0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC100LVELT23DG

MC100LVELT23DG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOIC8_150MIL

  • 描述:

    Mixed Signal Translator Unidirectional 1 Circuit 2 Channel 8-SOIC

  • 数据手册
  • 价格&库存
MC100LVELT23DG 数据手册
MC100LVELT23 3.3V Dual Differential LVPECL/LVDS to LVTTL Translator Description The MC100LVELT23 is a dual differential LVPECL/LVDS to LVTTL translator. Because LVPECL (Positive ECL) or LVDS levels are used only +3.3 V and ground are required. The small outline 8-lead package and the dual gate design of the LVELT23 makes it ideal for applications which require the translation of a clock and a data signal. The LVELT23 is available in only the ECL 100K standard. Since there are no LVPECL outputs or an external VBB reference, the LVELT23 does not require both ECL standard versions. The LVPECL inputs are differential. Therefore, the MC100LVELT23 can accept any standard differential LVPECL input referenced from a VCC of +3.3 V. www.onsemi.com 8 8 1 1 1 • • • • DFN−8 MN SUFFIX CASE 506AA MARKING DIAGRAMS* Features 2.0 ns Typical Propagation Delay Maximum Frequency > 180 MHz Differential LVPECL Inputs PECL Mode Operating Range:VCC = 3.0 V to 3.8 V with GND = 0 V 24 mA LVTTL Outputs Flow Through Pinouts Internal Pulldown and Pullup Resistors These Devices are Pb-Free, Halogen Free and are RoHS Compliant 8 8 KVT23 ALYW G 1 1 SOIC−8 4J M G G • • • • TSSOP−8 DT SUFFIX CASE 948R−02 SOIC−8 NB D SUFFIX CASE 751−07 KR23 ALYWG G 1 TSSOP−8 A L Y W M G 4 DFN−8 = Assembly Location = Wafer Lot = Year = Work Week = Date Code = Pb-Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION Package Shipping† MC100LVELT23DG SOIC−8 NB (Pb-Free) 98 Units/Tube MC100LVELT23DR2G SOIC−8 NB (Pb-Free) 2500/Tape & Reel MC100LVELT23DTG TSSOP−8 (Pb-Free) 100 Units/Tube MC100LVELT23DTRG TSSOP−8 (Pb-Free) 2500/Tape & Reel MC100LVELT23MNRG DFN−8 (Pb-Free) 1000/Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. © Semiconductor Components Industries, LLC, 2016 July, 2016 − Rev. 19 1 Publication Order Number: MC100LVELT23/D MC100LVELT23 Table 1. PIN DESCRIPTION D0 D0 1 8 2 LVPECL VCC 7 Q0 Pin Q0, Q1 D0*, D1* D0*, D1* VCC GND EP LVTTL D1 3 6 Q1 D1 4 5 GND Function LVTTL Outputs Differential LVPECL Inputs Positive Supply Ground (DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open. ** Pins will default to VCC/2 when left open. Figure 1. 8-Lead Pinout (Top View) and Logic Diagram Table 2. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 50 kW Internal Input Pullup Resistor 50 kW ESD Protection Human Body Model Machine Model CDM > 1500 V > 100 V > 2000 V Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) SOIC−8 NB TSSOP−8 DFN−8 Pb-Free Pkg Level 1 Level 3 Level 1 Flammability Rating Oxygen Index: 28 to 34 UL 94 V−0 @ 0.125 in Transistor Count 91 Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. Refer to Application Note AND8003/D for additional information. www.onsemi.com 2 MC100LVELT23 Table 3. MAXIMUM RATINGS Symbol Rating Unit PECL Power Supply GND = 0 V 3.8 V VI Input Voltage GND = 0 V, VI not more positive than VCC 3.8 V Iout Output Current Continuous Surge 50 100 mA TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature −65 to +150 °C qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm SOIC−8 NB 190 130 °C/W qJC Thermal Resistance (Junction-to-Case) Standard Board SOIC−8 NB 41 to 44 ± 5% °C/W qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm TSSOP−8 185 140 °C/W qJC