NCP4589
300 mA, Tri-Mode, LDO
Linear Voltage Regulator
The NCP4589 is a CMOS 300 mA LDO which switches to a low
power mode under light current loads. The device automatically
switches back to a fast response mode as the output load increases
above 3 mA (typ.). The device can be placed in permanent fast mode
through a mode select pin. The family is available in a variety of
packages: SC−70, SOT23 and a small, ultra thin 1.2 x 1.2 x 0.4 mm
XDFN.
http://onsemi.com
MARKING
DIAGRAMS
Features
• Operating Input Voltage Range: 1.4 V to 5.25 V
• Output Voltage Range: 0.8 to 4.0 V (available in 0.1 V steps)
• Supply Current: Low Power Mode – 1.0 mA at VOUT < 1.85 V
•
•
•
•
•
•
•
•
Fast Mode – 55 mA
Standby Mode – 0.1 mA
Dropout Voltage: 230 mV Typ. at IOUT = 300 mA, VOUT = 2.8 V
±1% Output Voltage Accuracy (VOUT > 2 V, TJ = 25 °C)
High PSRR: 70 dB at 1 kHz (Fast response mode)
Line Regulation 0.02%/V Typ.
Current Fold Back Protection
Stable with Ceramic Capacitors
Available in 1.2x1.2 XDFN, SC−70 and SOT23 Package
These are Pb−free Devices
Typical Applications
VIN
C1
1m
XDFN6
CASE 711AA
XXXMM
SOT−23−5
CASE 1212
1
= Specific Device Code
= Date Code
See detailed ordering and shipping information in the package
dimensions section on page 27 of this data sheet.
VOUT
VOUT
C2
1m
CE
AE
XX
MM
ORDERING INFORMATION
NCP4589
VIN
SC−70
CASE 419A
XXXX
MM
• Battery Powered Equipments
• Portable Communication Equipments
• Cameras, Image Sensors and Camcorders
XXX
XMM
GND
Figure 1. Typical Application Schematic
© Semiconductor Components Industries, LLC, 2012
February, 2012 − Rev. 1
1
Publication Order Number:
NCP4589/D
NCP4589
AE
AE
Vin
Vout
Vin
Vref
Vout
Vref
Current Limit
CE
Current Limit
CE
GND
GND
NCP4589Dxxxx
NCP4589Hxxxx
Figure 2. Simplified Schematic Block Diagram
PIN FUNCTION DESCRIPTION
Pin No.
XDFN
Pin No.
SC−70
Pin No.
SOT23
Pin Name
4
4
1
VIN
Input pin
2
2
2
GND
Ground
3
5
3
CE
6
3
5
VOUT
1
1
4
AE
Auto Eco Pin
5
−
−
NC
No connection
Description
Chip enable pin
Output pin
ABSOLUTE MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VIN
6.0
V
Output Voltage
VOUT
−0.3 to VIN + 0.3
V
Chip Enable Input
VCE
−0.3 to 6.0
V
Auto Eco Input
VAE
−0.3 to 6.0
V
Output Current
IOUT
400
mA
PD
400
mW
Input Voltage (Note 1)
Power Dissipation XDFN
Power Dissipation SC70
380
Power Dissipation SOT23
420
Junction Temperature
TJ
−40 to 150
°C
Storage Temperature
TSTG
−55 to 125
°C
TA
−40 to 85
°C
ESD Capability, Human Body Model (Note 2)
ESDHBM
2000
V
ESD Capability, Machine Model (Note 2)
ESDMM
200
V
Operation Temperature
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.
2. This device series incorporates ESD protection and is tested by the following methods:
ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114)
ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115)
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.
http://onsemi.com
2
NCP4589
THERMAL CHARACTERISTICS
Symbol
Value
Unit
Thermal Characteristics, XDFN
Thermal Resistance, Junction−to−Air
Rating
RqJA
250
°C/W
Thermal Characteristics, SOT23
Thermal Resistance, Junction−to−Air
RqJA
238
°C/W
Thermal Characteristics, SC−70
Thermal Resistance, Junction−to−Air
RqJA
263
°C/W
ELECTRICAL CHARACTERISTICS
−40°C ≤ TA ≤ 85°C; VIN = VOUT(NOM) + 1 V; IOUT = 1 mA; CIN = COUT = 1 mF; unless otherwise noted. Typical values are at TA = +25°C.
Parameter
Operating Input Voltage
Output Voltage (Fast Mode)
Output Voltage Temp.
