0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCP802SAN6T1

NCP802SAN6T1

  • 厂商:

    ONSEMI(安森美)

  • 封装:

  • 描述:

    NCP802SAN6T1 - Highly Integrated Lithium Battery Protection Circuit for One Cell Battery Packs - ON ...

  • 数据手册
  • 价格&库存
NCP802SAN6T1 数据手册
NCP802 Highly Integrated Lithium Battery Protection Circuit for One Cell Battery Packs The NCP802 resides in a lithium battery pack where the battery cell continuously powers it. This circuit senses cell voltage, charge current, and discharge current, and correspondingly controls the state of two, N−channel MOSFET switches. These switches reside in series with the negative terminal of the cell and the negative terminal of the battery pack. During a fault condition, the NCP802 open circuits the pack by turning off one of these MOSFET switches, which disconnects the current path. Internal delay circuitry minimizes external component count. Features http://onsemi.com MARKING DIAGRAMS 6 1 SOT23−6 SN SUFFIX CASE 1262 XXxx • Highly Accurate Overvoltage Detector • • • • • • • "25 mV at Room Temperature "30 mV from −5 to 55°C Fault Detection Thresholds Overvoltage Threshold: SN1/SAN1 = 4.35 V, SAN5 = 4.275 V, SAN6 = 4.28 V Undervoltage Threshold: SN1/SAN1 = 2.4 V, SAN5/6 = 2.3 V Discharge Current Threshold: SN1/SAN1/SAN6 = 0.2 V, SAN5 = 0.1 V Charge Current Threshold: 0.1 V Internal Output Delays Overvoltage Output Delay: SN1/SAN1/SAN6 = 250 ms, SAN5 = 1 ms Undervoltage Output Delay: 20 ms Discharge Current Output Delay: SN1/SAN1/SAN6 = 12 ms, SAN5 = 6 ms Charge Current Output Delay: SN1/SAN1/SAN6 = 16 ms, SAN5 = 8 ms Absolute Maximum Rating of 28 V for the Charger Input Low Quiescent Current Normal Operating Current: 3.0 mA Standby Current when Cells are Discharged: 0.1 mA Zero Volt Charging Available in a Low Profile Surface Mount Package Pb−Free Package is Available* 6 1 SON−6 SAN SUFFIX CASE 494 XX xx XX = Specific Device Code xx = Date Code PIN CONNECTIONS DO 1 P− 2 CO 3 SOT23−6 (Top View) DO Vcell Gnd 1 2 3 SON−6 (Top View) 6 5 4 P− CO DS 6 5 4 Gnd Vcell DS ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 20 of this data sheet. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2004 1 September, 2004 − Rev. 10 Publication Order Number: NCP802/D NCP802 Vcell Gnd NCP802 DO CO P− Figure 1. Typical One Cell Lithium Ion Battery Pack http://onsemi.com 2 NCP802 5 Vcell 4 DS Oscillator Counter Logic Circuit VD1 VD4 Delay Level Shift Short Detector Logic Circuit VD2 VD3 6 Gnd 1 DO 3 CO 2 P− Figure 2. Detailed Block Diagram PIN FUNCTION DESCRIPTION Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁ Á ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ 1 2 3 4 5 6 1 6 5 4 2 3 DO P− This output connects to the gate of the discharge MOSFET allowing it to enable or disable battery pack discharging. This is the charger negative input pin. It connects to the excess current detectors and serves as the common node for the CO pin during turn−off. This output connects to the gate of the charge MOSFET switch allowing it to enable or disable battery pack charging. This is the delay time reduction pin. CO DS Vcell Gnd This input connects to the positive terminal of the cell for voltage monitoring and provides operating bias for the integrated