:
1. Caution: The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the resulting
SYSCLK frequency, e500 (core) frequency, and CCB clock frequency do not exceed their respective maximum or minimum
operating frequencies. See Section 20.2, “CCB/SYSCLK PLL Ratio,” and Section 20.3, “e500 Core PLL Ratio,” for ratio
settings.
2. The memory bus speed is half of the DDR/DDR2 data rate, hence, half of the platform clock frequency.
Table 79. Memory Bus Clocking Specifications (MPC8545E)
Maximum Processor Core Frequency
Characteristic
Memory bus clock speed
800, 1000, 1200 MHz
Min
Max
166
200
Unit
Notes
MHz
1, 2
Notes:
1. Caution: The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the resulting
SYSCLK frequency, e500 (core) frequency, and CCB clock frequency do not exceed their respective maximum or minimum
operating frequencies. See Section 20.2, “CCB/SYSCLK PLL Ratio,” and Section 20.3, “e500 Core PLL Ratio,” for ratio
settings.
2. The memory bus speed is half of the DDR/DDR2 data rate, hence, half of the platform clock frequency.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
131
Clocking
Table 80. Memory Bus Clocking Specifications (MPC8543E)
Maximum Processor Core Frequency
Characteristic
800, 1000 MHz
Memory bus clock speed
Min
Max
166
200
Unit
Notes
MHz
1, 2
Notes:
1. Caution: The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the resulting
SYSCLK frequency, e500 (core) frequency, and CCB clock frequency do not exceed their respective maximum or minimum
operating frequencies. See Section 20.2, “CCB/SYSCLK PLL Ratio,” and Section 20.3, “e500 Core PLL Ratio,” for ratio
settings.
2. The memory bus speed is half of the DDR/DDR2 data rate, hence, half of the platform clock frequency.
20.2
CCB/SYSCLK PLL Ratio
The CCB clock is the clock that drives the e500 core complex bus (CCB), and is also called the platform
clock. The frequency of the CCB is set using the following reset signals, as shown in Table 81:
• SYSCLK input signal
• Binary value on LA[28:31] at power up
Note that there is no default for this PLL ratio; these signals must be pulled to the desired values. Also note
that the DDR data rate is the determining factor in selecting the CCB bus frequency, since the CCB
frequency must equal the DDR data rate.
For specifications on the PCI_CLK, see the PCI 2.2 Specification.
Table 81. CCB Clock Ratio
Binary Value of LA[28:31] Signals
CCB:SYSCLK Ratio
Binary Value of LA[28:31] Signals
CCB:SYSCLK Ratio
0000
16:1
1000
8:1
0001
Reserved
1001
9:1
0010
2:1
1010
10:1
0011
3:1
1011
Reserved
0100
4:1
1100
12:1
0101
5:1
1101
20:1
0110
6:1
1110
Reserved
0111
Reserved
1111
Reserved
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
132
Freescale Semiconductor
Clocking
20.3
e500 Core PLL Ratio
This table describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock.
This ratio is determined by the binary value of LBCTL, LALE, and LGPL2 at power up, as shown in this
table.
Table 82. e500 Core to CCB Clock Ratio
Binary Value of
LBCTL, LALE, LGPL2
Signals
e500 core:CCB Clock Ratio
Binary Value of
LBCTL, LALE, LGPL2
Signals
e500 core:CCB Clock Ratio
000
4:1
100
2:1
001
9:2
101
5:2
010
Reserved
110
3:1
011
3:2
111
7:2
20.4
Frequency Options
Table 83This table shows the expected frequency values for the platform frequency when using a CCB
clock to SYSCLK ratio in comparison to the memory bus clock speed.
Table 83. Frequency Options of SYSCLK with Respect to Memory Bus Speeds
CCB to
SYSCLK Ratio
SYSCLK (MHz)
16.66
25
33.33
41.66
66.66
83
100
111
133.33
333
400
445
533
Platform/CCB Frequency (MHz)
2
3
4
333
400
500
5
333
415
6
400
500
8
333
9
375
10
333
417
12
400
500
16
400
20
333
533
533
500
Note: Due to errata Gen 13 the max sys clk frequency must not exceed 100 MHz if the core clk frequency is below
1200 MHz.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
133
Thermal
21 Thermal
This section describes the thermal specifications of the device.
21.1
Thermal for Version 2.0 Silicon HiCTE FC-CBGA with Full Lid
This section describes the thermal specifications for the HiCTE FC-CBGA package for revision 2.0
silicon.
This table shows the package thermal characteristics.
Table 84. Package Thermal Characteristics for HiCTE FC-CBGA
Characteristic
JEDEC Board
Symbol
Value
Unit
Notes
Die junction-to-ambient (natural convection)
Single-layer board (1s)
RθJA
17
°C/W
1, 2
Die junction-to-ambient (natural convection)
Four-layer board (2s2p)
RθJA
12
°C/W
1, 2
Die junction-to-ambient (200 ft/min)
Single-layer board (1s)
RθJA
11
°C/W
1, 2
Die junction-to-ambient (200 ft/min)
Four-layer board (2s2p)
RθJA
8
°C/W
1, 2
Die junction-to-board
N/A
RθJB
3
°C/W
3
Die junction-to-case
N/A
RθJC
0.8
°C/W
4
Notes:
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal
resistance.
