0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCP300LSN18T1G

NCP300LSN18T1G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT23-5

  • 描述:

    POWER SUPPLY SUPPORT CIRCUIT, FI

  • 数据手册
  • 价格&库存
NCP300LSN18T1G 数据手册
NCP300, NCP301 Voltage Detector Series The NCP300 and NCP301 series are second generation ultra−low current voltage detectors. These devices are specifically designed for use as reset controllers in portable microprocessor based systems where extended battery life is paramount. Each series features a highly accurate undervoltage detector with hysteresis which prevents erratic system reset operation as the comparator threshold is crossed. The NCP300 series consists of complementary output devices that are available with either an active high or active low reset output. The NCP301 series has an open drain N−Channel output with either an active high or active low reset output. The NCP300 and NCP301 device series are available in the Thin TSOP−5 package with standard undervoltage thresholds. Additional thresholds that range from 0.9 V to 4.9 V in 100 mV steps can be manufactured. www.onsemi.com MARKING DIAGRAM TSOP−5/ SOT23−5 CASE 483 5 1 • • xxx AYWG G 1 xxx A Y W G Features • • • • • • 5 Quiescent Current of 0.5 mA Typical High Accuracy Undervoltage Threshold of 2.0% Wide Operating Voltage Range of 0.8 V to 10 V Complementary or Open Drain Reset Output Active Low or Active High Reset Output Specified Over the −40°C to +125°C Temperature Range (Except for Voltage Options from 0.9 to 1.1 V) NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable These Devices are Pb−Free and are RoHS Compliant = Specific Device Code = Assembly Location = Year = Work Week = Pb−Free Package (Note:Microdot may be in either location) PIN CONNECTIONS Reset Output 1 Input 2 Ground 3 5 N.C. 4 N.C. (Top View) ORDERING INFORMATION Typical Applications • • • • See detailed ordering and shipping information in the ordering information section on page 21 of this data sheet. Microprocessor Reset Controller Low Battery Detection Power Fail Indicator Battery Backup Detection NCP301xSNxxT1 Open Drain Output Configuration NCP300xSNxxT1 Complementary Output Configuration 2 2 Input 1 Input * Vref Reset Output * 1 Reset Output Vref 3 3 GND GND * The representative block diagrams depict active low reset output ‘L’ suffix devices. The comparator inputs are interchanged for the active high output ‘H’ suffix devices. This device contains 25 active transistors. Figure 1. Representative Block Diagrams © Semiconductor Components Industries, LLC, 2016 October, 2017 − Rev. 30 1 Publication Order Number: NCP300/D NCP300, NCP301 MAXIMUM RATINGS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Rating Input Power Supply Voltage (Pin 2) Symbol Value Unit Vin 12 V Output Voltage (Pin 1) Complementary, NCP300 N−Channel Open Drain, NCP301 VOUT V Output Current (Pin 1) (Note 2) IOUT 70 mA Thermal Resistance Junction−to−Air RqJA 250 °C/W Maximum Junction Temperature TJ +150 °C Operating Ambient Temperature Range All Voltage Options: 0.9 V to 1.1 V All Voltage Options: 1.2 V to 4.9 V TA TA −40 to +85 −40 to +125 °C °C Storage Temperature Range Tstg −55 to +150 °C Moisture Sensitivity Level MSL 1 −0.3 to Vin +0.3 −0.3 to 12 Latchup Performance (Note 3) Positive Negative ILATCHUP mA 200 200 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL−STD−883, Method 3015. Machine Model Method 200 V. 2. The maximum package power dissipation limit must not be exceeded. T *T J(max) A P + D R qJA 3. Maximum ratings per JEDEC standard JESD78. www.onsemi.com 2 NCP300, NCP301 ELECTRICAL CHARACTERISTICS (For all values TA = −40°C to +125°C, unless otherwise noted.) Characteristic Symbol Min Typ Max Unit NCP300/1 − 0.9 / NCV300/1 − 0.9 (TA = 255C for voltage options from 0.9 to 1.1 V) Detector Threshold (Pin 2, Vin Decreasing) VDET− 0.882 0.900 0.918 V Detector Threshold Hysteresis (Pin 2, Vin Increasing) VHYS 0.027 0.045 0.063 V − − 0.20 0.45 0.6 1.2 Supply Current (Pin 2) (Vin = 0.8 V) (Vin = 2.9 V) mA Iin Maximum Operating Voltage (Pin 2) Vin(max) − − 10 V Minimum Operating Voltage (Pin 2) (TA = −40°C to 85°C) Vin(min) − − 0.55 0.65 0.70 0.80 V Reset Output Current (Pin 1, Active Low ‘L’ Suffix Devices) IOUT mA N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.05 V, Vin = 0.70 V) (VOUT = 0.50 V, Vin = 0.85 V) 0.01 0.05 0.05 0.50 − − P−Channel Source Current, NCP300 (VOUT = 2.4 V, Vin = 4.5 V) 1.0 6.0 − Reset Output Current (Pin 1, Active High ‘H’ Suffix Devices) IOUT mA N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.5 V, Vin = 1.5 V) 1.05 2.5 − P−Channel Source Current, NCP300 (VOUT = 0.4 V, Vin = 0.7 V) (VOUT = GND, Vin = 0.8 V) 0.011 0.014 0.04 0.08 − − ms Propagation Delay Input to Output (Figure 2) Complementary Output NCP300 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 97 77 − 300 N−Channel Open Drain NCP301 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 97 − − 300 Detector Threshold (Pin 2, Vin Decreasing) (TA = 25°C) (TA = −40°C to 125°C) VDET− 1.764 1.746 1.80 − 1.836 1.854 V Detector Threshold Hysteresis (Pin 2, Vin Increasing) VHYS 0.054 0.090 0.126 V − − 0.23 0.48 0.7 1.3 NCP300/1 − 1.8 / NCV300/1 − 1.8 Supply Current (Pin 2) (Vin = 1.7 V) (Vin = 3.8 V) mA Iin Maximum Operating Voltage (Pin 2) Vin(max) − − 10 V Minimum Operating Voltage (Pin 2) (TA = 25°C) (TA = −40°C to 125°C) Vin(min) − − 0.55 0.65 0.70 0.80 V Reset Output Current (Pin 