circuit. This is the ground pin of the IC. Pin # SOT23−6 Pin # SON−6 Symbol Description http://onsemi.com 3 NCP802 CONNECT CHARGER CONNECT LOAD CONNECT CHARGER CONNECT LOAD EXCESS DISCONNECT CHARGE CHARGER + CURRENT CONNECT LOAD VDET1 VCELL t VDD VDET3 Gnd VDET4 t tDET1 VDD tDET1 tDET4 −P CO tREL1 tREL1 tREL4 P− t CHARGE CURRENT CHARGE/ DISCHARGE CURRENT 0 t DISCHARGE CURRENT Figure 3. Overvoltage/Excess Charge Current Timing Chart http://onsemi.com 4 NCP802 CONNECT CHARGER EXCESS DISCHARGE CONNECT CURRENT SHORT CHARGER OPEN OPEN CONNECT LOAD CONNECT LOAD VCELL VDET2 t VDD Vshort −P VDET3 Gnd VDET4 t tDET2 VDD tDET2 tDET3 tshort tREL2 tREL2 tREL3 tREL3 DO Gnd t CHARGE CURRENT CHARGE/ DISCHARGE CURRENT 0 t DISCHARGE CURRENT Figure 4. Undervoltage/Excess Discharge Current Timing Chart http://onsemi.com 5 NCP802 MAXIMUM RATINGS Rating Supply Voltage (Pin 5 to Pin 6) Symbol VDD VP− VDS Value −0.3 to 12 Unit V V V V V ÁÁÁÁ Á Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁ Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á Input Voltage P− Pin Voltage (Pin 5 to Pin 2) DS Pin Voltage (Pin 4 to Pin 6) VDD + 0.3 to VDD − 28 −0.3 to 12 VDD + 0.3 to VDD − 28 −0.3 to 12 150 Output Voltage CO Pin Voltage (Pin 3 to Pin 2) DO Pin Voltage (Pin 1 to Pin 6) Power Dissipation VCO VDO PD TA mW °C °C Operating Ambient Temperature Range Storage Temperature −40 to 85 Tstg −55 to 125 Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. ATTRIBUTES Characteristics ESD Protection Human Body Model (HBM) Machine Model (MM) (C = 100 pF, R = 1.5 kW) (C = 200 pF, R = 0 W) Value ≤1 kV ≤150 V Level 1 ≤150 mA Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Latch−up Current Maximum Rating per JEDEC standard JESD78 1. For additional Moisture Sensitivity information, refer to Application Note AND8003/D. http://onsemi.com 6 NCP802 ELECTRICAL CHARACTERISTICS (TA = 25°C, for min/max values TA is the operating junction temperature that applies, unless otherwise noted.) Characteristic VOLTAGE SENSING Symbol Min Typ Max Unit Note 2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á Á ÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ Á Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á Á ÁÁ Á Á Á ÁÁ Á Á Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ Á Á ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á Á ÁÁ ÁÁ Á Á ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á Á ÁÁ ÁÁÁ Á Á Á Á Á ÁÁ Á Á ÁÁ ÁÁ Á Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ Á Á Á Á Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á Á ÁÁ Á Á Á ÁÁ Á Á ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á Á ÁÁ ÁÁÁ Á Á Á Á Á ÁÁ Á Á ÁÁ ÁÁ Á Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ Á Á Á Á Á ÁÁ Á Á ÁÁ ÁÁ Á Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á Á ÁÁ Á Á Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á Á ÁÁ Cell Charging Cutoff (Pin 5 to Pin 6) Overvoltage Threshold, VDD Increasing (R1 = 330 W) TA = 25°C TA = −5°C to 55°C TA = 25°C TA = −5°C to 55°C TA = 25°C TA = −5°C to 55°C Overvoltage Delay Time (VDD = 3.6 V to 4.4 V) Overvoltage Release Time (VDD = 4.0 V, VP− = 0 V to 1.0 V) Cell Discharging Cutoff (Pin 5 to Pin 6) Undervoltage Threshold, VDD Decreasing Undervoltage Time (VDD = 3.6 V to 