2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
3. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1). The cold plate temperature is used for the case temperature, measured value includes the thermal resistance of the
interface layer.
21.2
Thermal for Version 2.1.1, 2.1.2, and 2.1.3 Silicon FC-PBGA with
Full Lid and Version 3.1.x Silicon with Stamped Lid
This section describes the thermal specifications for the FC-PBGA package for revision 2.1.1, 2.1.2, and
3.0 silicon.
This table shows the package thermal characteristics.
Table 85. Package Thermal Characteristics for FC-PBGA
Characteristic
JEDEC Board
Symbol
Value
Unit
Notes
Die junction-to-ambient (natural convection)
Single-layer board (1s)
RθJA
18
°C/W
1, 2
Die junction-to-ambient (natural convection)
Four-layer board (2s2p)
RθJA
13
°C/W
1, 2
Die junction-to-ambient (200 ft/min)
Single-layer board (1s)
RθJA
13
°C/W
1, 2
Die junction-to-ambient (200 ft/min)
Four-layer board (2s2p)
RθJA
9
°C/W
1, 2
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
134
Freescale Semiconductor
System Design Information
Table 85. Package Thermal Characteristics for FC-PBGA (continued)
Characteristic
JEDEC Board
Symbol
Value
Unit
Notes
Die junction-to-board
N/A
RθJB
5
°C/W
3
Die junction-to-case
N/A
RθJC
0.8
°C/W
4
Notes:
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal
resistance.
2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
3. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1). The cold plate temperature is used for the case temperature, measured value includes the thermal resistance of the
interface layer.
21.3
Heat Sink Solution
Every system application has different conditions that the thermal management solution must solve. As
such, providing a recommended heat sink has not been found to be very useful. When a heat sink is chosen,
give special consideration to the mounting technique. Mounting the heat sink to the printed-circuit board
is the recommended procedure using a maximum of 10 lbs force (45 Newtons) perpendicular to the
package and board. Clipping the heat sink to the package is not recommended.
22 System Design Information
This section provides electrical design recommendations for successful application of the device.
22.1
System Clocking
This device includes five PLLs, as follows:
1. The platform PLL generates the platform clock from the externally supplied SYSCLK input. The
frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio
configuration bits as described in Section 20.2, “CCB/SYSCLK PLL Ratio.”
2. The e500 core PLL generates the core clock as a slave to the platform clock. The frequency ratio
between the e500 core clock and the platform clock is selected using the e500 PLL ratio
configuration bits as described in Section 20.3, “e500 Core PLL Ratio.”
3. The PCI PLL generates the clocking for the PCI bus.
4. The local bus PLL generates the clock for the local bus.
5. There is a PLL for the SerDes block.
22.2
PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins
(AVDD_PLAT, AVDD_CORE, AVDD_PCI, AVDD_LBIU, and AVDD_SRDS, respectively). The AVDD
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
135
System Design Information
level must always be equivalent to VDD, and preferably these voltages are derived directly from VDD
through a low frequency filter scheme such as the following.
There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to
provide independent filter circuits per PLL power supply as illustrated in Figure 57, one to each of the
AVDD pins. By providing independent filters to each PLL the opportunity to cause noise injection from
one PLL to the other is reduced.
This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz
range. It must be built with surface mount capacitors with minimum Effective Series Inductance (ESL).
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a
single large value capacitor.
Each circuit must be placed as close as possible to the specific AVDD pin being supplied to minimize noise
coupled from nearby circuits. It must be routed directly from the capacitors to the AVDD pin, which is on
the periphery of the footprint, without the inductance of vias.
Figure 57 through Figure 59 shows the PLL power supply filter circuits.
150 Ω
VDD
AVDD_PLAT
2.2 µF
2.2 µF
GND
Low ESL Surface Mount Capacitors
Figure 57. PLL Power Supply Filter Circuit with PLAT Pins
180 Ω
VDD
AVDD_CORE
2.2 µF
2.2 µF
GND
Low ESL Surface Mount Capacitors
Figure 58. PLL Power Supply Filter Circuit with CORE Pins
10 Ω
VDD
AVDD_PCI/AVDD_LBIU
2.2 µF
2.2 µF
GND
Low ESL Surface Mount Capacitors
Figure 59. PLL Power Supply Filter Circuit with PCI/LBIU Pins
The AVDD_SRDS signal provides power for the analog portions of the SerDes PLL. To ensure stability of
the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in
following figure. For maximum effectiveness, the filter circuit is placed as closely as possible to the
AVDD_SRDS ball to ensure it filters out as much noise as possible. The ground connection must be near
the AVDD_SRDS ball. The 0.003-µF capacitor is closest to the ball, followed by the two 2.2 µF capacitors,
and finally the 1 Ω resistor to the board supply plane. The capacitors are connected from AVDD_SRDS to
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
136
Freescale Semiconductor
System Design Information
the ground plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All traces
must be kept short, wide and direct.
