0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
1SMB20CAT3

1SMB20CAT3

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    DO214AA

  • 描述:

    TVS DIODE 20VWM 32.4VC SMB

  • 数据手册
  • 价格&库存
1SMB20CAT3 数据手册
1SMB10CAT3G Series, SZ1SMB10CAT3G Series 600 Watt Peak Power Zener Transient Voltage Suppressors http://onsemi.com Bidirectional The SMB series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The SMB series is supplied in ON Semiconductor’s exclusive, cost-effective, highly reliable SURMETIC  package and is ideally suited for use in communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications. PLASTIC SURFACE MOUNT ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS 10−78 V, 600 W PEAK POWER SMB CASE 403C PLASTIC Features           Working Peak Reverse Voltage Range − 10 V to 75 V Standard Zener Breakdown Voltage Range − 11.7 V to 91.7 V Peak Power − 600 Watts @ 1 ms ESD Rating of Class 3 (> 16 kV) per Human Body Model Maximum Clamp Voltage @ Peak Pulse Current Low Leakage < 5 mA Above 10 V UL 497B for Isolated Loop Circuit Protection Response Time is Typically < 1 ns SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q101 Qualified and PPAP Capable Pb−Free Packages are Available* Mechanical Characteristics CASE: Void-free, transfer-molded, thermosetting plastic FINISH: All external surfaces are corrosion resistant and leads are readily solderable MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 260C for 10 Seconds LEADS: Modified L−Bend providing more contact area to bond pads POLARITY: Polarity band will not be indicated MOUNTING POSITION: Any MARKING DIAGRAM ALYW xxCG G A Y WW xxC G = Assembly Location = Year = Work Week = Specific Device Code = (See Table on Page 3) = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION Device** Package Shipping† 1SMBxxCAT3G SMB (Pb−Free) 2,500 / Tape & Reel SZ1SMBxxCAT3G SMB (Pb−Free) 2,500 / Tape & Reel **The “T3” suffix refers to a 13 inch reel. †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  Semiconductor Components Industries, LLC, 2012 February, 2012 − Rev. 13 1 Individual devices are listed on page 3 of this data sheet. Publication Order Number: 1SMB10CAT3/D 1SMB10CAT3G Series, SZ1SMB10CAT3G Series MAXIMUM RATINGS Rating Symbol Value Unit Peak Power Dissipation (Note 1) @ TL = 25C, Pulse Width = 1 ms PPK 600 W DC Power Dissipation @ TL = 75C Measured Zero Lead Length (Note 2) Derate Above 75C Thermal Resistance from Junction−to−Lead PD 3.0 40 25 W mW/C C/W RqJA 0.55 4.4 226 W mW/C C/W TJ, Tstg −65 to +150 C DC Power Dissipation (Note 3) @ TA = 25C Derate Above 25C Thermal Resistance from Junction−to−Ambient RqJL PD Operating and Storage Temperature Range Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. 10 X 1000 ms, non−repetitive 2. 