2.2 V) Undervoltage Release Delay Time (VDD = 3.0 V, VP− = 3.0 V to 0 V) CURRENT SENSING SN1/SAN1T1 SAN5T1/SAN6T1 tDET2 tREL2 VDET1 SN1/SAN1T1 SN1/SAN1T1 SAN5T1 SAN5T1 SAN6T1 SAN6T1 4.325 4.32 4.25 4.245 4.255 4.25 0.175 0.7 tREL1 VDET2 2.34 2.24 14 0.7 2.4 2.3 20 1.2 2.46 2.36 26 1.7 ms ms C D 11 4.35 4.35 4.275 4.275 4.28 4.28 0.250 01.0 16 4.375 4.38 4.30 4.305 4.305 4.31 0.325 1.3 21 ms V B C V V V V V V s A A A A tDET1 SN1/SAN1T1/SAN6T1 SAN5T1 Excess Discharge Current Threshold, VP− Increasing SN1T1/SAN1T1/SAN6T1 SAN5T1 Excess Discharge Current Delay Time (VDD = 3.0 V, VP− = 0 V to 1.0 V) SN1T1/SAN1T1/SAN6T1 SAN5T1 VDET3 V K 0.180 0.080 8.0 4.0 0.7 0.200 0.100 12 6.0 0.220 0.120 16 8.0 tDET3 ms K Excess Discharge Current Release Time (VDD = 3.0 V, VP− = 3.0 V to 0 V) tREL3 1.2 1.7 ms V K E E Excess Charge Current Threshold, VP− Decreasing Excess Charge Current Delay Time (VDD = 3.0 V, VP− = 0 V to −1.0 V) VDET4 tDET4 −0.13 11 5.0 −0.1 16 8.0 −0.07 21 11 ms SN1T1/SAN1T1/SAN6T1 SAN5T1 Excess Charge Current Release Time (VDD = 3.0 V, VP− = −1.0 V to 0 V) Short Protection Voltage (VDD = 3.0 V) tREL4 0.7 1.2 1.7 ms V E K K K VSHORT tSHORT VDD −1.4 250 15 VDD −1.1 400 30 VDD −0.8 600 45 Short Protection Delay Time (VDD = 3.0 V, VP− = 0 V to 3.0 V) Reset Resistance (VDD = 3.6 V, VP− = 1.0 V) ms RSHORT kW 2. Indicates test circuits shown on pages 16 and 17. http://onsemi.com 7 ÁÁÁ Á Á Á Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á Á Á Á Á ÁÁÁÁ ÁÁ Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á Á Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ Á Á Á Á Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ Á Á Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ 3. Indicates test circuits shown on pages 16 and 17. TOTAL DEVICE DELAY SHORTENING (DS PIN) OUTPUTS (TA = 25°C, for min/max values TA is the operating junction temperature that applies, unless otherwise noted.) ELECTRICAL CHARACTERISTICS Minimum Operating Cell Voltage for Zero Volt Charging (Pin 5 to Pin 2) (VDD − Gnd = 0 V) Operating Voltage Supply Current Operating (VDD = 3.9 V, VP− = 0 V) Standby (VDD = 2.0 V) DS Pin Pull−down Resistance (VDD = 3.6 V) DS Pin Middle Input Voltage (VDD = 3.6 to 4.4 V) DS Pin High Input Voltage Discharge Gate Drive Output High (Pin 5 to Pin 1) (VDD = 3.9 V, Io = −50 mA) Discharge Gate Drive Output Low (Pin 1 to Pin 6) (VDD = 2.0 V, Io = 50 mA) Charge Gate Drive Output High (Pin 5 to Pin 3) (VDD = 3.9 V, Io = −50 mA) Charge Gate Drive Output Low (Pin 3 to Pin 2) (VDD = 4.5 V, Io = 50 mA) Characteristic http://onsemi.com NCP802 8 Symbol RDS Voh2 Voh1 VDD Vol2 Vol1 VIM Icell VIH VST 1.05 VDD −0.5 Min 1.5 0.5 3.4 3.4 − − − − − Typ 3.0 − 1.3 3.7 0.2 3.7 0.4 − − − − VDD +0.3 VDD −1.1 Max 1.5 5.0 6.0 0.1 2.5 0.5 0.5 − − Unit MW µA µA V V V V V V V V Note 3 M G H F F F − L J I NCP802 OVERVOLTAGE THRESHOLD, VDET1 (V) OVERVOLTAGE DELAY TIME, tDET1 (s) 4.37 4.36 4.35 4.34 4.33 4.32 4.31 4.30 −50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 −50 0 50 100 0 50 100 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 5. Overvoltage Threshold vs. Temperature OVERVOLTAGE RELEASE TIME, tREL1 (ms) 30 25 20 15 10 5 0 −60 UNDERVOLTAGE THRESHOLD, VDET2 (V) 2.43 2.42 2.41 2.40 2.39 2.38 2.37 2.36 −50 Figure 