SVDD
1.0 Ω
AVDD_SRDS
2.2 µF
1
2.2 µF
1
0.003 µF
GND
Note:
1. An 0805 sized capacitor is recommended for system initial bring-up.
Figure 60. SerDes PLL Power Supply Filter
Note the following:
• AVDD_SRDS must be a filtered version of SVDD.
• Signals on the SerDes interface are fed from the XVDD power plane.
22.3
Decoupling Recommendations
Due to large address and data buses, and high operating frequencies, the device can generate transient
power surges and high frequency noise in its power supply, especially while driving large capacitive loads.
This noise must be prevented from reaching other components in the device system, and the device itself
requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer
place at least one decoupling capacitor at each VDD, TVDD, BVDD, OVDD, GVDD, and LVDD pin of the
device. These decoupling capacitors must receive their power from separate VDD, TVDD, BVDD, OVDD,
GVDD, LVDD, and GND power planes in the PCB, utilizing short low impedance traces to minimize
inductance. Capacitors must be placed directly under the device using a standard escape pattern as much
as possible. If some caps are to be placed surrounding the part it must be routed with large trace to
minimize the inductance.
These capacitors must have a value of 0.1 µF. Only ceramic SMT (surface mount technology) capacitors
must be used to minimize lead inductance, preferably 0402 or 0603 sizes. Besides, it is recommended that
there be several bulk storage capacitors distributed around the PCB, feeding the VDD, TVDD, BVDD,
OVDD, GVDD, and LVDD, planes, to enable quick recharging of the smaller chip capacitors. These bulk
capacitors must have a low ESR (equivalent series resistance) rating to ensure the quick response time
necessary. They must also be connected to the power and ground planes through two vias to minimize
inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo OSCON). However,
customers must work directly with their power regulator vendor for best values, types and quantity of bulk
capacitors.
22.4
SerDes Block Power Supply Decoupling Recommendations
The SerDes block requires a clean, tightly regulated source of power (SVDD and XVDD) to ensure low
jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is
outlined below.
Only surface mount technology (SMT) capacitors must be used to minimize inductance. Connections from
all capacitors to power and ground must be done with multiple vias to further reduce inductance.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
137
System Design Information
•
•
•
22.5
First, the board must have at least 10 × 10-nF SMT ceramic chip capacitors as close as possible to
the supply balls of the device. Where the board has blind vias, these capacitors must be placed
directly below the chip supply and ground connections. Where the board does not have blind vias,
these capacitors must be placed in a ring around the device as close to the supply and ground
connections as possible.
Second, there must be a 1-µF ceramic chip capacitor from each SerDes supply (SVDD and XVDD)
to the board ground plane on each side of the device. This must be done for all SerDes supplies.
Third, between the device and any SerDes voltage regulator there must be a 10-µF, low equivalent
series resistance (ESR) SMT tantalum chip capacitor and a 100-µF, low ESR SMT tantalum chip
capacitor. This must be done for all SerDes supplies.
Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal
level. All unused active low inputs must be tied to VDD, TVDD, BVDD, OVDD, GVDD, and LVDD, as
required. All unused active high inputs must be connected to GND. All NC (no-connect) signals must
remain unconnected. Power and ground connections must be made to all external VDD, TVDD, BVDD,
OVDD, GVDD, LVDD, and GND pins of the device.
22.6
Pull-Up and Pull-Down Resistor Requirements
The device requires weak pull-up resistors (2–10 kΩ is recommended) on open drain type pins including
I2C pins and PIC (interrupt) pins.
Correct operation of the JTAG interface requires configuration of a group of system control pins as
demonstrated in Figure 63. Care must be taken to ensure that these pins are maintained at a valid deasserted
state under normal operating conditions as most have asynchronous behavior and spurious assertion gives
unpredictable results.
The following pins must not be pulled down during power-on reset: TSEC3_TXD[3], HRESET_REQ,
TRIG_OUT/READY/QUIESCE, MSRCID[2:4], ASLEEP. The DMA_DACK[0:1], and TEST_SEL/
TEST_SEL pins must be set to a proper state during POR configuration. See the pinlist table of the
individual device for more details
See the PCI 2.2 specification for all pull ups required for PCI.
22.7
Output Buffer DC Impedance
The device drivers are characterized over process, voltage, and temperature. For all buses, the driver is a
push-pull single-ended driver type (open drain for I2C).
To measure Z0 for the single-ended drivers, an external resistor is connected from the chip pad to OVDD
or GND. Then, the value of each resistor is varied until the pad voltage is OVDD/2 (see Figure 61). The
output impedance is the average of two components, the resistances of the pull-up and pull-down devices.
When data is held high, SW1 is closed (SW2 is open) and RP is trimmed until the voltage at the pad equals
OVDD/2. RP then becomes the resistance of the pull-up devices. RP and RN are designed to be close to each
other in value. Then, Z0 = (RP + RN)/2.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
138
Freescale Semiconductor
System Design Information
OVDD
RN
SW2
Data
Pad
SW1
RP
OGND
Figure 61. Driver Impedance Measurement
This table summarizes the signal impedance targets. The driver impedances are targeted at minimum VDD,
nominal OVDD, 105°C.