1 square copper pad, FR−4 board 3. FR−4 board, using ON Semiconductor minimum recommended footprint, as shown in 403A case outline dimensions spec *Please see 1SMB5.0AT3 to 1SMB170AT3 for Unidirectional devices ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) Symbol Maximum Reverse Peak Pulse Current VC Clamping Voltage @ IPP IR VBR IT I Parameter IPP VRWM IPP IT VC VBR VRWM IR IR VRWM VBR VC IT Working Peak Reverse Voltage Maximum Reverse Leakage Current @ VRWM Breakdown Voltage @ IT IPP Test Current Bi−Directional TVS http://onsemi.com 2 V 1SMB10CAT3G Series, SZ1SMB10CAT3G Series ELECTRICAL CHARACTERISTICS Device* Device Marking VC @ IPP (Note 6) Breakdown Voltage VRWM (Note 4) IR @ VRWM Volts mA Min Nom @ IT VC IPP Ctyp (Note 7) Max mA Volts Amps pF VBR (Note 5) Volts 1SMB10CAT3G 1SMB11CAT3G 1SMB12CAT3G 1SMB13CAT3G KXC KZC LEC LGC 10 11 12 13 5.0 5.0 5.0 5.0 11.1 12.2 13.3 14.4 11.69 12.84 14.00 15.16 12.27 13.5 14.7 15.9 1.0 1.0 1.0 1.0 17.0 18.2 19.9 21.5 35.3 33.0 30.2 27.9 805 740 680 630 1SMB14CAT3G 1SMB15CAT3G 1SMB16CAT3G 1SMB17CAT3G LKC LMC LPC LRC 14 15 16 17 5.0 5.0 5.0 5.0 15.6 16.7 17.8 18.9 16.42 17.58 18.74 19.90 17.2 18.5 19.7 20.9 1.0 1.0 1.0 1.0 23.2 24.4 26.0 27.6 25.8 24.0 23.1 21.7 590 555 520 490 1SMB18CAT3G 1SMB20CAT3G 1SMB22CAT3G 1SMB24CAT3G LTC LVC LXC LZC 18 20 22 24 5.0 5.0 5.0 5.0 20.0 22.2 24.4 26.7 21.06 23.37 25.69 28.11 22.1 24.5 27.0 29.5 1.0 1.0 1.0 1.0 29.2 32.4 35.5 38.9 20.5 18.5 16.9 15.4 465 425 390 366 1SMB26CAT3G 1SMB28CAT3G 1SMB30CAT3G 1SMB33CAT3G MEC MGC MKC MMC 26 28 30 33 5.0 5.0 5.0 5.0 28.9 31.1 33.3 36.7 30.42 32.74 35.06 38.63 31.9 34.4 36.8 40.6 1.0 1.0 1.0 1.0 42.1 45.4 48.4 53.3 14.2 13.2 12.4 11.3 330 310 290 265 1SMB36CAT3G 1SMB40CAT3G 1SMB43CAT3G 1SMB45CAT3G MPC MRC MTC MVC 36 40 43 45 5.0 5.0 5.0 5.0 40.0 44.4 47.8 50.0 42.11 46.74 50.32 52.63 44.2 49.1 52.8 55.3 1.0 1.0 1.0 1.0 58.1 64.5 69.4 72.2 10.3 9.3 8.6 8.3 245 220 210 200 1SMB48CAT3G 1SMB51CAT3G 1SMB54CAT3G 1SMB58CAT3G MXC MZC NEC NGC 48 51 54 58 5.0 5.0 5.0 5.0 53.3 56.7 60.0 64.4 56.11 59.69 63.16 67.79 58.9 62.7 66.32 71.18 1.0 1.0 1.0 1.0 77.4 82.4 87.1 93.6 7.7 7.3 6.9 6.4 190 175 170 155 1SMB60CAT3G 1SMB64CAT3G 1SMB75CAT3G NKC NMC NRC 60 64 75 5.0 5.0 5.0 66.7 71.1 83.3 70.21 74.84 91.65 73.72 78.58 92.07 1.0 1.0 1.0 96.8 103 121 6.2 5.8 4.9 150 145 125 4. A transient suppressor is normally selected according to the working peak reverse voltage (VRWM), which should be equal to or greater than the DC or continuous peak operating voltage level. 5. VBR measured at pulse test current IT at an ambient temperature of 25C. 6. Surge current waveform per Figure 2 and derate per Figure 3 of the General Data − 600 Watt at the beginning of this group. 7. Bias Voltage = 0 V, F = 1 MHz, TJ = 25C *Include SZ-prefix devices where applicable. http://onsemi.com 3 1SMB10CAT3G Series, SZ1SMB10CAT3G Series NONREPETITIVE PULSE WAVEFORM SHOWN IN FIGURE 2 PULSE WIDTH (tP) IS DEFINED AS THAT POINT WHERE THE PEAK CURRENT DECAYS TO 50% OF IPP. tr 10 ms 100 10 PEAK VALUE - IPP VALUE (%) PPK, PEAK POWER (kW) 100 I HALF VALUE - PP 2 50 1 tP 0.1 0.1 ms 1 ms 10 ms 100 ms 1 ms 0 10 ms 0 1 tP, PULSE WIDTH 4 5 Figure 2. Pulse Waveform 1000 160 1SMB10CAT3G 140 C, CAPACITANCE (pF) PEAK PULSE DERATING IN % OF PEAK POWER OR CURRENT @ TA = 25 C 3 t, TIME (ms) Figure 1. Pulse Rating Curve 120 100 80 60 40 1SMB18CAT3G 