1, Active Low ‘L’ Suffix Devices) IOUT mA N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.05V, Vin = 0.70 V) (VOUT = 0.50V, Vin = 1.5 V) 0.01 1.0 0.05 2.0 − − P−Channel Source Current, NCP300 (VOUT = 2.4 V, Vin = 4.5 V) 1.0 6.0 − Reset Output Current (Pin 1, Active High ‘H’ Suffix Devices) IOUT N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.5 V, Vin = 5.0 V) P−Channel Source Current, NCP300 (VOUT = 0.4 V, Vin = 0.7 V) (VOUT = GND, Vin = 1.5 V) mA 6.3 11 − 0.011 0.525 0.04 0.6 − − ms Propagation Delay Input to Output (Figure 2) Complementary Output NCP300 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH www.onsemi.com 3 − − 73 94 − 300 NCP300, NCP301 ELECTRICAL CHARACTERISTICS (continued) (For all values TA = −40°C to +125°C, unless otherwise noted.) Characteristic Symbol Min Typ Max tpHL tpLH − − 73 − − 300 Detector Threshold (Pin 2, Vin Decreasing) (TA = 25°C) (TA = −40°C to 125°C) VDET− 1.96 1.94 2.00 − 2.04 2.06 Detector Threshold Hysteresis (Pin 2, Vin Increasing) VHYS 0.06 0.10 0.14 Unit NCP300/1 − 1.8 / NCV300/1 − 1.8 N−Channel Open Drain NCP301 Series Output Transition, High to Low Output Transition, Low to High NCP300/1 − 2.0 / NCV300/1 − 2.0 Supply Current (Pin 2) (Vin = 1.9 V) (Vin = 4.0 V) V V mA Iin − − 0.23 0.48 0.8 1.3 Maximum Operating Voltage (Pin 2) Vin(max) − − 10 V Minimum Operating Voltage (Pin 2) (TA = 25°C) (TA = −40°C to 125°C) Vin(min) − − 0.55 0.65 0.70 0.80 V Reset Output Current (Pin 1, Active Low ‘L’ Suffix Devices) IOUT mA N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.05V, Vin = 0.70V) (VOUT = 0.50V, Vin = 1.5V) 0.01 1.0 0.14 3.5 − − P−Channel Source Current, NCP300 (VOUT = 2.4V, Vin = 4.5V) 1.0 9.7 − Reset Output Current (Pin 1, Active High ‘H’ Suffix Devices) IOUT N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.5 V, Vin = 5.0 V) P−Channel Source Current, NCP300 (VOUT = 0.4 V, Vin = 0.7 V) (VOUT = GND, Vin = 1.5 V) mA 6.3 11 − 0.011 0.525 0.04 0.6 − − ms Propagation Delay Input to Output (Figure 2) Complementary Output NCP300 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 55 108 − 300 N−Channel Open Drain NCP301 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 55 − − 300 Detector Threshold (Pin 2, Vin Decreasing) (TA = 25°C) (TA = −40°C to 125°C) VDET− 2.156 2.134 2.2 − 2.244 2.266 V Detector Threshold Hysteresis (Pin 2, Vin Increasing) VHYS 0.066 0.110 0.154 V − − 0.23 0.48 0.8 1.3 NCP300/1 − 2.2 / NCV300/1 − 2.2 Supply Current (Pin 2) (Vin = 2.1 V) (Vin = 4.2 V) mA Iin Maximum Operating Voltage (Pin 2) Vin(max) − − 10 V Minimum Operating Voltage (Pin 2) (TA = 25°C) (TA = −40°C to 125°C) Vin(min) − − 0.55 0.65 0.70 0.80 V Reset Output Current (Pin 1, Active Low ‘L’ Suffix Devices) IOUT mA N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.05V, Vin = 0.70V) (VOUT = 0.50V, Vin = 1.5V) 0.01 1.0 0.14 3.5 − − P−Channel Source Current, NCP300 (VOUT = 2.4V, Vin = 4.5V) 1.0 9.7 − Reset Output Current (Pin 1, Active High ‘H’ Suffix Devices) IOUT N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.5 V, Vin = 5.0 V) mA 6.3 www.onsemi.com 4 11 − NCP300, NCP301 ELECTRICAL CHARACTERISTICS (continued) (For all values TA = −40°C to +125°C, unless otherwise noted.) Characteristic Symbol Min Typ Max 0.011 0.525 0.04 0.6 − − Unit NCP300/1 − 2.2 / NCV300/1 − 2.2 P−Channel Source Current, NCP300 (VOUT = 0.4 V, Vin = 0.7 V) (VOUT = GND, Vin = 1.5 V) ms Propagation Delay Input to Output (Figure 2) Complementary Output NCP300 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 55 108 − 300 N−Channel Open Drain NCP301 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 55 − − 300 Detector Threshold (Pin 2, Vin Decreasing) (TA = 25°C) (TA = −40°C to 125°C) VDET− 2.646 2.619 2.700 − 2.754 2.781 Detector Threshold Hysteresis (Pin 2, Vin Increasing) VHYS 0.081 0.135 0.189 NCP300/1− 2.7 / NCV300/1− 2.7 Supply Current (Pin 2) (Vin = 2.6 V) (Vin = 4.7 V) V V mA Iin − − 0.25 0.50 0.8 1.3 Maximum Operating Voltage (Pin 2) Vin(max) − − 10 V Minimum Operating Voltage (Pin 2) (TA = 25°C) (TA = −40°C to 125°C) Vin(min) − − 0.55 0.65 0.70 0.80 V Reset Output Current (Pin 1, Active Low ‘L’ Suffix Devices) IOUT mA N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.05V, Vin = 0.70V) (VOUT = 0.50V, Vin = 1.5V) 0.01 1.0 0.14 3.5 − − P−Channel Source Current, NCP300 (VOUT = 2.4V, Vin = 4.5V) 1.0 9.7 − Reset Output Current (Pin 1, Active High ‘H’ Suffix Devices) IOUT N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.5 V, Vin = 5.0 V) P−Channel Source Current, NCP300 (VOUT = 0.4 V, Vin = 0.7 V) (VOUT = GND, Vin = 1.5 V) mA 6.3 11 − 0.011 0.525 0.04 0.6 − − ms Propagation Delay Input to Output (Figure 2) Complementary Output NCP300 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 55 115 − 300 N−Channel Open Drain NCP301 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 55 − − 300 Detector Threshold (Pin 2, Vin Decreasing) (TA = 25°C) (TA = −40°C to 125°C) VDET− 2.744 2.716 2.8 − 2.856 2.884 V Detector Threshold Hysteresis (Pin 2, Vin Increasing) VHYS 0.084 0.14 0.196 V − − 0.25 0.5 0.8 1.3 NCP300/1− 2.8 / NCV300/1− 2.8 Supply Current (Pin 2) (Vin = 2.7 V) (Vin = 4.8 V) mA Iin Maximum Operating Voltage (Pin 2) Vin(max) − − 10 V Minimum Operating Voltage (Pin 2) (TA = 25°C) (TA = −40°C to 125°C) Vin(min) − − 0.55 0.65 0.7 0.8 V Reset Output Current (Pin 1, Active Low ‘L’ Suffix Devices) IOUT N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.05V, Vin = 0.70V) (VOUT = 0.50V, Vin = 