0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCP5395MNR2G

NCP5395MNR2G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    VFQFN48_EP

  • 描述:

    IC PHASE CONTROLLER 2/3/4 48-QFN

  • 数据手册
  • 价格&库存
NCP5395MNR2G 数据手册
NCP5395 Product Preview 2/3/4-Phase Controller with On Board Gate Drivers for CPU Applications The NCP5395 provides up to a four−phase buck solution which combines differential voltage sensing, differential phase current sensing, adaptive voltage positioning, and on board gate drivers. Dual−edge pulse−width modulation (PWM) combined with inductor current sensing reduces system cost by providing the fastest initial response to dynamic load events. Dual−edge multiphase modulation reduces the total bulk and ceramic output capacitance required to meet transient regulation specifications. The on board gate drivers includes adaptive non overlap and power saving operation. A high performance operational error amplifier is provided to simplify compensation of the system. Patented Dynamic Reference Injection further simplifies loop compensation by eliminating the need to compromise between closed−loop transient response and Dynamic VID performance. http://onsemi.com 1 48 QFN48 CASE 485K PLASTIC MARKING DIAGRAM 48 1 Features Applications • Desktop Processors This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice. © Semiconductor Components Industries, LLC, 2008 July, 2008 − Rev. P5 1 NCP5395 AWLYYWWG A WL YY WW G 48 1 BG3 PSI VID0 VID1 VID2 VID3 VID4 VID5 VID6 VID7/AMD ROSC ILIM = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package VBST3 TG3 SWN3 DRVON BST2 TG2 SWN2 BG2 VCCP SWN1 TG1 BST1 Meets Intel’s VR11.1 Specifications Meets AMD 6 Bit Code Specifications Dual−edge PWM for Fastest Initial Response to Transient Loading High Performance Operational Error Amplifier Internal Soft Start Dynamic Reference Injection (Patent #US07057381) DAC Range from 0.5 V to 1.6 V DAC Feed Forward Function (Patient Pending) ±0.5% DAC Voltage Accuracy from 1.0 V to 1.6 V True Differential Remote Voltage Sensing Amplifier Phase−to−Phase Current Balancing “Lossless” Differential Inductor Current Sensing Differential Current Sense Amplifiers for Each Phase Adaptive Voltage Positioning (AVP) Oscillator Frequency Range of 125 kHz − 1 MHz Latched Over Voltage Protection (OVP) Guaranteed Startup into Pre−Charged Loads Threshold Sensitive Enable Pin for VTT Sensing Power Good Output with Internal Delays Thermally Compensated Current Monitoring Thermal Shutdown Protection Adaptive−Non−Overlap Gate Drive Circuit Output Disable Control Turn Off of Both Phase Pair MOSFETs This is a Pb−Free Device BG1 G4 VRRDY EN CS1N CS1P CS2N CS2P CS3N CS3P CS4N CS4P AGND Down−bonded to Exposed Flag IMON VSP VSN DIFFOUT COMP VFB VDRP VDFB CSSUM DAC GND VCC • • • • • • • • • • • • • • • • • • • • • • • • ORDERING INFORMATION Device Package Shipping† NCP5395MNR2G QFN48 (Pb−Free) 2500/Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Publication Order Number: NCP5395/D NCP5395 VID0 VID1 VID2 VID3 VID4 VID5 VID6 VID7/AMD Flexible DAC + PSI VCCP Overvoltage Protection BST1 DAC + VSN - + VSP Phase 1 Gate Driver with Adaptive Non−overlap Diff Amp TG1 SWN1 BG1 DIFFOUT 1.3 V Error Amp + - VFB BST2 Phase 2 Gate Driver with Adaptive Non−overlap + COMP VDRP - + - VDFB CSSUM CS1P CS1N CS2P CS2N CS3P CS3N CS4P CS4N TG2 SWN2 BG2 + + + - + + - + Gain = 6 BST3 + Gain = 6 Phase 3 Gate Driver with Adaptive Non−overlap + + - Gain = 6 + + TG3 SWN3 BG3 G4 - Gain = 6 Oscillator IMON ROSC DRVON + - ILIM EN VCC 4.25 V + - ILimit Control, Fault Logic and Monitor Circuits VR_RDY UVLO GND (FLAG) Figure 1. NCP5395 Functional Block Diagram http://onsemi.com 2 NCP5395 VTT R226 PSI#_CPU VID0 VID1 VID2 VID3 VID4 VID5 VID6 VID7 12V_FILTER 2 1 12V_FILTER D RLIM7 G 12 11 RLIM8 10 9 8 7 6 5 4 3 2 1 S C82 IMON ILIM ROSC VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 PSI BG3 R14 VCCP VBST3 CFB4 13 IMON RFB7 14 VSP 15 16 RF3 RFB6 CH3 CF3 17 CDFB3 20 RDFB3 R47 21 RISO8 RISO7 RT8 22 23 VDFB DRVON 45 PWM3_SENSE_P NCP5395 48L 7x7 QFN FLAG = GND DRVON BST2 44 TG2 43 SWN2 42 12V_FILTER BG2 DAC SWN1 39 GND TG1 38 CS4P CS4N CS3P CS3N CS2P CS2N CS1P CS1N EN VR_RDY G4 BG1 BST1 12V_FILTER 41 VCCP 40 25 26 27 28 29 30 31 32 33 34 35 36 C34 S 48 CSSUM 24 VCC +5.0V PWM3_SENSE_N G S SWN3 46 DIFFOUT 18 RDRP7 VFB 2.61K 19 VDRP D TG3 47 VSN COMP D G 2 1 D G S 37 G G S VTT PWM1_SENSE_P C31 PWM1_SENSE_N R139 ENABLE R28 S PWM1_SENSE_N PWM1_SENSE_P VCCP R24 R137 D D C17 PWM3_SENSE_P C32 PWM3_SENSE_N Figure 2. Typical 2 Phase Application http://onsemi.com 3 NCP5395 VTT R236 PSI#_CPU VID0 VID1 VID2 VID3 VID4 VID5 VID6 VID7 12V_FILTER D G S D RLIM9 CFB5 RFB10 VBST3 13 IMON 14 VSP TG3 15 VSN RF4 RFB8 CH4 16 DIFFOUT 17 CDFB4 20 VDFB R46 21 CSSUM RT10 RISO10 +5.0V 22 23 NCP5395 48L 7x7 QFN FLAG = GND BST2 TG2 SWN2 BG2 VCCP DAC SWN1 GND TG1 BST1 PWM3_SENSE_P S 12V_FILTER 48 2 47 1 D 46 G 45 S DRVON 44 43 D D S S 41 12V_FILTER PWM2_SENSE_N G G 42 40 39 12V_FILTER 38 2 1 37 D G C37 VCCP D D VTT G R33 R145 R148 ENABLE PWM2_SENSE_P S 25 26 27 28 29 30 31 32 33 34 35 36 24 VCC C48 DRVON CS4P CS4N CS3P CS3N CS2P CS2N CS1P CS1N EN VR_RDY G4 BG1 RDFB4 RISO4 COMP 18 VFB RDRP10 2.61K 19 VDRP CF4 SWN3 PWM3_SENSE_N G S ILIM ROSC VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 PSI BG3 R29 VCCP D G 12 11 RLIM11 10 9 8 7 6 5 4 3 2 1 C83 12V_FILTER 2 1 PWM1_SENSE_P G S S PWM1_SENSE_N PWM1_SENSE_P C40 PWM1_SENSE_N R32 PWM2_SENSE_P C38 R34 PWM2_SENSE_N PWM3_SENSE_P C41 PWM3_SENSE_N Figure 3. Typical 3 Phase Application http://onsemi.com 4 12V_FILTER NCP5395 VTT PSI#_CPU VID0 VID1 VID2 VID3 VID4 VID5 VID6 VID7 12V_FILTER 2 1 D G S D RLIM10 VCCP D 12 11 RLIM12 10 9 8 7 6 5 4 3 2 1 G PWM3_SENSE_N G S PWM3_SENSE_P S 12V_FILTER ILIM ROSC VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 PSI BG3 IMON 12V_FILTER 48 CS4P CS4N CS3P CS3N CS2P CS2N CS1P CS1N EN VR_RDY G4 BG1 VBST3 13 IMON 14 47 VSP TG3 RFB11 CFB6 15 46 VSN SWN3 RFB9 16 45 DRVON DIFFOUT DRVON RF5 17 COMP BST2 44 NCP5395 CH5 18 48L 7x7 QFN 43 CF5 VFB TG2 FLAG = GND RDRP11 19 42 VDRP SWN2 CDFB5 20 41 VDFB BG2 12V_FILTER RDFB5 21 40 CSSUM VCCP RT12 39 DAC SWN1 22 RISO11 RISO12 23 38 GND TG1 +5.0V 24 VCC 37 BST1 2 1 D G S D D G PWM2_SENSE_N G S PWM2_SENSE_P S 12V_FILTER 2 1 D G 25 26 27 28 29 30 31 32 33 34 35 36 S VCCP D D VTT PWM4_GATE G PWM1_SENSE_P ENABLE S PWM3_SENSE_N DRVON PWM4_GATE PWM4_SENSE_P 12V_FILTER D VCC BST 4 1 DRH 8 OD 7 SW 3 IN 5 DRL 2 PGND 6 NCP5359 PWM4_SENSE_N Figure 4. Typical 4 Phase Application http://onsemi.com 5 PWM1_SENSE_P S PWM1_SENSE_N 12V_FILTER PWM2_SENSE_P 2 1 PWM2_SENSE_N PWM3_SENSE_P PWM1_SENSE_N G G S D D G PWM4_SENSE_N G S S PWM4_SENSE_P NCP5395 Table 1. Pin Descriptions Pin No. Symbol Description 1 BG3 Low side gate drive #3 2 PSI Selects DAC Decode. 