0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC74VHC244DT

MC74VHC244DT

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP20_6.5X4.4MM

  • 描述:

    IC BUF NON-INVERT 5.5V 20TSSOP

  • 数据手册
  • 价格&库存
MC74VHC244DT 数据手册
MC74VHC244 Octal Bus Buffer The MC74VHC244 is an advanced high speed CMOS octal bus buffer fabricated with silicon gate CMOS technology. The MC74VHC244 is a noninverting 3−state buffer, and has two active−low output enables. This device is designed to be used with 3−state memory address drivers, etc. The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7 V, allowing the interface of 5 V systems to 3 V systems. • High Speed: tPD = 3.9 ns (Typ) at VCC = 5 V • Low Power Dissipation: ICC = 4 mA (Max) at TA = 25°C • High Noise Immunity: VNIH = VNIL = 28% VCC • Power Down Protection Provided on Inputs • Balanced Propagation Delays • Designed for 2 V to 5.5 V Operating Range • Low Noise: VOLP = 0.9 V (Max) • Pin and Function Compatible with Other Standard Logic Families • Latchup Performance Exceeds 300 mA • ESD Performance: Human Body Model > 2000 V Machine Model > 200 V • Chip Complexity: 136 FETs • NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable • These Devices are Pb−Free and are RoHS Compliant http://onsemi.com MARKING DIAGRAMS 20 20 1 SOIC−20 DW SUFFIX CASE 751D VHC244 AWLYYWWG 1 20 20 1 VHC 244 ALYWG G TSSOP−20 DT SUFFIX CASE 948E 1 VHC244 = Specific Device Code A = Assembly Location WL, L = Wafer Lot Y = Year WW, W = Work Week G or G = Pb−Free Package (Note: Microdot may be in either location) PIN ASSIGNMENT A1 A2 A3 A4 DATA INPUTS B1 B2 B3 B4 OUTPUT ENABLES 2 18 4 16 6 14 8 12 11 9 13 7 15 5 17 3 YA1 YA2 YA3 YA4 YB1 NONINVERTING OUTPUTS YB2 OEA 1 20 VCC A1 2 19 OEB YB4 3 18 YA1 A2 4 17 B4 YB3 5 16 YA2 A3 6 15 B3 YB2 7 14 YA3 A4 8 13 B2 YB1 9 12 YA4 GND 10 11 B1 YB3 ORDERING INFORMATION YB4 See detailed ordering and shipping information in the Ordering Information Table on page 2 of this data sheet. 1 OEA 19 OEB Figure 1. Logic Diagram © Semiconductor Components Industries, LLC, 2013 March, 2013 − Rev. 9 1 Publication Order Number: MC74VHC244/D MC74VHC244 FUNCTION TABLE INPUTS OUTPUTS OEA, OEB A, B YA, YB L L L L H H H X Z ORDERING INFORMATION Device MC74VHC244DWR2G Package Shipping† SOIC−20 WB (Pb−Free) 1000/Tape & Reel MC74VHC244DTG 75 Units/Rail TSSOP−20 (Pb−Free) MC74VHC244DTR2G 2500/Tape & Reel NLV74VHC244DTR2G* 2500/Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. MAXIMUM RATINGS (Note 1) Symbol Parameter Value Unit VCC Positive DC Supply Voltage −0.5 to +7.0 V VIN Digital Input Voltage −0.5 to +7.0 V VOUT DC Output Voltage −0.5 to VCC +0.5 V IIK Input Diode Current −20 mA IOK Output Diode Current $20 mA IOUT DC Output Current, per Pin $25 mA ICC DC Supply Current, VCC and GND Pins $75 mA PD Power Dissipation in Still Air 500 450 mW TSTG Storage Temperature Range −65 to +150 °C VESD ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4) >2000 >200 >2000 V ILATCHUP Latchup Performance Above VCC and Below GND at 125°C (Note 5) $300 mA qJA Thermal Resistance, Junction−to−Ambient 96 128 °C/W SOIC TSSOP SOIC