0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCP5106A

NCP5106A

  • 厂商:

    ONSEMI(安森美)

  • 封装:

  • 描述:

    NCP5106A - High Voltage, High and Low Side Driver - ON Semiconductor

  • 数据手册
  • 价格&库存
NCP5106A 数据手册
NCP5106A, NCP5106B High Voltage, High and Low Side Driver The NCP5106 is a high voltage gate driver IC providing two outputs for direct drive of 2 N−channel power MOSFETs or IGBTs arranged in a half−bridge configuration version B or any other high−side + low−side configuration version A. It uses the bootstrap technique to ensure a proper drive of the high−side power switch. The driver works with 2 independent inputs. Features http://onsemi.com MARKING DIAGRAMS 1 SOIC−8 D SUFFIX CASE 751 8 5106x ALYW G • • • • • • • • • • • • • • • • High Voltage Range: Up to 600 V dV/dt Immunity ±50 V/nsec Negative Current Injection Characterized Over the Temperature Range Gate Drive Supply Range from 10 V to 20 V High and Low Drive Outputs Output Source / Sink Current Capability 250 mA / 500 mA 3.3 V and 5 V Input Logic Compatible Up to VCC Swing on Input Pins Extended Allowable Negative Bridge Pin Voltage Swing to −10 V for Signal Propagation Matched Propagation Delays Between Both Channels Outputs in Phase with the Inputs Independent Logic Inputs to Accommodate All Topologies (Version A) Cross Conduction Protection with 100 ns Internal Fixed Dead Time (Version B) Under VCC LockOut (UVLO) for Both Channels Pin−to−Pin Compatible with Industry Standards These are Pb−Free Devices 1 1 PDIP−8 P SUFFIX CASE 626 NCP5106 x A L or WL Y or YY W or WW G or G NCP5106x AWLG YYWW = Specific Device Code = A or B version = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package PINOUT INFORMATION VCC IN_HI IN_LO GND 1 2 3 4 8 7 6 5 VBOOT DRV_HI BRIDGE DRV_LO Typical Applications • Half−Bridge Power Converters • Any Complementary Drive Converters (Asymmetrical Half−Bridge, • Active Clamp) (A Version Only). Full−Bridge Converters 8 Pin Package ORDERING INFORMATION Device NCP5106APG NCP5106ADR2G NCP5106BPG NCP5106BDR2G Package PDIP−8 (Pb−Free) Shipping† 50 Units / Rail SOIC−8 2500 / Tape & Reel (Pb−Free) PDIP−8 (Pb−Free) 50 Units / Rail SOIC−8 2500 / Tape & Reel (Pb−Free) †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. © Semiconductor Components Industries, LLC, 2010 March, 2010 − Rev. 5 1 Publication Order Number: NCP5106/D NCP5106A, NCP5106B Vbulk + C1 D4 C3 GND NCP1395 Q1 U1 8 VBOOT Vcc 2 7 IN_HI DRV_HI 3 6 IN_LO Bridge 4 5 GND DRV_LO 1 NCP5106 GND GND D3 GND U2 R1 C4 Lf D2 Q2 C6 T1 D1 L1 + Out+ C3 Out− GND Vcc GND Figure 1. Typical Application Resonant Converter (LLC type) Vbulk + C1 D4 C3 GND 1 2 3 4 Q1 U1 8 VBOOT Vcc 7 IN_HI DRV_HI 6 IN_LO Bridge 5 GND DRV_LO NCP5106 GND C4 C5 T1 D1 L1 + Out+ C3 Out− D2 Q2 C6 GND Vcc MC34025 GND GND D3 GND U2 R1 Figure 2. Typical Application Half Bridge Converter http://onsemi.com 2 NCP5106A, NCP5106B VCC IN_HI PULSE TRIGGER LEVEL SHIFTER SQ RQ UV DETECT DRV_HI VCC UV DETECT VBOOT GND GND BRIDGE VCC IN_LO