3 VID0 Voltage ID DAC input 4 VID1 Voltage ID DAC input 5 VID2 Voltage ID DAC input 6 VID3 Voltage ID DAC input 7 VID4 Voltage ID DAC input 8 VID5 Voltage ID DAC input 9 VID6 Voltage ID DAC input 10 VID7/AMD Voltage ID DAC input. Pull to VCC (5 V) to enable AMD 6−bit DAC code. 11 ROSC A resistance from this pin to ground programs the oscillator frequency and provides a 2 V reference for programming the ILIM voltage. 12 ILIM Over current shutdown threshold setting. ILIM = VDRP − 1.3 V. Resistor divide ROSC to set threshold 13 IMON 0 to 1 Volt analog signal proportional to the output load current. VSN referenced Clamped to 1.1 Vmax 14 VSP Non−inverting input to the internal differential remote sense amplifier 15 VSN Inverting input to the internal differential remote sense amplifier 16 DIFFOUT Output of the differential remote sense amplifier 17 COMP Output of the compensation amplifier 18 VFB Compensation amplifier voltage feedback 19 VDRP Voltage output signal proportional to current used for current limit and output voltage droop 20 VDFB Droop Amplifier Voltage Feedback 21 CSSUM Inverted Sum of the Differential Current Sense inputs 22 DAC DAC output used to provide feed forward for dynamic VID 23 GND Ground 24 VCC Power for the internal control circuits with UVLO monitor 25 CS4P Non−inverting input to current sense amplifier #4 26 CS4N Inverting input to current sense amplifier #4 27 CS3P Non−inverting input to current sense amplifier #3 28 CS3N Inverting input to current sense amplifier #3 29 CS2P Non−inverting input to current sense amplifier #2 30 CS2N Inverting input to current sense amplifier #2 31 CS1P Non−inverting input to current sense amplifier #1 32 CS1N Inverting input to current sense amplifier #1 33 EN Threshold sensitive input. High = startup, Low =shutdown. 34 VR_RDY Open collector output. High indicates that the output is regulating 35 G4 PWM output pulse to gate driver. 36 BG1 Low side gate drive #1 37 BST1 Upper MOSFET floating bootstrap supply for driver#1 38 TG1 High side gate drive #1 39 SWN1 Switch Node #1 40 VCCP Power VCC for gate drivers with UVLO monitor 41 BG2 Low side gate drive #2 42 SWN2 Switch Node #2 43 TG2 High side gate drive #2 44 BST2 Upper MOSFET floating bootstrap supply for driver#2 45 DRVON Bidirectional Gate Drive Enable 46 SWN3 Switch Node #3 47 TG3 High side gate drive #3 48 BST3 Upper MOSFET floating bootstrap supply for driver#3 FLAG GND Power supply return (QFN Flag) http://onsemi.com 6 NCP5395 ABSOLUTE MAXIMUM RATINGS Rating Symbol Value Unit Controller Power Supply Voltages to GND VCC −0.3, 7 V Driver Power Supply Voltages to GND VCCP −0.3, 15 V High−Side Gate Driver Supplies: BSTx to SWNx VBST − VSWN 35 V wrt/GND 40 V ≤ 50 ns wrt/GND −0.3, 15 wrt/SWN V High−Side FET Gate Driver Voltages: TGx to SWNx VTG − VSWN BOOT + 0.3 V 35 V ≤ 50 ns wrt/GND −0.3, 15 wrt/SWN −2 V (200 ns) V VSWN 35 40 V ≤ 50 ns wrt/GND −5 VDC −10 V (200 ns) V VBG − AGND VCC + 0.3 V −0.3 VDC (200 ns) V VLOGIC −0.3, 6 V ELECTRICAL INFORMATION Switch Node: SWNx Low−Side Gate Drive: BGx Logic Inputs GND VGND V− Imon Out VIMON All Other Pins 0 V GND ±300 mV 1.1 V −0.3, 5.5 V TBD °C/W THERMAL INFORMATION Thermal Characteristic QFN Package (Note 1) RqJA Operating Junction Temperature Range (Note 2) TJ 0 to 125 °C Operating Ambient Temperature Range TAMB 0 to +70 °C Maximum Storage Temperature Range TSTG −55 to +150 °C Moisture Sensitivity Level QFN Package MSL 1 Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. *All signals referenced to GND unless noted otherwise. *The maximum package power dissipation must be observed. 1. JESD 51−5 (1S2P Direct−Attach Method) with 0 LFM 2. Operation at −40°C to 0°C guaranteed by design, not production tested. http://onsemi.com 7 NCP5395 ELECTRICAL CHARACTERISTICS 0°C < TA < 70°C; 0°C < TJ < 125°C; 4.75 < VCC < 5.25 V; All DAC Codes; CVCC = 0.1 mF unless otherwise noted. Parameter Test Conditions Min Typ Max Unit ERROR AMPLIFIER Input Bias Current −200 − 200 nA Open Loop DC Gain CL = 60 pF to GND, RL = 10 kW to GND − 100 − dB Open Loop Unity Gain Bandwidth CL = 60 pF to GND, RL = 10 kW to GND − 18 − MHz Open Loop Phase Margin CL = 60 pF to GND, RL = 10 kW to GND − 70 − ° Slew Rate DVin = 100 mV, G = −10V/V, DVout = 1.5 V − 2.5 V, CL = 60 pF to GND, DC Load = ±125 mA to GND − 10 − V/ms Maximum Output Voltage 10 mV of Overdrive, ISOURCE = 2.0 mA 3.0 − − V Minimum Output Voltage 10 mV of Overdrive, ISINK = 500 mA − − 75 mV Output Source Current 10 mV of Overdrive, Vout = 3.5 V 1.5 2.0 − mA Output Sink Current 10 mV of Overdrive, Vout = 0.1 V 0.75 1.0 − mA DIFFERENTIAL SUMMING AMPLIFIER V+ Input Pull down Resistance DRVON = low DRVON = high − − 0.6 6.0 − − kW V+ Input Bias Voltage DRVON = low DRVON = high − − 0.5 0.86 − − V −0.3 − 3.0 V − 15 − MHz Input Voltage Range (Note 4) −3 dB Bandwidth CL = 80 pF to GND, RL = 10 kW to GND Closed Loop DC gain VS to Diffout (Note 4) VS+ to VS− = 0.5 V to 1.6 V 0.98 1.0 1.02 V/V Maximum Output Voltage 10 mV of Overdrive, ISOURCE = 2 mA 3.0 − − V Minimum Output Voltage 10 mV of Overdrive, ISINK = 1 mA − − 0.5 V Output Source Current 10 mV of Overdrive, Vout = 3 V 1.5 2.0 − mA Output Sink Current 10 mV of Overdrive, Vout = 0.2 V 1.0 1.5 − mA −2 0 +2 mV INTERNAL OFFSET VOLTAGE Offset Voltage to the (+) Pin of the Error Amp & the VDRP Pin 3. 4. 5. 6. 