0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCP4625DSN12T1G

NCP4625DSN12T1G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT23-5

  • 描述:

    Linear Voltage Regulator IC Positive Fixed 1 Output 1.2V 300mA SOT-23-5

  • 数据手册
  • 价格&库存
NCP4625DSN12T1G 数据手册
NCP4625 300 mA, 10 V, Low Dropout Regulator The NCP4625 is a CMOS Linear voltage regulator with 300 mA output current capability. The device is capable of operating with input voltages up to 10 V, with high output voltage accuracy and low temperature−drift coefficient. The NCP4625 is easy to use, with output current fold−back protection and a thermal shutdown circuit included. A Chip Enable function is included to save power by lowering supply current. http://onsemi.com MARKING DIAGRAMS Features • • • • • • • • • • • Operating Input Voltage Range: 2.6 V to 10 V Output Voltage Range: 1.2 to 6.0 V (available in 0.1 V steps) Low Supply Current: 23 mA Very Low Dropout: ♦ 200 mV (IOUT = 100 mA, VIN = 3.0 V) ♦ 770 mV (IOUT = 300 mA, VIN = 2.8 V) High PSRR: 70 dB at 1 kHz Line Regulation 0.02%/V Typ Current Fold Back Protection Thermal Shutdown Protection Stable with Ceramic Capacitors Available in SC−70, SOT89 and SOT−23 Package These are Pb−Free Devices Typical Applications • • • • VIN 1m CE XXX XMM SOT−89 5 CASE 528AB XXXMM SOT−23−5 CASE 1212 1 VOUT VOUT ORDERING INFORMATION C2 GND 1 (*Note: Microdot may be in either location) NCP4625x C1 1 XX, XXX= Specific Device Code M, MM = Date Code A = Assembly Location Y = Year W = Work Week G = Pb−Free Package Battery products powered by Two Lithium Ion cells Networking and Communication Equipment Cameras, DVRs, STB and Camcorders Toys, industrial applications VIN XXX MG G SC−70 CASE 419A See detailed ordering and shipping information in the package dimensions section on page 14 of this data sheet. 1m Figure 1. Typical Application Schematic © Semiconductor Components Industries, LLC, 2012 February, 2012 − Rev. 2 1 Publication Order Number: NCP4625/D NCP4625 VIN VOUT VIN Vref Vref Current Limit Thermal Shutdown CE VOUT CE Current Limit Thermal Shutdown GND GND NCP4625Hxxxx NCP4625Dxxxx Figure 2. Simplified Schematic Block Diagram PIN FUNCTION DESCRIPTION Pin No. SOT89 Pin No. SC−70 Pin No. SOT23 Pin Name 5 5 1 VIN Input pin 2 3 2 GND Ground 3 1 3 CE 1 4 5 VOUT 4 2 4 NC Description Chip enable pin (Active “H”) Output pin No connection ABSOLUTE MAXIMUM RATINGS Rating Symbol Input Voltage (Note 1) Value Unit VIN 12.0 V Output Voltage VOUT −0.3 to VIN + 0.3 V Chip Enable Input VCE 12.0 V Output Current IOUT 330 mA PD 900 mW Power Dissipation SOT89 Power Dissipation SC−70 380 Power Dissipation SOT23 420 Junction Temperature TJ −40 to 150 °C Storage Temperature TSTG −55 to 125 °C ESD Capability, Human Body Model (Note 2) ESDHBM 2000 V ESD Capability, Machine Model (Note 2) ESDMM 200 V Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area. 2. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114) ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115) Latchup Current Maximum Rating tested per JEDEC standard: JESD78. http://onsemi.com 2 NCP4625 THERMAL CHARACTERISTICS Symbol Value Unit Thermal Characteristics, SOT89 Thermal Resistance, Junction−to−Air Rating RqJA 111 °C/W Thermal Characteristics, SOT23 Thermal Resistance, Junction−to−Air RqJA 238 °C/W Thermal Characteristics, SC−70 Thermal Resistance, Junction−to−Air RqJA 263 °C/W ELECTRICAL CHARACTERISTICS −40°C ≤ TA ≤ 85°C; VIN = VOUT(NOM) + 1 V; IOUT = 1 mA, CIN = COUT = 0.47 mF, unless otherwise noted. Typical values are at TA = +25°C. Parameter Test Conditions Symbol Min Max Unit VIN 2.6 10 V VOUT x0.99 x1.01 V VOUT ≤ 1.5 V −15 15 mV VOUT > 1.5 V x0.974 x1.023 V VOUT ≤ 1.5 V −40 35 mV Operating Input Voltage Output Voltage TA = +25°C VOUT > 1.5 V −40°C ≤ TA ≤ 85°C Output Voltage Temp. Coefficient −40°C ≤ TA ≤ 85°C Typ ppm/°C ±80 Line Regulation VOUT(NOM) + 0.5 V or 2.6 V (whichever is higher) ≤ VIN ≤ 10 V LineReg 0.02 0.2 %/V Load Regulation IOUT = 0.1 mA to 300 mA LineReg 10 70 mV VDO 1.40 1.80 V 1.3 V ≤ VOUT < 1.5 V 1.35 1.75 1.5 V ≤ VOUT < 1.8 V 1.20 1.55 1.8 V ≤ VOUT < 2.3 V 0.98 1.30 2.3 V ≤ VOUT < 3.0 V 0.77 1.08 3.0 V ≤ VOUT < 4.0 V 0.60 0.85 4.0 V ≤ VOUT < 6.0 V 0.50 0.75 Dropout Voltage IOUT = 300 mA 1.2 V ≤ VOUT < 1.3 V Output Current Short Current Limit IOUT VOUT = 0 V CE Pin Threshold Voltage mA ISC 40 IQ 23 40 mA VIN = 10 V, VCE = 0 V, TA = 25°C ISTB 0.1 1.0 mA CE Input Voltage “H” VCEH CE Input Voltage “L” VCEL Quiescent Current Standby Current 300 CE Pull Down Current mA V 1.7 0.8 ICEPD 0.3 mA VIN = VOUT + 1 V or 3.0 V whichever is higher, ΔVIN = 0.2 Vpk−pk, IOUT = 30 mA, f = 1 kHz PSRR 70 dB f = 10 Hz to 100 kHz VN 85 mVrms VIN = 7 V, VCE = 0 V, VOUT = 1.2 V, VIN = 2.6 V, IOUT = 30 mA RLOW 250 W Thermal Shutdown Temperature TTSD 165 °C Thermal Shutdown Release TTSR 110 °C Power Supply Rejection Ratio Output Noise Voltage Low Output N−channel Tr. On Resistance http://onsemi.com 3 NCP4625 TYPICAL CHARACTERISTICS 1.4 3.0 1.2 2.5 3.0 V 0.6 4.0 V 5.0 V VIN = 3.0 V 1.5 1.0 0.4 0.5 0.2 0.0 4.0 V 3.3 V 2.0 VIN = 2.6 V 0.8 VOUT (V) VOUT (V) 1.0 3.6 V 0 100 200 300 IOUT (mA) 400 500 0.0 600 0 Figure 3. Output Voltage vs. Output Current 1.2 V Version (TJ = 255C) 100 200 300 IOUT (mA) 400 500 600 Figure 4. Output Voltage vs. Output Current 2.8 V Version (TJ = 255C) 1.75 6.0 8.0 V 1.50 5.0 VIN = 5.3 V 6.0 V VDO (V) VOUT (V) 1.25 5.6 V 4.0 7.0 V 3.0 2.0 0.75 0.25 0 100 200 300 400 500 0.00 600 0 50 100 200 250 IOUT (mA) Figure 5. Output Voltage vs. Output Current 5.0 V Version (TJ = 255C) Figure 6. Dropout Voltage vs. Output Current 1.2 V Version 300 0.50 0.60 0.40 TJ = 25°C 0.50 VDO (V) 105°C 0.40 0.30 −40°C TJ = 25°C 0.30 105°C 0.20 −40°C 0.20 0.10 0.10 0.00 150 IOUT (mA) 0.70 VDO (V) 1.00 0.50 1.0 0.0 105°C TJ = −40°C and TJ = 25°C 0 50 100 150 IOUT (mA) 200 250 0.00 300 0 Figure 7. Dropout Voltage vs. Output Current 2.8 V Version 50 100 150 200 IOUT (mA) 250 Figure 8. Dropout Voltage vs. Output Current 5.0 V Version http://onsemi.com 4 300 NCP4625 TYPICAL CHARACTERISTICS 1.30 1.26 2.86 1.24 2.84 1.22 2.82 1.20 1.18 2.80 2.78 1.16 2.76 1.14 2.74 1.12 2.72 1.10 −40 −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) VIN = 3.8 V 2.88 VOUT (V) VOUT (V) 2.90 VIN = 2.6 V 1.28 2.70 −40 80 Figure 9. Output Voltage vs. Temperature, 1.2 V Version 40 VIN = 6.0 V 5.08 35 5.06 30 5.02 IGND (mA) VOUT (V) 5.04 5.00 