1.5V) mA 0.01 1.0 www.onsemi.com 5 0.14 3.5 − − NCP300, NCP301 ELECTRICAL CHARACTERISTICS (continued) (For all values TA = −40°C to +125°C, unless otherwise noted.) Characteristic Symbol Min Typ Max 1.0 9.7 − Unit NCP300/1− 2.8 / NCV300/1− 2.8 P−Channel Source Current, NCP300 (VOUT = 2.4V, Vin = 4.5V) Reset Output Current (Pin 1, Active High ‘H’ Suffix Devices) IOUT N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.5 V, Vin = 5.0 V) P−Channel Source Current, NCP300 (VOUT = 0.4 V, Vin = 0.7 V) (VOUT = GND, Vin = 1.5 V) mA 6.3 11 − 0.011 0.525 0.04 0.6 − − ms Propagation Delay Input to Output (Figure 2) Complementary Output NCP300 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 55 115 − 300 N−Channel Open Drain NCP301 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 55 − − 300 Detector Threshold (Pin 2, Vin Decreasing) (TA = 25°C) (TA = −40°C to 125°C) VDET− 2.94 2.91 3.00 − 3.06 3.09 V Detector Threshold Hysteresis (Pin 2, Vin Increasing) VHYS 0.09 0.15 0.21 V − − 0.25 0.50 0.9 1.3 NCP300/1 − 3.0 / NCV300/1 − 3.0 Supply Current (Pin 2) (Vin = 2.87 V) (Vin = 5.0 V) mA Iin Maximum Operating Voltage (Pin 2) Vin(max) − − 10 V Minimum Operating Voltage (Pin 2) (TA = 25°C) (TA = −40°C to 125°C) Vin(min) − − 0.55 0.65 0.70 0.80 V Reset Output Current (Pin 1, Active Low ‘L’ Suffix Devices) IOUT mA N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.05V, Vin = 0.70V) (VOUT = 0.50V, Vin = 1.5V) 0.01 1.0 0.14 3.5 − − P−Channel Source Current, NCP300 (VOUT = 2.4V, Vin = 4.5V) 1.0 9.7 − Reset Output Current (Pin 1, Active High ‘H’ Suffix Devices) IOUT N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.5 V, Vin = 5.0 V) P−Channel Source Current, NCP300 (VOUT = 0.4 V, Vin = 0.7 V) (VOUT = GND, Vin = 1.5 V) mA 6.3 11 − 0.011 0.525 0.04 0.6 − − ms Propagation Delay Input to Output (Figure 2) Complementary Output NCP300 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 49 115 − 300 N−Channel Open Drain NCP301 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 49 − − 300 Detector Threshold (Pin 2, Vin Decreasing) (TA = 25°C) (TA = −40°C to 125°C) VDET− 4.410 4.365 4.500 − 4.590 4.635 Detector Threshold Hysteresis (Pin 2, Vin Increasing) VHYS 0.135 0.225 0.315 NCP300/1 − 4.5 / NCV300/1 − 4.5 Supply Current (Pin 2) (Vin = 4.34 V) (Vin = 6.5 V) Vin(max) www.onsemi.com 6 V mA Iin Maximum Operating Voltage (Pin 2) V − − 0.33 0.52 1.0 1.4 − − 10 V NCP300, NCP301 ELECTRICAL CHARACTERISTICS (continued) (For all values TA = −40°C to +125°C, unless otherwise noted.) Characteristic Symbol Min Typ Max Unit Vin(min) − − 0.55 0.65 0.70 0.80 V NCP300/1 − 4.5 / NCV300/1 − 4.5 Minimum Operating Voltage (Pin 2) (TA = 25°C) (TA = −40°C to 125°C) Reset Output Current (Pin 1, Active Low ‘L’ Suffix Devices) IOUT N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.05V, Vin = 0.70V) (VOUT = 0.50V, Vin = 1.5V) P−Channel Source Current, NCP300 (VOUT = 5.9V, Vin = 8.0V) Reset Output Current (Pin 1, Active High ‘H’ Suffix Devices) mA 0.01 1.0 0.05 2.0 − − 1.5 10.5 − IOUT N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.5 V, Vin = 5.0 V) P−Channel Source Current, NCP300 (VOUT = 0.4 V, Vin = 0.7 V) (VOUT = GND, Vin = 1.5 V) mA 6.3 11 − 0.011 0.525 0.04 0.6 − − ms Propagation Delay Input to Output (Figure 2) Complementary Output NCP300 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 49 130 − 300 N−Channel Open Drain NCP301 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 49 − − 300 Detector Threshold (Pin 2, Vin Decreasing) (TA = 25°C) (TA = −40°C to 125°C) VDET− 4.606 4.559 4.700 − 4.794 4.841 Detector Threshold Hysteresis (Pin 2, Vin Increasing) VHYS 0.141 0.235 0.329 NCP300/1 − 4.7 / NCV300/1 − 4.7 Supply Current (Pin 2) (Vin = 4.54 V) (Vin = 6.7 V) V V mA Iin − − 0.34 0.53 1.0 1.4 Maximum Operating Voltage (Pin 2) Vin(max) − − 10 V Minimum Operating Voltage (Pin 2) (TA = 25°C) (TA = −40°C to 125°C) Vin(min) − − 0.55 0.65 0.70 0.80 V Reset Output Current (Pin 1, Active Low ‘L’ Suffix Devices) IOUT mA N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.05V, Vin = 0.70V) (VOUT = 0.50V, Vin = 1.5V) 0.01 1.0 0.05 2.0 − − P−Channel Source Current, NCP300 (VOUT = 5.9V, Vin = 8.0V) 1.5 10.5 − Reset Output Current (Pin 1, Active High ‘H’ Suffix Devices) IOUT N−Channel Sink Current, NCP300, NCP301 (VOUT = 0.5 V, Vin = 5.0 V) P−Channel Source Current, NCP300 (VOUT = 0.4 V, Vin = 0.7 V) (VOUT = GND, Vin = 1.5 V) mA 6.3 11 − 0.011 0.525 0.04 0.6 − − ms Propagation Delay Input to Output (Figure 2) Complementary Output NCP300 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 45 130 − 300 N−Channel Open Drain NCP301 Series Output Transition, High to Low Output Transition, Low to High tpHL tpLH − − 45 − − 300 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. www.onsemi.com 7 NCP300, NCP301 VDET+ + 2 Input Voltage, Pin 2 0.7 0V 5V Reset Output Voltage, Pin 1 2.5 V NCP301L Open Drain 0.5 V 0V VDET+ + 2 Reset Output Voltage, Pin 1 VDET+ + 2 2 0V NCP300L Complementary 0.1 V tpLH tpHL NCP300 and NCP301 series are measured with a 10 pF capacitive load. NCP301 has an additional 470 k pull−up resistor connected from the reset output to +5.0 V. The reset output voltage waveforms are shown for the active low ‘L’ devices. The upper detector threshold, VDET+ is the sum of the lower detector threshold, VDET− plus the input hysteresis, VHYS. Figure 2. Propagation Delay Measurement Conditions www.onsemi.com 8 NCP300, NCP301 Table 1. ELECTRICAL CHARACTERISTIC