6. Overvoltage Delay Time vs. Temperature −40 −20 0 20 40 60 80 100 0 50 100 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 7. Overvoltage Release Time vs. Temperature UNDERVOLTAGE RELEASE TIME, tREL2 (ms) UNDERVOLTAGE DELAY TIME tDET2 (ms) 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 −60 Figure 8. Undervoltage Threshold vs. Temperature 35 30 25 20 15 10 5 0 −50 0 50 100 −40 −20 0 20 40 60 80 100 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 9. Undervoltage Delay Time vs. Temperature Figure 10. Undervoltage Release Time vs. Temperature http://onsemi.com 9 NCP802 EXCESS DISCHARGE CURRENT THRESHOLD, VDET3 (V) 0.210 EXCESS DISCHARGE CURRENT DELAY TIME, tDET3 (ms) −40 −20 0 20 40 60 80 100 18 16 14 12 10 8 6 4 2 0 −60 −40 −20 0 20 40 60 80 100 0.205 0.200 0.195 0.190 −60 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 11. Excess Discharge Current Threshold vs. Temperature 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 −60 −40 −20 0 20 40 60 80 100 RESET RESISTANCE, RSHORT (kΩ) 50 Figure 12. Excess Discharge Current Delay Time vs. Temperature EXCESS DISCHARGE CURRENT RELEASE DELAY TIME, tREL2 (ms) 40 VDD = 3.6 V 30 20 10 0 −60 −40 −20 0 20 40 60 80 100 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) EXCESS CHARGE CURRENT DELAY TIME, tREL4 (ms) EXCESS CHARGE CURRENT THRESHOLD VDET4 (V) Figure 13. Excess Discharge Current Release Time vs. Temperature Figure 14. Reset Resistance vs. Temperature −0.110 30 25 20 15 10 5 0 −60 −0.105 −0.100 −0.095 −0.090 −50 0 50 100 −40 −20 0 20 40 60 80 100 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 15. Excess Charge Current Threshold vs. Temperature Figure 16. Excess Charge Current Delay Time vs. Temperature http://onsemi.com 10 NCP802 SHORT PROTECTION VOLTAGE, VSHORT (V) EXCESS CHARGE CURRENT RELEASE TIME, tREL4 (ms) 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 −60 −40 −20 0 20 40 60 80 100 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 −50 0 50 100 VDD = 3.0 V TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 17. Excess Charge Current Release Time vs. Temperature SHORT PROTECTION DELAY TIME, tSHORT (ms) DS PIN HIGH MINIMUM VOLTAGE, VIH (V) 700 600 500 400 300 200 100 0 −50 3 2.5 2 Figure 18. Short Protection Threshold vs. Temperature VDD = 3.0 V 1.5 1 0.5 0 −50 0 50 100 0 50 100 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 19. Short Protection Delay Time vs. Temperature DS PIN MIDDLE INPUT MINIMUM VOLTAGE, VIM (V) 2.5 DS PIN PULL−DOWN RESISTANCE Figure 20. DS Pin High Input Minimum Voltage vs. Temperature 3 2.5 2 1.5 VDD = 3.6 V to 4.4 V 1 0.5 0 −50 2 VDD = 3.6 V 1.5 1 0.5 0 50 100 0 −50 0 50 100 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 21. DS Pin Middle Input Minimum Voltage vs. Temperature Figure 22. DS Pin Pull−Down Resistance vs. Temperature http://onsemi.com 11 NCP802 0.5 CO NCH DRIVER OUTPUT, Vol1 (V) CO PCH DRIVER OUTPUT, Voh1 (V) 3.9 0.4 3.8 0.3 3.7 0.2 0.1 3.6 0 −60 −40 −20 0 20 40 60 80 100 3.5 −50 0 50 100 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 23. CO NCH Driver Output vs. Temperature 0.4 DO PCH DRIVER OUTPUT, Voh2 (V) DO NCH DRIVER OUTPUT, Vol2 (V) 3.9 Figure 24. CO PCH Driver Output vs. Temperature 0.3 3.8 0.2 3.7 0.1 3.6 0 −60 −40 −20 0 