4.98 4.96 VOUT = 5 V 25 2.8 V 20 1.2 V 15 10 4.94 5 4.92 4.90 −40 −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) 0 80 0 Figure 11. Output Voltage vs. Temperature, 5.0 V Version 2 3 4 VIN, OUTPUT VOLTAGE (V) 5 6 1.4 1.2 25 2.8 V 5.0 V 1 mA 1.0 VOUT (V) 20 IGND (mA) 1 Figure 12. Supply Current vs. Input Voltage 30 VOUT = 1.2 V 10 20 mA 50 mA 0.8 100 mA 0.6 IOUT = 200 mA 0.4 5 0 −40 80 Figure 10. Output Voltage vs. Temperature, 2.8 V Version 5.10 15 −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) 0.2 −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) 0.0 80 0 Figure 13. Supply Current vs. Temperature, 1.2 V Version 2 4 6 VIN, INPUT VOLTAGE (V) 8 Figure 14. Output Voltage vs. Input Voltage, 1.2 V Version http://onsemi.com 5 10 NCP4625 TYPICAL CHARACTERISTICS 6.0 3.0 1 mA 2.5 2.0 4.0 100 mA VOUT (V) VOUT (V) 5.0 20 mA 50 mA 1.5 IOUT = 200 mA 1.0 20 mA 3.0 50 mA 2.0 100 mA 1 mA 0.0 0 2 4 6 VIN, INPUT VOLTAGE (V) 8 0.0 10 0 Figure 15. Output Voltage vs. Input Voltage, 2.8 V Version 90 IOUT = 100 mA 80 70 30 mA 70 60 PSRR (dB) PSRR (dB) 80 1 mA 50 40 8 10 20 10 10 100 0 0.01 1000 1 mA 40 20 1 10 FREQUENCY (kHz) 30 mA 50 30 0.1 IOUT = 100 mA 60 30 Figure 17. PSRR, 1.2 V Version, VIN = 2.6 V 0.1 1 10 FREQUENCY (kHz) 100 1000 Figure 18. PSRR, 1.2 V Version, VIN = 3.0 V 100 100 90 90 IOUT = 100 mA 80 70 PSRR (dB) 40 60 40 30 20 20 10 10 1 10 FREQUENCY (kHz) 100 0 0.01 1000 1 mA 50 30 0.1 30 mA 70 1 mA 50 IOUT = 100 mA 80 30 mA 60 0 0.01 4 6 VIN, INPUT VOLTAGE (V) 100 90 0 0.01 2 Figure 16. Output Voltage vs. Input Voltage, 5.0 V Version 100 PSRR (dB) IOUT = 200 mA 1.0 0.5 Figure 19. PSRR, 2.8 V Version, VIN = 3.8 V 0.1 1 10 FREQUENCY (kHz) 100 Figure 20. PSRR, 2.8 V Version, VIN = 4.8 V http://onsemi.com 6 1000 NCP4625 TYPICAL CHARACTERISTICS 100 100 90 90 80 80 60 1 mA 50 IOUT = 100 mA 40 40 30 20 10 10 0.1 1 10 100 0 0.01 1000 1 mA IOUT = 100 mA 50 20 0.1 1 10 100 FREQUENCY (kHz) FREQUENCY (kHz) Figure 21. PSRR, 5.0 V Version, VIN = 6.0 V Figure 22. PSRR, 5.0 V Version, VIN = 7.0 V 1000 9.0 3.0 8.0 2.5 7.0 VN (mVrms/√Hz) 2.0 1.5 1.0 6.0 5.0 4.0 3.0 2.0 0.5 1.0 0.0 0.01 0.1 1 10 100 0.0 0.01 1000 0.1 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 23. Output Voltage Noise, 1.2 V Version, VIN = 2.6 V Figure 24. Output Voltage Noise, 2.8 V Version, VIN = 3.8 V 12 10 VN (mVrms/√Hz) VN (mVrms/√Hz) 60 30 0 0.01 30 mA 70 30 mA PSRR (dB) PSRR (dB) 70 8.0 6.0 4.0 2.0 0.0 0.01 0.1 1 10 FREQUENCY (kHz) 100 1000 Figure 25. Output Voltage Noise, 5.0 V Version, VIN = 6.0 V http://onsemi.com 7 NCP4625 TYPICAL CHARACTERISTICS 5 4 3 1.220 1 1.215 0 1.210 VIN (V) VOUT (V) 2 1.205 1.200 1.195 1.190 0 10 20 30 40 50 t (ms) 60 70 80 90 100 Figure 26. Line Transients, 1.2 V Version, tR = tF = 5 ms, IOUT = 30 mA 6 5 4 2 2.815 1 2.810 VIN (V) VOUT (V) 3 2.820 2.805 2.800 2.795 2.790 0 10 20 30 40 50 t (ms) 60 70 80 90 100 Figure 27. Line Transients, 2.8 V Version, tR = tF = 5 ms, IOUT = 30 mA 8 7 6 5.010 4 5.005 3 5.000 4.995 4.990 4.985 4.980 0 10 20 30 40 50 60 70 80 90 t (ms) Figure 28. Line Transients, 5.0 V Version, tR = tF = 5 ms, IOUT = 30 mA http://onsemi.com 8 100 VIN (V) VOUT (V) 5 NCP4625 TYPICAL CHARACTERISTICS 200 150 50 0 1.24 