0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC74VHCT138ADTRG

MC74VHCT138ADTRG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP16

  • 描述:

    IC DECODER/DEMUX 1X3:8 16TSSOP

  • 数据手册
  • 价格&库存
MC74VHCT138ADTRG 数据手册
MC74VHCT138A 3-to-8 Line Decoder The MC74VHCT138A is an advanced high speed CMOS 3−to−8 decoder fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. When the device is enabled, three Binary Select inputs (A0 − A2) determine which one of the outputs (Y0 − Y7) will go Low. When enable input E3 is held Low or either E2 or E1 is held High, decoding function is inhibited and all outputs go high. E3, E2, and E1 inputs are provided to ease cascade connection and for use as an address decoder for memory systems. The VHCT inputs are compatible with TTL levels. This device can be used as a level converter for interfacing 3.3 V to 5.0 V, because they have full 5.0 V CMOS level output swings. The VHCT138A input structures provide protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. The output structures also provide protection when VCC = 0 V. These input and output structures help prevent device destruction caused by supply voltage − input/output voltage mismatch, battery backup, hot insertion, etc. http://onsemi.com MARKING DIAGRAMS 16 SOIC−16 D SUFFIX CASE 751B 1 1 16 • • High Speed: tPD = 7.6 ns (Typ) at VCC = 5.0 V Low Power Dissipation: ICC = 4 mA (Max) at TA = 25°C TTL−Compatible Inputs: VIL = 0.8 V; VIH = 2.0 V Power Down Protection Provided on Inputs and Outputs Balanced Propagation Delays Designed for 4.5 V to 5.5 V Operating Range Pin and Function Compatible with Other Standard Logic Families Latchup Performance Exceeds 300 mA ESD Performance: Human Body Model > 2000 V; Machine Model > 200 V Chip Complexity: 122 FETs or 30.5 Equivalent Gates These Devices are Pb−Free and are RoHS Compliant VHCT 138A ALYWG G TSSOP−16 DT SUFFIX CASE 948F 1 1 Features • • • • • • • • • VHCT138AG AWLYWW A = Assembly Location WL, L = Wafer Lot Y = Year WW, W = Work Week G or G = Pb−Free Package (Note: Microdot may be in either location) PIN ASSIGNMENT A0 1 16 VCC A1 2 15 Y0 A2 3 14 Y1 E1 4 13 Y2 E2 5 12 Y3 E3 6 11 Y4 Y7 7 10 Y5 GND 8 9 Y6 ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. © Semiconductor Components Industries, LLC, 2011 May, 2011 − Rev. 4 1 Publication Order Number: MC74VHCT138A/D MC74VHCT138A FUNCTION TABLE Inputs LOGIC DIAGRAM Outputs 15 E3 E2 E1 A2 A1 A0 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 X X L X H X H X X X X X X X X X X X H H H H H H H H H H H H H H H H H H H H H H H H H H H H L L L L L L L L L L L L L L H H L H L H L H H H H L H H H H L H H H H L H H H H H H H H H H H H H H H H H H H H L L L L L L L L H H H H L L H H L H L H H H H H H H H H H H H H H H H H L H H H H L H H H H L H H H H L A0 SELECT INPUTS A1 A2 E3 ENABLE INPUTS E2 E1 Y0 14 Y1 13 Y2 12 Y3 11 Y4 10 Y5 9 Y6 7 Y7 1 2 3 6 5 4 H = high level (steady state); L = low level (steady state); X = don’t care EXPANDED LOGIC DIAGRAM 15 14 A0 A1 13 1 12 2 11 A2 3 10 E2 E1 Y1 Y2 Y3 Y4 Y5 5 4 9 7 E3 Y0 6 IEC LOGIC DIAGRAM A0 1 A1 2 A2 3 BIN/OCT 1 0 2 4 & E3 6 E2 5 E1 4 EN 15 Y0 A0 1 1 14 Y1 A1 2 2 13 Y2 A2 3 3 12 Y3 4 11 Y4 5 10 Y5 E3 6 6 9 Y6 E2 5 7 7 Y7 E1 4 DMUX 0 0 G 7 2 & http://onsemi.com 2 0 15 Y0 1 14 Y1 2 13 Y2 3 12 Y3 4 11 Y4 5 10 Y5 6 9 Y6 7 7 Y7 Y6 Y7 ACTIVE-LOW OUTPUTS MC74VHCT138A ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MAXIMUM RATINGS Symbol Value Unit VCC DC Supply Voltage Parameter – 0.5 to + 7.0 V Vin DC Input Voltage – 0.5 to + 7.0 V Vout DC Output Voltage – 0.5 to + 7.0 – 0.5 to VCC + 0.5 V IIK Input Diode Current − 20 mA IOK Output Diode Current (VOUT < GND; VOUT > VCC) ± 20 mA Iout DC Output Current, per Pin ± 25 mA ICC DC Supply Current, VCC and GND Pins ± 75 mA PD Power Dissipation in Still Air, 500 450 mW Tstg Storage Temperature – 65 to + 150 _C VCC = 0 High or Low State SOIC Packages† TSSOP Package† This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND v (Vin or Vout) v VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V CC ). Unused outputs must be left open. Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. †Derating − SOIC Packages: – 7 mW/_C from 65_ to 125_C TSSOP Package: − 6.1 mW/_C from 65_ to 125_C ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ RECOMMENDED OPERATING CONDITIONS Symbol Parameter VCC DC Supply Voltage Vin DC Input Voltage Vout DC Output Voltage TA Operating Temperature tr, tf Input Rise and Fall Time Min Max Unit 3.0 5.5 V 0 5.5 V 0 0 5.5 VCC V − 55 + 125 _C 0 20 ns/V VCC = 0 High or Low State VCC =5.0V ±0.5V The qJA of the package is equal to 1/Derating. Higher junction temperatures may affect the expected lifetime of the device per the table and figure below. 47.9 100 178,700 20.4 110 79,600 9.4 120 37,000 4.2 130 17,800 2.0 140 8,900 1.0 TJ = 80 ° C 117.8 419,300 TJ = 90 ° C 1,032,200 90 TJ = 100 ° C 80 FAILURE RATE OF PLASTIC = CERAMIC UNTIL INTERMETALLICS OCCUR TJ = 110° C Time, Years TJ = 120° C Time, Hours TJ = 130 ° C Junction Temperature °C NORMALIZED FAILURE RATE DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES 1 1 10 100 TIME, YEARS Figure 1. Failure Rate vs. Time Junction Temperature http://onsemi.com 3 1000 MC74VHCT138A ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ DC ELECTRICAL CHARACTERISTICS Symbol Parameter Test Conditions Min 1.4 2.0 2.0 VIH Minimum High−Level Input Voltage 3.0 4.5 5.5 VIL Maximum Low−Level Input Voltage 3.0 4.5 5.5 VOH Minimum High−Level Output Voltage VIN = VIH or VIL VOL Maximum Low−Level Output Voltage VIN = VIH or VIL TA = 25°C VCC (V) Typ TA ≤ 85°C Max Min 1.4 2.0 2.0 0.53 0.8 0.8 VIN = VIH or VIL IOH = −50 mA 3.0 4.5 2.9 4.4 VIN = VIH or VIL IOH = −4 mA IOH = −8 mA 3.0 4.5 2.58 3.94 VIN = VIH or VIL IOL = 50 mA 3.0 4.5 VIN = VIH or VIL IOL = 4 mA IOL = 8 mA Max 3.0 4.5 TA ≤ 125°C Min Max 1.4 2.0 2.0 0.53 0.8 0.8 V 0.53 0.8 0.8 2.9 4.4 2.9 4.4 2.48 3.80 2.34 3.66 Unit V V V 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 3.0 4.5 0.36 0.36 0.44 0.44 0.52 0.52 V V IIN Maximum Input Leakage Current VIN = 5.5 V or GND 0 to 5.5 ± 0.1 ± 1.0 ± 1.0 mA ICC Maximum Quiescent Supply Current VIN = VCC or GND 5.5 4.0 40.0 40.0 mA ICCT Quiescent Supply Current VIN = 3.4 V 5.5 1.35 1.50 1.50 mA IOPD Output Leakage Current VOUT = 5.5 V 0.0 0.5 5.0 5.0 mA TA = ≤ 85°C TA ≤ 125°C AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0ns) TA = 25°C Symbol Parameter tPLH, tPHL Maximum Propagation Delay, Input A to Y tPLH, tPHL tPLH, tPHL CIN Maximum Propagation Delay, Input E3 to Y Maximum Propagation Delay, Input E1 or E2 to Y Test Conditions Min Typ Max Min Max Min Max Unit ns VCC = 3.3 ± 0.3V CL = 15pF CL = 50pF 9.5 10.8 14.5 15.5 1.0 1.0 16.0 17.0 1.0 1.0 16.0 17.0 VCC = 5.0 ± 0.5V CL = 15pF CL = 50pF 7.6 8.1 10.4 11.4 1.0 1.0 12.0 13.0 1.0 1.0 12.0 13.0 VCC = 3.3 ± 0.3V CL = 15pF CL = 50pF 9.7 9.5 13.0 14.0 1.0 1.0 14.5 15.5 1.0 1.0 14.5 15.5 VCC = 5.0 ± 0.5V CL = 15pF CL = 50pF 6.6 7.1 9.1 10.1 1.0 1.0 10.5 11.5 1.0 1.0 10.5 11.5 VCC = 3.3 ± 0.3V CL = 15pF CL = 50pF 10.1 9.9 14.0 15.0 1.0 1.0 15.5 16.5 1.0 1.0 15.5 16.5 VCC = 5.0 ± 0.5V CL = 15pF CL = 50pF 7.0 7.5 9.6 10.6 1.0 1.0 11.0 12.0 1.0 1.0 11.0 12.0 4 10 Maximum Input Capacitance 10 10 ns ns pF Typical @ 25°C, VCC = 5.0V CPD 49 Power Dissipation Capacitance (Note 1) pF 1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD  VCC  fin + ICC. CPD is used to determine the no−load dynamic power consumption; PD = CPD  VCC2  fin + ICC  VCC. http://onsemi.com 4 MC74VHCT138A SWITCHING WAVEFORMS VALID VALID 3V 3V A 1.5V GND GND tPLH Y 1.5V E3 tPHL tPHL VOH tPLH 1.5V VOH 1.5V Y VOL VOL Figure 2. Figure 3. 