0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FOD3150SDV

FOD3150SDV

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SMD8

  • 描述:

    OPTOISO 5KV GATE DRIVER 8SMDIP

  • 数据手册
  • 价格&库存
FOD3150SDV 数据手册
Gate Drive Optocoupler, High Noise Immunity, 1.0 A Output Current FOD3150 Description The FOD3150 is a 1.0 A Output Current Gate Drive Optocoupler, capable of driving most 800 V / 20 A IGBT / MOSFET. It is ideally suited for fast switching driving of power IGBT and MOSFETs used in motor control inverter applications, and high performance power system. It utilizes ON Semiconductor patented coplanar packaging technology, Optoplanar®, and optimized IC design to achieve high noise immunity, characterized by high common mode rejection. It consists of a gallium aluminum arsenide (AlGaAs) light emitting diode optically coupled to an integrated circuit with a high−speed driver for push−pull MOSFET output stage. Features • High Noise Immunity characterized by 20 kV/ms minimum Common • • • • • • • • Mode Rejection Use of P−channel MOSFETs at Output Stage Enables Output Voltage Swing close to the Supply Rail Wide Supply Voltage Range from 15 V to 30 V Fast Switching Speed ♦ 500 ns maximum Propagation Delay ♦ 300 ns maximum Pulse Width Distortion Under Voltage LockOut (UVLO) with Hysteresis Extended Industrial Temperate Range, −40°C to 100°C Temperature Range Safety and Regulatory Approvals ♦ UL1577, 5000 VRMS for 1 minute ♦ DIN EN/IEC60747−5−5 >8.0 mm Clearance and Creepage Distance (Option ‘T’) This is a Pb−Free Device www.onsemi.com 8 8 1 1 PDIP8 GW CASE 709AD 8 PDIP8 GW CASE 709AC 8 1 PDIP8 6.6x3.81, 2.54P CASE 646BW 1 PDIP8 9.655x6.6, 2.54P CASE 646CQ FUNCTIONAL BLOCK DIAGRAM NC 1 8 V DD ANODE 2 7 V O2 CATHODE 3 6 V O1 NC 4 5 V SS Applications • • • • Industrial Inverter Uninterruptible Power Supply Induction Heating Isolated IGBT/Power MOSFET Gate Drive Note: A 0.1 mF bypass capacitor must be connected between pins 5 and 8. ORDERING INFORMATION Related Resources • FOD3120, 2.5 A Output Current, Gate Drive Optocoupler Datasheet • www.onsemi.com/products/opto/ © Semiconductor Components Industries, LLC, 2018 January, 2021 − Rev. 5 1 See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet. Publication Order Number: FOD3150/D FOD3150 Table 1. TRUTH TABLE LED VDD – VSS “Positive Going” (Turn−on) VDD – VSS “Negative Going” (Turn−off) VO Off 0 V to 30 V 0 V to 30 V Low On 0 V to 11 V 0 V to 9.7 V Low On 11 V to 14 V 9.7 V to 12.7 V Transition On 14 V to 30 V 12.7 V to 30 V High Table 2. PIN DEFINITIONS Pin # Name Description 1 NC 2 Anode Not Connected 3 Cathode 4 NC Not Connected 5 VSS Negative Supply Voltage 6 VO2 Output Voltage 2 (internally connected to VO1) 7 VO1 Output Voltage 1 8 VDD Positive Supply Voltage LED Anode LED Cathode Table 3. SAFETY AND INSULATION RATINGS As per IEC 60747−5−2. This optocoupler is suitable for “safe electrical insulation” only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits. Symbol