IOUT (mA) VOUT (V) 100 1.22 1.20 1.18 1.16 1.14 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 29. Load Transients, 1.2 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 2.6 V 200 150 100 0 2.83 2.81 IOUT (mA) VOUT (V) 50 2.79 2.77 2.75 2.73 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 30. Load Transients, 2.8 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 3.8 V 200 150 100 0 5.05 5.03 5.01 4.99 4.97 4.95 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 31. Load Transients, 5.0 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.0 V http://onsemi.com 9 IOUT (mA) VOUT (V) 50 NCP4625 TYPICAL CHARACTERISTICS 200 150 100 0 1.40 1.30 IOUT (mA) VOUT (V) 50 1.20 1.10 1.00 0.99 0 50 100 150 200 250 300 350 400 450 500 t (ms) Figure 32. Load Transients, 1.2 V Version, IOUT = 1 – 150 mA, tR = tF = 0.5 ms, VIN = 2.6 V 200 150 100 0 2.90 2.80 IOUT (mA) VOUT (V) 50 2.70 2.60 2.50 2.40 0 50 100 150 200 250 300 350 400 450 500 t (ms) Figure 33. Load Transients, 2.8 V Version, IOUT = 1 – 150 mA, tR = tF = 0.5 ms, VIN = 3.8 V 200 150 100 0 5.20 5.10 5.00 4.90 4.80 4.70 0 50 100 150 200 250 300 350 400 450 500 t (ms) Figure 34. Load Transients, 5.0 V Version, IOUT = 1 – 150 mA, tR = tF = 0.5 ms, VIN = 6.0 V http://onsemi.com 10 IOUT (mA) VOUT (V) 50 NCP4625 TYPICAL CHARACTERISTICS 4 Chip Enable 3 2 0 2.0 1.5 IOUT = 30 mA 1.0 VCE (V) VOUT (V) 1 IOUT = 300 mA IOUT = 1 mA 0.5 0.0 −0.5 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 35. Start−up, 1.2 V Version, VIN = 2.6 V 5 Chip Enable 4 3 2 4 0 3 IOUT = 30 mA 2 IOUT = 300 mA 1 VCE (V) VOUT (V) 1 IOUT = 1 mA 0 −1 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 36. Start−up, 2.8 V Version, VIN = 3.8 V 10 8 Chip Enable 6 2 8 0 6 IOUT = 30 mA IOUT = 300 mA IOUT = 1 mA 4 2 0 −2 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 37. Start−up, 5.0 V Version, VIN = 6.0 V http://onsemi.com 11 VCE (V) VOUT (V) 4 NCP4625 TYPICAL CHARACTERISTICS 4 3 2 VOUT (V) 2.0 0 IOUT = 1 mA 1.5 1.0 VEN (V) 1 Chip Enable IOUT = 30 mA 0.5 0.0 −0.5 0.0 IOUT = 300 mA 0.2 0.4 0.6 0.8 1.0 1.2 t (ms) 1.4 1.6 1.8 2.0 Figure 38. Shutdown, 1.2 V Version D, VIN = 2.6 V 5 4 3 1 Chip Enable 4 IOUT = 1 mA 3 2 VEN (V) VOUT (V) 2 IOUT = 30 mA 1 0 −1 0.0 IOUT = 300 mA 0.2 0.4 0.6 0.8 1.0 1.2 t (ms) 1.4 1.6 1.8 2.0 Figure 39. Shutdown, 2.8 V Version D, VIN = 3.8 V 10 8 6 2 Chip Enable 8 6 IOUT = 1 mA 4 IOUT = 30 mA 2 0 −2 0.0 0 IOUT = 300 mA 0.2 0.4 0.6 0.8 1.0 1.2 t (ms) 1.4 1.6 1.8 Figure 40. Shutdown, 5.0 V Version D, VIN = 6.0 V http://onsemi.com 12 2.0 VEN (V) VOUT (V) 4 NCP4625 APPLICATION INFORMATION Enable Operation A typical application circuit for NCP4625 series is shown in Figure 41. NCP4625x VIN VIN C1 1m CE The enable pin CE may be used for turning the regulator on and off. The IC is switched on when a high level voltage is applied to the CE pin. The enable pin has an internal pull down current source. If the enable function is not needed connect CE pin to VIN. VOUT VOUT C2 GND 1m Output Discharger The D version includes a transistor between VOUT and GND that is used for faster discharging of the output capacitor. This function is activated when the IC goes into disable mode. Figure 