3V E2 or E1 1.5V GND tPLH tPHL VOH Y 1.5V VOL Figure 4. TEST POINT OUTPUT DEVICE UNDER TEST CL* *Includes all probe and jig capacitance Figure 5. Test Circuit ORDERING INFORMATION Package Shipping† MC74VHCT138ADR2G SOIC−16 (Pb−Free) 2500 Tape & Reel MC74VHCT138ADTRG TSSOP−16* 2500 Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb−Free. http://onsemi.com 5 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−16 CASE 751B−05 ISSUE K DATE 29 DEC 2006 SCALE 1:1 −A− 16 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 9 −B− 1 P 8 PL 0.25 (0.010) 8 M B S G R K F X 45 _ C −T− SEATING PLANE J M D DIM A B C D F G J K M P R MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.229 0.244 0.010 0.019 16 PL 0.25 (0.010) M T B S A S STYLE 1: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR EMITTER COLLECTOR STYLE 2: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION ANODE CATHODE CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION ANODE CATHODE STYLE 3: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. COLLECTOR, DYE #1 BASE, #1 EMITTER, #1 COLLECTOR, #1 COLLECTOR, #2 BASE, #2 EMITTER, #2 COLLECTOR, #2 COLLECTOR, #3 BASE, #3 EMITTER, #3 COLLECTOR, #3 COLLECTOR, #4 BASE, #4 EMITTER, #4 COLLECTOR, #4 STYLE 4: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. STYLE 5: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. DRAIN, DYE #1 DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2 GATE, #1 SOURCE, #1 STYLE 6: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE STYLE 7: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. SOURCE N‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P‐CH SOURCE P‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE N‐CH COLLECTOR, DYE #1 COLLECTOR, #1 COLLECTOR, #2 COLLECTOR, #2 COLLECTOR, #3 COLLECTOR, #3 COLLECTOR, #4 COLLECTOR, #4 BASE, #4 EMITTER, #4 BASE, #3 EMITTER, #3 BASE, #2 EMITTER, #2 BASE, #1 EMITTER, #1 SOLDERING FOOTPRINT 8X 6.40 16X 1 1.12 16 16X 0.58 1.27 PITCH 8 9 DIMENSIONS: MILLIMETERS DOCUMENT NUMBER: DESCRIPTION: 98ASB42566B SOIC−16 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSSOP−16 CASE 948F−01 ISSUE B 16 DATE 19 OCT 2006 1 SCALE 2:1 16X K REF 0.10 (0.004) 0.15 (0.006) T U M T U S V S K S ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ K1 2X L/2 16 9 J1 B −U− L SECTION N−N J PIN 1 IDENT. N 8 1 0.25 (0.010) M 0.15 (0.006) T U S A −V− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. N F DETAIL E −W− C 0.10 (0.004) −T− SEATING PLANE D H G DETAIL E DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 −−− 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.18 0.28 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 −−− 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.007 0.011 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT 7.06 16 XXXX XXXX ALYW 1 1 0.65 PITCH 16X 0.36 DOCUMENT NUMBER: DESCRIPTION: 16X 1.26 98ASH70247A TSSOP−16 DIMENSIONS: MILLIMETERS XXXX A L Y W G or G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MC74VHCT138ADTRG 价格&库存

很抱歉,暂时无法提供与“MC74VHCT138ADTRG”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MC74VHCT138ADTRG
  •  国内价格 香港价格
  • 1+6.156441+0.74623
  • 10+5.4026610+0.65487
  • 25+5.0752625+0.61518
  • 100+3.84680100+0.46628
  • 250+3.27388250+0.39683
  • 500+3.11012500+0.37698
  • 1000+2.373531000+0.28770

库存:0

MC74VHCT138ADTRG
  •  国内价格 香港价格
  • 1+5.953101+0.75820
  • 10+4.0845010+0.52020
  • 100+3.11430100+0.39660
  • 500+3.00650500+0.38290
  • 1000+2.299801000+0.29290
  • 2500+2.012302500+0.25630
  • 25000+1.9404025000+0.24710

库存:0