TABLE FOR 0.9 − 4.9 V NCP300 Series Supply Current Nch Sink Current Detector Threshold Detector Threshold Hysteresis Vin Low Vin High Vin Low Vin High Pch Source Current VDET− (V) (Note 4) VHYS (V) Iin (mA) (Note 5) Iin (mA) (Note 6) IOUT (mA) (Note 7) IOUT (mA) (Note 8) IOUT (mA) (Note 9) Min Typ Max Min Typ Max Typ Typ Typ Typ Typ NCP300LSN09T1 0.882 0.9 0.918 0.027 0.045 0.063 0.20 0.45 0.05 0.5 2.0 NCP300LSN18T1 1.764 1.8 1.836 0.054 0.090 0.126 0.23 0.48 NCP300LSN185T1 1.813 1.85 1.887 0.056 0.093 0.130 NCP300LSN20T1 1.960 2.0 2.040 0.060 0.100 0.140 NCP300LSN25T1 2.45 2.5 2.55 0.075 0.125 0.175 0.25 0.50 NCP300LSN27T1 2.646 2.7 2.754 0.081 0.135 0.189 0.25 0.50 NCP300LSN28T1 2.744 2.8 2.856 0.084 0.140 0.196 NCP300LSN30T1 2.940 3.0 3.060 0.090 0.150 0.210 NCP300LSN33T1 3.234 3.3 3.366 0.099 0.165 0.231 NCP300LSN34T1 3.332 3.4 3.468 0.102 0.170 0.238 NCP300LSN44T1 4.312 4.4 4.488 0.132 0.220 0.308 NCP300LSN45T1 4.410 4.5 4.590 0.135 0.225 0.315 0.33 0.52 NCP300LSN46T1 4.508 4.6 4.692 0.138 0.230 0.322 NCP300LSN47T1 4.606 4.7 4.794 0.141 0.235 0.329 0.34 0.53 Part Number 4. Values shown apply at +25°C only. For voltage options greater than 1.1 V, VDET− limits over operating temperature range (−40°C to +125°C) are VNOM ±3%. For voltage options < 1.2 V, VDET− is guaranteed only at +25°C. 5. Condition 1: 0.9 − 2.9 V, Vin = VDET− − 0.10 V; 3.0 − 3.9 V, Vin = VDET− − 0.13 V; 4.0 − 4.9 V, Vin = VDET− − 0.16 V 6. Condition 2: 0.9 − 4.9 V, Vin = VDET− + 2.0 V 7. Condition 3: 0.9 − 4.9 V, Vin = 0.7 V, VOUT = 0.05 V, Active Low ‘L’ Suffix Devices 8. Condition 4: 0.9 − 1.0 V, Vin = 0.85 V, VOUT = 0.5 V; 1.1 − 1.5 V, Vin = 1.0 V, VOUT = 0.5 V; 1.6 − 4.9 V, Vin = 1.5 V, VOUT = 0.5 V, Active Low ‘L’ Suffix Devices 9. Condition 5: 0.9 − 3.9 V, Vin = 4.5 V, VOUT = 2.4 V; 4.0 − 4.9 V, Vin = 8.0 V, VOUT = 5.9 V, Active Low ‘L’ Suffix Devices Table 2. ELECTRICAL CHARACTERISTIC TABLE FOR 0.9 − 4.9 V NCP300 Series Supply Current Pch Source Current Detector Threshold Detector Threshold Hysteresis Vin Low Vin High Nch Sink Current Vin Low Vin High VDET− (V) (Note 10) VHYS (V) Iin (mA) (Note 11) Iin (mA) (Note 12) IOUT (mA) (Note 13) IOUT (mA) (Note 14) IOUT (mA) (Note 15) Min Typ Max Min Typ Max Typ Typ Typ Typ Typ NCP300HSN09T1 0.882 0.9 0.918 0.027 0.045 0.063 0.20 0.45 2.5 0.04 0.08 NCP300HSN18T1 1.764 1.8 1.836 0.054 0.090 0.126 0.23 0.48 NCP300HSN27T1 2.646 2.7 2.754 0.081 0.135 0.189 0.25 0.50 NCP300HSN30T1 2.940 3.0 3.060 0.090 0.150 0.210 NCP300HSN45T1 4.410 4.5 4.590 0.135 0.225 0.315 0.33 0.52 NCP300HSN47T1 4.606 4.7 4.794 0.141 0.235 0.329 0.34 0.53 Part Number 10. Values shown apply at +25°C only. For voltage options greater than 1.1 V, VDET− limits over operating temperature range (−40°C to +125°C) are VNOM ±3%. For voltage options < 1.2 V, VDET− is guaranteed only at +25°C. 11. Condition 1: 0.9 − 2.9 V, Vin = VDET− − 0.10 V; 3.0 − 3.9 V, Vin = VDET− − 0.13 V; 4.0 − 4.9 V, Vin = VDET− − 0.16 V 12. Condition 2: 0.9 − 4.9 V, Vin = VDET− + 2.0 V 13. Condition 3: 0.9 − 1.4 V, Vin = 1.5 V, VOUT = 0.5 V; 1.5 − 4.9 V, Vin = 5.0 V, VOUT = 0.5 V, Active High ‘H’ Suffix Devices 14. Condition 4: 0.9 − 4.9 V, Vin = 0.7 V, VOUT = 0.4 V, Active High ‘H’ Suffix Devices 15. Condition 5: 0.9 − 1.0 V, Vin = 0.8 V, VOUT = GND; 1.1 − 1.5 V, Vin = 1.0 V, VOUT = GND; 1.6 − 4.9 V, Vin = 1.5 V, VOUT = GND, Active High ‘H’ Suffix Devices www.onsemi.com 9 NCP300, NCP301 Table 3. ELECTRICAL CHARACTERISTIC TABLE FOR 0.9 − 4.9 V NCP301 Series Supply Current Nch Sink Current Detector Threshold Detector Threshold Hysteresis Vin Low Vin High Vin Low Vin High VDET− (V) (Note 16) VHYS (V) Iin (mA) (Note 16) Iin (mA) (Note 18) IOUT (mA) (Note 19) IOUT (mA) (Note 20) Min Typ Max Min Typ Max Typ Typ Typ Typ NCP301LSN09T1 0.882 0.9 0.918 0.027 0.045 0.063 0.20 0.45 0.05 0.5 NCP301LSN12T1 1.176 1.2 1.224 0.036 0.060 0.084 NCP301LSN16T1 1.568 1.6 1.632 0.048 0.080 0.112 NCP301LSN18T1 1.764 1.8 1.836 0.054 0.090 0.126 0.23 0.48 NCP301LSN20T1 1.960 2.0 2.040 0.060 0.100 0.140 NCP301LSN22T1 2.156 2.2 2.244 0.066 0.110 0.154 NCP301LSN24T1 2.352 2.4 2.448 0.072 0.120 0.168 NCP301LSN25T1 2.450 2.5 2.550 0.075 0.125 0.175 NCP301LSN26T1 2.548 2.6 2.652 0.078 0.130 0.182 NCP301LSN27T1 2.646 2.7 2.754 0.081 0.135 0.189 0.25 0.50 NCP301LSN28T1 2.744 2.8 2.856 0.084 0.140 0.196 NCP301LSN30T1 2.940 3.0 3.060 0.090 0.150 0.210 NCP301LSN31T1 3.038 3.1 3.162 0.093 0.155 0.217 NCP301LSN32T1 3.136 3.2 3.264 0.096 0.160 0.224 NCP301LSN33T1 3.234 3.3 3.366 0.099 0.165 0.231 NCP301LSN34T1 3.332 3.4 3.468 0.102 0.170 0.238 NCP301LSN36T1 3.528 3.6 3.672 0.108 0.180 0.252 NCP301LSN40T1 3.920 4.0 4.080 0.120 0.200 0.280 NCP301LSN42T1 4.116 4.2 4.284 0.126 0.210 0.294 NCP301LSN45T1 4.410 4.5 4.590 0.135 0.225 0.315 0.33 0.52 NCP301LSN46T1 4.508 4.6 4.692 0.138 0.230 0.322 NCP301LSN47T1 4.606 4.7 4.794 0.141 0.235 0.329 0.34 0.53 Part Number 2.0 16. Values shown apply at +25°C only. For voltage options greater than 1.1 V, VDET− limits over operating temperature range (−40°C to +125°C) are VNOM ±3%. For voltage options < 1.2 V, VDET− is guaranteed only at +25°C. 17. Condition 1: 0.9 − 2.9 V, Vin = VDET− − 0.10 V; 3.0 − 3.9 V, Vin = VDET− − 0.13 V; 4.0 − 4.9 V, Vin = VDET− − 0.16 V 18. Condition 2: 0.9 − 4.9 V, Vin = VDET− + 2.0 V 19. Condition 3: 0.9 − 4.9 V, Vin = 0.7 V, VOUT = 0.05 V, Active Low ‘L’ Suffix Devices 20. Condition 4: 0.9 − 1.0 V, Vin = 0.85 V, VOUT = 0.5 V; 1.1 − 1.5 V, Vin = 1.0 V, VOUT = 