7. Design guaranteed. For propagation delays, “tpdh” refers to the specified signal going high “tpdl” refers to it going low. Reference Gate Timing Diagram. Guaranteed by design; not tested in production. Internal DAC voltage is centered 19 mV below the listed Voltage. For VR11.1/VR11.0/VR10 No DAC offset is implemented for AMD operation. http://onsemi.com 8 NCP5395 ELECTRICAL CHARACTERISTICS 0°C < TA < 70°C; 0°C < TJ < 125°C; 4.75 < VCC < 5.25 V; All DAC Codes; CVCC = 0.1 mF unless otherwise noted. Parameter Test Conditions Min Typ Max Unit −200 − 200 nA 0 1.3 3.0 V VDROOP AMPLIFIER Input Bias Current Inverting Voltage Range Open Loop DC Gain CL = 20 pF to GND including ESD RL = 1 kW to GND − 100 − dB Open Loop Unity Gain Bandwidth CL = 20 pF to GND including ESD RL = 1 kW to GND − 18 − MHz Open Loop Phase Margin CL = 20 pF to GND including ESD RL = 1 kW to GND − 70 − ° Slew Rate CL = 20 pF to GND including ESD RL = 1 kW to GND − 10 − V/ms Maximum Output Voltage 10 mV of Overdrive, ISOURCE = 4.0 mA 3.0 − − V Minimum Output Voltage 10 mV of Overdrive, ISINK = 1.0 mA − − 1.0 V Output Source Current 10 mV of Overdrive, Vout = 3.0 V 4.0 − − mA Output Sink Current 10 mV of Overdrive, Vout = 1.0 V 1.0 − − mA −3.793 −3.70 −3.608 V/V − 12 − MHz CSSUM AMPLIFIER Current Sense Input to CSSUM Gain −75 mV < CS < 75 mV Current Sense Input to VDRP −3 dB Bandwidth CL = 10 pF to GND, RL = 10 kW to GND Current Summing Amp Output Offset Voltage CSx − CSNx = 0, CSx = 1 V −8.0 − +8.0 mV Maximum CSSUM Output Voltage CSx − CSxN = −0.2 V (all phases) ISOURCE = 1 mA 3.0 − − V Minimum CSSUM Output Voltage CSx − CSxN = 0.7 V (all phases) ISINK = 1 mA − − 0.3 V Output Source Current Vout = 3.0 V 1.0 − − mA Output Sink Current Vout = 0.3 V 4.0 − − mA − − 1.0 mA 450 600 770 mV − 100 − ns 3.0 − − V PSI Enable High Input Leakage Current External 1k Pull−up to 3.3 V Threshold Delay DRVON Output High Voltage Sourcing 500 mA Output Low Voltage Sinking 500 mA − − 0.7 V Delay Time Propagation delays − 10 − ns Rise Time CL (PCB) = 20 pF, DVo = 10% to 90% − 10 − ns Fall Time CL (PCB) = 20 pF, DVo = 10% to 90% − 10 − ns Internal Pull−Down Resistance 35 70 140 kW VCC Voltage when DRVON Output Valid − − 2.0 V 3. 4. 5. 6. 7. Design guaranteed. For propagation delays, “tpdh” refers to the specified signal going high “tpdl” refers to it going low. Reference Gate Timing Diagram. Guaranteed by design; not tested in production. Internal DAC voltage is centered 19 mV below the listed Voltage. For VR11.1/VR11.0/VR10 No DAC offset is implemented for AMD operation. http://onsemi.com 9 NCP5395 ELECTRICAL CHARACTERISTICS 0°C < TA < 70°C; 0°C < TJ < 125°C; 4.75 < VCC < 5.25 V; All DAC Codes; CVCC = 0.1 mF unless otherwise noted. Parameter Test Conditions Min Typ Max Unit CURRENT SENSE AMPLIFIERS −50 − 50 nA Common Mode Input Voltage Range −0.3 − 2.0 V Differential Mode Input Voltage Range −120 − 120 mV Input Bias Current CSx = CSxN = 1.4 V Current Sharing Output Voltage CSx = CSxN = 1.00 V, −TBD − TBD mV Current Sense Input to PWM Gain 0 V < CSx − CSxN < 0.1 V, 5.4 5.7 6.0 V/V Current Sense Input to CSSUM Gain 0 V < CSx − CSxN < 0.1 V −3.793 −3.7 −3.608 V/V IMON VDRP to IMON Gain 1.325 V > VDRP > 1.75 V 1.89 2.0 2.02 V/V Current Sense Input to VDRP −3 dB Bandwidth CL = 30 pF to GND, RL = 100 kW to GND − 4.0 − MHz VDRP to IMON Output Slew Rate CL = 30 pF to GND, Load = 100k to GND − TBD − V/ms Output Referred Offset Voltage VDRP = 1.5 V, ISOURCE = 0 mA −TBD − TBD mV Minimum Output Voltage VDRP = 1.3 V, ISINK = 25 mA − − 0.1 V Maximum Output Voltage Iout = 300 mA 1.0 − − V Output Sink Current Vout = 0.3 V 175 − − mA Maximum Clamp Voltage IMON − VSN VDRP = HIGH RLOAD = Open 1.1 − 1.15 V 100 − 1100 kHz − − 5.0 % OSCILLATOR Switching Frequency Range Switching Frequency Accuracy 200 kHz < FSW < 600 kHz Switching Frequency Accuracy 100 kHz < FSW < 1 MHz Switching Frequency Accuracy (2ph or 4ph) ROSC = 69.8k Switching Frequency Accuracy (3ph) − − 10 % TBD − TBD kHz ROSC = 16.2k 475 − 525 ROSC = 7.5k TBD − TBD ROSC = 69.8k TBD − TBD ROSC = 16.2k 494 − 546 ROSC = 7.5k TBD − TBD 1.93 2.00 2.05 V − 30 − ns TBD 1.0 TBD V ROSC Output Voltage kHz MODULATORS (PWM Comparators) Minimum Pulse Width Fsw = 800 kHz Magnitude of the PWM Ramp 0% Duty Cycle COMP Voltage when the PWM Outputs Remain LO TBD 150 TBD mV 100% Duty Cycle COMP Voltage when the PWM Outputs Remain HI − 1.15 − V PWM Phase Angle Error Between Adjacent Phases −TBD − TBD ° − − 0.4 V VR_RDY (Power Good) OUTPUT VR_RDY Output Saturation Voltage 3. 4. 5. 6. 7. IPGD = 10 mA Design guaranteed. For propagation delays, “tpdh” refers to the specified signal going high “tpdl” refers to it going low. Reference Gate Timing Diagram. Guaranteed by design; not tested in production. Internal DAC voltage is centered 19 mV below the listed Voltage. For VR11.1/VR11.0/VR10 No DAC offset is implemented for AMD operation. http://onsemi.com 10 NCP5395 ELECTRICAL CHARACTERISTICS 0°C < TA < 70°C; 0°C < TJ < 125°C; 4.75 < VCC < 5.25 V; All DAC Codes; CVCC = 0.1 mF unless otherwise noted. Parameter Test Conditions Min Typ Max Unit VR_RDY Rise Time External pull−up of 1 KW to 1.25 V, CTOT = 45 pF, DVo = 10% to 90% − 100 150 ns VR_RDY Output Voltage at Power−up VR_RDY pulled up to 5 V via 2 kW, tR(VCC) ≤ 3 x tR(5V) 100 ms ≤ tR(VCC) ≤ 20 ms − − 1.0 V VR_RDY High − Output Leakage Current VR_RDY = 5.5 V via 1 K − − 0.1 mA VR_RDY Upper Threshold Voltage (INTEL) VCore Increasing, DAC = 1.3 V − 300 250 mV (below DAC) VR_RDY Lower Threshold Voltage (INTEL) VCore Decreasing, DAC = 1.3 V 390 350 300 mV (below DAC) VR_RDY Lower Threshold Voltage (AMD) VCore Increasing, DAC = 1.3 V − TBD TBD mV (below DAC) VR_RDY Lower Threshold Voltage (AMD) VCore Decreasing, DAC = 1.3 V TBD TBD TBD mV (below DAC) VR_RDY Rising Delay VCore Increasing − TBD − ms VR_RDY Falling Delay VCore Decreasing − 5.0 − ms V VR_RDY (Power Good) OUTPUT PWM G4 OUTPUT Output High Voltage Sourcing 500 mA Mid Output Voltage 3.0 − − 1.4 1.5 1.6 Output Low Voltage Sinking 500 mA − − 0.7 V Delay + Rise Time CL (PCB) = 50 pF, DVo = VCC to GND − 10 15 ns Delay + Fall Time CL (PCB) = 50 pF, DVo = GND to VCC − 10 15 ns Tri−State Output Leakage Gx = 2.5 V, x = 1−4 − − 1.5 mA Output Impedance − HI or LO State Max Resistance to VCC (HI) or GND (LO) − 75 150 W − − 2.0 V Minimum VCC for Valid PWM Output Level PWM 4 2/3/4 Phase Detection 2 Phase Mode Note Gate 4 tied to VCC 3.2 − VCC V 4 Phase Mode Note Gate Driver will pull to 1.5 V 1.2 − 2.8 V 3 Phase Mode Note Gate 4 tied to GND 0 − 0.8 V Soft−Start Ramp Time DAC = 0 to DAC = 1.1 V 1.0 − 1.3 ms VR11 Vboot time Not used in Legacy Startup 400 500 600 ms VID Threshold 450 600 770 mV VR11 Input Bias Current −100 − 100 nA DIGITAL SOFT−START VID7/VR11/AMD/LEGACY INPUT 3. 