TSSOP Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Vin and Vout should be constrained to the range GND v (Vin or Vout) v VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open. 2. Tested to EIA/JESD22−A114−A 3. Tested to EIA/JESD22−A115−A 4. Tested to JESD22−C101−A 5. Tested to EIA/JESD78 http://onsemi.com 2 MC74VHC244 RECOMMENDED OPERATING CONDITIONS Symbol Characteristics Min Max Unit 2.0 5.5 V DC Input Voltage 0 5.5 V VOUT DC Output Voltage 0 VCC V TA Operating Temperature Range, all Package Types −55 125 °C tr, tf Input Rise or Fall Time 0 100 20 ns/V VCC DC Supply Voltage VIN VCC = 3.3 V + 0.3 V VCC = 5.0 V + 0.5 V 90 419,300 47.9 100 178,700 20.4 110 79,600 9.4 120 37,000 4.2 130 17,800 2.0 140 8,900 1.0 TJ = 80 ° C 117.8 TJ = 90 ° C 1,032,200 TJ = 100 ° C 80 FAILURE RATE OF PLASTIC = CERAMIC UNTIL INTERMETALLICS OCCUR TJ = 110° C Time, Years TJ = 120° C Time, Hours TJ = 130 ° C Junction Temperature °C NORMALIZED FAILURE RATE DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES 1 1 10 100 1000 TIME, YEARS Figure 2. Failure Rate vs. Time Junction Temperature DC CHARACTERISTICS (Voltages Referenced to GND) VCC Symbol VIH VIL VOH Parameter Condition Minimum High−Level Input Voltage Maximum Low−Level Input Voltage Maximum High−Level Output Voltage VIN = VIH or VIL IOH = −50 mA VIN = VIH or VIL IOH = −4 mA IOH = −8 mA VOL Maximum Low−Level Output Voltage VIN = VIH or VIL IOL = 50 mA VIN = VIH or VIL IOH = 4 mA IOH = 8 mA (V) TA = 25°C Min Typ TA ≤ 85°C Max Min Max −55°C ≤ TA ≤ 125°C Min 2.0 1.5 1.5 1.5 1.5 3.0 to 5.5 VCCX 0.7 VCCX 0.7 VCCX 0.7 VCCX 0.7 Max V 2.0 0.5 0.5 0.5 3.0 to 5.5 VCCX 0.3 VCCX 0.3 VCCX 0.3 2.0 3.0 4.5 1.9 2.9 4.4 3.0 4.5 2.58 3.94 2.0 3.0 4.5 2.0 3.0 4.5 0.0 0.0 0.0 1.9 2.9 4.4 1.9 2.9 4.4 2.48 3.8 2.34 3.66 Unit V V 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.0 4.5 0.36 0.36 0.44 0.44 0.52 0.52 V IIN Input Leakage Current VIN = 5.5 V or GND 0 to 5.5 ±0.1 ±1.0 ±1.0 mA IOZ Maximum 3−State Leakage Current VIN = VIH or VIL 5.5 ±0.25 ±2.5 ±2.5 mA Maximum Quiescent Supply Current (per package) VIN = VCC or GND 5.5 4.0 40.0 40.0 mA ICC VOUT = VCC or GND http://onsemi.com 3 MC74VHC244 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0 ns) TA = 25°C Symbol tPLH, tPHL tPZL, tPZH tPLZ, tPHZ tOSLH, tOSHL Parameter Min Test Conditions −55°C 3 TA 3 125°C TA 3 85°C Typ Max Min Max Min Max Unit ns Maximum Propagation Delay, A to YA or B to YB VCC = 3.3 ± 0.3 V CL = 15 pF CL = 50 pF 5.8 8.3 8.4 11.9 1.0 1.0 10.0 13.5 1.0 1.0 11.0 14.5 VCC = 5.0 ± 0.5 V CL = 15 pF CL = 50 pF 3.9 5.4 5.5 7.5 1.0 1.0 6.5 8.5 1.0 1.0 7.5 9.5 Output Enable Time OEA to YA or OEB to YB VCC = 3.3 ± 0.3 V RL = 1 kW CL = 15 pF CL = 50 pF 6.6 9.1 10.6 14.1 1.0 1.0 12.5 16.0 1.0 1.0 13.5 17.0 VCC = 5.0 ± 0.5 V RL = 1 kW CL = 15 pF CL = 50 pF 4.7 6.2 7.3 9.3 1.0 1.0 8.5 10.5 1.0 1.0 9.5 11.5 Output Disable Time OEA to YA or OEB to YB VCC = 3.3 ± 0.3 V RL = 1 kW CL = 50 pF 10.3 14.0 1.0 16.0 1.0 17.0 VCC = 5.0 ± 0.5 V RL = 1 kW CL = 50 pF 6.7 9.2 1.0 10.5 1.0 11.5 Output to Output Skew VCC = 3.3 ± 0.3 V (Note 6) CL = 50 pF 1.5 1.5 1.5 VCC = 5.0 ± 0.5 V (Note 6) CL = 50 pF 1.0 1.0 1.5 10 10 10 Cin Maximum Input Capacitance 4 Cout Maximum Three−State Output Capacitance (Output in High−Impedance State) 6 ns ns ns pF pF Typical @ 25°C, VCC = 5.0V CPD 19 Power Dissipation Capacitance (Note 7) pF 6. Parameter guaranteed by design. tOSLH = |tPLHm − tPLHn|, tOSHL = |tPHLm − tPHLn|. 7. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD  VCC  fin + ICC / 8 (per bit). CPD is used to determine the no−load dynamic power consumption; PD = CPD  VCC2  fin + ICC  VCC. NOISE CHARACTERISTICS (Input tr = tf = 3.0 ns, CL = 50 pF, VCC = 5.0 V) TA = 25°C Symbol Typ Parameter Max Unit VOLP Quiet Output Maximum Dynamic VOL 0.6 0.9 V VOLV Quiet Output Minimum Dynamic VOL −0.6 −0.9 V VIHD Minimum High Level Dynamic Input Voltage 3.5 V VILD Maximum Low Level Dynamic Input Voltage 1.5 V http://onsemi.com 4 MC74VHC244 SWITCHING WAVEFORMS VCC VCC A or B OEA or OEB 50% 50% GND GND tPLH YA or YB tPZL tPHL tPZH VOL +0.3V tPHZ VOH -0.3V 50% VCC YA or YB Figure 3. Switching Waveform HIGH IMPEDANCE 50% VCC YA or YB 50% VCC tPLZ HIGH IMPEDANCE Figure 4. Switching Waveform TEST CIRCUITS TEST POINT TEST POINT OUTPUT DEVICE UNDER TEST OUTPUT DEVICE UNDER TEST CL* 1 kW CL* CONNECT TO VCC WHEN TESTING tPLZ AND tPZL. CONNECT TO GND WHEN TESTING tPHZ AND tPZH. *Includes all probe and jig capacitance *Includes all probe and jig capacitance Figure 5. Test Circuit Figure 6. Test Circuit INPUT Figure 7. Input Equivalent Circuit http://onsemi.com 5 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−20 WB CASE 751D−05 ISSUE H DATE 22 APR 2015 SCALE 1:1 A 20 q X 45 _ M E h 0.25 H NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. 11 B M D 1 10 20X B b 0.25 M T A S B DIM A A1 b c D E e H h L q S L A 18X e SEATING PLANE A1 c T GENERIC MARKING DIAGRAM* RECOMMENDED SOLDERING FOOTPRINT* 20 20X 20X 1.30 0.52 20 XXXXXXXXXXX XXXXXXXXXXX AWLYYWWG 11 1 11.00 1 XXXXX A WL YY WW G 10 1.27 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: DESCRIPTION: MILLIMETERS MIN MAX 2.35 2.65 0.10 0.25 0.35 0.49 0.23 0.32 12.65 12.95 7.40 7.60 1.27 BSC 10.05 10.55 0.25 0.75 0.50 0.90 0_ 7_ 98ASB42343B SOIC−20 WB = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSSOP−20 WB CASE 948E ISSUE D DATE 17 FEB 2016 SCALE 2:1 20X 0.15 (0.006) T U 2X L K REF 0.10 (0.004) S L/2 20 M T U S V ÍÍÍÍ ÍÍÍÍ ÍÍÍÍ K K1 S J J1 11 B SECTION N−N −U− PIN 1 IDENT 0.25 (0.010) N 1 10 M 0.15 (0.006) T U S A −V− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. N F DETAIL E −W− C G D H DETAIL E 0.100 (0.004) −T− SEATING PLANE DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 6.40 6.60 4.30 4.50 --1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.27 0.37 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.252 0.260 0.169 0.177 --0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.011 0.015 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT 7.06 XXXX XXXX ALYWG G 1 0.65 PITCH 16X 0.36 16X 1.26 DOCUMENT NUMBER: 98ASH70169A DESCRIPTION: TSSOP−20 WB A L Y W G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. DIMENSIONS: MILLIMETERS Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MC74VHC244DT 价格&库存

很抱歉,暂时无法提供与“MC74VHC244DT”相匹配的价格&库存,您可以联系我们找货

免费人工找货