Table 86. Impedance Characteristics
Impedance
Local Bus, Ethernet, DUART, Control,
Configuration, Power Management
PCI
DDR DRAM
Symbol
Unit
RN
43 Target
25 Target
20 Target
Z0
W
RP
43 Target
25 Target
20 Target
Z0
W
Note: Nominal supply voltages. See Table 1, Tj = 105°C.
22.8
Configuration Pin Muxing
The device provides the user with power-on configuration options which can be set through the use of
external pull-up or pull-down resistors of 4.7 kΩ on certain output pins (see customer visible configuration
pins). These pins are generally used as output only pins in normal operation.
While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins
while HRESET is asserted, is latched when HRESET deasserts, at which time the input receiver is disabled
and the I/O circuit takes on its normal function. Most of these sampled configuration pins are equipped
with an on-chip gated resistor of approximately 20 kΩ. This value must permit the 4.7-kΩ resistor to pull
the configuration pin to a valid logic low level. The pull-up resistor is enabled only during HRESET (and
for platform/system clocks after HRESET deassertion to ensure capture of the reset value). When the input
receiver is disabled the pull-up is also, thus allowing functional operation of the pin as an output with
minimal signal quality or delay disruption. The default value for all configuration bits treated this way has
been encoded such that a high voltage level puts the device into the default state and external resistors are
needed only when non-default settings are required by the user.
Careful board layout with stubless connections to these pull-down resistors coupled with the large value
of the pull-down resistor minimizes the disruption of signal quality or speed for output pins thus
configured.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
139
System Design Information
The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up
devices.
22.9
JTAG Configuration Signals
Correct operation of the JTAG interface requires configuration of a group of system control pins as
demonstrated in Figure 63. Care must be taken to ensure that these pins are maintained at a valid deasserted
state under normal operating conditions as most have asynchronous behavior and spurious assertion gives
unpredictable results.
Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the
IEEE 1149.1 specification, but it is provided on all processors built on Power Architecture technology. The
device requires TRST to be asserted during power-on reset flow to ensure that the JTAG boundary logic
does not interfere with normal chip operation. While the TAP controller can be forced to the reset state
using only the TCK and TMS signals, generally systems assert TRST during the power-on reset flow.
Simply tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the
common on-chip processor (COP), which implements the debug interface to the chip.
The COP function of these processors allow a remote computer system (typically, a PC with dedicated
hardware and debugging software) to access and control the internal operations of the processor. The COP
interface connects primarily through the JTAG port of the processor, with some additional status
monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order
to fully control the processor. If the target system has independent reset sources, such as voltage monitors,
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be
merged into these signals with logic.
The arrangement shown in Figure 63 allows the COP port to independently assert HRESET or TRST,
while ensuring that the target can drive HRESET as well.
The COP interface has a standard header, shown in Figure 62, for connection to the target system, and is
based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The
connector typically has pin 14 removed as a connector key.
The COP header adds many benefits such as breakpoints, watchpoints, register and memory
examination/modification, and other standard debugger features. An inexpensive option can be to leave
the COP header unpopulated until needed.
There is no standardized way to number the COP header; so emulator vendors have issued many different
pin numbering schemes. Some COP headers are numbered top-to-bottom then left-to-right, while others
use left-to-right then top-to-bottom. Still others number the pins counter-clockwise from pin 1 (as with an
IC). Regardless of the numbering scheme, the signal placement recommended in Figure 62 is common to
all known emulators.
22.9.1
Termination of Unused Signals
Freescale recommends the following connections, when the JTAG interface and COP header are not used:
• TRST must be tied to HRESET through a 0 kΩ isolation resistor so that it is asserted when the
system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during
the power-on reset flow. Freescale recommends that the COP header be designed into the system
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
140
Freescale Semiconductor
System Design Information
•
as shown in Figure 63. If this is not possible, the isolation resistor allows future access to TRST in
case a JTAG interface may need to be wired onto the system in future debug situations.
No pull-up/pull-down is required for TDI, TMS, TDO, or TCK.
COP_TDO
1
2
NC
COP_TDI
3
4
COP_TRST
COP_RUN/STOP
5
6
COP_VDD_SENSE
COP_TCK
7
8
COP_CHKSTP_IN
COP_TMS
9
10
NC
COP_SRESET
11
12
NC
COP_HRESET
13
COP_CHKSTP_OUT
15
KEY
No pin
16
GND
Figure 62. COP Connector Physical Pinout
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
141
System Design Information
OVDD
SRESET
From Target
Board Sources
(if any)
HRESET
13
11
10 kΩ
SRESET 6
10 kΩ
HRESET1
COP_HRESET
10 kΩ
COP_SRESET
B
10 kΩ
A
5
10 kΩ
10 kΩ
2
3
4
5
6
7
8
9
10
11
12
6
5
COP Header
1
4
KEY
13 No
pin
15
15
COP_TRST
COP_VDD_SENSE2
TRST1
10 Ω
NC
COP_CHKSTP_OUT
CKSTP_OUT
10 kΩ
14 3
10 kΩ
COP_CHKSTP_IN
8
CKSTP_IN
COP_TMS
16
9
COP Connector
Physical Pinout
1
3
TMS
COP_TDO
COP_TDI
TDO
TDI
COP_TCK
7
2
TCK
NC
10
NC
12
4
16
Notes:
1. The COP port and target board must be able to independently assert HRESET and TRST to the processor
in order to fully control the processor as shown here.