Coefficient
Line Regulation
Load Regulation
Test Conditions
Symbol
Min
Max
Unit
(Note NO TAG)
VIN
1.4
5.25
V
VOUT
x0.99
x1.01
V
TA = +25°C,
IOUT = 5 mA
VOUT > 2 V
VOUT ≤ 2 V
−20
20
mV
−40°C ≤ TA ≤ 85°C,
IOUT = 5 mA
VOUT > 2 V
x0.975
x1.015
V
VOUT ≤ 2 V
−50
30
mV
TA = −40 to 85°C
VIN = VOUT + 0.5 V to
5V
VIN ≥ 1.4 V
IOUT = 1 mA,
(Low Power Mode)
IOUT = 1 mA to 10 mA
VOUT > 2.0 V
LineReg
0.50
IOUT = 10 mA,
(Fast Mode)
0.02
LineReg
Quiescent Current
%
−20
20
mV
35
80
mV
0.62
0.85
V
0.9 V ≤ VOUT < 1.0 V
0.55
0.78
1.0 V ≤ VOUT < 1.5 V
0.48
0.70
1.5 V ≤ VOUT < 2.6 V
0.34
0.50
2.6 V ≤ VOUT < 4.0 V
0.23
0.35
0.8 V ≤ VOUT < 0.9 V
Supply Current
VDO
IOUT
VOUT = 0 V
IOUT = 0 mA, Low
Power Mode (Note 3)
VOUT ≤ 1.85 V
300
mA
ISC
50
IQ
1.0
4.0
1.5
4.0
VOUT > 1.85 V
IOUT = 10 mA, Fast Mode
IGND
55
VCE = 0 V, TA = 25°C
ISTB
0.1
Fast Mode Switch−Over Current
IOUT = light to heavy load
IOUTH
Low Power Switch−Over
Current
IOUT = heavy to light load
IOUTL
1.0
CE Pin Threshold Voltage
CE Input Voltage “H”
VCEH
1.0
CE Input Voltage “L”
VCEL
Standby Current
CE Pull Down Current
AE Pin Threshold Voltage
0.20
1.0
Output Current
Short Current Limit
%/V
−1.0
IOUT = 10 mA to 300 mA
IOUT = 300 mA
ppm/°C
±50
VOUT ≤ 2.0 V
Dropout Voltage
Typ
VAEH
AE Input Voltage “L”
VAEL
3. The value of supply current is excluding the Pull−down constant current of CE and AE Pin
http://onsemi.com
3
mA
mA
1
mA
8.0
mA
2.0
mA
V
0.4
ICEPD
AE Input Voltage “H”
mA
0.1
mA
V
1.0
0.4
NCP4589
ELECTRICAL CHARACTERISTICS
−40°C ≤ TA ≤ 85°C; VIN = VOUT(NOM) + 1 V; IOUT = 1 mA; CIN = COUT = 1 mF; unless otherwise noted. Typical values are at TA = +25°C.
Parameter
Test Conditions
Symbol
AE Pull Down Current
Power Supply Rejection Ratio
Output Noise Voltage
Low Output N−channel Tr. On
Resistance
Min
Typ
Max
Unit
IAEPD
0.1
mA
VIN = VOUT + 1 V or 2.2 V whichever is higher,
DVIN = 0.2 Vpk−pk, IOUT = 30 mA, f = 1 kHz, Fast
Mode
PSRR
70
dB
VOUT = 1.0 V, IOUT = 30 mA, f = 10 Hz to
100 kHz
VN
90
mVrms
VIN = 4 V, VCE = 0 V
RLOW
50
W
3. The value of supply current is excluding the Pull−down constant current of CE and AE Pin
http://onsemi.com
4
NCP4589
TYPICAL CHARACTERISTICS
1.4
1.2
1.0
5.25 V
3.8 V
1.4 V
0.6
VIN = 1.6 V
1.0
VOUT (V)
0.8
VOUT (V)
1.2
VIN = 1.8 V
2.8 V
0.4
0.8
3.8 V
0.6
0.2
0.0
0
100
200
300
400
500
IOUT, OUTPUT CURRENT (mA)
600
0.0
700
0
100
Figure 3. Output Voltage vs. Output Current
1.0 V Version (TJ = 255C)
600
700
3.5
1.8
3.0
1.6
VOUT (V)
1.2
5.25 V
1.0
4.3 V
2.5
3.8 V
1.4
VOUT (V)
200
300
400
500
IOUT, OUTPUT CURRENT (mA)
Figure 4. Output Voltage vs. Output Current
1.2 V Version (TJ = 255C)
2.0
0.8
0.6
2.0
1.5
5.25 V
1.0
0.4
VIN = 2.8 V
0
100
200
300
400
500
VIN = 3.8 V
0.5
0.2
0.0
600
0
100
IOUT, OUTPUT CURRENT (mA)
0.6
0.5
0.5
TJ = 85_C
VDO (V)
−40_C
0.2
500
600
25_C
0.3
−40_C
0.2
0.1
0.0
400
TJ = 85_C
0.4
25_C
0.3
300
Figure 6. Output Voltage vs. Output Current
3.3 V Version (TJ = 255C)
0.6
0.4
200
IOUT, OUTPUT CURRENT (mA)
Figure 5. Output Voltage vs. Output Current
1.8 V Version (TJ = 255C)
VDO (V)
2.8 V
5.25 V
0.4
0.2
0.0
1.8 V
0.1
0
50
100
150
200
250
300
0.0
0
50
100
150
200
250
IOUT, OUTPUT CURRENT (mA)
IOUT, OUTPUT CURRENT (mA)
Figure 7. Dropout Voltage vs. Output Current
1.0 V Version
Figure 8. Dropout Voltage vs. Output Current
1.2 V Version
http://onsemi.com
5
300
NCP4589
TYPICAL CHARACTERISTICS
0.40
0.30
0.35
0.25
TJ = 85_C
0.25
0.20
VDO (V)
VDO (V)
0.30
25_C
0.20
−40_C
0.15
TJ = 85_C
25_C
0.15
−40_C
0.10
0.10
0.05
0.05
0.00
0
50
100
150
200
250
0.00
0
300
250
300
1.4
1.2
30 mA
1.0
VOUT (V)
0.8
VOUT (V)
200
Figure 10. Dropout Voltage vs. Output Current
3.3 V Version
1 mA
0.6
0.4
30 mA
0.8
0.6
1 mA
0.4
IOUT = 50 mA
0.2
IOUT = 50 mA
0.2
0
1
2
3
4
5
0.0
6
0
1
VIN, INPUT VOLTAGE (V)
2
3
4
5
6
VIN, INPUT VOLTAGE (V)
Figure 11. Output Voltage vs. Input Voltage,
1.0 V Version
Figure 12. Output Voltage vs. Input Voltage,
1.2 V Version
2.0
3.5
1.8
3.0
1.6
1.4
2.5
30 mA
1.2
VOUT (V)
VOUT (V)
150
Figure 9. Dropout Voltage vs. Output Current