Thermal Resistance (Junction-to-Case) Standard Board TSSOP−8 41 to 44 ± 5% °C/W qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm DFN−8 129 84 °C/W Tsol Wave Solder Pb-Free < 2 to 3 sec @ 260°C 265 °C qJC Thermal Resistance (Junction-to-Case) (Note 1) 35 to 40 °C/W VCC Parameter Condition 1 Condition 2 DFN−8 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. JEDEC standard multilayer board − 2S2P (2 signal, 2 power) Table 4. LVPECL INPUT DC CHARACTERISTICS (VCC = 3.3 V; GND = 0 V (Note 1)) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit ICCH Power Supply Current (Outputs set to HIGH) 10 20 35 10 20 35 10 20 35 mA ICCL Power Supply Current (Outputs set to LOW) 15 27 40 15 27 40 15 27 40 mA VIH Input HIGH Voltage (Note 3) 2135 2420 2135 2420 2135 2420 mV VIL Input LOW Voltage (Note 3) 1490 1825 1490 1825 1490 1825 mV 1.2 VCC 1.2 VCC 1.2 VCC V 150 mA VIHCMR Input HIGH Voltage Common Mode Range (Notes 2 and 3) IIH Input HIGH Current IIL Input LOW Current 150 D −150 150 −150 −150 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. All values vary 1:1 with VCC. VCC can vary ±0.3 V. 2. VIHCMR min varies 1:1 with GND, max varies 1:1 with VCC. 3. LVTTL output RL = 500 W to GND. www.onsemi.com 3 MC100LVELT23 Table 5. LVTTL OUTPUT DC CHARACTERISTICS (VCC = 3.3 V; GND = 0 V (Note 1)) −40°C Symbol Characteristic Min VOH Output HIGH Voltage (IOH = −3.0 mA) (Note 2) 2.4 VOL Output LOW Voltage (IOL = 24 mA) (Note 2) IOS Output Short Circuit Current 25°C Typ Max Min 85°C Typ Max 2.4 −50 Typ Max 2.4 0.5 −180 Min V 0.5 −180 −50 Unit −180 0.5 V −50 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. All values vary 1:1 with VCC. VCC can vary ±0.3 V. 2. LVTTL output RL = 500 W to GND. Table 6. AC CHARACTERISTICS (VCC = 3.3 V; GND = 0 V (Notes 1, 2)) −40°C Symbol Min Characteristic Fmax Maximum Toggle Frequency (Note 3) 180 tPLH, tPHL Propagation Delay to Output Differential 1.0 tSK++ tSK−− tSKPP tJITTER VPP tr tf Typ 25°C Max Min 85°C Typ Max 180 1.5 2.5 Output-to-Output Skew++ Output-to-Output Skew−− Part-to-Part Skew (Note 4) 15 35 70 Random Clock Jitter (RMS) Min Typ Max 180 1.0 1.7 2.5 60 80 500 15 40 70 4.0 10 1.0 Unit MHz 1.7 2.5 ns 70 80 500 30 40 140 125 80 500 ps 4.0 10 4.0 10 ps Input Voltage Swing (Differential Configuration) (Note 5) 200 800 1000 200 800 1000 200 800 1000 mV Output Rise/Fall Times (0.8 V − 2.0 V) 330 600 900 330 600 900 330 650 900 ps Q, Q NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. All values vary 1:1 with VCC. VCC can vary ±0.3 V. 2. LVTTL output RL = 500 W to GND and CL = 20 pF to GND. Refer to Figure 2. 3. Fmax guaranteed for functionality only. VOL and VOH levels are guaranteed at DC only. 4. Skews are measured between outputs under identical conditions. 5. 200 mV input guarantees full logic swing at the output. APPLICATION TTL RECEIVER CHARACTERISTIC TEST *CL includes fixture capacitance CL * RL AC TEST LOAD GND Figure 2. TTL Output Loading Used for Device Evaluation www.onsemi.com 4 MC100LVELT23 Resource Reference of Application Notes AN1405/D − ECL Clock Distribution Techniques AN1406/D − Designing with PECL (ECL at +5.0 V) AN1503/D − ECLinPSt I/O SPiCE Modeling Kit AN1504/D − Metastability and the ECLinPS Family AN1568/D − Interfacing Between LVDS and ECL AN1672/D − The ECL Translator Guide AND8001/D − Odd Number Counters Design AND8002/D − Marking and Date Codes AND8020/D − Termination of ECL Logic Devices AND8066/D − Interfacing with ECLinPS AND8090/D − AC Characteristics of ECL Devices ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. www.onsemi.com 5 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS DFN8 2x2, 0.5P CASE 506AA ISSUE F DATE 04 MAY 2016 1 SCALE 4:1 D PIN ONE REFERENCE 2X 0.10 C 2X 0.10 C A B L1 ÇÇ ÇÇ ÇÇ DETAIL A E OPTIONAL CONSTRUCTIONS ÉÉ ÇÇ ÉÉ ÇÇ EXPOSED Cu TOP VIEW A DETAIL B 0.10 C NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 . 