2. Populate this with a 10−Ω resistor for short-circuit/current-limiting protection.
3. The KEY location (pin 14) is not physically present on the COP header.
4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for
improved signal integrity.
5. This switch is included as a precaution for BSDL testing. The switch must be closed to position A during BSDL
testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch must be
closed to position B.
6. Asserting SRESET causes a machine check interrupt to the e500 core.
Figure 63. JTAG Interface Connection
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
142
Freescale Semiconductor
System Design Information
22.10 Guidelines for High-Speed Interface Termination
This section provides the guidelines for high-speed interface termination when the SerDes interface is
entirely unused and when it is partly unused.
22.10.1 SerDes Interface Entirely Unused
If the high-speed SerDes interface is not used at all, the unused pin must be terminated as described in this
section.
The following pins must be left unconnected (float):
• SD_TX[7:0]
• SD_TX[7:0]
• Reserved pins T22, T23, M20, M21
The following pins must be connected to GND:
• SD_RX[7:0]
• SD_RX[7:0]
• SD_REF_CLK
• SD_REF_CLK
NOTE
It is recommended to power down the unused lane through SRDSCR1[0:7]
register (offset = 0xE_0F08) (This prevents the oscillations and holds the
receiver output in a fixed state.) that maps to SERDES lane 0 to lane 7
accordingly.
Pins V28 and M26 must be tied to XVDD. Pins V27 and M25 must be tied to GND through a 300-Ω
resistor.
In Rev 2.0 silicon, POR configuration pin cfg_srds_en on TSEC4_TXD[2]/TSEC3_TXD[6] can be used
to power down SerDes block.
22.10.2 SerDes Interface Partly Unused
If only part of the high-speed SerDes interface pins are used, the remaining high-speed serial I/O pins must
be terminated as described in this section.
The following pins must be left unconnected (float) if not used:
• SD_TX[7:0]
• SD_TX[7:0]
• Reserved pins: T22, T23, M20, M21
The following pins must be connected to GND if not used:
• SD_RX[7:0]
• SD_RX[7:0]
• SD_REF_CLK
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
143
System Design Information
•
SD_REF_CLK
NOTE
It is recommended to power down the unused lane through SRDSCR1[0:7]
register (offset = 0xE_0F08) (this prevents the oscillations and holds the
receiver output in a fixed state) that maps to SERDES lane 0 to lane 7
accordingly.
Pins V28 and M26 must be tied to XVDD. Pins V27 and M25 must be tied to GND through a 300-Ω
resistor.
22.11 Guideline for PCI Interface Termination
PCI termination if PCI 1 or PCI 2 is not used at all.
Option 1
If PCI arbiter is enabled during POR:
• All AD pins are driven to the stable states after POR. Therefore, all ADs pins can be floating.
• All PCI control pins can be grouped together and tied to OVDD through a single 10-kΩ resistor.
• It is optional to disable PCI block through DEVDISR register after POR reset.
Option 2
If PCI arbiter is disabled during POR:
• All AD pins are in the input state. Therefore, all ADs pins need to be grouped together and tied to
OVDD through a single (or multiple) 10-kΩ resistor(s).
• All PCI control pins can be grouped together and tied to OVDD through a single 10-kΩ resistor.
• It is optional to disable PCI block through DEVDISR register after POR reset.
22.12 Guideline for LBIU Termination
If the LBIU parity pins are not used, the following is the termination recommendation:
• For LDP[0:3]—tie them to ground or the power supply rail via a 4.7-kΩ resistor.
• For LPBSE—tie it to the power supply rail via a 4.7-kΩ resistor (pull-up resistor).
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
144
Freescale Semiconductor
Ordering Information
23 Ordering Information
Ordering information for the parts fully covered by this specification document is provided in
Section 23.1, “Part Numbers Fully Addressed by this Document.”
23.1
Part Numbers Fully Addressed by this Document
This table provides the Freescale part numbering nomenclature for the device. Note that the individual part
numbers correspond to a maximum processor core frequency. For available frequencies, contact your local
Freescale sales office. In addition to the processor frequency, the part-numbering scheme also includes an
application modifier that may specify special application conditions. Each part number also contains a
revision code that refers to the die mask revision number.