0.5 V; 1.6 − 4.9 V, Vin = 1.5 V, VOUT = 0.5 V, Condition 4: Active Low ‘L’ Suffix Devices Table 4. ELECTRICAL CHARACTERISTIC TABLE FOR 0.9 − 4.9 V NCP301 Series Supply Current Detector Threshold Detector Threshold Hysteresis Vin Low Vin High Nch Sink Current VDET− (V) (Note 21) VHYS (V) Iin (mA) (Note 22) Iin (mA) (Note 23) IOUT (mA) (Note 24) Min Typ Max Min Typ Max Typ Typ Typ NCP301HSN09T1 0.882 0.9 0.918 0.027 0.045 0.063 0.20 0.45 2.5 NCP301HSN18T1 1.764 1.8 1.836 0.054 0.090 0.126 NCP301HSN22T1 2.156 2.2 2.244 0.066 0.110 0.154 NCP301HSN27T1 2.646 2.7 2.754 0.081 0.135 0.189 0.25 0.50 NCP301HSN30T1 2.940 3.0 3.060 0.090 0.150 0.210 NCP301HSN45T1 4.410 4.5 4.590 0.135 0.225 0.315 0.33 0.52 Part Number 21. Values shown apply at +25°C only. For voltage options greater than 1.1 V, VDET− limits over operating temperature range (−40°C to +125°C) are VNOM ±3%. For voltage options < 1.2 V, VDET− is guaranteed only at +25°C. 22. Condition 1: 0.9 − 2.9 V, Vin = VDET− − 0.10 V; 3.0 − 3.9 V, Vin = VDET− − 0.13 V; 4.0 − 4.9 V, Vin = VDET− − 0.16 V 23. Condition 2: 0.9 − 4.9 V, Vin = VDET− + 2.0 V 24. Condition 3: 0.9 − 1.4 V, Vin = 1.5 V, VOUT = 0.5 V; 1.5 − 4.9 V, Vin = 5.0 V, VOUT = 0.5 V, Active High ‘H’ Suffix Devices www.onsemi.com 10 NCP300, NCP301 1.0 10.5 0.9 0.8 Iin, INPUT CURRENT (mA) Iin, INPUT CURRENT (mA) TA = 25°C TA = 25°C 0.7 0.6 0.5 0.4 0.3 0.2 2.5 2.0 1.5 1.0 0.5 0.1 0 0 0 2.0 4.0 6.0 8.0 10 12 0 6.0 4.0 8.0 Vin, INPUT VOLTAGE (V) 2.0 Vin, INPUT VOLTAGE (V) Figure 3. NCP300/1 Series 0.9 V Input Current versus Input Voltage VDET, DETECTOR THRESHOLD VOLTAGE (V) Iin, INPUT CURRENT (mA) TA = 25°C 2.5 2.0 1.5 1.0 0.5 0 2.0 4.0 8.0 6.0 10 12 Vin, INPUT VOLTAGE (V) 1.00 0.95 VDET− 0.85 0.80 −50 VDET+ 2.75 2.70 VDET− −25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) VDET, DETECTOR THRESHOLD VOLTAGE (V) VDET, DETECTOR THRESHOLD VOLTAGE (V) 2.85 2.60 −50 0 −25 25 50 75 100 TA, AMBIENT TEMPERATURE (°C) Figure 6. NCP300/1 Series 0.9 V Detector Threshold Voltage versus Temperature 2.90 2.65 VDET+ 0.90 Figure 5. NCP300/1 Series 4.5 V Input Current versus Input Voltage 2.80 12 Figure 4. NCP300/1 Series 2.7 V Input Current versus Input Voltage 17.2 0 10 4.9 4.8 VDET+ 4.7 4.6 4.5 VDET− 4.4 4.3 −50 −25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) Figure 8. NCP300/1 Series 4.5 V Detector Threshold Voltage versus Temperature Figure 7. NCP300/1 Series 2.7 V Detector Threshold Voltage versus Temperature www.onsemi.com 11 NCP300, NCP301 3.5 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 1.0 0.8 0.6 TA = −40°C (301L only) 0.4 TA = 25°C (301L only) 0.2 3.0 2.5 2.0 1.5 TA = 125°C (301L only) 1.0 TA = −40°C (301L only) 0.5 TA = 25°C (301L only) 0 0 0 0.4 0.6 Vin, INPUT VOLTAGE (V) 0.2 1.0 0.8 0 Figure 9. NCP300L/1L Series 0.9 V Reset Output Voltage versus Input Voltage 1.6 IOUT, OUTPUT SINK CURRENT (mA) VOUT, OUTPUT VOLTAGE (V) 3.5 Figure 10. NCP300L/1L Series 2.7 V Reset Output Voltage versus Input Voltage 6.0 5.0 4.0 3.0 TA = −40°C (301L only) 2.0 TA = 25°C (301L only) 1.0 0 VOUT = 0.5 V 1.4 TA = −40°C 1.2 1.0 0.8 0.6 TA = 25°C 0.4 TA = 85°C 0.2 0 0 1.0 2.0 4.0 3.0 Vin, INPUT VOLTAGE (V) 5.0 6.0 0 0.4 0.2 0.6 0.8 1.0 Vin, INPUT VOLTAGE (V) Figure 11. NCP300L/1L Series 4.5 V Reset Output Voltage versus Input Voltage Figure 12. NCP300H/1L Series 0.9 V Reset Output Sink Current versus Input Voltage 12 20 VOUT = 0.5 V IOUT, OUTPUT SINK CURRENT (mA) IOUT, OUTPUT SINK CURRENT (mA) 3.0 1.5 2.5 1.0 2.0 Vin, INPUT VOLTAGE (V) 0.5 10 TA = −40°C 8.0 6.0 TA = 25°C 4.0 TA = 125°C 2.0 0 0 0.5 1.0 1.5 2.0 2.5 3.0 VOUT = 0.5 V TA = −40°C 15 10 TA = 25°C TA = 125°C 5.0 0 0 1.0 2.0 3.0 4.0 5.0 Vin, INPUT VOLTAGE (V) Vin, INPUT VOLTAGE (V) Figure 13. NCP300H/1L Series 2.7 V Reset Output Sink Current versus Input Voltage Figure 14. NCP300H/1L Series 4.5 V Reset Output Sink Current versus Input Voltage www.onsemi.com 12 20 IOUT, OUTPUT SOURCE CURRENT (mA) IOUT, OUTPUT SOURCE CURRENT (mA) NCP300, NCP301 VOUT = Vin −2.1 V TA = 25°C 15 Vin −1.5 V 10 Vin −1.0 V 5.0 Vin −0.5 V 0 0 2.0 4.0 8.0 6.0 10 20 VOUT = Vin −2.1 V TA = 25°C 15 Vin −1.5 V Vin −1.0 V 10 Vin −0.5 V 5.0 0 0 4.0 2.0 20 VOUT = Vin −2.1 V 15 Vin −1.5 V 10 Vin −1.0 V 5.0 Vin −0.5 V 0 0 2.0 4.0 8.0 6.0 1.5 TA = 25°C 1.0 Vin = 0.85 V 0.5 Vin = 0.7 V 0 10 0 0.4 0.2 Vin, INPUT VOLTAGE (V) 0.6 0.8 1.0 VOUT, OUTPUT VOLTAGE (V) Figure 17. NCP300L Series 4.5 V Reset Output Source Current versus Input Voltage Figure 18. NCP300H/1L Series 0.9 V Reset Output Sink Current versus Output Voltage 15 35 TA = 25°C IOUT, OUTPUT SINK CURRENT (mA) IOUT, OUTPUT SINK CURRENT (mA) 10 Figure 16. NCP300L Series 2.7 V Reset Output Source Current versus Input Voltage IOUT, OUTPUT SINK CURRENT (mA) IOUT, OUTPUT SOURCE CURRENT (mA) Figure 15. NCP300L Series 0.9 V Reset Output Source Current versus Input Voltage TA = 25°C 8.0 6.0 Vin, INPUT VOLTAGE (V) Vin, INPUT VOLTAGE (V) Vin = 2.5 V 10 Vin = 2.0 V 5.0 Vin = 1.5 V 0 TA = 25°C 30 Vin = 4.0 V 25 Vin = 3.5 V 20 Vin = 3.0 V 15 Vin = 2.5 V 10 Vin = 2.0 V 5.0 Vin = 1.5 V 0 0 0.5 1.0 1.5 2.0 0 2.5 1.0 2.0 3.0 4.0 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) Figure 19. NCP300H/1L Series 2.7 V Reset Output Sink Current versus Output Voltage Figure 20. NCP300H/1L Series 4.5 V Reset Output Sink Current versus Output Voltage www.onsemi.com 13 NCP300, NCP301 OPERATING DESCRIPTION The NCP300 and NCP301 series devices are second generation ultra−low current voltage