Parameter Min. Typ. Installation Classifications per DIN VDE 0110/1.89 Table 1 For Rated Main Voltage < 150 Vrms I–IV For Rated Main Voltage < 300 Vrms I–IV For Rated Main Voltage < 450 Vrms I–III For Rated Main Voltage < 600 Vrms Max. Unit I–III Climatic Classification 55/100/21 Pollution Degree (DIN VDE 0110/1.89) 2 CTI Comparative Tracking Index 175 VPR Input to Output Test Voltage, Method b, VIORM x 1.875 = VPR, 100% Production Test with tm = 1 s, Partial Discharge < 5 pC 1669 Input to Output Test Voltage, Method a, VIORM x 1.5 = VPR, Type and Sample Test with tm = 60 s, Partial Discharge < 5 pC 1335 VIORM Max Working Insulation Voltage 890 Vpeak VIOTM Highest Allowable Over Voltage 6000 Vpeak 8 mm External Creepage External Clearance 7.4 mm 10.16 mm Insulation Thickness 0.5 mm Safety Limit Values – Maximum Values Allowed in the Event of a Failure Case Temperature 150 Input Current 25 mA Output Power (Duty Factor ≤ 2.7 %) 250 mW Insulation Resistance at TS, VIO = 500 V 109 W External Clearance (for Option T−0.4” Lead Spacing) TCase IS,INPUT PS,OUTPUT RIO www.onsemi.com 2 °C FOD3150 Table 4. ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise specified.) Symbol Parameter Value Units TSTG Storage Temperature −55 to +125 °C TOPR Operating Temperature −40 to +100 °C Junction Temperature −40 to +125 °C 260 for 10 sec °C TJ Lead Wave Solder Temperature (refer to page 12 for reflow solder profile) TSOL IF(AVG) Average Input Current 25 mA VR Reverse Input Voltage 5 V 1.5 A Supply Voltage 0 to 35 V Peak Output Voltage 0 to VDD V Input Signal Rise and Fall Time 500 ns PDI Input Power Dissipation (2) (4) 45 mW PDO Output Power Dissipation (3) (4) 250 mW IO(PEAK) VDD – VSS VO(PEAK) tR(IN), tF(IN) Peak Output Current (1) Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Maximum pulse width = 10 ms, maximum duty cycle = 0.2 %. 2. Derate linearly above 87°C, free air temperature at a rate of 0.77 mW/°C. 3. No derating required across temperature range. 4. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings. Table 5. RECOMMENDED OPERATING CONDITIONS Symbol Parameter Value Units −40 to +100 °C Power Supply 15 to 30 V IF(ON) Input Current (ON) 7 to 16 mA VF(OFF) Input Voltage (OFF) 0 to 0.8 V Ambient Operating Temperature TA VDD – VSS Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. Table 6. ISOLATION CHARACTERISTICS Apply over all recommended conditions, typical value is measured at TA = 25°C Symbol Parameter Conditions Min. VISO Input−Output Isolation Voltage TA = 25°C, R.H.< 50 %, t = 1.0 minute, II−O ≤ 10 mA, 50 Hz (5) (6) RISO Isolation Resistance VI−O = 500 V (5) CISO Isolation Capacitance VI−O = 0 V, Frequency = 1.0 MHz Typ. Max. 5000 Units VRMS (5) 1011 W 1 pF 5. Device is considered a two terminal device: pins 2 and 3 are shorted together and pins 5, 6, 7 and 8 are shorted together. 6. 