Table 87. Part Numbering Nomenclature
MPC
nnnnn
t
pp
ff
c
r
Product
Code
Part
Identifier
Temperature
Package1, 2, 3
Processor
Frequency4
Core
Frequency
Silicon Version
MPC
8548E
AV = 15003
AU = 1333
AT = 1200
AQ = 1000
J = 533
H = 5005
G = 400
Blank = 0 to 105°C
HX = CBGA
C = –40° to 105°C VU = Pb-free CBGA
PX = PBGA
VT = Pb-free PBGA6
VJ = lead-free
PBGA7
8548
8547E
8547
Blank = Ver. 2.0
(SVR = 0x80390020)
A = Ver. 2.1.1
B = Ver. 2.1.2
C = Ver. 2.1.3
(SVR = 0x80390021)
D = Ver. 3.1.x
(SVR = 0x80390031)
Blank = Ver. 2.0
(SVR = 0x80310020)
A = Ver. 2.1.1
B = Ver. 2.1.2
C = Ver. 2.1.3
(SVR = 0x80310021)
D = Ver. 3.1.x
(SVR = 0x80310031)
AU = 1333
AT = 1200
AQ = 1000
J = 533
G = 400
Blank = Ver. 2.0
(SVR = 0x80390120)
A = Ver. 2.1.1
B = Ver. 2.1.2
C = Ver. 2.1.3
(SVR = 0x80390121)
D = Ver. 3.1.x
(SVR = 0x80390131)
Blank = Ver. 2.0
(SVR = 0x80390120)
A = Ver. 2.1.1
B = Ver. 2.1.2
C = Ver. 2.1.3
(SVR = 0x80310121)
D = Ver. 3.1.x
(SVR = 0x80310131)
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
145
Ordering Information
Table 87. Part Numbering Nomenclature (continued)
MPC
nnnnn
t
pp
ff
c
r
Product
Code
Part
Identifier
Temperature
Package1, 2, 3
Processor
Frequency4
Core
Frequency
Silicon Version
MPC
8545E
AT = 1200
AQ = 1000
AN = 800
G = 400
Blank = 0 to 105°C
HX = CBGA
C = –40° to 105°C VU = Pb-free CBGA
PX = PBGA
VT = Pb-free PBGA6
VJ = lead-free
PBGA7
8545
8543E
8543
Blank = Ver. 2.0
(SVR = 0x80390220)
A = Ver. 2.1.1
B = Ver. 2.1.2
D = Ver. 3.1.x
(SVR = 0x80390231)
Blank = Ver. 2.0
(SVR = 0x80310220)
A = Ver. 2.1.1
B = Ver. 2.1.2
D = Ver. 3.1.x
(SVR = 0x80310231)
AQ = 1000
AN = 800
Blank = Ver. 2.0
(SVR = 0x803A0020)
A = Ver. 2.1.1
B = Ver. 2.1.2
D = Ver. 3.1.x
(SVR = 0x803A0031)
Blank = Ver. 2.0
(SVR = 0x80320020)
A = Ver. 2.1.1
B = Ver. 2.1.2
D = Ver. 3.1.x
(SVR = 0x80320031)
Notes:
1. See Section 19, “Package Description,” for more information on available package types.
2. The HiCTE FC-CBGA package is available on only Version 2.0 of the device.
3. The FC-PBGA package is available on only Version 2.1.1, 2.1.2, and 2.1.3 of the device.
4. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this
specification support all core frequencies. Additionally, parts addressed by part number specifications may support other
maximum core frequencies.
5. This speed available only for silicon Version 2.1.1, 2.1.2, and 2.1.3.
6. The VT part number is ROHS-compliant, with the permitted exception of the C4 die bumps.
7. The VJ part number is entirely lead-free. This includes the C4 die bumps.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
146
Freescale Semiconductor
Ordering Information
23.2
Part Marking
Parts are marked as the example shown in Figure 64.
(F)
MPC8548xxxxxx
TWLYWW
MMMMM CCCCC
YWWLAZ
Notes:
TWLYYWW is final test traceability code.
MMMMM is 5 digit mask number.
CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States.
YWWLAZ is assembly traceability code.
Figure 64. Part Marking for CBGA and PBGA Device
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
147
Document Revision History
24 Document Revision History
The following table provides a revision history for this hardware specification.
Table 88. Document Revision History
Rev.
Number
Date
Substantive Change(s)
10
06/2014 In Table 87, “Part Numbering Nomenclature,” added full Pb-free part code and added footnotes 3 and 4.
9
02/2012
• Updated Section 21.2, “Thermal for Version 2.1.1, 2.1.2, and 2.1.3 Silicon FC-PBGA with Full Lid and
Version 3.1.x Silicon with Stamped Lid,” with version 3.0 silicon information.
• Added Figure 56, “Mechanical Dimensions and Bottom Surface Nomenclature of the FC-PBGA with
Stamped Lid.”
• Updated Table 87, “Part Numbering Nomenclature,” with version 3.0 silicon information.
• Removed Note from Section 5.1, “Power-On Ramp Rate”.
• Changed the Table 10 title to “Power Supply Ramp Rate”.
• Removed table 11.
• Updated the title of Section 21.2, “Thermal for Version 2.1.1, 2.1.2, and 2.1.3 Silicon FC-PBGA with
Full Lid and Version 3.1.x Silicon with Stamped Lid” to include Thermal Version 2.1.3 and Version 3.1.x
Silicon.
• Corrected the leaded Solder Ball composition in Table 70, “Package Parameters”
• Updated Table 87, “Part Numbering Nomenclature,” with Version 3.1.x silicon information.
• Updated the Min and Max value of TDO in the valid times row of Table 44, “JTAG AC Timing
Specifications (Independent of SYSCLK)1” from 4 and 25 to 2 and 10 respectively .