detectors. Figures 20 and 21 show a timing diagram and a typical application. Initially consider that input voltage Vin is at a nominal level and it is greater than the voltage detector upper threshold (VDET+), and the reset output (Pin 1) will be in the high state for active low devices, or in the low state for active high devices. If there is a power interruption and Vin becomes significantly deficient, it will fall below the lower detector threshold (VDET−). This sequence of events causes the Reset output to be in the low state for active low devices, or in the Input Voltage, Pin 2 Reset Output (Active Low), Pin 1 high state for active high devices. After completion of the power interruption, Vin will again return to its nominal level and become greater than the VDET+. The voltage detector has built−in hysteresis to prevent erratic reset operation as the comparator threshold is crossed. Although these device series are specifically designed for use as reset controllers in portable microprocessor based systems, they offer a cost−effective solution in numerous applications where precise voltage monitoring is required. Figure 26 through Figure 33 shows various application examples. Vin VDET+ VDET− Vin VDET+ VDET− 0V Reset Output (Active High), Pin 1 Vin VDET+ VDET− 0V Figure 21. Timing Waveforms www.onsemi.com 14 NCP300, NCP301 VCC TRANSIENT REJECTION The NCP300 and NCP301 series provides accurate VCC monitoring and reset timing during power−up, power−down, and brownout/sag conditions, and rejects negative glitches on the power supply line. Figure 22 shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive which lies under the curve will not generate a reset signal. A below−VCC condition (on the right) is detected as a brownout or power−down. Typically, any transient that goes 100 mV below the reset threshold and lasts 5.0 ms or less will not cause a reset pulse. Transient immunity can be improved by adding a capacitor in close proximity to the VCC pin of the NCP30x. FACTORS TO BE CONSIDERED FOR VOLTAGE OPTION SELECTION The following hysteresis graph depicts VDET−_min/max and VDET+_min/max for an active low Reset device: Output VDET−_typ VDET−_min VDET−_max VDET+_min VDET+_max Input VCC VDET+_min = VDET−_min + VHYS_min VDET+_max = VDET−_max + VHYS_max VTH Overdrive Figure 24. For selecting a voltage option in the NCP30X family, three major factors should be considered: 1. VDET+_max: Maximum detector threshold voltage for increasing Vin for the NCP30X device. 2. Vin_min: Minimum voltage output of the power supply. This is also the input voltage to the NCP30X device. 3. VCC_min: Minimum power supply voltage specification for the device that is protected by the NCP30X. The VDET+_max for an NCP30X device is normally calculated as follows: Duration Figure 22. Max Transient Duration vs. Max Overdrive 300 TRANSIENT DURATION 250 200 VTH = 4.90 V 150 V DET+_max + V DET−_max ) V HYS_max VTH = 3.10 V 100 VTH = 1.60 V Where: VDET−_max = Maximum detector threshold voltage for decreasing Vin VHYS_max = Maximum detector threshold hysteresis The above two parameters can be obtained directly from the data sheet to figure out the VDET+_max. In the NCP30X family, for a given VDET−_typ, which is the typical detection voltage reflected in the part number, the threshold values are designed to the following targets (at 25°C): 50 0 10 30 50 70 90 110 130 RESET COMPARATOR OVERDRIVE (eq. 1) 150 Figure 23. V DET−_min + V DET−_typ * 2% (eq. 2) V DET−_max + V DET−_typ ) 2% (eq. 3) V HYS_typ + 5% of V DET−_typ (eq. 4) V HYS_min + V HYS_typ * 40% (eq. 5) V HYS_max + V HYS_typ ) 40% (eq. 6) By simple mathematical calculation, Equations 2 to 6, Equation 1 becomes: V DET+_max + V DET−_typ www.onsemi.com 15 1.09 combining (eq. 7) NCP300, NCP301 PROPAGATION DELAY VARIATION On the other hand (see above paragraph), a minimum overdrive value from Vthreshold to VCC must be respected. That means Vin (minimum value of VCC) must be higher enough than VDET+ (VDET− + hysteresis) at the risk of significantly increasing propagation delay. (Figure 25) This propagation delay is temperature sensitive. To avoid acceptable time response, a minimum 100 mV difference between Vin and VDET+ must be selected. So, VDET+_max can be easily figured out just using a single variable VDET−_typ. For example, for NCP300LSN18T1G VDET−_typ = 1.8 V; then V DET+_max + 1.8 1.09 + 1.962 V (eq. 8) The NCP30X detection voltage option must be chosen such that: V CC_min t V DET+_max t V in_min (eq. 9) The significance of VCC_min < VDET+_max is that it makes sure the the reset from NCP30X remains asserted (in RESET hold state) till after the power supply exceeds the VCC_min requirement; this prevents incorrect device (uP) initiation. Having VDET+_max < Vin_min makes sure that the NCP30X is able to start up when Vin is at the Vin_min. The theoretical ideal VDET−_typ voltage option to be selected by the user, VDET−_typ_ideal, can be given by the following formula: V DET−_typ_ideal + (2 600 500 TIME DELAY (ms) ǒVin_min ) VCC_minǓ VDET+ 400 300 tpLH 200 (eq. 10) tpHL 1.09) 100 The following example shows how to select the device voltage option in a real world application. 