4. 5. 6. 7. Design guaranteed. For propagation delays, “tpdh” refers to the specified signal going high “tpdl” refers to it going low. Reference Gate Timing Diagram. Guaranteed by design; not tested in production. Internal DAC voltage is centered 19 mV below the listed Voltage. For VR11.1/VR11.0/VR10 No DAC offset is implemented for AMD operation. http://onsemi.com 11 NCP5395 ELECTRICAL CHARACTERISTICS 0°C < TA < 70°C; 0°C < TJ < 125°C; 4.75 < VCC < 5.25 V; All DAC Codes; CVCC = 0.1 mF unless otherwise noted. Parameter Test Conditions Min Typ Max Unit Delay Before Latching VID Change (VID Deskewing) Measured from the Edge of the 1st VID Change 200 − 300 ns AMD Upper Threshold Note: When above this threshold the controller will ramp directly to VID without stopping at Vboot − − 2.9 V 2.4 − − V VID7/VR11/AMD/LEGACY INPUT AMD Lower Threshold ENABLE INPUT Enable High Input Leakage Current Pull−up to 1.3 V VR11.1 Threshold AMD Upper Threshold AMD Lower Threshold − − 200 nA 450 600 770 mV − 1.3 1.5 V 0.9 1.1 − V AMD Total Hysteresis Rising− Falling Threshold − 200 − mV Enable Delay Time Measure time from Enable transitioning HI to when SS begins − 3.5 − ms 0.99 1.00 1.01 V/V CURRENT LIMIT ILIM to VDRP Gain ILIM to VRDP Gain in PSI 4 Phase − 0.25 − V/V ILIM to VDRP Gain in PSI 3 Phase − 0.333 − V/V ILIM to VDRP Gain in PSI 2 Phase − 0.5 − V/V ILIM Pin Input Bias Current − 0.1 1.0 mA 0.1 − 2.0 V −10 − 10 mV − − 120 ns VR11 Over Voltage Threshold DAC+ 160 DAC+ 190 DAC+ 210 mV AMD Over Voltage Threshold DAC+ 210 DAC+ 235 DAC+ 260 mV − − 100 ns VCC UVLO Start Threshold 4.0 4.25 4.5 V VCC UVLO Stop Threshold 3.8 4.05 4.3 V − 200 − mV ILIM Pin Working Voltage Range ILIM accuracy Measured with respect to the ILIM setting Delay OVERVOLTAGE PROTECTION Delay UNDERVOLTAGE PROTECTION VCC UVLO Hysteresis DAC OUTPUT DAC Output Variation ISOURCE = 200 mA, All VIDs −3.0 0 3.0 % DAC Output Variation ISINK = 200 mA, All VIDs −3.0 0 3.0 % Output Source Current Vout = 1.6 V 0 − 5.0 mA Output Sink Current Vout = 0.3 V 5.0 − 16 mA 3. 4. 5. 6. 7. Design guaranteed. For propagation delays, “tpdh” refers to the specified signal going high “tpdl” refers to it going low. Reference Gate Timing Diagram. Guaranteed by design; not tested in production. Internal DAC voltage is centered 19 mV below the listed Voltage. For VR11.1/VR11.0/VR10 No DAC offset is implemented for AMD operation. http://onsemi.com 12 NCP5395 ELECTRICAL CHARACTERISTICS 0°C < TA < 70°C; 0°C < TJ < 125°C; 4.75 < VCC < 5.25 V; All DAC Codes; CVCC = 0.1 mF unless otherwise noted. Parameter Test Conditions Min Typ Max Unit Threshold 450 600 770 mV VR11 Mode Leakage −100 − 100 nA 10 − 25 mA 200 − 300 ns − − − ms Slew Rate Limit (Intel Mode) 12.5 − 15 mV/ms Slew Rate Limit (AMD Mode) 3.125 − 3.75 mV/ms − 0.84 − mV/ms EN Low, No PWM 20 − 40 mA CS2 through CS4 − 66 − mV VCCP UVLO Start Threshold 8.2 9.0 9.5 V VCCP UVLO Stop Threshold 7.2 8.0 8.5 V − 1.0 − V TBD 3.2 TBD VID INPUTS AMD Mode Input Bias Current 1st Delay before Latching VID Change (VID Deskewing) Measured from the edge of the VID change Delay Before Responding to Invalid or Shutdown Codes (Remove Spec) Note: DAC must hold the last valid VID during this period DIGITAL DAC SLEW RATE LIMITER Soft−Start Slew Rate INPUT SUPPLY CURRENT VCC Operating Current PHASE SHEDDING CS referred ph shed bias VCCP SUPPLY VOLTAGE VCCP UVLO Hysteresis VCCP POR Voltage at which the Driver OVP becomes active BOOST PIN UVLO BOOST VCC UVLO Start Threshold 3.5 4.0 V BOOST VCC UVLO Stop Threshold 3.3 3.8 V BOOST VCC UVLO Hysteresis 200 mV BOOST SUPPLY CURRENT IVCCP_NORM Quiescent Supply Current in Normal Operation EN = VCC, PWM = OSC, FSW = 100k, CLOAD = 0 p, VCCP = 12 V − − 42 mA IVCC_SBC Standby Current EN = GND; No switching, VCCP = 12 V 20 − 40 mA IBST1 Quiescent Supply Current in Normal Operation IN = VCCP, VCCP = 12 V − 10 TBD mA IBST2 Quiescent Supply Current in Normal Operation IN = GND, VCCP = 12 V − 10 TBD mA IBST3 Quiescent Supply Current in Normal Operation IN = GND, VCCP = 12 V − 10 TBD IBST1_SD Standby Current IN = VCCP, VCCP = 12 V − 0.25 − mA IBST2_SD Standby Current IN = GND, VCCP = 12 V − 0.25 − mA IBST3_SD Standby Current IN = GND, VCCP = 12 V − 0.25 − mA 1.75 − 2.0 V STARTUP HIGH SIDE SHORT TRIP (Active only during Vswx Output Overvoltage Trip Threshold at Startup 3. 4. 5. 6. 7. 1st power on) Power Startup time, VCC > 9 V Design guaranteed. For propagation delays, “tpdh” refers to the specified signal going high “tpdl” refers to it going low. Reference Gate Timing Diagram. Guaranteed by design; not tested in production. Internal DAC voltage is centered 19 mV below the listed Voltage. For VR11.1/VR11.0/VR10 No DAC offset is implemented for AMD operation. http://onsemi.com 13 NCP5395 ELECTRICAL CHARACTERISTICS 0°C < TA < 70°C; 0°C < TJ < 125°C; 4.75 < VCC < 5.25 V; All DAC Codes; CVCC = 0.1 mF unless otherwise noted. Parameter Test Conditions Min Typ Max Unit W HIGH SIDE DRIVER RH_TG Output Resistance, Sourcing VBST − VSW = 12 V − 1.8 4.2 RH_TG Output Resistance, Sinking VBST − VSW = 12 V − 1.0 2.2 TrDRVH Transition Time CLOAD = 3 nF, VBST − VSW = 12 V − 16 − ns TfDRVH Transition Time CLOAD = 3 nF, VBST − VSW = 12 V − 11 − ns TpdhDRVH Propagation Delay (Note 4) Driving High, CLOAD = 3 nF, VCCP = 12 V − 20 − ns TpdhDRVH Propagation Delay (Note 4) Driving Low, CLOAD = 3 nF, VCCP = 12 V − 20 − ns RH_BG Output Resistance, Sourcing SW = GND − TBD 4.2 W RL_BG Output Resistance, Sinking SW = VCC − TBD 2.2 W TrDRVH Transition Time CLOAD = 3 nF − 16 − ns TfDRVH Transition Time CLOAD = 3 nF − 11 − ns TpdhDRVH Propagation Delay (Note 4) Driving High, CLOAD = 3 nF, VCCP = 12 V − 20 − ns TpdhDRVH Propagation Delay (Note 4) Driving Low, CLOAD = 3 nF, VCCP = 12 V − 20 − ns VNCDT Negative Current Detector Threshold (Note 3) − −1.0 − mV 150 170 − °C − 20 − °C − − − − − − ±0.5 ±5.0 ±8.0 % mV mV LOW SIDE DRIVER THERMAL SHUTDOWN Tsd Thermal Shutdown (Note 3) Tsdhys Thermal Shutdown Hysteresis (Note 3) VRM 11 DAC System Voltage Accuracy 3. 