DELAY DRV_LO GND GND GND GND GND Figure 3. Detailed Block Diagram: Version A VCC IN_HI VCC UV DETECT PULSE TRIGGER LEVEL SHIFTER SQ RQ UV DETECT VBOOT DRV_HI GND CROSS CONDUCTION PREVENTION GND BRIDGE VCC IN_LO DELAY DRV_LO GND GND GND Figure 4. Detailed Block Diagram: Version B PIN DESCRIPTION ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ IN_HI Logic Input for High Side Driver Output in Phase Logic Input for Low Side Driver Output in Phase Ground IN_LO GND DRV_LO VCC Low Side Gate Drive Output Low Side and Main Power Supply Bootstrap Power Supply VBOOT DRV_HI High Side Gate Drive Output BRIDGE Bootstrap Return or High Side Floating Supply Return Pin Name Description http://onsemi.com 3 NCP5106A, NCP5106B MAXIMUM RATINGS Rating VCC VCC_transient VBRIDGE VBRIDGE VBOOT−VBRIDGE VDRV_HI VDRV_LO dVBRIDGE/dt VIN_XX Main power supply voltage Main transient power supply voltage: IVCC_max = 5 mA during 10 ms VHV: High Voltage BRIDGE pin Allowable Negative Bridge Pin Voltage for IN_LO Signal Propagation to DRV_LO (see characterization curves for detailed results) VHV: Floating supply voltage VHV: High side output voltage Low side output voltage Allowable output slew rate Inputs IN_HI, IN_LO ESD Capability: − HBM model (all pins except pins 6−7−8 in 8 pins package or 11−12−13 in 14 pins package) − Machine model (all pins except pins 6−7−8 in 8 pins package or 11−12−13 in 14 pins package) Latch up capability per JEDEC JESD78 RqJA Power dissipation and Thermal characteristics PDIP−8: Thermal Resistance, Junction−to−Air SO−8: Thermal Resistance, Junction−to−Air Storage Temperature Range Maximum Operating Junction Temperature 100 178 −55 to +150 +150 °C/W Symbol Value −0.3 to 20 23 −1 to 600 −10 −0.3 to 20 VBRIDGE − 0.3 to VBOOT + 0.3 −0.3 to VCC + 0.3 50 −1.0 to VCC + 0.3 2 200 Unit V V V V V V V V/ns V kV V TST TJ_max °C °C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. http://onsemi.com 4 NCP5106A, NCP5106B ELECTRICAL CHARACTERISTIC (VCC = Vboot = 15 V, VGND = Vbridge, −40°C < TJ < 125°C, Outputs loaded with 1 nF) TJ −40°C to 125°C Rating OUTPUT SECTION Output high short circuit pulsed current VDRV = 0 V, PW v 10 ms (Note 1) Output low short circuit pulsed current VDRV = VCC, PW v 10 ms (Note 1) Output resistor (Typical value @ 25°C) Source Output resistor (Typical value @ 25°C) Sink High level output voltage, VBIAS−VDRV_XX @ IDRV_XX = 20 mA Low level output voltage VDRV_XX @ IDRV_XX = 20 mA DYNAMIC OUTPUT SECTION Turn−on propagation delay (Vbridge = 0 V) Turn−off propagation delay (Vbridge = 0 V or 50 V) (Note 2) Output voltage rise time (from 10% to 90% @ VCC = 15 V) with 1 nF load Output voltage fall time (from 90% to 10% @VCC = 15 V) with 1 nF load Propagation delay matching between the High side and the Low side @ 25°C (Note 3) Internal fixed dead time (only valid for B version) (Note 4) Minimum input width that changes the output Maximum input width that does not change the output INPUT SECTION Low level input voltage threshold