8
04/2011
• Added Section 14.1, “GPOUT/GPIN Electrical Characteristics.”
• Updated Table 71, “MPC8548E Pinout Listing,” Table 72, “MPC8547E Pinout Listing,” Table 73,
“MPC8545E Pinout Listing,” and Table 74, “MPC8543E Pinout Listing,” to reflect that the TDO signal
is not driven during HRSET* assertion.
• Updated Table 87, “Part Numbering Nomenclature” with Ver. 2.1.3 silicon information.
7
09/2010
• In Table 37, “MII Management AC Timing Specifications, modified the fifth row from “MDC to MDIO
delay tMDKHDX (16 × tptb_clk × 8) – 3 — (16 × tptb_clk × 8) + 3” to “MDC to MDIO delay tMDKHDX
(16 × tCCB × 8) – 3 — (16 × tCCB × 8) + 3.”
• Updated Figure 55, “Mechanical Dimensions and Bottom Surface Nomenclature of the HiCTE
FC-CBGA and FC-PBGA with Full Lid and figure notes.
6
12/2009
• In Section 5.1, “Power-On Ramp Rate” added explanation that Power-On Ramp Rate is required to
avoid falsely triggering ESD circuitry.
• In Table 13 changed required ramp rate from 545 V/s for MVREF and VDD/XVDD/SVDD to 3500 V/s
for MVREF and 4000 V/s for VDD.
• In Table 13 deleted ramp rate requirement for XVDD/SVDD.
• In Table 13 footnote 1 changed voltage range of concern from 0–400 mV to 20–500mV.
• In Table 13 added footnote 2 explaining that VDD voltage ramp rate is intended to control ramp rate of
AVDD pins.
5
10/2009
• In Table 27, “GMII Receive AC Timing Specifications,” changed duty cycle specification from 40/60 to
35/75 for RX_CLK duty cycle.
• Updated tMDKHDX in Table 37, “MII Management AC Timing Specifications.”
• Added a reference to Revision 2.1.2.
• Updated Table 55, “MII Management AC Timing Specifications.”
• Added Section 5.1, “Power-On Ramp Rate.”
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
148
Freescale Semiconductor
Document Revision History
Table 88. Document Revision History (continued)
Rev.
Number
Date
Substantive Change(s)
4
04/2009
• In Table 1, “Absolute Maximum Ratings 1,” and in Table 2, “Recommended Operating Conditions,”
moved text, “MII management voltage” from LVDD/TVDD to OVDD, added “Ethernet management” to
OVDD row of input voltage section.
• In Table 5, “SYSCLK AC Timing Specifications,” added notes 7 and 8 to SYSCLK frequency and cycle
time.
• In Table 36, “MII Management DC Electrical Characteristics,” changed all instances of LVDD/OVDD to
OVDD.
• Modified Section 16, “High-Speed Serial Interfaces (HSSI),” to reflect that there is only one SerDes.
• Modified DDR clk rate min from 133 to 166 MHz.
• Modified note in Table 75, “Processor Core Clocking Specifications (MPC8548E and MPC8547E), “.”
• In Table 56, “Differential Transmitter (TX) Output Specifications,” modified equations in Comments
column, and changed all instances of “LO” to “L0.” Also added note 8.
• In Table 57, “Differential Receiver (RX) Input Specifications,” modified equations in Comments column,
and in note 3, changed “TRX-EYE-MEDIAN-to-MAX-JITTER,” to “TRX-EYE-MEDIAN-to-MAX-JITTER.”
• Modified Table 83, “Frequency Options of SYSCLK with Respect to Memory Bus Speeds.”
• Added a note on Section 4.1, “System Clock Timing,” to limit the SYSCLK to 100 MHz if the core
frequency is less than 1200 MHz
• In Table 71, “MPC8548E Pinout ListingTable 72, “MPC8547E Pinout ListingTable 73, “MPC8545E
Pinout ListingTable 74, “MPC8543E Pinout Listing,” added note 5 to LA[28:31].
• Added note to Table 83, “Frequency Options of SYSCLK with Respect to Memory Bus Speeds.”
3
01/2009
• [Section 4.6, “Platform Frequency Requirements for PCI-Express and Serial RapidIO.” Changed
minimum frequency equation to be 527 MHz for PCI x8.
• In Table 5, added note 7.
• Section 4.5, “Platform to FIFO Restrictions.” Changed platform clock frequency to 4.2.
• Section 8.1, “Enhanced Three-Speed Ethernet Controller (eTSEC)
(10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI/RMII Electrical Characteristics.” Added MII after GMII
and add ‘or 2.5 V’ after 3.3 V.
• In Table 23, modified table title to include GMII, MII, RMII, and TBI.
• In Table 24 and Table 25, changed clock period minimum to 5.3.
• In Table 25, added a note.
• In Table 26, Table 27, Table 28, Table 29, and Table 30, removed subtitle from table title.
• In Table 30 and Figure 15, changed all instances of PMA to TSECn.
• In Section 8.2.5, “TBI Single-Clock Mode AC Specifications.” Replaced first paragraph.