4. 5. 6. 7. 1.0 V < DAC < 1.6 V 0.8 V < DAC < 1.0 V 0.5 V < DAC < 0.8 V Design guaranteed. For propagation delays, “tpdh” refers to the specified signal going high “tpdl” refers to it going low. Reference Gate Timing Diagram. Guaranteed by design; not tested in production. Internal DAC voltage is centered 19 mV below the listed Voltage. For VR11.1/VR11.0/VR10 No DAC offset is implemented for AMD operation. http://onsemi.com 14 NCP5395 IN tpdlDRVL tfDRVL DRVL 90% 90% 2V 10% 10% tpdhDRVH thDRVH tpdlDRVH 90% 10% tfDRVH 90% 2V DRVH−SW trDRVL 10% tpdhDRVL SW Figure 5. Timing Diagram http://onsemi.com 15 NCP5395 Table 2. VRM11 VID CODES VID7 800 mV VID6 400 mV VID5 200 mV VID4 100 mV VID3 50 mV VID2 25 mV VID1 12.5 mV VID0 6.25 mV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1.60000 02 0 0 0 0 0 0 1 1 1.59375 03 0 0 0 0 0 1 0 0 1.58750 04 0 0 0 0 0 1 0 1 1.58125 05 0 0 0 0 0 1 1 0 1.57500 06 0 0 0 0 0 1 1 1 1.56875 07 0 0 0 0 1 0 0 0 1.56250 08 0 0 0 0 1 0 0 1 1.55625 09 0 0 0 0 1 0 1 0 1.55000 0A 0 0 0 0 1 0 1 1 1.54375 0B 0 0 0 0 1 1 0 0 1.53750 0C 0 0 0 0 1 1 0 1 1.53125 0D 0 0 0 0 1 1 1 0 1.52500 0E 0 0 0 0 1 1 1 1 1.51875 0F 0 0 0 1 0 0 0 0 1.51250 10 0 0 0 1 0 0 0 1 1.50625 11 0 0 0 1 0 0 1 0 1.50000 12 0 0 0 1 0 0 1 1 1.49375 13 0 0 0 1 0 1 0 0 1.48750 14 0 0 0 1 0 1 0 1 1.48125 15 0 0 0 1 0 1 1 0 1.47500 16 0 0 0 1 0 1 1 1 1.46875 17 0 0 0 1 1 0 0 0 1.46250 18 0 0 0 1 1 0 0 1 1.45625 19 0 0 0 1 1 0 1 0 1.45000 1A 0 0 0 1 1 0 1 1 1.44375 1B 0 0 0 1 1 1 0 0 1.43750 1C 0 0 0 1 1 1 0 1 1.43125 1D 0 0 0 1 1 1 1 0 1.42500 1E 0 0 0 1 1 1 1 1 1.41875 1F 0 0 1 0 0 0 0 0 1.41250 20 0 0 1 0 0 0 0 1 1.40625 21 0 0 1 0 0 0 1 0 1.40000 22 0 0 1 0 0 0 1 1 1.39375 23 0 0 1 0 0 1 0 0 1.38750 24 0 0 1 0 0 1 0 1 1.38125 25 0 0 1 0 0 1 1 0 1.37500 26 0 0 1 0 0 1 1 1 1.36875 27 0 0 1 0 1 0 0 0 1.36250 28 0 0 1 0 1 0 0 1 1.35625 29 0 0 1 0 1 0 1 0 1.35000 2A 0 0 1 0 1 0 1 1 1.34375 2B 0 0 1 0 1 1 0 0 1.33750 2C 0 0 1 0 1 1 0 1 1.33125 2D http://onsemi.com 16 Voltage (V) HEX 00 01 NCP5395 Table 2. VRM11 VID CODES VID7 800 mV VID6 400 mV VID5 200 mV VID4 100 mV VID3 50 mV VID2 25 mV VID1 12.5 mV VID0 6.25 mV Voltage (V) HEX 0 0 1 0 1 1 1 0 1.32500 2E 0 0 1 0 1 1 1 1 1.31875 2F 0 0 1 1 0 0 0 0 1.31250 30 0 0 1 1 0 0 0 1 1.30625 31 0 0 1 1 0 0 1 0 1.30000 32 0 0 1 1 0 0 1 1 1.29375 33 0 0 1 1 0 1 0 0 1.28750 34 0 0 1 1 0 1 0 1 1.28125 35 0 0 1 1 0 1 1 0 1.27500 36 0 0 1 1 0 1 1 1 1.26875 37 0 0 1 1 1 0 0 0 1.26250 38 0 0 1 1 1 0 0 1 1.25625 39 0 0 1 1 1 0 1 0 1.25000 3A 0 0 1 1 1 0 1 1 1.24375 3B 0 0 1 1 1 1 0 0 1.23750 3C 0 0 1 1 1 1 0 1 1.23125 3D 0 0 1 1 1 1 1 0 1.22500 3E 0 0 1 1 1 1 1 1 1.21875 3F 0 1 0 0 0 0 0 0 1.21250 40 0 1 0 0 0 0 0 1 1.20625 41 0 1 0 0 0 0 1 0 1.20000 42 0 1 0 0 0 0 1 1 1.19375 43 0 1 0 0 0 1 0 0 1.18750 44 0 1 0 0 0 1 0 1 1.18125 45 0 1 0 0 0 1 1 0 1.17500 46 0 1 0 0 0 1 1 1 1.16875 47 0 1 0 0 1 0 0 0 1.16250 48 0 1 0 0 1 0 0 1 1.15625 49 0 1 0 0 1 0 1 0 1.15000 4A 0 1 0 0 1 0 1 1 1.14375 4B 0 1 0 0 1 1 0 0 1.13750 4C 0 1 0 0 1 1 0 1 1.13125 4D 0 1 0 0 1 1 1 0 1.12500 4E 0 1 0 0 1 1 1 1 1.11875 4F 0 1 0 1 0 0 0 0 1.11250 50 0 1 0 1 0 0 0 1 1.10625 51 0 1 0 1 0 0 1 0 1.10000 52 0 1 0 1 0 0 1 1 1.09375 53 0 1 0 1 0 1 0 0 1.08750 54 0 1 0 1 0 1 0 1 1.08125 55 0 1 0 1 0 1 1 0 1.07500 56 0 1 0 1 0 1 1 1 1.06875 57 0 1 0 1 1 0 0 0 1.06250 58 0 1 0 1 1 0 0 1 1.05625 59 0 1 0 1 1 0 1 0 1.05000 5A 0 1 0 1 1 0 1 1 1.04375 5B http://onsemi.com 17 NCP5395 Table 2. VRM11 VID CODES VID7 800 mV VID6 400 mV VID5 200 mV VID4 100 mV VID3 50 mV VID2 25 mV VID1 12.5 mV VID0 6.25 mV Voltage (V) HEX 0 1 0 1 1 1 0 0 1.03750 5C 0 1 0 1 1 1 0 1 1.03125 5D 0 1 0 1 1 1 1 0 1.02500 5E 0 1 0 1 1 1 1 1 1.01875 5F 0 1 1 0 0 0 0 0 1.01250 60 0 1 1 0 0 0 0 1 1.00625 61 0 1 1 0 0 0 1 0 1.00000 62 0 1 1 0 0 0 1 1 0.99375 63 0 1 1 0 0 1 0 0 0.98750 64 0 1 1 0 0 1 0 1 0.98125 65 0 1 1 0 0 1 1 0 0.97500 66 0 1 1 0 0 1 1 1 0.96875 67 0 1 1 0 1 0 0 0 0.96250 68 0 1 1 0 1 0 0 1 0.95625 69 0 1 1 0 1 0 1 0 0.95000 6A 0 1 1 0 1 0 1 1 0.94375 6B 0 1 1 0 1 1 0 0 0.93750 6C 0 1 1 0 1 1 0 1 0.93125 6D 0 1 1 0 1 1 1 0 0.92500 6E 0 1 1 0 1 1 1 1 0.91875 6F 0 1 1 1 0 0 0 0 0.91250 70 0 1 1 1 0 0 0 1 0.90625 71 0 1 1 1 0 0 1 0 0.90000 72 0 1 1 1 0 0 1 1 0.89375 73 0 1 1 1 0 1 0 0 0.88750 74 0 1 1 1 0 1 0 1 0.88125 75 0 1 1 1 0 1 1 0 0.87500 76 0 1 1 1 0 1 1 1 0.86875 77 0 1 1 1 1 0 0 0 0.86250 78 0 1 1 1 1 0 0 1 0.85625 79 0 1 1 1 1 0 1 0 0.85000 7A 0 1 1 1 1 0 1 1 0.84375 7B 0 1 1 1 1 1 0 0 0.83750 7C 0 1 1 1 1 1 0 1 0.83125 7D 0 1 1 1 1 1 1 0 0.82500 7E 0 1 1 1 1 1 1 1 0.81875 7F 1 0 0 0 0 0 0 0 0.81250 80 1 0 0 0 0 0 0 1 0.80625 81 1 0 0 0 0 0 1 0 0.80000 82 1 0 0 0 0 0 1 1 0.79375 83 1 0 0 0 0 1 0 0 0.78750 84 1 0 0 0 0 1 0 1 0.78125 85 1 0 0 0 0 1 1 0 0.77500 86 1 0 0 0 0 1 1 1 0.76875 87 1 0 0 0 1 0 0 0 0.76250 88 1 0 0 0 1 0 0 1 0.75625 89 http://onsemi.com 18 NCP5395 Table 2. VRM11 VID CODES VID7 800 mV VID6 400 mV VID5 200 mV VID4 100 mV VID3 50 mV VID2 25 mV VID1 12.5 mV VID0 6.25 mV Voltage (V) HEX 1 0 0 0 1 0 1 0 0.75000 8A 1 0 0 0 1 0 1 1 0.74375 8B 1 0 0 0 1 1 0 0 0.73750 8C 1 0 0 0 1 1 0 1 0.73125 8D 1 0 0 0 1 1 1 0 0.72500 8E 1 0 0 0 1 1 1 1 0.71875 8F 1 0 0 1 0 0 0 0 0.71250 90 1 0 0 1 0 0 0 1 0.70625 91 1 0 0 1 0 0 1 0 0.70000 92 1 0 0 1 0 0 1 1 0.69375 93 1 0 0 1 0 1 0 0 0.68750 94 1 0 0 1 0 1 0 1 0.68125 95 1 0 0 1 0 1 1 0 0.67500 96 1 0 0 1 0 1 1 1 0.66875 97 1 0 0 1 1 0 0 0 0.66250 98 1 0 0 1 1 0 0 1 0.65625 99 1 0 0 1 1 0 1 0 0.65000 9A 1 0 0 1 1 0 1 1 0.64375 9B 1 0 0 1 1 1 0 0 0.63750 9C 1 0 0 1 1 1 0 1 0.63125 9D 1 0 0 1 1 1 1 0 0.62500 9E 1 0 0 1 1 1 1 1 0.61875 9F 1 0 1 0 0 0 0 0 0.61250 A0 1 0 1 0 0 0 0 1 0.60625 A1 1 0 1 0 0 0 1 0 0.60000 A2 1 0 1 0 0 0 1 1 0.59375 A3 1 0 1 0 0 1 0 0 0.58750 A4 1 0 1 0 0 1 0 1 0.58125 A5 1 0 1 0 0 1 1 0 0.57500 A6 1 0 1 0 0 1 1 1 0.56875 A7 1 0 1 0 1 0 0 0 0.56250 A8 1 0 1 0 1 0 0 1 0.55625 A9 1 0 1 0 1 0 1 0 0.55000 AA 1 0 1 0 1 0 1 1 0.54375 AB 1 0 1 0 1 1 0 0 0.53750 AC 1 0 1 0 1 1 0 1 0.53125 AD 1 0 1 0 1 1 1 0 0.52500 AE 1 0 1 0 1 1 1 1 0.51875 AF 1 0 1 1 0 0 0 0 0.51250 B0 1 0 1 1 0 0 0 1 0.50625 B1 1 0 1 1 0 0 1 0 0.50000 B2 1 1 1 1 1 1 1 0 OFF FE 1 1 1 1 1 1 1 1 OFF FF http://onsemi.com 19 NCP5395 Test Condition Parameter TYP MAX Units − − ±0.5 ±5 % mV VR10 DAC System Voltage Accuracy 1.0 V < DAC < 1.6 V 0. 