20 40 60 80 100 3.5 −50 0 50 100 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 25. DO NCH Driver Output vs. Temperature 0.1 STANDBY CURRENT Icell (mA) Figure 26. DO PCH Driver Output vs. Temperature 6 OPERATING CURRENT Icell (mA) 5 4 3 2 1 0 −50 0.08 0.06 0.04 0.02 0 50 100 0 −50 0 50 100 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 27. Operating Current vs. Temperature Figure 28. Standby Current vs. Temperature http://onsemi.com 12 NCP802 OVERVOLTAGE DELAY TIME, tDET1 (s) 0.30 0.25 0.20 0.15 0.10 0.05 0.00 4.0 OVERVOLTAGE RELEASE TIME, tREL1 (s) 18 16 14 12 10 8 6 4 2 0 3.0 3.5 4.0 4.5 4.5 5.0 5.5 6.0 VDD, OPERATING VOLTAGE (V) VDD, OPERATING VOLTAGE (V) Figure 29. Overvoltage Delay Time vs. Operating Voltage UNDERVOLTAGE RELEASE TIME, tREL2 (ms) UNDERVOLTAGE DELAY TIME, tDET2 (ms) 22 20 18 16 14 12 10 8 6 4 2 0 1.0 1.5 2.0 2.5 1.4 1.2 1 0.8 0.6 0.4 0.2 0 2.0 Figure 30. Overvoltage Release Time vs. Operating Voltage 2.5 3.0 3.5 4.0 4.5 VDD, OPERATING VOLTAGE (V) VDD, OPERATING VOLTAGE (V) Figure 31. Undervoltage Delay Time vs. Operating Voltage EXCESS DISCHARGE CURRENT RELEASE DELAY TIME tREL2 (ms) Figure 32. Undervoltage Release Time vs. Operating Voltage EXCESS DISCHARGE CURRENT DELAY TIME tDET3 (ms) 14 12 10 8 6 4 2 0 2.0 1.4 1.2 1 0.8 0.6 0.4 0.2 0 2.0 2.5 3.0 3.5 4.0 4.5 2.5 3.0 3.5 4.0 4.5 VDD, OPERATING VOLTAGE (V) VDD, OPERATING VOLTAGE (V) Figure 33. Excess Discharge Current Delay Time vs. Operating Voltage Figure 34. Excess Discharge Current Release Time vs. Operating Voltage http://onsemi.com 13 NCP802 EXCESS CHARGE CURRENT RELEASE TIME, tREL4 (ms) EXCESS CHARGE CURRENT DELAY TIME, tREL4 (ms) 18 16 14 12 10 8 6 4 2 0 2.0 2.5 3.0 3.5 4.0 4.5 1.4 1.2 1 0.8 0.6 0.4 0.2 0 2.0 2.5 3.0 3.5 4.0 4.5 VDD, OPERATING VOLTAGE (V) VDD, OPERATING VOLTAGE (V) Figure 35. Excess Charge Current Delay Time vs. Operating Voltage SHORT PROTECTION DELAY TIME, tSHORT (ms) 700 UNDERVOLTAGE THRESHOLD (V) 600 500 400 300 200 100 0 2 2.5 3 3.5 4 4.5 VDD, OPERATING VOLTAGE (V) 2.427 2.426 2.425 2.424 2.423 2.422 2.421 2.420 2.419 2.418 2.417 2.416 0 Figure 36. Excess Charge Current Release Time vs. Operating Voltage Undervoltage Release Threshold Undervoltage Threshold 100 200 300 400 500 600 700 800 900 1000 R1 (Ω) Figure 37. Short Protection Delay Time vs. Operating Voltage 2.5 CHARGER VOLTAGE TO RELEASE FROM UNDERVOLTAGE (V) Figure 38. Undervoltage Thresholds vs. R1 4.294 OVERVOLTAGE THRESHOLD (V) 4.293 4.292 4.291 4.29 4.289 4.288 0 100 200 300 400 500 600 700 800 900 1000 R1 (Ω) Overvoltage Threshold Overvoltage Release Threshold 2 VDD = 4.25 V 1.5 1 0.5 0 0 50 100 150 R2 (kΩ) 200 250 300 Figure 39. Overvoltage Thresholds vs. R1 Figure 40. Charger Voltage to Release from Undervoltage vs. R2 http://onsemi.com 14 NCP802 MINIMUM OPERATING VOLTAGE FOR 0 V CHARGING VST (V) 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 −50 0 50 100 VDD − GND = 0 TA, AMBIENT TEMPERATURE (°C) Figure 41. Minimum Operating Voltage for 0 V Charging vs. Temperature http://onsemi.com 15 NCP802 A VCELL E VCELL V P− CO V P− CO GND GND B VCELL F VCELL DS P− CO P− DO A V GND GND G C VCELL VCELL V P− DO P− CO A V GND GND D VCELL H VCELL CO A P− DO P− V GND GND Figure 42. Test Circuits http://onsemi.com 16 NCP802 I VCELL K VCELL P− DO A A V V P− DO GND GND J VCELL DO A L VCELL A P− V P− GND GND M VCELL V V P− CO GND DO Figure 43. Test Circuits Overvoltage Detection The overvoltage detector (VD1) monitors the VCELL pin voltage. When the VCELL voltage crosses the overvoltage detector threshold (VDET1) from a low value to a value higher than VDET1, VD1 detects an over−charging condition. The NCP802 then turns off an external, charge control, N−channel, MOSFET by driving the CO pin to its low level. A level shifter, incorporated in a buffer driver for the CO pin, drives the low level of the CO pin to the P− pin voltage, which is connected to the source of the charge control MOSFET by a resistor. The high level of the CO pin is driven to the VCELL voltage with a CMOS buffer. To reset the CO pin to its high level, the voltage at the VCELL pin must decrease to a level lower than VDET1. The overvoltage detector does not reset after the battery voltage falls below some hysteresis voltage. The NCP802 will not reset from an overvoltage fault as long as a charger is connected to the battery. Rather, the excess−discharge current detector (VD3) signals the IC to reset from an overvoltage condition by detecting a load while in an overvoltage condition. When the P− pin voltage becomes equal to or greater than than the excess discharge−current detector threshold (VDET3) during an overvoltage fault, the NCP802 senses the voltage drop across the charge MOSFET’s body diode induced by the load current. It then resets from the overvoltage state. There are internal, fixed delay times for both the detection and release from an overvoltage condition. If the fault or reset conditions are shorter than their respective delay times, the NCP802 ignores that condition and stays in its previous state. http://onsemi.com 17 NCP802 Undervoltage Detection The undervoltage detector (VD2) monitors the VCELL pin voltage. When the VCELL voltage crosses the undervoltage threshold (VDET2) from a high value to a value lower than VDET2, VD2 senses an undervoltage condition, and an external, discharge control, N−channel MOSFET turns off by driving the DO pin to its low level. The low level of DO is set to GND and the high level to VCELL. To reset the DO pin to its high level, one must connect a charger to the battery pack. While the VCELL voltage remains under VDET2, charge−current can flow through the parasitic diode of the external discharge control MOSFET. Once the VCELL voltage rises above VDET2, the NCP802 drives DO high. Connecting a charger to the battery pack drives the DO level high instantaneously when the VCELL voltage is higher than VDET2. VD2 has no hysteresis. After VD2 detects an undervoltage condition, the NCP802 enters a low supply current, standby mode. Maximum standby current equals 0.1 mA at VCELL equal to 2.0 V. An internal pull−up disables all the device functions and thus drastically lowers quiescent current. When the charger connects to the battery, it pulls small levels of current from the P− pin. This overcomes the internal pull−up and allows the NCP802 to reset. There are internal, fixed delay times for both the detection and release from an undervoltage condition. If the fault or reset conditions are shorter than their respective delay times, the NCP802 ignores that condition and stays in its previous state. Excess Discharge−Current/Short Circuit Detection short circuit detector has activated; removing the cause of that activation turns the discharge MOSFET back on. This occurs because RSHORT pulls the P− pin, voltage level down to the GND pin, voltage level. The NCP802 internally disconnects RSHORT during a normal, fault−free, state. The NCP802 only connects RSHORT if it has detected an excess discharge−current or short circuit fault. In other words, VD3 is automatically released from excess discharge−current and short circuit faults when the user removes the load. The output delay time of excess discharge−current detection is set shorter than the delay time for undervoltage detection. Therefore, if VCELL voltage drops below VDET2 during an excess discharge−current or short circuit fault, the NCP802 detects the current fault first. This prevents large discharge current faults from activating the undervoltage detector and putting the NCP802 into standby mode. Standby mode requires the charger to reset the NCP802, while excess discharge−current and short circuit faults only require that the fault be removed. Excess Charge−Current Detection The excess discharge−current detector (VD3) and the short circuit detector can function when the control MOSFET’s are on. When the P− pin voltage is below the short circuit detection voltage (VSHORT) and above the excess discharge−current threshold (VDET3), VD3 operates. When the P− pin voltage rises higher than VSHORT, the NCP802 enables the short circuit detector. When either detector activates, the NCP802 turns off an external, discharge control, N−channel, MOSFET by driving the DO pin to its low level. The output delay time for the excess discharge−current detector is internally fixed. If the P− pin, voltage level recovers from a level between VSHORT and VDET3 within the delay time, the discharge MOSFET stays in its high state. Output delay time for release from excess discharge−current detection is typically 1.2 ms. When the short circuit detector activates, DO transitions to its low state after a delay time of approximately 400 ms. There is an integrated pull−down resistor (RSHORT) connected between the P− and GND pins. After VD3 or the When the battery pack is chargeable and discharge is also possible, VD4 senses the P− pin voltage. For example, if the user connects the battery to an inappropriate charger, excess current can flow. Then, the P− voltage drops below the excess charge−current threshold (VDET4). Next, the output of CO becomes low. This prevents excess current flow into the circuit by turning off the external MOSFET. The output delay of the excess charge−current detector is internally fixed. If the fault condition is within the delay time window, the detector will not sense it and the MOSFET will not change state. VD4 can be released by disconnecting a charger and applying a load. Delay Shortening Function The output delay time of over−charge, over−discharge, excess discharge−current, excess charge−current, and the release from those detecting modes can be made shorter than the pre−set value by forcing the VCELL voltage to the DS pin. When one forces the specified