• In Table 34, Table 35, Figure 18, and Figure 20, changed all instances of REF_CLK to
TSECn_TX_CLK.
• In Table 36, changed all instances of OVDD to LVDD/TVDD.
• In Table 37, “MII Management AC Timing Specifications,” changed MDC minimum clock pulse width
high from 32 to 48 ns.
• Added new section, Section 16, “High-Speed Serial Interfaces (HSSI).”
• Section 16.1, “DC Requirements for PCI Express SD_REF_CLK and SD_REF_CLK.” Added new
paragraph.
• Section 17.1, “DC Requirements for Serial RapidIO SD_REF_CLK and SD_REF_CLK.” Added new
paragraph.
• Added information to Figure 63, both in figure and in note.
• Section 22.3, “Decoupling Recommendations.” Modified the recommendation.
• Table 87, “Part Numbering Nomenclature.” In Silicon Version column added Ver. 2.1.2.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
Freescale Semiconductor
149
Document Revision History
Table 88. Document Revision History (continued)
Rev.
Number
Date
2
04/2008
•
•
•
•
•
1
10/2007
• Adjusted maximum SYSCLK frequency down in Table 5, “SYSCLK AC Timing Specifications” per
device erratum GEN-13.
• Clarified notes to Table 6, “EC_GTX_CLK125 AC Timing Specifications.”
• Added Section 4.4, “PCI/PCI-X Reference Clock Timing.”
• Clarified descriptions and added PCI/PCI-X to Table 9, “PLL Lock Times.”
• Removed support for 266 and 200 Mbps data rates per device erratum GEN-13 in Section 6, “DDR and
DDR2 SDRAM.”
• Clarified Note 4 of Table 19, “DDR SDRAM Output AC Timing Specifications.”
• Clarified the reference clock used in Section 7.2, “DUART AC Electrical Specifications.”
• Corrected VIH(min) in Table 22, “GMII, MII, RMII, and TBI DC Electrical Characteristics.”
• Corrected VIL(max) in Table 23, “GMII, MII, RMII, TBI, RGMII, RTBI, and FIFO DC Electrical
Characteristics.”
• Removed DC parameters from Table 24, Table 25, Table 26, Table 27, Table 28, Table 29, Table 32,
Table 34, and Table 35.
• Corrected VIH(min) in Table 36, “MII Management DC Electrical Characteristics.”
• Corrected tMDC(min) in Table 37, “MII Management AC Timing Specifications.”
• Updated parameter descriptions for tLBIVKH1, tLBIVKH2, tLBIXKH1, and tLBIXKH2 in Table 40, “Local Bus
Timing Parameters (BVDD = 3.3 V)—PLL Enabled” and Table 40, “Local Bus Timing Parameters
(BVDD = 2.5 V)—PLL Enabled.”
• Updated parameter descriptions for tLBIVKH1, tLBIVKL2, tLBIXKH1, and tLBIXKL2 in Table 42, “Local Bus
Timing Parameters—PLL Bypassed.” Note that tLBIVKL2 and tLBIXKL2 were previously labeled tLBIVKH2
and tLBIXKH2.
• Added LUPWAIT signal to Figure 23, “Local Bus Signals (PLL Enabled)” and Figure 24, “Local Bus
Signals (PLL Bypass Mode).”
• Added LGTA signal to Figure 25, Figure 26, Figure 27 and Figure 28.
• Corrected LUPWAIT assertion in Figure 26 and Figure 28.
• Clarified the PCI reference clock in Section 15.2, “PCI/PCI-X AC Electrical Specifications”
• Added Section 17.1, “Package Parameters.”
• Added PBGA thermal information in Section 21.2, “Thermal for Version 2.1.1, 2.1.2, and 2.1.3 Silicon
FC-PBGA with Full Lid and Version 3.1.x Silicon with Stamped Lid.”
• Updated.”
• Updated Table 87, “Part Numbering Nomenclature.”
0
07/2007
• Initial Release
Substantive Change(s)
Removed 1:1 support on Table 82, “e500 Core to CCB Clock Ratio.”
Removed MDM from Table 18, “DDR SDRAM Input AC Timing Specifications.” MDM is an Output.
Figure 57, “PLL Power Supply Filter Circuit with PLAT Pins” (AVDD_PLAT).
Figure 58, “PLL Power Supply Filter Circuit with CORE Pins” (AVDD_CORE).
Split Figure 59, “PLL Power Supply Filter Circuit with PCI/LBIU Pins,” (formerly called just “PLL Power
Supply Filter Circuit”) into three figures: the original (now specific for AVDD_PCI/AVDD_LBIU) and two
new ones.
MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 10
150
Freescale Semiconductor
How to Reach Us:
Information in this document is provided solely to enable system and software
Home Page:
freescale.com
implementers to use Freescale products. There are no express or implied copyright
Web Support:
freescale.com/support
information in this document.
licenses granted hereunder to design or fabricate any integrated circuits based on the
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.
Freescale, the Freescale logo, and PowerQUICC are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the
property of their respective owners. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.
© 2007-2012, 2014 Freescale Semiconductor, Inc.
Document Number: MPC8548EEC
Rev. 10
06/2014