1.8 V Version
1.0
1 mA
1.0
0.8
0.6
2.0
30 mA
1.5
1.0
0.4
0
1
2
1 mA
0.5
IOUT = 50 mA
0.2
0.0
100
IOUT, OUTPUT CURRENT (mA)
1.2
0.0
50
IOUT, OUTPUT CURRENT (mA)
3
4
5
0.0
6
0
VIN, INPUT VOLTAGE (V)
IOUT = 50 mA
1
2
3
4
5
VIN, INPUT VOLTAGE (V)
Figure 13. Output Voltage vs. Input Voltage,
1.8 V Version
Figure 14. Output Voltage vs. Input Voltage,
3.3 V Version
http://onsemi.com
6
6
NCP4589
TYPICAL CHARACTERISTICS
1.24
1.04
VIN = 2.2 V
1.02
1.22
1.00
1.20
VOUT (V)
VOUT (V)
VIN = 2.0 V
0.98
1.18
1.16
0.96
0.94
−40
−20
0
20
40
60
TJ, JUNCTION TEMPERATURE (°C)
1.14
−40
80
−20
0
20
40
60
TJ, JUNCTION TEMPERATURE (°C)
Figure 15. Output Voltage vs. Temperature,
1.0 V Version
1.84
80
Figure 16. Output Voltage vs. Temperature,
1.2 V Version
3.34
VIN = 2.8 V
VIN = 4.3 V
3.33
1.82
3.32
1.80
VOUT (V)
VOUT (V)
3.31
1.78
3.30
3.29
3.28
3.27
1.76
3.26
3.25
1.74
−40
−20
0
20
40
60
TJ, JUNCTION TEMPERATURE (°C)
3.24
−40
80
Figure 17. Output Voltage vs. Temperature,
1.8 V Version
70
70
60
IOUT = 10 mA
60
IOUT = 10 mA
50
50
IGND (mA)
IGND (mA)
80
Figure 18. Supply Current vs. Input Voltage,
3.3 V Version
80
40
30
40
30
20
20
10
10
0
−20
0
20
40
60
TJ, JUNCTION TEMPERATURE (°C)
IOUT = 0 mA
0
1
2
3
VIN, INPUT VOLTAGE (V)
4
0
5
IOUT = 0 mA
0
1
2
3
4
VIN, INPUT VOLTAGE (V)
5
Figure 20. Supply Current vs. Input Voltage,
1.2 V Version
Figure 19. Supply Current vs. Input Voltage,
1.0 V Version
http://onsemi.com
7
NCP4589
TYPICAL CHARACTERISTICS
70
70
IOUT = 10 mA
60
50
50
40
40
IGND (mA)
IGND (mA)
60
30
30
20
20
10
10
0
IOUT = 0 mA
0
1
2
3
4
VIN, INPUT VOLTAGE (V)
0
5
IOUT = 10 mA
IOUT = 0 mA
0
1
Figure 21. Supply Current vs. Input Voltage,
1.8 V Version
120
100
120
VIN = 2.0 V
AE = 0 V
80
IGND (mA)
IGND (mA)
VIN = 2.2 V
AE = 0 V
100
60
40
Heavy to
Light Load
20
0.1
Light to
Heavy Load
1
10
100
IOUT, OUTPUT CURRENT (mA)
60
40
Heavy to
Light Load
20
0
1000
0.1
Figure 23. Supply Current vs. Output Current,
1.0 V Version
120
120
VIN = 2.8 V
AE = 0 V
80
60
60
Heavy to
Light Load
20
0
0.1
1
Light to
Heavy Load
10
100
IOUT, OUTPUT CURRENT (mA)
1
10
100
IOUT, OUTPUT CURRENT (mA)
1000
VIN = 4.3 V
AE = 0 V
100
80
40
Light to
Heavy Load
Figure 24. Supply Current vs. Output Current,
1.2 V Version
IGND (mA)
IGND (mA)
100
5
Figure 22. Supply Current vs. Input Voltage,
3.3 V Version
80
0
2
3
4
VIN, INPUT VOLTAGE (V)
40
Heavy to
Light Load
20
1000
0
0.1
Light to
Heavy Load
1
10
100
IOUT, OUTPUT CURRENT (mA)
1000
Figure 26. Supply Current vs. Output Current,
3.3 V Version
Figure 25. Supply Current vs. Output Current,
1.8 V Version
http://onsemi.com
8
NCP4589
TYPICAL CHARACTERISTICS
3.0
2.5
3.0
VIN = 2.0 V
AE = 0 V
2.5
2.0
IIN (mA)
IIN (mA)
2.0
1.5
1.0
0.5
0.5
3.0
2.5
−20
0
20
40
60
0.0
−40
80
3.0
VIN = 2.8 V
AE = 0 V
2.5
IIN (mA)
IIN (mA)
60
80
VIN = 4.3 V
AE = 0 V
2.0
1.5
0.5
0.5
−20
0
20
40
60
0.0
−40
80
−20
0
20
40
60
80
TJ, JUNCTION TEMPERATURE (°C)
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Supply Current vs. Temperature,
1.8 V Version
Figure 30. Supply Current vs. Temperature,
3.3 V Version
55
VIN = 2.0 V
AE = 2.0 V
50
VIN = 2.2 V
AE = 2.2 V
45
IIN (mA)
45
40
40
35
35
30
30
25
−40
40
Figure 28. Supply Current vs. Temperature,
1.2 V Version
1.0
50
20
Figure 27. Supply Current vs. Temperature,
1.0 V Version
1.0
55
0
TJ, JUNCTION TEMPERATURE (°C)
1.5
0.0
−40
−20
TJ, JUNCTION TEMPERATURE (°C)
2.0
IIN (mA)
1.5
1.0
0.0
−40
VIN = 2.2 V
AE = 0 V
−20
0
20
40
60
25
−40
80
−20
0
20
40
60
80
TJ, JUNCTION TEMPERATURE (°C)
TJ, JUNCTION TEMPERATURE (°C)
Figure 31. Supply Current vs. Temperature,
1.0 V Version
Figure 32. Supply Current vs. Temperature,
1.2 V Version
http://onsemi.com
9
NCP4589
TYPICAL CHARACTERISTICS
55
50
55
VIN = 2.8 V
AE = 2.8 V
50
45
IIN (mA)
IIN (mA)
45
40
35
30
30
−20
0
20
40
60
25
−40
80
90
IOUT = 1 mA
AE = High
70
PSRR (dB)
30 mA
50 mA
50
20
10
10
10
FREQUENCY (kHz)
100
100 mA
0
0.1
1000
Figure 35. PSRR, 1.0 V Version, VIN = 2.2 V
1
10
FREQUENCY (kHz)
100
1000