83125 V < DAC < 1.0 V 8. Internal DAC voltage is centered 19 mV below the listed Voltage. For VR11.1/VR11.0/VR10 No DAC offset is implemented for AMD operation. VID4 400 mV VID3 200 mV VID2 100 mV VID1 50 mV VID0 25 mV VID5 12.5 mV VID6 6.25 mV Voltage (V) 0 1 0 1 0 1 1 1.60000 0 1 0 1 0 1 0 1.59375 0 1 0 1 1 0 1 1.58750 0 1 0 1 1 0 0 1.58125 0 1 0 1 1 1 1 1.57500 0 1 0 1 1 1 0 1.56875 0 1 1 0 0 0 1 1.56250 0 1 1 0 0 0 0 1.55625 0 1 1 0 0 1 1 1.55000 0 1 1 0 0 1 0 1.54375 0 1 1 0 1 0 1 1.53750 0 1 1 0 1 0 0 1.53125 0 1 1 0 1 1 1 1.52500 0 1 1 0 1 1 0 1.51875 0 1 1 1 0 0 1 1.51250 0 1 1 1 0 0 0 1.50625 0 1 1 1 0 1 1 1.50000 0 1 1 1 0 1 0 1.49375 0 1 1 1 1 0 1 1.48750 0 1 1 1 1 0 0 1.48125 0 1 1 1 1 1 1 1.47500 0 1 1 1 1 1 0 1.46875 1 0 0 0 0 0 1 1.46250 1 0 0 0 0 0 0 1.45625 1 0 0 0 0 1 1 1.45000 1 0 0 0 0 1 0 1.44375 1 0 0 0 1 0 1 1.43750 1 0 0 0 1 0 0 1.43125 1 0 0 0 1 1 1 1.42500 1 0 0 0 1 1 0 1.41875 1 0 0 1 0 0 1 1.41250 1 0 0 1 0 0 0 1.40625 1 0 0 1 0 1 1 1.40000 1 0 0 1 0 1 0 1.39375 1 0 0 1 1 0 1 1.38750 1 0 0 1 1 0 0 1.38125 1 0 0 1 1 1 1 1.37500 1 0 0 1 1 1 0 1.36875 1 0 1 0 0 0 1 1.36250 http://onsemi.com 20 NCP5395 Table 3. DAC CODES FOR VRM 10 VID4 400 mV VID3 200 mV VID2 100 mV VID1 50 mV VID0 25 mV VID5 12.5 mV VID6 6.25 mV Voltage (V) 1 0 1 0 0 0 0 1.35625 1 0 1 0 0 1 1 1.35000 1 0 1 0 0 1 0 1.34375 1 0 1 0 1 0 1 1.33750 1 0 1 0 1 0 0 1.33125 1 0 1 0 1 1 1 1.32500 1 0 1 0 1 1 0 1.31875 1 0 1 1 0 0 1 1.31250 1 0 1 1 0 0 0 1.30625 1 0 1 1 0 1 1 1.30000 1 0 1 1 0 1 0 1.29375 1 0 1 1 1 0 1 1.28750 1 0 1 1 1 0 0 1.28125 1 0 1 1 1 1 1 1.27500 1 0 1 1 1 1 0 1.26875 1 1 0 0 0 0 1 1.26250 1 1 0 0 0 0 0 1.25625 1 1 0 0 0 1 1 1.25000 1 1 0 0 0 1 0 1.24375 1 1 0 0 1 0 1 1.23750 1 1 0 0 1 0 0 1.23125 1 1 0 0 1 1 1 1.22500 1 1 0 0 1 1 0 1.21875 1 1 0 1 0 0 1 1.21250 1 1 0 1 0 0 0 1.20625 1 1 0 1 0 1 1 1.20000 1 1 0 1 0 1 0 1.19375 1 1 0 1 1 0 1 1.18750 1 1 0 1 1 0 0 1.18125 1 1 0 1 1 1 1 1.17500 1 1 0 1 1 1 0 1.16875 1 1 1 0 0 0 1 1.16250 1 1 1 0 0 0 0 1.15625 1 1 1 0 0 1 1 1.15000 1 1 1 0 0 1 0 1.14375 1 1 1 0 1 0 1 1.13750 1 1 1 0 1 0 0 1.13125 1 1 1 0 1 1 1 1.12500 1 1 1 0 1 1 0 1.11875 1 1 1 1 0 0 1 1.11250 1 1 1 1 0 0 0 1.10625 1 1 1 1 0 1 1 1.10000 1 1 1 1 0 1 0 1.09375 1 1 1 1 1 0 1 OFF 1 1 1 1 1 0 0 OFF http://onsemi.com 21 NCP5395 Table 3. DAC CODES FOR VRM 10 VID4 400 mV VID3 200 mV VID2 100 mV VID1 50 mV VID0 25 mV VID5 12.5 mV VID6 6.25 mV Voltage (V) 1 1 1 1 1 1 1 OFF 1 1 1 1 1 1 0 OFF 0 0 0 0 0 0 1 1.08750 0 0 0 0 0 0 0 1.08125 0 0 0 0 0 1 1 1.07500 0 0 0 0 0 1 0 1.06875 0 0 0 0 1 0 1 1.06250 0 0 0 0 1 0 0 1.05625 0 0 0 0 1 1 1 1.05000 0 0 0 0 1 1 0 1.04375 0 0 0 1 0 0 1 1.03750 0 0 0 1 0 0 0 1.03125 0 0 0 1 0 1 1 1.02500 0 0 0 1 0 1 0 1.01875 0 0 0 1 1 0 1 1.01250 0 0 0 1 1 0 0 1.00625 0 0 0 1 1 1 1 1.00000 0 0 0 1 1 1 0 0.99375 0 0 1 0 0 0 1 0.98750 0 0 1 0 0 0 0 0.98125 0 0 1 0 0 1 1 0.97500 0 0 1 0 0 1 0 0.96875 0 0 1 0 1 0 1 0.96250 0 0 1 0 1 0 0 0.95625 0 0 1 0 1 1 1 0.95000 0 0 1 0 1 1 0 0.94375 0 0 1 1 0 0 1 0.93750 0 0 1 1 0 0 0 0.93125 0 0 1 1 0 1 1 0.92500 0 0 1 1 0 1 0 0.91875 0 0 1 1 1 0 1 0.91250 0 0 1 1 1 0 0 0.90625 0 0 1 1 1 1 1 0.90000 0 0 1 1 1 1 0 0.89375 0 1 0 0 0 0 1 0.88750 0 1 0 0 0 0 0 0.88125 0 1 0 0 0 1 1 0.87500 0 1 0 0 0 1 0 0.86875 0 1 0 0 1 0 1 0.86250 0 1 0 0 1 0 0 0.85625 0 1 0 0 1 1 1 0.85000 0 1 0 0 1 1 0 0.84375 0 1 0 1 0 0 1 0.83750 0 1 0 1 0 0 0 0.83125 http://onsemi.com 22 NCP5395 Test Condition Parameter MIN TYP MAX Units − − − − − − ±0.5 ±1.0 ±2.0 % % % AMD DAC System Voltage Accuracy 1.0 V < DAC < 1.55V 0.6 V ≤ DAC < 1.0V 0.375 V < DAC < 0.6V 9. NOTE: No DAC offset is implemented for AMD operation. DAC should be equal to the Nominal Vout shown in the table. Table 4. AMD PROCESSOR 6−BIT VID CODE (VID) Codes VID5 VID4 VID3 VID2 VID1 VID0 Nominal Vout Units 0 0 0 0 0 0 1.550 V 0 0 0 0 0 1 1.525 V 0 0 0 0 1 0 1.500 V 0 0 0 0 1 1 1.475 V 0 0 0 1 0 0 1.450 V 0 0 0 1 0 1 1.425 V 0 0 0 1 1 0 1.400 V 0 0 0 1 1 1 1.375 V 0 0 1 0 0 0 1.350 V 0 0 1 0 0 1 1.325 V 0 0 1 0 1 0 1.300 V 0 0 1 0 1 1 1.275 V 0 0 1 1 0 0 1.250 V 0 0 1 1 0 1 1.225 V 0 0 1 1 1 0 1.200 V 0 0 1 1 1 1 1.175 V 0 1 0 0 0 0 1.150 V 0 1 0 0 0 1 1.125 V 0 1 0 0 1 0 1.100 V 0 1 0 0 1 1 1.075 V 0 1 0 1 0 0 1.050 V 0 1 0 1 0 1 1.025 V 0 1 0 1 1 0 1.000 V 0 1 0 1 1 1 0.975 V 0 1 1 0 0 0 0.950 V 0 1 1 0 0 1 0.925 V 0 1 1 0 1 0 0.900 V 0 1 1 0 1 1 0.875 V 0 1 1 1 0 0 0.850 V 0 1 1 1 0 1 0.825 V 0 1 1 1 1 0 0.800 V 0 1 1 1 1 1 0.775 V 1 0 0 0 0 0 0.7625 V 1 0 0 0 0 1 0.7500 V http://onsemi.com 23 NCP5395 Table 4. AMD PROCESSOR 6−BIT VID CODE (VID) Codes VID5 VID4 VID3 VID2 VID1 VID0 Nominal Vout Units 1 0 0 0 1 0 0.7375 V 1 0 0 0 1 1 0.7250 V 1 0 0 1 0 0 0.7125 V 1 0 0 1 0 1 0.7000 V 1 0 0 1 1 0 0.6875 V 1 0 0 1 1 1 0.6750 V 1 0 1 0 0 0 0.6625 V 1 0 1 0 0 1 0.6500 V 1 0 1 0 1 0 0.6375 V 1 0 1 0 1 1 0.6250 V 1 0 1 1 0 0 0.6125 V 1 0 1 1 0 1 0.6000 V 1 0 1 1 1 0 0.5875 V 1 0 1 1 1 1 0.5750 V 1 1 0 0 0 0 0.5625 V 1 1 0 0 0 1 0.5500 V 1 1 0 0 1 0 0.5375 V 1 1 0 0 1 1 0.5250 V 1 1 0 1 0 0 0.5125 V 1 1 0 1 0 1 0.5000 V 1 1 0 1 1 0 0.4875 V 1 1 0 1 1 1 0.4750 V 1 1 1 0 0 0 0.4625 V 1 1 1 0 0 1 0.4500 V 1 1 1 0 1 0 0.4375 V 1 1 1 0 1 1 0.4250 V 1 1 1 1 0 0 0.4125 V 1 1 1 1 0 1 0.4000 V 1 1 1 1 1 0 0.3875 V 1 1 1 1 1 1 0.3750 V http://onsemi.com 24 NCP5395 FUNCTIONAL DESCRIPTIONS General voltage with the DAC voltage. The non−inverting input sums the remote output voltage with a 1.3 V reference. The resulting voltage at