41. Typical Application Schematic Thermal As a power across the IC increase, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the ambient temperature affect the rate of temperature increase for the part. When the device has good thermal conductivity through the PCB the junction temperature will be relatively low in high power dissipation applications. Input Decoupling Capacitor (C1) A 1 mF ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the NCP4625. Higher values and lower ESR improves line transient response. Output Decoupling Capacitor (C2) A 1 mF ceramic output decoupling capacitor is enough to achieve stable operation of the IC. If a tantalum capacitor is used, and its ESR is high, loop oscillation may result. The capacitors should be connected as close as possible to the output and ground pins. Larger values and lower ESR improves dynamic parameters. PCB Layout Make the VIN and GND line as large as practical. If their impedance is high, noise pickup or unstable operation may result. Connect capacitors C1 and C2 as close as possible to the IC, and make wiring as short as possible. http://onsemi.com 13 NCP4625 ORDERING INFORMATION Nominal Output Voltage Description Marking Package Shipping† NCP4625DSN12T1G 1.2 V Auto discharge FBA SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4625DSN18T1G 1.8 V Auto discharge FBH SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4625DSN28T1G 2.8 V Auto discharge FBU SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4625DSN30T1G 3.0 V Auto discharge FBX SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4625DSN33T1G 3.3 V Auto discharge GBA SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4625DSN50T1G 5.0 V Auto discharge GBT SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4625HSN12T1G 1.2 V Standard FAA SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4625HSN18T1G 1.8 V Standard FAH SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4625HSN28T1G 2.8 V Standard FAU SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4625HSN30T1G 3.0 V Standard FAX SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4625HSN33T1G 3.3 V Standard GAA SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4625HSN50T1G 5.0 V Standard GAT SOT−23 (Pb−Free) 3000 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 14 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOT−23 5−LEAD CASE 1212−01 ISSUE A DATE 28 JAN 2011 SCALE 2:1 A 5 E 1 A2 0.05 S B D A1 4 2 L 3 L1 5X e E1 b 0.10 C M C B A S S C RECOMMENDED SOLDERING FOOTPRINT* 3.30 XXX = Specific Device Code M = Date Code G = Pb−Free Package (Note: Microdot may be in either location) 0.95 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DESCRIPTION: 98ASH70518A SOT−23 5−LEAD MILLIMETERS MIN MAX --1.45 0.00 0.10 1.00 1.30 0.30 0.50 0.10 0.25 2.70 3.10 2.50 3.10 1.50 1.80 0.95 BSC 0.20 --0.45 0.75 XXX MG G 0.85 0.56 DIM A A1 A2 b c D E E1 e L L1 GENERIC MARKING DIAGRAM* 5X 5X DOCUMENT NUMBER: NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSIONS: MILLIMETERS. 3. DATUM C IS THE SEATING PLANE. A *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
NCP4625DSN12T1G 价格&库存

很抱歉,暂时无法提供与“NCP4625DSN12T1G”相匹配的价格&库存,您可以联系我们找货

免费人工找货