Input pull−down resistor (VIN < 0.5 V) High level input voltage threshold Logic “1” input bias current @ VIN_XX = 5 V @ 25°C Logic “0” input bias current @ VIN_XX = 0 V @ 25°C SUPPLY SECTION VCC UV Start−up voltage threshold VCC UV Shut−down voltage threshold Hysteresis on VCC Vboot Start−up voltage threshold reference to bridge pin (Vboot_stup = Vboot − Vbridge) Vboot UV Shut−down voltage threshold Hysteresis on Vboot Leakage current on high voltage pins to GND (VBOOT = VBRIDGE = DRV_HI = 600 V) Consumption in active mode (VCC = Vboot, fsw = 100 kHz and 1 nF load on both driver outputs) Consumption in inhibition mode (VCC = Vboot) VCC current consumption in inhibition mode Vboot current consumption in inhibition mode 1. 2. 3. 4. 5. VCC_stup VCC_shtdwn VCC_hyst Vboot_stup Vboot_shtdwn Vboot_shtdwn IHV_LEAK ICC1 ICC2 ICC3 ICC4 8.0 7.3 0.3 8.0 7.3 0.3 − − − − − 8.9 8.2 0.7 8.9 8.2 0.7 5 4 250 200 50 9.9 9.1 − 9.9 9.1 − 40 5 400 − − V V V V V V mA mA mA mA mA VIN RIN VIN IIN+ IIN− − − 2.3 − − − 200 − 5 − 0.8 − − 25 2.0 V kW V mA mA tON tOFF tr tf Dt DT tPW1 tPW2 − − − − − 65 − 20 100 100 85 35 20 100 − − 170 170 160 75 35 190 50 − ns ns ns ns ns ns ns ns IDRVsource IDRVsink ROH ROL VDRV_H VDRV_L − − − − − − 250 500 30 10 0.7 0.2 − − 60 20 1.6 0.6 mA mA W W V V Symbol Min Typ Max Units Parameter guaranteed by design. Turn−off propagation delay @ Vbridge = 600 V is guaranteed by design. See characterization curve for Dt parameters variation on the full range temperature. Version B integrates a dead time in order to prevent any cross conduction between DRV_HI and DRV_LO. See timing diagram of Figure 10. Timing diagram definition see: Figure 7, Figure 8 and Figure 9. http://onsemi.com 5 NCP5106A, NCP5106B IN_HI IN_LO DRV_HI DRV_LO Figure 5. Input/Output Timing Diagram (A Version) IN_HI IN_LO DRV_HI DRV_LO Figure 6. Input/Output Timing Diagram (B Version) IN_HI (IN_LO) ton 50% tr 90% 50% tf 90% 10% toff DRV_HI (DRV_LO) 10% Figure 7. Propagation Delay and Rise / Fall Time Definition http://onsemi.com 6 NCP5106A, NCP5106B IN_LO & IN_HI 50% ton_HI 50% toff_HI Delta_t 10% 90% DRV_HI ton_LO Delta_t toff_LO DRV_LO 10% Matching Delay 1 = ton_HI − ton_LO Matching Delay 2 = toff_LO − toff_HI 90% Figure 8. Matching Propagation Delay (A Version) IN_HI 50% 50% toff_HI ton_HI 90% DRV_HI 10% Matching Delay1=ton_HI−ton_LO IN_LO 50% toff_LO 90% DRV_LO 10% Matching Delay2=toff_HI−toff_LO 50% ton_LO Figure 9. Matching Propagation Delay (B Version) http://onsemi.com 7 NCP5106A, NCP5106B IN_HI IN_LO DRV_HI DRV_LO Internal Deadtime Internal Deadtime Figure 10. Input/Output Cross Conduction Output Protection Timing Diagram (B Version) http://onsemi.com 8 NCP5106A, NCP5106B CHARACTERIZATION CURVES 140 TON, PROPAGATION DELAY (ns) 120 100 80 60 40 20 0 TON Low Side TON, PROPAGATION DELAY (ns) TON High Side 140 120 100 80 60 40 20 0 −40 −20 0 20 40 60 80 TEMPERATURE (°C) 100 120 TON Low Side TON High Side 10 12 14 16 VCC, VOLTAGE (V) 18 20 Figure 11. Turn ON Propagation Delay