the output of the remote sense amplifier is: The NCP5395 dual edge modulated multiphase PWM controller is specifically designed with the necessary features for a high current CPU system. The IC consists of the following blocks: Precision Flexible DAC, Differential Remote Voltage Sense Amplifier, High Performance Voltage Error Amplifier, Differential Current Feedback Amplifiers, Precision Oscillator and Saw−tooth Generator, and PWM Comparators with Hysteresis. The controller also supports power saving mode as per Intel VR11.1 by accurately monitoring the current and switching between multi−phase and single phase operations as requested by the microprocessor system. Protection features include: Undervoltage Lockout, Soft−Start, Overcurrent Protection, Overvoltage Protection, and Power Good Monitor. V Diffout + V out ) 1.3 V * V dac * V outreturn This signal then goes through a standard compensation circuit and into the inverting input of the error amplifier. The non−inverting input of the error amplifier is also connected to the 1.3 V reference. The 1.3 V reference then is subtracted out and the error signal at the comp pin of the error amplifier is as normally expected: V comp + V dac * V out The non−inverting input of the remote sense amplifier is pulled low through a small current sink during a fault condition to prevent accidental charging of the regulator output. Precision Programmable DAC A precision flexible DAC is provided. The DAC will conform to 2 different specifications: AMD or VR11.1. The VID7/AMD pin is provided to determine which DAC specification will be used and which soft−start mode the part will use for power up. There are two soft−start modes. If VID7/AMD is above it’s threshold the device will soft−start and ramp directly to the DAC code present on the VID inputs. The following truth table describes the functionality: VID7/AMD Pin VID7 Enable Pin Mode Soft Start Mode Above AMD Threshold Not active AMD Threshol ds Ramp to VID Below AMD Threshold Active VR11.1 Threshol ds Ramp to Vboot 2/3/4 Phase Operation The part can be configured to 2−, 3−, or 4−phase mode. In 2− or 3−phase mode, the internal drivers will be used. In 4−phase mode, an external driver must be used to drive phase 4. The NCP5359 driver is suggested to be used with the controller. The input to G4 pin will decide which phase mode the system is in operation. Please refer to the Application Schematics for more information. High Performance Voltage Error Amplifier A high performance voltage error amplifier is provided. The error amplifier’s inverting input is VFB and its output is COMP. A standard type 3 compensation circuit is used compensate the system. This involves a 3 pole, 2 zero compensation network. The comp pin is pulled to ground before soft−start for smooth start up. Differential Current Sense VID INPUTS Four differential amplifiers are provided to sense the output current of each phase. These current sense amplifiers sense the current through the corresponding phase. A voltage is generated across a current sense element such as an inductor or sense resistor. The sense element should be between 0.5 mW and 1.5 mW. It is possible to sense both negative and positive going current. The information is used to create the signal CSSUM and provide feedback for current sharing. VID0−VID7 control the target regulation voltage during normal operation. In AMD mode the VID capture is enabled just before soft start. In VR11 mode the VID capture is enabled at the end of the VBOOT waiting period. If the VID is valid the DAC will track to it. If an invalid VID occurs it will be ignored for 10 ms before the controller shuts down. Remote Sense Amplifier A high performance differential amplifier is provided to accurately sense the output voltage of the regulator. The non−inverting input should be connected to the regulator’s output voltage. The inverting input should be connected to the return line of the regulator. Both connection points are intended to be at a remote point so that the most accurate reading of the output voltage can be obtained. The amplifier is configured in a very unique way. First, the gain of the amplifier is internally set to unity. Second, both the inverting and non−inverting inputs of the amplifier are summing nodes. The inverting input sums the output voltage return Precision Oscillator A programmable precision oscillator is provided. This oscillator is programmed by the summed resistance of an oscillator resistor and a current limit resistor. The output voltage of this pin is used as the reference for the current limit. The oscillator frequency range is 125 KHz/phase to 1000 KHz/phase. The oscillator frequency is proportional to the current drawn out of the OSC pin. http://onsemi.com 25 NCP5395 PWM Comparators voltage exceeds the DAC voltage by 185 mV, or 285 mV if in AMD mode, the VR_RDY flag will transition low the high side gate drivers set to low, and the low side gate drivers are all brought to high until the voltage falls below the OVP threshold. If the over voltage trip 8 times the output voltage will shut down. The OVP will not shut down the controller if it occurs during soft−start. This is to allow the controller to pull the output down to the DAC voltage and start up into a pre−charged output. Four PWM comparators are incorporated within the IC. The non−inverting input of the comparators is connected to the output of the error amplifier. The inverting input is connected to a summed output of the phase current and the oscillator ramp voltage with an offset. The output of the comparator generates the PWM control signals. During steady state operation, the duty cycle will center on the valley of the saw−tooth waveform. During a transient event, the controller will operate somewhat hysteretic, with the duty cycle climbing along either the down ramp, up ramp, or both. VCCP Power ON Reset OVP The VCCP power on reset OVP feature is used to protect the CPU during start up. When VCCP is higher than 3.2 V, the gate driver will monitor the switching node SW pin. If SWNx pin higher