middle range voltage to the DS pin, the output delay circuit becomes disabled. Therefore, under this condition, when over−charge or excess charge current is detected, output level can be checked without waiting for the delay. A 1.3 MW pull−down resistor is connected between DS pin and GND internally. For normal operation, the DS pin should be at no connection state. Zero Battery Voltage Charging If the charger voltage is equal or higher than the zero−volt charge, minimum voltage (VST), the NCP802 drives the CO pin high. Therefore, it allows charging for batteries as low as zero volts. http://onsemi.com 18 NCP802 + R1 330 W VCELL C1 0.1 µF DS NCP802 P− GND DO CO R2 1 kW − Figure 44. Typical Application Circuit Technical Notes R1 and C1 will stabilize a supply voltage to the NCP802. A recommended R1 value is less than 1.0 kW A larger value of R1 leads to higher detection voltages. There may also be voltage detector errors from shoot through current into the NCP802. R1 and R2 can also help current limit the circuit against reverse charge or a charger with excess charging voltage applied to the NCP802 battery pack. Smaller R1 and R2 values may cause excessive power consumption over the specified power dissipation rating. Therefore, the total value of R1 ) R2 should be equal to or more than 1.0 kW. However, if one uses a very large value of R2, it might not be possible to release from undervoltage by connecting a charger. The recommended R2 value is equal to or less than 30 kW. http://onsemi.com 19 NCP802 ORDERING INFORMATION Device NCP802SN1T1 NCP802SAN1T1 NCP802SAN1T1G NCP802SAN5T1 NCP802SAN6T1 NCP802SAN6T1G Package SOT23−6 SON−6 SON−6 (Pb−Free) SON−6 SON−6 SON−6 (Pb−Free) Marking Code KN KN KN K7 KD KD Shipping† 3000 Tape & Reel 3000 Tape & Reel 3000 Tape & Reel 3000 Tape & Reel 3000 Tape & Reel 3000 Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. http://onsemi.com 20 NCP802 PACKAGE DIMENSIONS SOT23−6 SN SUFFIX PLASTIC PACKAGE CASE 1262−01 ISSUE A E PIN 1 IDENTIFIER 0.20 M CB M 0.05 C NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSION D DOES NOT INCLUDE FLASH OR PROTRUSIONS. FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.23 PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. DIMENSIONS D AND E1 ARE TO BE DETERMINED AT DATUM PLANE H. DIM A A1 b b1 c c1 D E E1 e e1 L q MILLIMETERS MIN MAX 0.90 1.45 0.00 0.15 0.35 0.50 0.35 0.45 0.09 0.20 0.09 0.15 2.80 3.00 2.60 3.00 1.50 1.75 0.95 1.90 1 e A 6 D e1 2 3 5 A B b c1 c q H L ÉÉÉÉÉ ÇÇÇÇ ÉÉÉÉÉ ÇÇÇÇ 0.10 E1 A1 A b 4 M CA A S B S b1 0.25 0_ 0.55 10 _ SECTION A−A http://onsemi.com 21 NCP802 PACKAGE DIMENSIONS SON−6 SAN SUFFIX PLASTIC PACKAGE CASE 494−01 ISSUE 0 A 6 5 4 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. K 1 4 BL E 1 2 3 C DIM A B C D E G J K L MILLIMETERS MIN MAX 1.40 1.80 2.40 2.80 −−− 0.90 0.10 0.30 1.24 1.44 0.50 BSC 0.08 0.18 0.30 BSC 2.85 3.15 INCHES MIN MAX 0.055 0.071 0.094 0.110 −−− 0.035 0.004 0.012 0.049 0.057 0.020 BSC 0.003 0.007 0.012 BSC 0.112 0.124 J D 6 PL G 0.10 (0.004) −T− SEATING PLANE 0.15 (0.010) M TXY http://onsemi.com 22 NCP802 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. http://onsemi.com 23 NCP802/D
NCP802SAN6T1 价格&库存

很抱歉,暂时无法提供与“NCP802SAN6T1”相匹配的价格&库存,您可以联系我们找货

免费人工找货