Figure 36. PSRR, 1.2 V Version, VIN = 2.2 V
100
100
90
80
30 mA
90
IOUT = 1 mA
AE = High
80
100 mA
IOUT = 1 mA
AE = High
70
PSRR (dB)
70
PSRR (dB)
30 mA
50 mA
40
30
100 mA
1
IOUT = 1 mA
AE = Low
60
20
IOUT = 1 mA
AE = Low
40
50 mA
30
60
50 mA
50
IOUT = 1 mA
AE = Low
40
30
100 mA
20
30 mA
20
10
0
0.1
80
IOUT = 1 mA
AE = High
80
IOUT = 1 mA
AE = Low
30
50
60
100
40
60
40
Figure 34. Supply Current vs. Temperature,
3.3 V Version
70
0
0.1
20
Figure 33. Supply Current vs. Temperature,
1.8 V Version
80
50
0
TJ, JUNCTION TEMPERATURE (°C)
90
60
−20
TJ, JUNCTION TEMPERATURE (°C)
100
PSRR (dB)
40
35
25
−40
VIN = 4.3 V
AE = 4.3 V
10
1
10
FREQUENCY (kHz)
100
1000
0
0.1
Figure 37. PSRR, 1.8 V Version, VIN = 3.8 V
1
10
FREQUENCY (kHz)
100
1000
Figure 38. PSRR, 3.3 V Version, VIN = 4.3 V
http://onsemi.com
10
NCP4589
TYPICAL CHARACTERISTICS
60
5.0
4.5
50
3.5
VN (mVrms/√Hz)
VN (mVrms/√Hz)
4.0
3.0
2.5
2.0
1.5
1.0
40
30
20
10
0.5
0
0.01
0.1
1
10
FREQUENCY (kHz)
100
0
0.01
1000
Figure 39. Output Voltage Noise, 1.0 V Version,
VIN = 2.0 V, IOUT = 30 mA
1
10
FREQUENCY (kHz)
100
1000
Figure 40. Output Voltage Noise, 1.2 V Version,
VIN = 2.2 V, IOUT = 30 mA
60
5.0
4.5
50
4.0
VN (mVrms/√Hz)
3.5
3.0
2.5
2.0
1.5
1.0
40
30
20
10
0.5
0
0.01
0.1
1
10
FREQUENCY (kHz)
100
0
0.01
1000
Figure 41. Output Voltage Noise, 1.8 V Version,
VIN = 2.8 V, IOUT = 30 mA
0.1
1
10
FREQUENCY (kHz)
3.0
2.5
1.08
2.0
VIN (V)
1.06
1.04
1.02
1.00
0.98
0.96
0.94
0
0.2
0.4
0.6
100
1000
Figure 42. Output Voltage Noise, 3.3 V Version,
VIN = 4.3 V, IOUT = 30 mA
3.5
VOUT (V)
VN (mVrms/√Hz)
0.1
0.8 1.0 1.2
t, TIME (ms)
1.4
1.6
1.8
Figure 43. Line Transients, 1.0 V Version,
tR = tF = 5 ms, IOUT = 1 mA, AE = 0 V
http://onsemi.com
11
2.0
NCP4589
TYPICAL CHARACTERISTICS
3.7
3.2
2.7
VIN (V)
VOUT (V)
2.2
1.24
1.22
1.20
1.18
1.16
1.14
0
0.2
0.4
0.6
0.8 1.0 1.2
t, TIME (ms)
1.4
1.6
1.8
2.0
Figure 44. Line Transients, 1.2 V Version,
tR = tF = 5 ms, IOUT = 1 mA, AE = 0 V
4.3
3.8
3.3
VIN (V)
VOUT (V)
2.8
1.84
1.82
1.80
1.78
1.76
1.74
0
0.2
0.4
0.6
0.8 1.0 1.2
t, TIME (ms)
1.4
1.6
1.8
2.0
Figure 45. Line Transients, 1.8 V Version,
tR = tF = 5 ms, IOUT = 1 mA, AE = 0 V
5.3
4.8
4.3
VIN (V)
VOUT (V)
3.8
3.36
3.34
3.32
3.30
3.28
3.26
3.24
0
0.2
0.4
0.6
0.8 1.0 1.2
t, TIME (ms)
1.4
1.6
1.8
Figure 46. Line Transients, 3.3 V Version,
tR = tF = 5 ms, IOUT = 1 mA, AE = 0 V
http://onsemi.com
12
2.0
NCP4589
TYPICAL CHARACTERISTICS
3.5
3.0
2.5
VIN (V)
VOUT (V)
2.0
1.004
1.002
1.000
0.998
0.996
0.994
0
0.2
0.4
0.6
0.8 1.0 1.2
t, TIME (ms)
1.4
1.6
1.8
2.0
Figure 47. Line Transients, 1.0 V Version,
tR = tF = 5 ms, IOUT = 30 mA, AE = VIN V
3.7
3.2
2.7
VIN (V)
VOUT (V)
2.2
1.204
1.202
1.200
1.198
1.196
1.194
0
0.2
0.4
0.6
0.8 1.0 1.2
t, TIME (ms)
1.4
1.6
1.8
2.0
Figure 48. Line Transients, 1.2 V Version,
tR = tF = 5 ms, IOUT = 30 mA, AE = VIN V
4.3
3.8
3.3
VIN (V)
VOUT (V)
2.8
1.804
1.802
1.800
1.798
1.796
1.794
0
0.2
0.4
0.6
0.8 1.0 1.2
t, TIME (ms)
1.4
1.6
1.8
Figure 49. Line Transients, 1.8 V Version,
tR = tF = 5 ms, IOUT = 30 mA, AE = VIN V
http://onsemi.com
13
2.0
NCP4589
TYPICAL CHARACTERISTICS
5.3
4.8
4.3
VIN (V)
VOUT (V)
3.8
3.304
3.302
3.300
3.298
3.296
3.294
0
0.2
0.4
0.6
0.8 1.0 1.2
t, TIME (ms)
1.4
1.6
1.8
2.0
Figure 50. Line Transients, 3.3 V Version,
tR = tF = 5 ms, IOUT = 30 mA, AE = VIN V
75
50
25
IOUT (mA)
VOUT (V)
0
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0
20
40
60
80
100 120 140 160 180 200
t, TIME (ms)
Figure 51. Load Transients, 1.0 V Version,
IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 2.0 V,
AE = 0 V
75
50
25
IOUT (mA)
VOUT (V)
0
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 52. Load Transients, 1.0 V Version,
IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 2.0 V,
AE = VIN V
http://onsemi.com
14
NCP4589
TYPICAL CHARACTERISTICS
75
50
25
1.30
IOUT (mA)
VOUT (V)
0
1.25
1.20
1.15
1.10
1.05
1.00
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 53. Load Transients, 1.2 V Version,
IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 2.2 V,