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. L L DIM A A1 A3 b D D2 E E2 e K L L1 ÉÉ ÉÉ ÇÇ A3 MOLD CMPD A1 DETAIL B 0.08 C (A3) NOTE 4 SIDE VIEW DETAIL A ALTERNATE CONSTRUCTIONS A1 C D2 8X 4 1 SEATING PLANE RECOMMENDED SOLDERING FOOTPRINT* L 5 8 e/2 e 8X 0.90 b 0.05 C 8X 0.50 2.30 1 0.10 C A B 8X 0.30 NOTE 3 BOTTOM VIEW 0.50 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. GENERIC MARKING DIAGRAM* 1 1.30 PACKAGE OUTLINE E2 K MILLIMETERS MIN MAX 0.80 1.00 0.00 0.05 0.20 REF 0.20 0.30 2.00 BSC 1.10 1.30 2.00 BSC 0.70 0.90 0.50 BSC 0.30 REF 0.25 0.35 −−− 0.10 XXMG G XX = Specific Device Code M = Date Code G = Pb−Free Device *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. DOCUMENT NUMBER: DESCRIPTION: 98AON18658D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. DFN8, 2.0X2.0, 0.5MM PITCH PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2016 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AK 8 1 SCALE 1:1 −X− DATE 16 FEB 2011 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. A 8 5 S B 0.25 (0.010) M Y M 1 4 −Y− K G C N X 45 _ SEATING PLANE −Z− 0.10 (0.004) H M D 0.25 (0.010) M Z Y S X J S 8 8 1 1 IC 4.0 0.155 XXXXX A L Y W G IC (Pb−Free) = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package XXXXXX AYWW 1 1 Discrete XXXXXX AYWW G Discrete (Pb−Free) XXXXXX = Specific Device Code A = Assembly Location Y = Year WW = Work Week G = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. 1.270 0.050 SCALE 6:1 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 8 8 XXXXX ALYWX G XXXXX ALYWX 1.52 0.060 0.6 0.024 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT* 7.0 0.275 DIM A B C D G H J K M N S mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. STYLES ON PAGE 2 DOCUMENT NUMBER: DESCRIPTION: 98ASB42564B SOIC−8 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com SOIC−8 NB CASE 751−07 ISSUE AK DATE 16 FEB 2011 STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1 STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 14: PIN 1. N−SOURCE 2. N−GATE 3. P−SOURCE 4. P−GATE 5. P−DRAIN 6. P−DRAIN 7. N−DRAIN 8. N−DRAIN STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6 STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1 STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1 DOCUMENT NUMBER: DESCRIPTION: 98ASB42564B SOIC−8 NB STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSSOP 8 CASE 948R−02 ISSUE A DATE 04/07/2000 SCALE 2:1 8x 0.15 (0.006) T U 0.10 (0.004) S 2X L/2 L 8 5 1 PIN 1 IDENT 0.15 (0.006) T U K REF T U S V 4 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. S 0.25 (0.010) B −U− A −V− S M M F DETAIL E C 0.10 (0.004) −T− SEATING PLANE D −W− G DETAIL E DOCUMENT NUMBER: DESCRIPTION: 98AON00236D TSSOP 8 DIM A B C D F G K L M MILLIMETERS MIN MAX 2.90 3.10 2.90 3.10 0.80 1.10 0.05 0.15 0.40 0.70 0.65 BSC 0.25 0.40 4.90 BSC 0_ 6_ INCHES MIN MAX 0.114 0.122 0.114 0.122 0.031 0.043 0.002 0.006 0.016 0.028 0.026 BSC 0.010 0.016 0.193 BSC 0_ 6_ Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MC100LVELT23DG 价格&库存

很抱歉,暂时无法提供与“MC100LVELT23DG”相匹配的价格&库存,您可以联系我们找货

免费人工找货