5,000 VRMS for 1 minute duration is equivalent to 6,000 VACRMS for 1 second duration. Table 7. ELECTRICAL CHARACTERISTICS Apply over all recommended conditions, typical value is measured at VDD = 30 V, VSS = Ground, TA = 25°C unless otherwise specified. Symbol VF D(VF / TA) BVR Parameter Input Forward Voltage Conditions IF = 10 mA Min. Typ. Max. Units 1.2 1.5 1.8 V −1.8 Temperature Coefficient of Forward Voltage Input Reverse Breakdown Voltage 5 IR = 10 mA www.onsemi.com 3 mV/°C V FOD3150 Table 7. ELECTRICAL CHARACTERISTICS (continued) Apply over all recommended conditions, typical value is measured at VDD = 30 V, VSS = Ground, TA = 25°C unless otherwise specified. Symbol CIN IOH IOL VOH Parameter Conditions Input Capacitance Min. f = 1 MHz, VF = 0 V High Level Output Current (7) Low Level Output Current (7) High Level Output Voltage Low Level Output Voltage Max. 60 VO = VDD – 0.75 V 0.2 VO = VDD – 4 V 1.0 VO = VDD + 0.75 V 0.2 VO = VDD + 4 V 1.0 IF = 10 mA, IO = −1 A IF = 10 mA, IO = −100 mA VOL Typ. pF A A V VDD – 6 V VDD – 4 V VDD – 0.5 V VDD – 0.1 V IF = 0 mA, IO = 1 A IF = 0 mA, IO = 100 mA Units VSS + 4 V VSS + 6 V VSS + 0.1 V VSS + 0.5 V V IDDH High Level Supply Current VO = Open, IF = 7 to 16 mA 2.8 5 mA IDDL Low Level Supply Current VO = Open, VF = 0 to 0.8 V 2.8 5 mA IFLH Threshold Input Current Low to High IO = 0 mA, VO > 5 V 2.3 5.0 mA VFHL Threshold Input Voltage High to Low VUVLO+ Under Voltage Lockout Threshold VUVLO– UVLOHYS IO = 0 mA, VO < 5 V 0.8 V IF = 1 0mA, VO > 5 V 11 12.7 14 V IF = 10 mA, VO < 5 V 9.7 11.2 12.7 V 1.5 Under Voltage Lockout Threshold Hysteresis V Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 7. Maximum pulse width = 10 ms, maximum duty cycle = 0.2 %. Table 8. SWITCHING CHARACTERISTICS Apply over all recommended conditions, typical value is measured at VDD = 30 V, VSS = Ground, TA = 25°C unless otherwise specified. Symbol Parameter Conditions tPHL Propagation Delay Time to Logic Low Output tPLH Propagation Delay Time to Logic High Output PWD PDD (Skew) IF = 7 mA to 16 mA, Rg = 20 W, Cg = 10 nF, f = 10 kHz, Duty Cycle = 50 % Min. Typ. Max. Units 100 275 500 ns 100 255 500 ns 20 300 ns 350 ns Pulse Width Distortion, | tPHL – tPLH | −350 Propagation Delay Difference Between Any Two Parts or Channels, (tPHL – tPLH) (8) tr Output Rise Time (10% – 90%) tf Output Fall Time (90% – 10%) 60 ns 60 ns tUVLO ON UVLO Turn On Delay IF = 10 mA , VO > 5 V 1.6 ms tUVLO OFF UVLO Turn Off Delay IF = 10 mA , VO < 5 V 0.4 ms | CMH | Common Mode Transient Immunity at Output High TA = 25°C, VDD = 30 V, IF = 7 to 16 mA, VCM = 2000 V (9) 20 50 kV/ms | CML | Common Mode Transient Immunity at Output Low TA = 25°C, VDD = 30 V, VF = 0 V, VCM = 2000 V (10) 20 50 kV/ms 8. The difference between tPHL and tPLH between any two FOD3150 parts under same test conditions. 9. Common mode transient immunity at output high is the maximum tolerable negative dVcm/dt on the trailing edge of the common mode impulse signal, Vcm, to assure that the output will remain high (i.e., VO > 15.0 V). 