AE = 0 V
75
50
25
IOUT (mA)
VOUT (V)
0
1.30
1.25
1.20
1.15
1.10
1.05
1.00
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 54. Load Transients, 1.2 V Version,
IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 2.2 V,
AE = VIN V
75
50
25
IOUT (mA)
VOUT (V)
0
1.90
1.85
1.80
1.75
1.70
1.65
1.60
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 55. Load Transients, 1.8 V Version,
IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 2.8 V,
AE = 0 V
http://onsemi.com
15
NCP4589
TYPICAL CHARACTERISTICS
75
50
25
1.90
IOUT (mA)
VOUT (V)
0
1.85
1.80
1.75
1.70
1.65
1.60
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 56. Load Transients, 1.8 V Version,
IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 2.8 V,
AE = VIN V
75
50
25
IOUT (mA)
VOUT (V)
0
3.40
3.35
3.30
3.25
3.20
3.15
3.10
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 57. Load Transients, 3.3 V Version,
IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 4.3 V,
AE = 0 V
75
50
25
3.40
IOUT (mA)
VOUT (V)
0
3.35
3.30
3.25
3.20
3.15
3.10
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 58. Load Transients, 3.3 V Version,
IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 4.3 V,
AE = VIN V
http://onsemi.com
16
NCP4589
TYPICAL CHARACTERISTICS
225
150
75
1.10
IOUT (mA)
VOUT (V)
0
1.05
1.00
0.95
0.90
0.85
0.80
0
20
40
60
80
100 120 140 160 180 200
t, TIME (ms)
Figure 59. Load Transients, 1.0 V Version,
IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 2.0 V,
AE = 0 V
225
150
75
IOUT (mA)
VOUT (V)
0
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0
20
40
60
80
100 120 140 160 180 200
t, TIME (ms)
Figure 60. Load Transients, 1.0 V Version,
IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 2.0 V,
AE = VIN V
225
150
75
1.30
IOUT (mA)
VOUT (V)
0
1.25
1.20
1.15
1.10
1.05
1.00
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 61. Load Transients, 1.2 V Version,
IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 2.2 V,
AE = 0 V
http://onsemi.com
17
NCP4589
TYPICAL CHARACTERISTICS
225
150
75
1.30
IOUT (mA)
VOUT (V)
0
1.25
1.20
1.15
1.10
1.05
1.00
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 62. Load Transients, 1.2 V Version,
IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 2.2 V,
AE = VIN V
225
150
75
IOUT (mA)
VOUT (V)
0
1.90
1.85
1.80
1.75
1.70
1.65
1.60
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 63. Load Transients, 1.8 V Version,
IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 2.8 V,
AE = 0 V
225
150
75
1.90
IOUT (mA)
VOUT (V)
0
1.85
1.80
1.75
1.70
1.65
1.60
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 64. Load Transients, 1.8 V Version,
IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 2.8 V,
AE = VIN V
http://onsemi.com
18
NCP4589
TYPICAL CHARACTERISTICS
225
150
75
3.40
IOUT (mA)
VOUT (V)
0
3.35
3.30
3.25
3.20
3.15
3.10
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 65. Load Transients, 3.3 V Version,
IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 4.3 V,
AE = 0 V
225
150
75
3.40
IOUT (mA)
VOUT (V)
0
3.35
3.30
3.25
3.20
3.15
3.10
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 66. Load Transients, 3.3 V Version,
IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 4.3 V,
AE = VIN V
150
100
50
1.02
IOUT (mA)
VOUT (V)
0
1.01
1.00
0.99
0.98
0.97
0.96
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 67. Load Transients, 1.0 V Version,
IOUT = 50 − 100 mA, tR = tF = 0.5 ms, VIN = 2.0 V,
AE = 0 V
http://onsemi.com
19
NCP4589
TYPICAL CHARACTERISTICS
150
100
50
1.22
IOUT (mA)
VOUT (V)
0
1.21
1.20
1.19
1.18
1.17
1.16
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 68. Load Transients, 1.2 V Version,
IOUT = 50 − 100 mA, tR = tF = 0.5 ms, VIN = 2.2 V,
AE = VIN V
150
100
50
IOUT (mA)
VOUT (V)
0
1.82
1.81
1.80
1.79
1.78
1.77
1.76
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 69. Load Transients, 1.8 V Version,
IOUT = 50 − 100 mA, tR = tF = 0.5 ms, VIN = 2.8 V,
AE = VIN V
150