1SMB48CAT3G 100 1SMB75CAT3G 10 TJ = 25C f = 1 MHz 20 0 2 0 25 50 75 100 125 150 1 1 10 BIAS VOLTAGE (V) TA, AMBIENT TEMPERATURE (C) Figure 3. Pulse Derating Curve 100 Figure 4. Typical Junction Capacitance vs. Bias Voltage TYPICAL PROTECTION CIRCUIT Zin LOAD Vin http://onsemi.com 4 VL 1SMB10CAT3G Series, SZ1SMB10CAT3G Series APPLICATION NOTES Response Time minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot. Some input impedance represented by Zin is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation. In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitive effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 5. The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 6. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. The SMB series have a very good response time, typically < 1 ns and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout, V Duty Cycle Derating The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 7. Average power must be derated as the lead or ambient temperature rises above 25C. The average power derating curve normally given on data sheets may be normalized and used for this purpose. At first glance the derating curves of Figure 7 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 ms pulse. However, when the derating factor for a given pulse of Figure 7 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend. V Vin (TRANSIENT) OVERSHOOT DUE TO INDUCTIVE EFFECTS Vin (TRANSIENT) VL VL Vin td tD = TIME DELAY DUE TO CAPACITIVE EFFECT t t Figure 5. Figure 6. 1 0.7 DERATING FACTOR 0.5 0.3 0.2 PULSE WIDTH 10 ms 0.1 0.07 0.05 1 ms 0.03 100 ms 0.02 0.01 10 ms 0.1 0.2 0.5 1 2 5 10 D, DUTY CYCLE (%) 20 50 100 Figure 7. Typical Derating Factor for Duty Cycle http://onsemi.com 5 1SMB10CAT3G Series, SZ1SMB10CAT3G Series UL RECOGNITION including Strike Voltage Breakdown test, Endurance Conditioning, Temperature test, Dielectric Voltage-Withstand test, Discharge test and several more. Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their Protector category. The entire series has Underwriters Laboratory Recognition for the classification of protectors (QVGQ2) under the UL standard for safety 497B and File #E210057. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests http://onsemi.com 6 1SMB10CAT3G Series, SZ1SMB10CAT3G Series PACKAGE DIMENSIONS SMB CASE 403C−01 ISSUE A S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. D DIMENSION SHALL BE MEASURED WITHIN DIMENSION P. A D INCHES DIM MIN MAX A 0.160 0.180 B 0.130 0.150 C 0.075 0.095 D 0.077 0.083 H 0.0020 0.0060 J 0.006 0.012 K 0.030 0.050 P 0.020 REF S 0.205 0.220 B MILLIMETERS MIN MAX 4.06 4.57 3.30 3.81 1.90 2.41 1.96 2.11 0.051 0.152 0.15 0.30 0.76 1.27 0.51 REF 5.21 5.59 C K P J H SOLDERING FOOTPRINT* 2.261 0.089 2.743 0.108 2.159 0.085 SCALE 8:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. SURMETIC is a registered trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 7 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative 1SMB10CAT3/D
1SMB20CAT3 价格&库存

很抱歉,暂时无法提供与“1SMB20CAT3”相匹配的价格&库存,您可以联系我们找货

免费人工找货