1. Power supply output specification: 3.3 V $3% 2. Microprocessor core voltage specification: 3.3 V $5% So, we have: V in_min + 3.3 V * 3% + 3.201 V (eq. 11) V CC_min + 3.3 V * 5% + 3.135 V (eq. 12) 0 3.0 3.168 3.5 4.0 4.5 5.0 Vin, PULSE HIGH INPUT VOLTAGE (V) Figure 25. tpLH and tpHL vs. Input Voltage for the NCP301SNT1 Then the ideal voltage option = (3.201 + 3.135) / (2 * 1.09) = 2.9064 V Therefore, a device voltage option of 2.9 V will be the right choice. www.onsemi.com 16 5.5 NCP300, NCP301 APPLICATION CIRCUIT INFORMATION VDD VDD 2 Input NCP300 Series 3 * 1 Microprocessor Reset Reset Output * Required for GND GND NCP301 Figure 26. Microprocessor Reset Circuit 2.85 V 2.70 V Vin < 2.7 ON 2 Input NCP300 LSN27T1 1 To Additional Circuitry Reset Output Vin > 2.835 ON 3 GND Figure 27. Battery Charge Indicator Vsupply Fault 10 V Active High Device Thresholds 2 UV NCP301 LSN23T1 Active Low Device Thresholds 1.0 V Input UV Fault OK OV Fault OV Fault OK UV Fault 3 GND 2 Input 1 Reset Output Input The above circuit combines an active high and an active low reset output device to form a window detector for monitoring battery or power supply voltages. When the input voltage falls outside of the window established by the upper and lower device thresholds, the LED will turn on indicating a fault. As the input voltage falls within the window, increasing from 1.0 V and exceeding the active low device’s hysteresis threshold, or decreasing from the peak towards 1.0 V and falling below the active high device’s undervoltage threshold, the LED will turn off. The device thresholds shown can be used for a single cell lithium−ion battery charge detector. Figure 28. Window Voltage Detector www.onsemi.com 17 OV NCP301 HSN43T1 3 GND 1 Reset Output Output NCP300, NCP301 APPLICATION CIRCUIT INFORMATION Vsupply 5.0 V 2 Input 1 NCP301 LSN45T1 Reset Output 3 GND 2 Input 3.3 V 1 NCP301 LSN30T1 Low state output if either power supply is below the respective undervoltage detector threshold but greater than 1.0 V. Reset Output GND 3 Figure 29. Dual Power Supply Undervoltage Supervision VDD RH 2 VDD Input RL NCP301 LSN27T1 3 1 Microprocessor Reset Reset Output GND GND Figure 30. Microprocessor Reset Circuit with Additional Hysteresis Comparator hysteresis can be increased with the addition of resistor RH. The hysteresis equations have been simplified and do not account for the change of input current Iin as Vin crosses the comparator threshold. The internal resistance, Rin is simply calculated using Iin = 0.26 mA at 2.6 V. Vin Decreasing: V th + Vin Increasing: V th + ǒ ǒRR H Ǔ ) 1 ǒV DET*Ǔ in Ǔ RH ) 1 ǒV DET* ) V HYSǓ R in ø R L VHYS = Vin Increasing − Vin Decreasing Test Data ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Vth Decreasing (V) Vth Increasing (V) VHYS (V) RH (W) RL (kW) 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.84 2.87 2.88 2.91 2.90 2.94 2.98 2.97 3.04 3.15 0.135 0.17 0.18 0.21 0.20 0.24 0.28 0.27 0.34 0.45 0 100 100 100 220 220 220 470 470 470 − 10 6.8 4.3 10 6.8 4.3 10 6.8 4.3 www.onsemi.com 18 NCP300, NCP301 5.0 V Test Data R2 = 82 kW R1 = 100 kW Input 2 R2 (See table) C NCP301 NCP300 HSN27T1 LSN27T1 fOSC (kHz) IQ (mA) fOSC (kHz) IQ (mA) 0.01 10.4 18 6.0 30 0.068 9.8 18 5.7 30 1.0 6.18 21 3.6 29 1 10 1.41 21 1.34 25 Reset Output 100 0.27 22 0.356 23 1000 0.045 22 0.077 22 GND 3 R2 = 8.2 kW C (nF) Table values are for information only. Figure 31. Simple Clock Oscillator Vsupply This circuit monitors the current at the load. As current flows through the load, a voltage drop with respect to ground appears across Rsense where Vsense = Iload * Rsense. The following conditions apply: Load VDD Rsense 2 If: ILoad t VDET − /Rsense ILoad w (VDET −+VHYS)/Rsense Input 50 k NCP301 LSN09T1 LSN27T1 3 GND 1 Microcontroller Reset Output GND Figure 32. Microcontroller System Load Sensing www.onsemi.com 19 Then: Reset Output = 0 V Reset Output = VDD NCP300, NCP301 Vsupply 2 Input NCP301 LSN27T1 LSN45T1 3 GND 2 Input NCP301 LSN27T1 3 GND 2 Input 1 Reset Output 1 Reset Output Vin = 1.0 V to 10 V NCP301 LSN27T1 LSN18T1 3 1 Reset Output GND A simple voltage monitor can be constructed by connecting several voltage detectors as shown above. Each LED will sequentially turn on when the respective voltage detector threshold (VDET− +VHYS) is exceeded. Note that detector thresholds (VDET−) that range from 0.9 V to 4.9 V in 100 mV steps can be manufactured. Figure 33. LED Bar Graph Voltage Monitor www.onsemi.com 20 NCP300, NCP301 ORDERING INFORMATION Device Threshold Voltage NCP300LSN09T1G Output Type Reset Marking Package 0.9 SEJ TSOP−5 (Pb−Free) NCP300LSN18T1G 1.8 SFK TSOP−5 (Pb−Free) NCP300LSN185T1G 1.85 SRA TSOP−5 (Pb−Free) NCP300LSN20T1G NCV300LSN20T1G* NCP300LSN25T1G 2.0 SHE SIM TSOP−5 (Pb−Free) RUM TSOP−5 (Pb−Free) NCP300LSN27T1G NCV300LSN27T1G* NCP300LSN28T1G NCV300LSN28T1G* NCP300LSN30T1G NCV300LSN30T1G* NCP300LSN33T1G 2.7 2.5 TSOP−5 (Pb−Free) 3.3 SEE SIW SED SSL SEC SQV SKV NCP300LSN34T1G NCV300LSN36T1G* NCP300LSN44T1G 3.4 3.6 4.4 SKU SKS SKK TSOP−5 (Pb−Free) NCP300LSN45T1G 4.5 SEA TSOP−5 (Pb−Free) NCP300LSN46T1G 4.6 SKJ TSOP−5 (Pb−Free) NCP300LSN47T1G 4.7 SDZ TSOP−5 (Pb−Free) NCP300HSN09T1G 0.9 SDY TSOP−5 (Pb−Free) NCP300HSN18T1G 1.8 SFJ TSOP−5 (Pb−Free) NCP300HSN27T1G 2.7 SDU TSOP−5 (Pb−Free) SDS TSOP−5 (Pb−Free) 2.8 3.0 Active Low CMOS Active High CMOS TSOP−5 (Pb−Free) TSOP−5 (Pb−Free) 3000 / Tape & Reel (7 in. Reel) TSOP−5 (Pb−Free) TSOP−5 (Pb−Free) NCP300HSN30T1G 3.0 NCP300HSN45T1G 4.5 SDQ TSOP−5 (Pb−Free) NCP300HSN47T1G 4.7 SDP TSOP−5 (Pb−Free) NOTE: Shipping† 3000 / Tape & Reel (7 in. Reel) The ordering information lists standard undervoltage thresholds with active low outputs. Additional active