100
50
3.32
IOUT (mA)
VOUT (V)
0
3.31
3.30
3.29
3.28
3.27
3.26
0
20
40
60
80 100 120 140 160 180 200
t, TIME (ms)
Figure 70. Load Transients, 3.3 V Version,
IOUT = 50 − 100 mA, tR = tF = 0.5 ms, VIN = 4.3 V,
AE = VIN V
http://onsemi.com
20
NCP4589
TYPICAL CHARACTERISTICS
3
2
1
VAE (V)
VOUT (V)
0
1.02
1.01
1.00
0.99
0.98
0.97
0.96
0
1
2
3
4
5
6
t, TIME (ms)
7
8
9
10
Figure 71. AE Switch Transients, 1.0 V Version,
VIN = 2.0 V, IOUT = 1 mA
3
2
1
1.02
VAE (V)
VOUT (V)
0
1.01
1.00
0.99
0.98
0.97
0.96
0
0.2
0.4
0.6
0.8 1.0 1.2
t, TIME (ms)
1.4
1.6
1.8 2.0
Figure 72. AE Switch Transients, 1.0 V Version,
VIN = 2.0 V, IOUT = 1 mA
3.3
2.2
1.1
VAE (V)
VOUT (V)
0.0
1.22
1.21
1.20
1.19
1.18
1.17
1.16
0
1
2
3
4
5
6
t, TIME (ms)
7
8
9
10
Figure 73. AE Switch Transients, 1.2 V Version,
VIN = 2.2 V, IOUT = 1 mA
http://onsemi.com
21
NCP4589
TYPICAL CHARACTERISTICS
3.3
2.2
1.1
1.22
VAE (V)
VOUT (V)
0.0
1.21
1.20
1.19
1.18
1.17
1.16
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8 2.0
t, TIME (ms)
Figure 74. AE Switch Transients, 1.2 V Version,
VIN = 2.2 V, IOUT = 1 mA
4.2
2.8
1.4
VAE (V)
VOUT (V)
0.0
1.81
1.80
1.79
1.78
1.77
1.76
0
1
2
3
4
5
6
7
8
9
10
t, TIME (ms)
Figure 75. AE Switch Transients, 1.8 V Version,
VIN = 2.8 V, IOUT = 1 mA
4.2
2.8
1.4
VAE (V)
VOUT (V)
0.0
1.81
1.80
1.79
1.78
1.77
1.76
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8 2.0
t, TIME (ms)
Figure 76. AE Switch Transients, 1.8 V Version,
VIN = 2.8 V, IOUT = 1 mA
http://onsemi.com
22
NCP4589
TYPICAL CHARACTERISTICS
6.45
4.30
2.15
VAE (V)
VOUT (V)
0.00
3.32
3.30
3.28
3.26
3.24
3.22
0
1
2
3
4
5
6
t, TIME (ms)
7
8
9
10
Figure 77. AE Switch Transients, 3.3 V Version,
VIN = 4.3 V, IOUT = 1 mA
6.45
4.30
2.15
VAE (V)
VOUT (V)
0.00
3.32
3.30
3.28
3.26
3.24
3.22
0
0.2
0.4
0.6
0.8 1.0 1.2
t, TIME (ms)
1.4
1.6
1.8 2.0
Figure 78. AE Switch Transients, 3.3 V Version,
VIN = 4.3 V, IOUT = 1 mA
Chip Enable
3
2
1.0
IOUT = 50 mA
IOUT = 1 mA
0
VCE (V)
VOUT (V)
1
IOUT = 300 mA
0.8
0.6
0.4
0.2
0.0
*0.2
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 79. Start−up, 1.0 V Version, VIN = 2.0 V
http://onsemi.com
23
NCP4589
TYPICAL CHARACTERISTICS
Chip Enable
3.3
2.2
1.1
VCE (V)
VOUT (V)
0.0
2.0
1.5
0.5
IOUT = 300 mA
0.0
*0.5
IOUT = 50 mA
IOUT = 1 mA
1.0
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 80. Start−up, 1.2 V Version, VIN = 2.2 V
Chip Enable
4.2
2.8
1.4
2.0
IOUT = 50 mA
IOUT = 1 mA
1.5
VCE (V)
VOUT (V)
0.0
1.0
0.5
IOUT = 300 mA
0.0
*0.5
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 81. Start−up, 1.8 V Version, VIN = 2.8 V
Chip Enable
6.45
4.30
2.15
4.0
IOUT = 50 mA
IOUT = 1 mA
3.0
2.0
1.0
IOUT = 300 mA
0.0
*1.0
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 82. Start−up, 3.3 V Version, VIN = 4.3 V
http://onsemi.com
24
VCE (V)
VOUT (V)
0.00
NCP4589
TYPICAL CHARACTERISTICS
3
2
1
1.0
0
IOUT = 1 mA
0.8
VCE (V)
VOUT (V)
Chip Enable
IOUT = 50 mA
0.6
IOUT = 300 mA
0.4
0.2
0.0
*0.2
0
40
80
120 160 200 240 280 320 360 400
t (ms)
Figure 83. Shutdown, 1.0 V Version D,
VIN = 2.0 V
3.3
2.2
1.1
0.0
VCE (V)
VOUT (V)
Chip Enable
2.0
IOUT = 50 mA
1.5
IOUT = 300 mA
1.0
0.5
IOUT = 1 mA
0.0
*0.5
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 84. Shutdown, 1.2 V Version D,
VIN = 2.2 V
4.2
2.8
1.4
0.0
2.0
IOUT = 50 mA
1.5
IOUT = 300 mA
1.0
IOUT = 1 mA
0.5
0.0
*0.5
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 85. Shutdown, 1.8 V Version D,
VIN = 2.8 V
http://onsemi.com
25
VCE (V)
VOUT (V)
Chip Enable
NCP4589
TYPICAL CHARACTERISTICS
6.45
4.30
4.0
2.15
0.00
IOUT = 50 mA
3.0
VCE (V)
VOUT (V)
Chip Enable
IOUT = 300 mA
2.0
1.0
IOUT = 1 mA
0.0
*1.0
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 86. Shutdown, 3.3 V Version D,
VIN = 4.3 V
APPLICATION INFORMATION
down current source. If enable function is not needed
connect CE pin to VIN.
A typical application circuit for NCP4589 series is shown
in Figure 87.
NCP4589
VIN
VIN
C1
1m
Current Limit
This regulator includes fold-back type current limit