10. Common mode transient immunity at output low is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, Vcm, to assure that the output will remain low (i.e., VO < 1.0 V). www.onsemi.com 4 FOD3150 0.5 (VOH −VDD)−HIGH OUTPUT VOLTAGE DROP (V) (V OH −VDD) − OUTPUT HIGH VOLTAGE DROP (V) TYPICAL PERFORMANCE CURVES Frequency = 250 Hz Duty Cycle = 0.1% IF = 7 to 16 mA VDD =15 to 30 V VSS = 0 V 0.0 −0.5 TA =−40_C −1.0 TA =25_C TA =100 _ C −1.5 −2.0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 I OH − OUTPUT HIGH CURRENT (A) 0.00 VDD = 15 V to 30 V VSS = 0 V −0.05 IF = 7 mA to 16 mA IO = −100 mA −0.10 −0.15 −0.20 −0.25 −0.30 −40 −20 0 20 40 60 80 100 TA −AMBIENT TEMPERATURE (_C) Figure 1. Output High Voltage Drop vs. Output High Current Figure 2. Output High Voltage Drop vs. Ambient Temperature 0.25 Frequency = 250 Hz Duty Cycle = 99.9% V F(OFF) = −3.0 V to 0.8 V V DD = 15 V to 30 V 1.5 V SS = 0 V VOL −OUTPUT LOW VOLTAGE (V) VOL −OUTPUT LOW VOLTAGE (V) 2.0 T A = 100_C TA =25 _C 1.0 T A =−40 _C 0.5 0.0 0.00 0.25 0.50 0.75 1.00 1.25 VDD = 15 V to 30 V VSS = 0 V VF(OFF) = −3 V to 0.8 V I O = 100 mA 0.20 0.15 0.10 0.05 0.00 1.50 −40 IOL −OUTPUT LOW CURRENT (A) 0 20 40 60 80 100 TA −AMBIENT TEMPERATURE ( _C) Figure 4. Output Low Voltage vs. Ambient Temperature Figure 3. Output Low Voltage vs. Output Low Current 3.6 3.6 IDD −SUPPLY CURRENT (mA) VDD = 30 V VSS = 0 V IF = 0 mA (for IDDL ) IF = 10 mA (for I DDH) 3.4 IDD −SUPPLY CURRENT (mA) −20 3.2 3.0 IDDH 2.8 IDDL 2.6 IF = 10 mA (for I DDH) IF = 0 mA (for I DDL ) VSS =0, TA = 25_C 3.2 2.8 IDDH IDDL 2.4 2.4 2.2 2.0 −40 −20 0 20 04 60 80 100 15 TA −AMBIENT TEM PERATURE(_C) 20 25 VDD −SUPPLY VOLTAGE (V) Figure 5. Supply Current vs. Ambient Temperature Figure 6. Supply Current vs. Supply Voltage www.onsemi.com 5 30 400 4.0 VDD = 15 V to 30 V VSS = 0 V Output = Open 3.5 t P –PROPAGATION DELAY (ns) I FLH −LOW TO HIGH CURRENT THRESHOLD (mA) FOD3150 3.0 2.5 2.0 1.5 −20 0 20 40 60 80 100 300 tPHL 250 tPLH 200 150 18 TA −AMBIENT TEMPERATURE ( _C) 500 500 300 tP –PROPAGATION DELAY (ns) V DD = 30 V, V SS = 0 V Rg =20 W,Cg= 10 nF T A = 25 _C DUTY CYCLE = 50% f = 10 kHz 400 tPHL tPLH 200 6 8 10 12 14 30 DUTY CYCLE = 50% f = 10 kHz 400 300 tPHL tPLH 200 100 −40 16 −20 0 20 40 60 80 100 T A –AMBIENT TEMPERATURE (_C) Figure 10. Propagation Delay vs. Ambient Temperature Figure 9. Propagation Delay vs. LED Forward Current 500 IF = 10 mA V DD = 30 V, VSS = 0 V tP –PROPAGATION DELAY (ns) 400 27 IF = 10 mA V DD = 30 V, VSS = 0 V Rg= 20 W , Cg = 10 nF IF –FORWARD LED CURRENT (mA) 500 24 Figure 8. Propagation Delay vs. Supply Voltage 100 tP –PROPAGATION DELAY (ns) 21 V DD –SUPPLY VOLTAGE (V) Figure 7. Low to High Input Current Threshold vs. Ambient Temperature tP –PROPAGATION DELAY (ns) 350 100 15 1.0 −40 IF = 10 mA TA = 25_C Rg=20 W ,Cg = 10 nF DUTYCYCLE = 50% f = 10 kHz Cg = 10 nF TA = 25_C DUTY CYCLE = 50% f = 10 kHz 300 tPHL tPLH 200 100 IF = 10 mA V DD = 30 V, V SS = 0 V Rg= 20 W TA = 25_C DUTY CYCLE = 50% f = 10 kHz 400 300 t PHL t PLH 200 100 01 0 203 04 05 0 0 20 40 60 80 100 C g −LOAD CAPACITANCE (nF) Rg −SERIES LOAD RESISTANCE(W) Figure 11. Propagation Delay vs. Series Load Resistance Figure 12. Propagation Delay vs. Load Capacitance www.onsemi.com 6 FOD3150 35 100 T = 25_C A V DD = 30 V IF −FORWARD CURRENT (mA) V –OUTPUT VOLTAGE (V) 30 25 20 O 15 10 5 10 TA = 100 _C 1 T A =−40_C 0.1 TA =25 _C 0.01 0.001 0.6 0 1 2 3 I –FORWARD LED CURRENT (mA) 4 1.0 1.2 1.4 1.6 1.8 5 Figure 14. Input Forward Current vs. Forward Voltage F Figure 13. Transfer Characteristics 14 (12.75,12.80) 12 (11.25,11.30) 10 8 6 O V –OUTPUT VOLTAGE (V) 0.8 VF −FORWARD VOLTAGE (V) 0 4 2 (11.20,0. 00) 0 0 5 (V DD 10 −V (12. 70,0.00) 15 20 )–SUPPLY VOLTAGE (V) SS Figure 15. Under Voltage Lockout www.onsemi.com 7 FOD3150 TEST CIRCUIT Power Supply + + C1 0.1 mF VDD = 15 V to 30 V C2 47 mF Pulse Generator PW = 4.99 ms Period = 5 ms ROUT = 50  1 8 2 7 3 6 Pulse−In R2 100  Iol D1 VOL LED−IFmon Power Supply + + C3 0.1 mF V=4V C4 47 mF 5 4 R1 100  To Scope Test Conditions: Frequency = 200 Hz Duty Cycle = 99.8 % VDD = 15 V to 30 V VSS = 0 V VF(OFF) = −3.0 V to 0.8 V Figure 16. IOL Test Circuit Power Supply + + C1 0.1 mF VDD = 15 V to 30 V C2 47 mF Pulse Generator PW = 10 ms Period = 5 ms ROUT = 50  1 8 2 7 Pulse−In R2 100  + + C3 0.1 mF Ioh VOH LED−IFmon 5 4 R1 100  Test Conditions: Frequency = 200 Hz Duty Cycle = 0.2 % VDD = 15 V to 30 V V SS = 0 V I F = 7 mA to 16 mA Figure 17. IOH Test Circuit www.onsemi.com 8 D1 Current Probe To Scope Power Supply V=4V – 6 3 C4 47 mF FOD3150 1 8 2 7 0.1 mF IF = 7 to 16 mA VDD = 15 to 30 V + – VDD = 15 to 30 V VO 6 3 + – 100 mA 5 4 Figure 18. VOH Test Circuit 1 8 2 7 100 mA 3 6 4 5 0.1 mF VO Figure 19. VOL Test Circuit 1 8 2 7 0.1 mF IF = 7 to 16 mA 3 6 4 5 + – VDD = 30 V + – VDD = 30 V VO Figure 20. IDDH Test Circuit + – 1 8 2 7 0.1 mF VF = 0 to 0.8 V 3 6 4 5 Figure 21. IDDL Test Circuit www.onsemi.com 9 VO FOD3150 IF 1 8 2 7 3 6 4 5 0.1 mF + – VDD = 15 to 30 V + – VDD = 15 to 30 V VO > 5 V Figure 22. IFLH Test Circuit + – 1 8 2 7 0.1 mF VF = 0 to 0.8 V 3 6 4 5 VO Figure 23. VFHL Test Circuit 1 8 2 7 0.1 mF + – IF = 10 mA 3 6 4 5 Figure 24. UVLO Test Circuit www.onsemi.com 10 VO = 5 V 15 V or 30 V VDD Ramp FOD3150 1 8 2 7 0.1 mF VO + – 3 Probe F = 10 kHz DC = 50 % + – VDD = 15 to 30 V Rg = 20 W 6 Cg = 10 nF 50 W 4 5 IF tr tf 90 % 50 % VOUT 10 % tPHL tPLH Figure 25. tPHL, tPLH, tR and tF Test Circuit and Waveforms IF 1 8 2 7 A 0.1 mF + – B 5V + – 3 6 4 5 VDD = 30V VO +– VCM = 2,000 V VCM 0V Dt VOH VO Switch at A: I F = 10 mA VO VOL Switch at B: IF = 0 mA Figure 26. CMR Test Circuit and Waveforms www.onsemi.com 11 FOD3150 REFLOW PROFILE 245°C, 10–30 s 300 260°C peak Temperature (ºC) 250 200 150 Time above 183°C,
FOD3150SDV 价格&库存

很抱歉,暂时无法提供与“FOD3150SDV”相匹配的价格&库存,您可以联系我们找货

免费人工找货
FOD3150SDV
  •  国内价格 香港价格
  • 1000+8.017691000+0.96970
  • 2000+7.580422000+0.91681
  • 5000+7.405475000+0.89565
  • 10000+7.2888410000+0.88155

库存:1000

FOD3150SDV
    •  国内价格
    • 65+7.73779

    库存:246