low threshold devices, ranging from 0.9 V to 4.9 V in 100 mV increments and NCP300/NCP301 active high output devices, ranging from 0.9 V to 4.9 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability. The electrical characteristics of these additional devices are shown in Tables 1 through 4. †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. NCVxxx: Tlow = −40°C, Thigh = +125°C. Guaranteed by design. www.onsemi.com 21 NCP300, NCP301 ORDERING INFORMATION Device Threshold Voltage NCP301LSN09T1G NCP301LSN12T1G Output Type Reset Marking Package 0.9 SFF TSOP−5 (Pb−Free) 1.2 SNN TSOP−5 (Pb−Free) SRK TSOP−5 TSOP−5 (Pb−Free) SNJ TSOP−5 (Pb−Free) SRL TSOP−5 TSOP−5 (Pb−Free) SFN TSOP−5 (Pb−Free) DT2 TSOP−5 (Pb−Free) SFD SRM SNG TSOP−5 (Pb−Free) SUA TSOP−5 TSOP−5 (Pb−Free) TAN TSOP−5 (Pb−Free) SNF TSOP−5 (Pb−Free) NCP301LSN25T2G ET2 TSOP−5 (Pb−Free) NCV301LSN25T1G* SRN TSOP−5 (Pb−Free) NCV301LSN12T1* NCV301LSN12T1G* NCP301LSN16T1G 1.6 NCV301LSN16T1* NCV301LSN16T1G* NCP301LSN18T1G 1.8 NCP301LSN18T2G NCP301LSN20T1G NCV301LSN20T1G* NCP301LSN22T1G 2.0 2.2 NCV301LSN22T1* NCV301LSN22T1G* NCP301LSN24T1G NCP301LSN25T1G 2.4 2.5 Open Drain Active Low TSOP−5 (Pb−Free) NCP301LSN26T1G 2.6 SNE TSOP−5 (Pb−Free) NCP301LSN27T1G 2.7 SFA TSOP−5 (Pb−Free) FT2 TSOP−5 (Pb−Free) SEZ TSOP−5 (Pb−Free) SRO TSOP−5 (Pb−Free) SEY TSOP−5 (Pb−Free) NCP301LSN30T2G GT2 TSOP−5 (Pb−Free) NCV301LSN30T1G* AJA TSOP−5 (Pb−Free) NCP301LSN27T2G NCP301LSN28T1G 2.8 NCV301LSN28T1G* NCP301LSN30T1G 3.0 NCP301LSN31T1G 3.1 SEW TSOP−5 (Pb−Free) NCP301LSN32T1G 3.2 SNC TSOP−5 (Pb−Free) NOTE: Shipping† 3000 / Tape & Reel (7 in. Reel) The ordering information lists standard undervoltage thresholds with active low outputs. Additional active low threshold devices, ranging from 0.9 V to 4.9 V in 100 mV increments and NCP300/NCP301 active high output devices, ranging from 0.9 V to 4.9 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability. The electrical characteristics of these additional devices are shown in Tables 1 through 4. †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. NCVxxx: Tlow = −40°C, Thigh = +125°C. Guaranteed by design. www.onsemi.com 22 NCP300, NCP301 ORDERING INFORMATION Device Threshold Voltage NCP301LSN33T1G 3.3 Output Type Reset NCV301LSN33T1G* NCP301LSN34T1G NCP301LSN36T1G NCP301LSN39T1G NCP301LSN40T1G 3.4 3.6 3.9 4.0 NCV301LSN40T1* NCV301LSN40T1G* Open Drain NCP301LSN42T1G NCV301LSN42T1G* NCP301LSN45T1G NCV301LSN45T1G* NCP301LSN46T1G 4.2 NCP301LSN47T1G NCV301LSN47T1G* 4.7 Active Low 4.5 4.6 NOTE: Marking Package SNB TSOP−5 (Pb−Free) ACG TSOP−5 (Pb−Free) SNA SMY SNA SMU TSOP−5 (Pb−Free) SRP TSOP−5 TSOP−5 (Pb−Free) SMS ACR SEV SRQ SMP TSOP−5 (Pb−Free) SEU SSJ TSOP−5 (Pb−Free) Shipping† TSOP−5 (Pb−Free) 3000 / Tape & Reel (7 in. Reel) TSOP−5 (Pb−Free) TSOP−5 (Pb−Free) The ordering information lists standard undervoltage thresholds with active low outputs. Additional active low threshold devices, ranging from 0.9 V to 4.9 V in 100 mV increments and NCP300/NCP301 active high output devices, ranging from 0.9 V to 4.9 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability. The electrical characteristics of these additional devices are shown in Tables 1 through 4. †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. NCVxxx: Tlow = −40°C, Thigh = +125°C. Guaranteed by design. www.onsemi.com 23 NCP300, NCP301 ORDERING INFORMATION Device Threshold Voltage NCP301HSN09T1G Output Type Reset Marking Package 0.9 SET TSOP−5 (Pb−Free) NCP301HSN18T1G 1.8 SFM TSOP−5 (Pb−Free) NCP301HSN22T1G 2.2 SMD TSOP−5 (Pb−Free) NCP301HSN27T1G 2.7 SEP TSOP−5 (Pb−Free) Open Drain Active High NCV301HSN27T1G* SUD NCP301HSN30T1G 3.0 SEN TSOP−5 (Pb−Free) NCP301HSN45T1G 4.5 SEL TSOP−5 (Pb−Free) NOTE: Shipping† 3000 / Tape & Reel (7 in. Reel) The ordering information lists standard undervoltage thresholds with active low outputs. Additional active low threshold devices, ranging from 0.9 V to 4.9 V in 100 mV increments and NCP300/NCP301 active high output devices, ranging from 0.9 V to 4.9 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability. The electrical characteristics of these additional devices are shown in Tables 1 through 4. †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. NCVxxx: Tlow = −40°C, Thigh = +125°C. Guaranteed by design. www.onsemi.com 24 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSOP−5 CASE 483 ISSUE N 5 1 SCALE 2:1 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. 5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY. D 5X NOTE 5 2X DATE 12 AUG 2020 0.20 C A B 0.10 T M 2X 0.20 T 5 B 1 4 2 B S 3 K DETAIL Z G A A TOP VIEW DIM A B C D G H J K M S DETAIL Z J C 0.05 H C SIDE VIEW SEATING PLANE END VIEW GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT* 0.95 0.037 MILLIMETERS MIN MAX 2.85 3.15 1.35 1.65 0.90 1.10 0.25 0.50 0.95 BSC 0.01 0.10 0.10 0.26 0.20 0.60 0_ 10 _ 2.50 3.00 1.9 0.074 5 5 XXXAYWG G 1 1 Analog 2.4 0.094 XXX = Specific Device Code A = Assembly Location Y = Year W = Work Week G = Pb−Free Package 1.0 0.039 XXX MG G Discrete/Logic XXX = Specific Device Code M = Date Code G = Pb−Free Package (Note: Microdot may be in either location) 0.7 0.028 SCALE 10:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: DESCRIPTION: 98ARB18753C TSOP−5 *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2018 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
NCP300LSN18T1G 价格&库存

很抱歉,暂时无法提供与“NCP300LSN18T1G”相匹配的价格&库存,您可以联系我们找货

免费人工找货