circuit. This type of protection doesn’t limit current up to
current capability in normal operation, but when over
current occurs, the output voltage and current decrease until
the over current condition ends. Typical characteristics of
this protection type can be observed in the Output Voltage
versus Output Current graphs shown in the typical
characteristics chapter of this datasheet.
C2
1m
CE
AE
VOUT
VOUT
GND
Figure 87. Typical Application Schematic
Output Discharger
The D version includes a transistor between VOUT and
GND that is used for faster discharging of the output
capacitor. This function is activated when the IC goes into
disable mode.
Input Decoupling Capacitor (C1)
A 1 mF ceramic input decoupling capacitor should be
connected as close as possible to the input and ground pin of
the NCP4589. Higher values and lower ESR improves line
transient response.
Auto ECO and Fast Mode
The NCP4589 has two operation modes that have impact
on supply current and transient response at low output
current. These two modes can be selected by AE pin. If AE
pin is at low level Auto ECO mode is available. Please, see
supply current vs. output current charts.
Output Decoupling Capacitor (C2)
A 1 mF ceramic output decoupling capacitor is sufficient
to achieve stable operation of the IC. If tantalum capacitor
is used, and its ESR is high, the loop oscillation may result.
If output capacitor is composed from few ceramic capacitors
in parallel, the operation can be unstable. The capacitor
should be connected as close as possible to the output and
ground pin. Larger values and lower ESR improves dynamic
parameters.
Thermal
As power across the IC increases, it might become
necessary to provide some thermal relief. The maximum
power dissipation supported by the device is dependent
upon board design and layout. Mounting pad configuration
on the PCB, the board material, and also the ambient
temperature affect the rate of temperature rise for the part.
That is to say, when the device has good thermal
Enable Operation
The enable pin CE may be used for turning the regulator
on and off. The regulator is switched on when CE pin voltage
is above logic high level. The enable pin has internal pull
http://onsemi.com
26
NCP4589
conductivity through the PCB, the junction temperature will
be relatively low with high power dissipation applications.
capacitors C1 and C2 as close as possible to the IC, and make
wiring as short as possible.
PCB layout
Make VIN and GND line sufficient. If their impedance is
high, noise pickup or unstable operation may result. Connect
ORDERING INFORMATION
Nominal Output
Voltage
Description
Marking
Package
Shipping†
NCP4589DSQ12T1G
1.2 V
Auto discharge
D012
SC−70
(Pb−Free)
3000 / Tape & Reel
NCP4589DSQ18T1G
1.8 V
Auto discharge
D018
SC−70
(Pb−Free)
3000 / Tape & Reel
NCP4589DSQ25T1G
2.5 V
Auto discharge
D025
SC−70
(Pb−Free)
3000 / Tape & Reel
NCP4589DSQ30T1G
3.0 V
Auto discharge
D030
SC−70
(Pb−Free)
3000 / Tape & Reel
NCP4589DSQ33T1G
3.3 V
Auto discharge
D033
SC−70
(Pb−Free)
3000 / Tape & Reel
NCP4589DSN12T1G
1.2 V
Auto discharge
P1E
SOT−23−5
(Pb−Free)
3000 / Tape & Reel
NCP4589DSN18T1G
1.8 V
Auto discharge
P1L
SOT−23−5
(Pb−Free)
3000 / Tape & Reel
NCP4589DSN25T1G
2.5 V
Auto discharge
P1T
SOT−23−5
(Pb−Free)
3000 / Tape & Reel
NCP4589DSN30T1G
3.0 V
Auto discharge
P1Y
SOT−23−5
(Pb−Free)
3000 / Tape & Reel
NCP4589DSN33T1G
3.3 V
Auto discharge
Q1B
SOT−23−5
(Pb−Free)
3000 / Tape & Reel
NCP4589DMX12TCG
1.2 V
Auto discharge
7E
XDFN
(Pb−Free)
5000 / Tape & Reel
NCP4589DMX18TCG
1.8 V
Auto discharge
7L
XDFN
(Pb−Free)
5000 / Tape & Reel
NCP4589DMX28TCG
2.8 V
Auto discharge
7W
XDFN
(Pb−Free)
5000 / Tape & Reel
NCP4589DMX30TCG
3.0 V
Auto discharge
7Y
XDFN
(Pb−Free)
5000 / Tape & Reel
NCP4589DMX33TCG
3.3 V
Auto discharge
8B
XDFN
(Pb−Free)
5000 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
NOTE: To order other package and voltage variants, please contact your ON Semiconductor sales representative.