vs. Supply Voltage (VCC = VBOOT) 140 TOFF, PROPAGATION DELAY (ns) 120 100 80 60 40 20 0 TOFF High Side TOFF Low Side TOFF, PROPAGATION DELAY (ns) 140 120 100 80 60 40 20 0 −40 Figure 12. Turn ON Propagation Delay vs. Temperature TOFF Low Side TOFF High Side 10 12 14 16 VCC, VOLTAGE (V) 18 20 −20 0 20 40 60 80 TEMPERATURE (°C) 100 120 Figure 13. Turn OFF Propagation Delay vs. Supply Voltage (VCC = VBOOT) 140 TOFF PROPAGATION DELAY (ns) TON, PROPAGATION DELAY (ns) 120 100 80 60 40 20 0 160 140 120 100 80 60 40 20 0 0 Figure 14. Turn OFF Propagation Delay vs. Temperature 0 10 20 30 40 50 10 20 30 40 50 BRIDGE PIN VOLTAGE (V) BRIDGE PIN VOLTAGE (V) Figure 15. High Side Turn ON Propagation Delay vs. VBRIDGE Voltage Figure 16. High Side Turn OFF Propagation Delay vs. VBRIDGE Voltage http://onsemi.com 9 NCP5106A, NCP5106B CHARACTERIZATION CURVES 160 140 TON, RISETIME (ns) TON, RISETIME (ns) 120 100 80 60 40 20 0 10 12 tr Low Side tr High Side 140 120 100 80 60 40 20 20 0 −40 −20 0 20 40 60 80 TEMPERATURE (°C) 100 120 tr High Side tr Low Side 14 16 VCC, VOLTAGE (V) 18 Figure 17. Turn ON Risetime vs. Supply Voltage (VCC = VBOOT) 80 70 TOFF, FALLTIME (ns) TOFF, FALLTIME (ns) 60 50 40 30 20 10 0 10 tf High Side tf Low Side 70 60 50 40 30 20 10 14 16 VCC, VOLTAGE (V) 18 20 0 −40 Figure 18. Turn ON Risetime vs. Temperature tf High Side tf Low Side 12 −20 0 20 40 60 80 TEMPERATURE (°C) 100 120 Figure 19. Turn OFF Falltime vs. Supply Voltage (VCC = VBOOT) PROPAGATION DELAY MATCHING (ns) 20 200 180 15 DEAD TIME (ns) 160 140 120 100 80 60 40 20 0 −40 −20 0 20 40 60 80 100 120 0 −40 Figure 20. Turn OFF Falltime vs. Temperature 10 5 −20 0 20 40 60 80 100 120 TEMPERATURE (°C) TEMPERATURE (°C) Figure 21. Propagation Delay Matching Between High Side and Low Side Driver vs. Temperature http://onsemi.com 10 Figure 22. Dead Time vs. Temperature NCP5106A, NCP5106B CHARACTERIZATION CURVES 1.4 LOW LEVEL INPUT VOLTAGE THRESHOLD (V) 10 12 14 16 18 20 1.2 1 0.8 0.6 0.4 0.2 0 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 −40 −20 0 20 40 60 TEMPERATURE (°C) 80 100 120 LOW LEVEL INPUT VOLTAGE THRESHOLD (V) VCC, VOLTAGE (V) Figure 23. Low Level Input Voltage Threshold vs. Supply Voltage (VCC = VBOOT) 2.5 HIGH LEVEL INPUT VOLTAGE THRESHOLD (V) 2 HIGH LEVEL INPUT VOLTAGE THRESHOLD (V) 2.5 2.0 1.5 1.0 0.5 0.0 −40 Figure 24. Low Level Input Voltage Threshold vs. Temperature 1.5 1 0.5 0 10 12 14 16 VCC, VOLTAGE (V) 18 20 −20 0 20 40 60 TEMPERATURE (°C) 80 100 120 Figure 25. High Level Input Voltage Threshold vs. Supply Voltage (VCC = VBOOT) 4 LOGIC “0” INPUT CURRENT (mA) LOGIC “0” INPUT CURRENT (mA) 3.5 3 2.5 2 1.5 1 0.5 0 10 12 14 16 VCC, VOLTAGE (V) 18 20 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 Figure 26. High Level Input Voltage Threshold vs. Temperature 0 −40 −20 0 20 40 60 TEMPERATURE (°C) 80 100 120 Figure 27. Logic “0” Input Current vs. Supply Voltage (VCC = VBOOT) Figure 28. Logic “0” Input Current vs. Temperature http://onsemi.com 11 NCP5106A, NCP5106B CHARACTERIZATION CURVES 8 LOGIC “1” INPUT CURRENT (mA) LOGIC “1” INPUT CURRENT (mA) 10 12 14 16 VCC, VOLTAGE (V) 18 20 7 6 5 4 3 2 1 0 10 8 6 4 2 0 −40 −20 0 20 40 60 80 100 120 Figure 29. Logic “1” Input Current vs. Supply Voltage (VCC = VBOOT) 1 LOW LEVEL OUTPUT VOLTAGE (V) LOW LEVEL OUTPUT VOLTAGE THRESHOLD (V) 0.8 0.6 0.4 0.2 0 1.0 0.8 0.6 0.4 0.2 0.0 −40 Figure 30. Logic “1” Input Current vs. Temperature TEMPERATURE (°C) 10 12 14 16 VCC, VOLTAGE (V) 18 20 −20 0 20 40 60 80 TEMPERATURE (°C) 100 120 Figure 31. Low Level Output Voltage vs. Supply Voltage (VCC = VBOOT) 1.6 HIGH LEVEL OUTPUT VOLTAGE (V) HIGH LEVEL OUTPUT VOLTAGE THRESHOLD (V) 1.6 Figure 32. Low Level Output Voltage vs. Temperature 1.2 1.2 0.8 0.8 0.4 0.4 0 10 12 14 16 VCC, VOLTAGE (V) 18 20 0.0 −40 −20 0 20 40 60 TEMPERATURE (°C) 80 100 120 Figure 33. High Level Output Voltage vs. Supply Voltage (VCC = VBOOT) Figure 34. High Level Output Voltage vs. Temperature http://onsemi.com 12 NCP5106A, NCP5106B CHARACTERIZATION CURVES 400 OUTPUT SOURCE CURRENT (mA) 350 300 250 200 150 100 50 0 10 12 14 16 VCC, VOLTAGE (V) 18 20 Isrc Low Side Isrc High Side OUTPUT SOURCE CURRENT (mA) 400 350 300 250 200 150 100 50 0 −40 −20 0 20 40 60 80 100 120 Isrc Low Side Isrc High Side TEMPERATURE (°C) Figure 35. Output Source Current vs. Supply Voltage (VCC = VBOOT) 600 OUTPUT SINK CURRENT (mA) Isink High Side OUTPUT SINK CURRENT (mA) 500 400 300 200 100 0 10 Isink Low Side 500 400 300 200 100 0 −40 600 Figure 36. Output Source Current vs. Temperature Isink High Side Isink Low Side 12 14 16 18 20 −20 0 20 40 60 80 100 120 VCC, VOLTAGE (V) TEMPERATURE (°C) Figure 37. Output Sink Current vs. Supply Voltage (VCC = VBOOT) HIGH SIDE LEAKAGE CURRENT ON HV PINS TO GND (mA) 0.2 0.16 0.12 0.08 0.04 0 20 LEAKAGE CURRENT ON HIGH VOLTAGE PINS (600 V) to GND (mA) Figure 38. Output Sink Current vs. Temperature 15 10 5 0 100 200 300 400 500 600 0 −40 −20 0 20 40 60 80 100 120 HV PINS VOLTAGE (V) TEMPERATURE (°C) Figure 39. Leakage Current on High Voltage Pins (600 V) to Ground vs. VBRIDGE Voltage (VBRIGDE = VBOOT = VDRV_HI) http://onsemi.com 13 Figure 40. Leakage Current on High Voltage Pins (600 V) to Ground vs. Temperature (VBRIDGE = VBOOT = VDRv_HI = 600 V) NCP5106A, NCP5106B CHARACTERIZATION CURVES 100 VBOOT CURRENT SUPPLY (mA) 0 4 8 12 16 20 VBOOT SUPPLY CURRENT (mA) 80 60 40 20 0 100 80 60 40 20 0 −40 −20 0 20 40 60 80 100 120 VBOOT, VOLTAGE (V) TEMPERATURE (°C) Figure 41. VBOOT Supply Current vs. Bootstrap Supply Voltage 240 VCC SUPPLY CURRENT (mA) VCC CURRENT SUPPLY (mA) 200 160 120 80 40 0 400 Figure 42. VBOOT Supply Current vs. Temperature 300 200 100 0 4 8 12 16 20 0 −40 −20 0 20 40 60 80 100 120 VCC, VOLTAGE (V) TEMPERATURE (°C) Figure 43. VCC Supply Current vs. VCC Supply Voltage 10.0 UVLO STARTUP VOLTAGE (V) 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 −40 −20 0 20 40 60 80 100 120 VBOOT UVLO Startup UVLO SHUTDOWN VOLTAGE (V) VCC UVLO Startup 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 −40 Figure 44. VCC Supply Current vs. Temperature VCC UVLO Shutdown VBOOT UVLO Shutdown −20 0 20 40 60 80 100 120 TEMPERATURE (°C) TEMPERATURE (°C) Figure 45. UVLO Startup Voltage vs. Temperature Figure 46. UVLO Shutdown Voltage vs. Temperature http://onsemi.com 14 NCP5106A, NCP5106B CHARACTERIZATION CURVES 25 CLOAD = 1 nF/Q = 15 nC 20 15 10 5 RGATE = 0 R to 22 R 0 0 100 200 300 400 500 600 ICC+ IBOOT CURRENT SUPPLY (mA) 40 35 30 25 20 15 10 5 0 0 100 200 300 400 500 SWITCHING FREQUENCY (kHz) 600 RGATE = 22 R RGATE = 10 R CLOAD = 2.2 nF/Q = 33 nC RGATE = 0 R ICC+ IBOOT CURRENT SUPPLY (mA) SWITCHING FREQUENCY (kHz) Figure 47. ICC1 Consumption vs. Switching Frequency with 15 nC Load on Each Driver @ VCC = 15 V 70 ICC+ IBOOT CURRENT SUPPLY (mA) ICC+ IBOOT CURRENT SUPPLY (mA) 60 50 40 30 20 10 0 0 100 200 300 400 500 600 RGATE = 22 R RGATE = 10 R CLOAD = 3.3 nF/Q = 50 nC RGATE = 0 R 120 Figure 48. ICC1 Consumption vs. Switching Frequency with 33 nC Load on Each Driver @ VCC = 15 V CLOAD = 6.6 nF/Q = 100 nC 100 80 60 40 20 0 RGATE = 0 R RGATE = 10 R RGATE = 22 R 0 100 SWITCHING FREQUENCY (kHz) 200 300 400 500 SWITCHING FREQUENCY (kHz) 600 Figure 49. ICC1 Consumption vs. Switching Frequency with 50 nC Load on Each Driver @ VCC = 15 V 0 NEGATIVE PULSE VOLTAGE (V) NEGATIVE PULSE VOLTAGE (V) −5 −10 −15 −20 −25 −30 −35 0 100 200 300 400 500 NEGATIVE PULSE DURATION (ns) 600 125°C −40°C 25°C 0 −5 −10 −15 −20 −25 −30 −35 0 Figure 50. ICC1 Consumption vs. Switching Frequency with 100 nC Load on Each Driver @ VCC = 15 V −40°C 25°C 125°C 100 200 300 400 500 NEGATIVE PULSE DURATION (ns) 600 Figure 51. NCP5106A, Negative Voltage Safe Operating Area on the Bridge Pin Figure 52. NCP5106B, Negative Voltage Safe Operating Area on the Bridge Pin http://onsemi.com 15 NCP5106A, NCP5106B APPLICATION INFORMATION Negative Voltage Safe Operating Area When the driver is used in a half bridge configuration, it is possible to see negative voltage appearing on the bridge pin (pin 6) during the power MOSFETs transitions. When the high−side MOSFET is switched off, the body diode of the low−side MOSFET starts to conduct. The negative voltage applied to the bridge pin thus corresponds to the forward voltage of the body diode. However, as pcb copper tracks and wire bonding introduce stray elements (inductance and capacitor), the maximum negative voltage of the bridge pin will combine the forward voltage and the oscillations created by the parasitic elements. As any CMOS device, the deep negative voltage of a selected pin can inject carriers into the substrate, leading to an erratic behavior of the concerned component. ON Semiconductor provides characterization data of its half−bridge driver to show the maximum negative voltage the driver can safely operate with. To prevent the negative injection, it is the designer duty to verify that the amount of negative voltage pertinent to his/her application does not exceed the characterization curve we provide, including some safety margin. In order to estimate the maximum negative voltage accepted by the driver, this parameter has been characterized over full the temperature range of the component. A test fixture has been developed in which we purposely negatively bias the bridge pin during the freewheel period of a buck converter. When the upper gate voltage shows signs of an erratic behavior, we consider the limit has been reached. Figure 51 (or 52), illustrates the negative voltage safe operating area. Its interpretation is as follows: assume a negative 10 V pulse featuring a 100 ns width is applied on the bridge pin, the driver will work correctly over the whole die temperature range. Should the pulse swing to −20 V, keeping the same width of 100 ns, the driver will not work properly or will be damaged for temperatures below 125°C. • If the negative pulse characteristic (negative voltage Summary: level & pulse width) is above the curves the driver runs in safe operating area. • If the negative pulse characteristic (negative voltage level & pulse width) is below one or all curves the driver will NOT run in safe operating area. Note, each curve of the Figure 51 (or 52) represents the negative voltage and width level where the driver starts to fail at the corresponding die temperature. If in the application the bridge pin is too close of the safe operating limit, it is possible to limit the negative voltage to the bridge pin by inserting one resistor and one diode as follows: Vcc D2 U1 NCP5106A VCC IN_HI IN_LO GND MUR160 8 7 6 5 R1 10R M2 C1 100n Vbulk 1 IN_Hi IN_LO 0 2 3 4 M1 VBOOT DRV_HI BRIDGE DRV_LO D1 MUR160 0 Figure 53. R1 and D1 Improves the Robustness of the Driver R1 and D1 should be placed as close as possible of the driver. D1 should be connected directly between the bridge pin (pin 6) and the ground pin (pin 4). By this way the negative voltage applied to the bridge pin will be limited by D1 and R1 and will prevent any wrong behavior. http://onsemi.com 16 NCP5106A, NCP5106B PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AJ −X− A 8 5 B 1 S 4 0.25 (0.010) M Y M −Y− G K NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. DIM A B C D G H J K M N S MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0_ 8_ 0.010 0.020 0.228 0.244 C −Z− H D 0.25 (0.010) M SEATING PLANE N X 45 _ 0.10 (0.004) M J ZY S X S SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm inches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 17 NCP5106A, NCP5106B PACKAGE DIMENSIONS 8 LEAD PDIP CASE 626−05 ISSUE L NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC --10_ 0.030 0.040 8 5 −B− 1 4 F NOTE 2 −A− L C −T− SEATING PLANE J N D K M M TA B H G 0.13 (0.005) M M The product described herein is covered by U.S. patents: 6,097,075; 7,176,723; 6,362,067. There may be some other patents pending. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your loca Sales Representative http://onsemi.com 18 NCP5106/D
NCP5106A 价格&库存

很抱歉,暂时无法提供与“NCP5106A”相匹配的价格&库存,您可以联系我们找货

免费人工找货