than 1.9 V, the bottom gate will be forced to high for discharge of the output capacitor. This works best if the 5 volt standby is diode OR’ed into VCCP with the 12 V rail. The fault mode will be latched and the DRVON pin will be forced to low, unless VCCP is reduced below the UVLO threshold. Soft−Start Soft−start is implemented internally. A digital counter steps the DAC up from zero to the target voltage based on the predetermined rate in the spec table. There are 2 possible soft start modes: VR11 and AMD. AMD mode simply ramps Vcore from 0 V directly to the DAC setting. The VR11 mode ramps DAC to 1.1 V, pauses for 500 ms, reads the DAC setting, then ramps to the final DAC setting. Power Saving Mode The controller is designed to allow power saving mode to maintain a maximum efficiency. When a low PSI signal from microcontroller is received, the controller will keep one phase operating while shedding other phases. The active one phase will operate in diode emulation mode, minimizing power losses in light load. When the low PSI signal is de−asserted, the dropped phases will be pulled back in to be ready for heavy load. Digital Slew Rate Limiter / Soft Start Block The slew rate limiter and the soft−start block are to be implemented with a digital up/down counter controlled by an oscillator that is synchronized to VID line changes. During soft start the DAC will ramp at the soft−start rate, after soft start is complete the ramp rate will follow either the Intel or the AMD slew rate depending on the mode. Under Voltage Lockouts Adaptive Non−overlap An under voltage circuit senses the VCC input of the controller and the VCCP input of the driver. During power up the input voltage to the controller is monitored. The PWM outputs and the soft start circuit are disabled until the input voltage exceeds the threshold voltage of the comparators. Hysteresis is incorporated within the comparators. The DRVON is held low until VCCP reaches the start threshold during startup. If VCCP decreases below the stop threshold, the output gate will be forced low unit input voltage VCCP rises above the startup threshold. The non−overlap dead time control is used to avoid shoot through damage to the power MOSFETs. When the PWM signal pull high, DRVL will go low after a propagation delay, the controller monitors the switching node (SWN) pin voltage and the gate voltage of the MOSFET to know the status of the MOSFET. When the low side MOSFET status is off an internal timer will delay turn on of the high–side MOSFET. When the PWM pull low, gate DRVH will go low after the propagation delay (tpdDRVH). The time to turn off the high side MOSFET is depending on the total gate charge of the high−side MOSFET. A timer will be triggered once the high side MOSFET is turn off to delay the turn on the low−side MOSFET. Over Current Latch A programmable over current latch is incorporated within the IC. The oscillator pin provides the reference voltage for this pin. A resistor divider from the OSC pin generates the ILIM voltage. The latch is set when the current information on Vdroop exceeds the programmed voltage plus a 1.3 V offset. DRVON is immediately set low. To recover the part must be reset by the EN pin or by cycling VCC. Layout Guidelines Layout is very important thing for design a DC−DC converter. Bootstrap capacitor and Vin capacitor are most critical items, it should be placed as close as to the controller IC. Another item is using a GND plane. Ground plane can provide a good return path for gate drives for reducing the ground noise. Therefore GND pin should be directly connected to the ground plane and close to the low−side MOSFET source pin. Also, the gate drive trace should be considered. The gate drives has a high di/dt when switching, therefore a minimized gate drives trace can reduce the di/dv, raise and fall time for reduce the switching loss. UVLO Monitor If the output voltage falls greater than 300 mV below the DAC voltage for more than 5 ms the UVLO comparator will trip sending the VR_RDY signal low. Over Voltage Protection The output voltage is monitored at the input of the differential amplifier. During normal operation, if the output http://onsemi.com 26 NCP5395 1.25 V ENABLE VID Captured 1.25 V VID Not Valid VID Valid 1 ms − 20 ms Rise Time 5V 12 V 12 V 1 ms − 20 ms Rise Time 5 and 12 Good DRVON VR11 Soft−start Mode Latched 3.5 ms Calibration Time Soft−start Slew Rate DAC Setting 1.10 V Soft−start Slew Rate 500 ms VOUT/DAC 500 ms VR_RDY Figure 6. VR11.1 Start Up Timing Diagram http://onsemi.com 27 NCP5395 ENABLE 5V VID7/AMD 1 ms − 20 ms Rise Time VCC 5V 1 ms − 20 ms Rise Time 12 V 9.5 V VCCP VCC and VCCP UVLO AMD/Legacy Soft Start Mode Latched 3.5 ms Calibration Time DRVON DAC Setting SS Slew Rate VOUT/DAC 500 ms VR_RDY Figure 7. AMD / Legacy Start Up Timing Diagram The products described herein (NCP5395), may be covered by one or more of the following U.S. patents; US07057381.There may be other patents pending. http://onsemi.com 28 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS QFN48 7x7, 0.5P CASE 485AJ−01 ISSUE O 1 48 ÈÈÈ ÈÈÈ ÈÈÈ SCALE 2:1 D PIN 1 LOCATION DATE 27 APR 2007 NOTES: 1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO THE PLATED TERMINAL AND IS MEASURED ABETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. A B E DIM A A1 A3 b D D2 E E2 e K L L 2X 0.15 C DETAIL A OPTIONAL CONSTRUCTION 2X SCALE 2X 0.15 C TOP VIEW (A3) 0.05 C GENERIC MARKING DIAGRAM* A 0.08 C A1 NOTE 4 C SIDE VIEW D2 DETAIL A 25 12 E2 1 36 48 48X L 1 SEATING PLANE XXXXXXXXX XXXXXXXXX AWLYYWW K 13 37 e e/2 48X BOTTOM VIEW b 0.10 C A B 0.05 C MILLIMETERS MIN MAX 0.80 1.00 0.00 0.05 0.20 REF 0.20 0.30 7.00 BSC 5.00 5.20 7.00 BSC 5.00 5.20 0.50 BSC 0.20 −−− 0.30 0.50 A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. SOLDERING FOOTPRINT* 2X NOTE 3 5.20 1 2X 7.30 48X 0.63 48X 0.30 0.50 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: DESCRIPTION: 98AON24490D QFN48 7X7, 0.50P Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
NCP5395MNR2G 价格&库存

很抱歉,暂时无法提供与“NCP5395MNR2G”相匹配的价格&库存,您可以联系我们找货

免费人工找货