http://onsemi.com
27
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOT−23 5−LEAD
CASE 1212−01
ISSUE A
DATE 28 JAN 2011
SCALE 2:1
A
5
E
1
A2
0.05 S
B
D
A1
4
2
L
3
L1
5X
e
E1
b
0.10
C
M
C B
A
S
S
C
RECOMMENDED
SOLDERING FOOTPRINT*
3.30
XXX = Specific Device Code
M = Date Code
G
= Pb−Free Package
(Note: Microdot may be in either location)
0.95
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
DESCRIPTION:
98ASH70518A
SOT−23 5−LEAD
MILLIMETERS
MIN
MAX
--1.45
0.00
0.10
1.00
1.30
0.30
0.50
0.10
0.25
2.70
3.10
2.50
3.10
1.50
1.80
0.95 BSC
0.20
--0.45
0.75
XXX MG
G
0.85
0.56
DIM
A
A1
A2
b
c
D
E
E1
e
L
L1
GENERIC
MARKING DIAGRAM*
5X
5X
DOCUMENT NUMBER:
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSIONS: MILLIMETERS.
3. DATUM C IS THE SEATING PLANE.
A
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SC−88A (SC−70−5/SOT−353)
CASE 419A−02
ISSUE L
SCALE 2:1
A
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A−01 OBSOLETE. NEW STANDARD
419A−02.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
G
5
4
−B−
S
1
2
DATE 17 JAN 2013
DIM
A
B
C
D
G
H
J
K
N
S
3
D 5 PL
0.2 (0.008)
B
M
M
N
INCHES
MIN
MAX
0.071
0.087
0.045
0.053
0.031
0.043
0.004
0.012
0.026 BSC
--0.004
0.004
0.010
0.004
0.012
0.008 REF
0.079
0.087
MILLIMETERS
MIN
MAX
1.80
2.20
1.15
1.35
0.80
1.10
0.10
0.30
0.65 BSC
--0.10
0.10
0.25
0.10
0.30
0.20 REF
2.00
2.20
J
GENERIC MARKING
DIAGRAM*
C
K
H
XXXMG
G
SOLDER FOOTPRINT
0.50
0.0197
XXX = Specific Device Code
M
= Date Code
G
= Pb−Free Package
0.65
0.025
0.65
0.025
0.40
0.0157
1.9
0.0748
SCALE 20:1
(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “G”, may
or may not be present. Some products may
not follow the Generic Marking.
mm Ǔ
ǒinches
STYLE 1:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR
STYLE 2:
PIN 1. ANODE
2. EMITTER
3. BASE
4. COLLECTOR
5. CATHODE
STYLE 3:
PIN 1. ANODE 1
2. N/C
3. ANODE 2
4. CATHODE 2
5. CATHODE 1
STYLE 4:
PIN 1. SOURCE 1
2. DRAIN 1/2
3. SOURCE 1
4. GATE 1
5. GATE 2
STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
3. EMITTER 1
4. COLLECTOR
5. COLLECTOR 2/BASE 1
STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR
STYLE 8:
PIN 1. CATHODE
2. COLLECTOR
3. N/C
4. BASE
5. EMITTER
STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42984B
STYLE 5:
PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4
Note: Please refer to datasheet for
style callout. If style type is not called
out in the datasheet refer to the device
datasheet pinout or pin assignment.
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
SC−88A (SC−70−5/SOT−353)
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2018
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
XDFN6 1.2x1.2, 0.4P
CASE 711AA−01
ISSUE O
DATE 12 OCT 2010
SCALE 4:1
PIN ONE
REFERENCE
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.25mm FROM TERMINAL TIPS.
4. COPLANARITY APPLIES TO ALL OF THE
TERMINALS.
A
B
D
ÍÍÍ
ÍÍÍ
ÍÍÍ
E
DIM
A
A1
b
C
D
E
e
L
0.05 C
2X
2X
0.05 C
TOP VIEW
A
0.05 C
0.05 C
GENERIC
MARKING DIAGRAM*
A1
SIDE VIEW
NOTE 4
C
SEATING
PLANE
XX
MM
e
XX = Specific Device Code
MM = Date Code
3
1
C
6X
MILLIMETERS
MIN
MAX
--0.40
0.00
0.05
0.13
0.23
0.20
0.30
1.20 BSC
1.20 BSC
0.40 BSC
0.37
0.48
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
L
6
4
6X
b
0.05
BOTTOM VIEW
M
RECOMMENDED
MOUNTING FOOTPRINT*
C A B
NOTE 3
6X
6X
0.22
0.66
PACKAGE
OUTLINE
1.50
0.40
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
DOCUMENT NUMBER:
DESCRIPTION:
98AON53185E
XDFN6, 1.2 X 1.2, 0.4 P
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative