MOSFET – Power, Single,
N-Channel
80 V, 2.8 mW, 157 A
NVMFS6H801N
Features
•
•
•
•
•
•
Small Footprint (5x6 mm) for Compact Design
Low RDS(on) to Minimize Conduction Losses
Low QG and Capacitance to Minimize Driver Losses
NVMFS6H801NWF − Wettable Flank Option for Enhanced Optical
Inspection
AEC−Q101 Qualified and PPAP Capable
These Devices are Pb−Free and are RoHS Compliant
www.onsemi.com
V(BR)DSS
RDS(ON) MAX
ID MAX
80 V
2.8 mW @ 10 V
157 A
D (5)
MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)
Symbol
Value
Unit
Drain−to−Source Voltage
VDSS
80
V
Gate−to−Source Voltage
VGS
±20
V
ID
157
A
Parameter
Continuous Drain
Current RqJC
(Notes 1, 3)
TC = 25°C
Power Dissipation
RqJC (Note 1)
Continuous Drain
Current RqJA
(Notes 1, 2, 3)
Steady
State
TC = 100°C
TC = 25°C
TC = 100°C
TA = 25°C
Power Dissipation
RqJA (Notes 1, 2)
Pulsed Drain Current
Steady
State
W
166
ID
PD
D
W
3.8
1.9
IDM
900
A
TJ, Tstg
−55 to
+175
°C
IS
138
A
Single Pulse Drain−to−Source Avalanche
Energy (IL(pk) = 12.2 A)
EAS
960
mJ
Lead Temperature for Soldering Purposes
(1/8″ from case for 10 s)
TL
260
°C
Operating Junction and Storage Temperature
Range
Source Current (Body Diode)
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
THERMAL RESISTANCE MAXIMUM RATINGS
Parameter
MARKING
DIAGRAM
A
23
16
TA = 100°C
TA = 25°C, tp = 10 ms
N−CHANNEL MOSFET
83
TA = 100°C
TA = 25°C
S (1,2,3)
111
PD
G (4)
Symbol
Value
Unit
Junction−to−Case − Steady State
RqJC
0.9
°C/W
Junction−to−Ambient − Steady State (Note 2)
RqJA
39
1
DFN5
(SO−8FL)
CASE 488AA
STYLE 1
S
S
S
G
D
XXXXXX
AYWZZ
D
D
XXXXXX = 6H801N
XXXXXX = (NVMFS6H801N) or
XXXXXX = 801NWF
XXXXXX = (NVMFS6H801NWF)
A
= Assembly Location
Y
= Year
W
= Work Week
ZZ
= Lot Traceability
ORDERING INFORMATION
See detailed ordering, marking and shipping information in the
package dimensions section on page 5 of this data sheet.
1. The entire application environment impacts the thermal resistance values shown,
they are not constants and are only valid for the particular conditions noted.
2. Surface−mounted on FR4 board using a 650 mm2, 2 oz. Cu pad.
3. Maximum current for pulses as long as 1 second is higher but is dependent
on pulse duration and duty cycle.
© Semiconductor Components Industries, LLC, 2016
August, 2020 − Rev. 3
1
Publication Order Number:
NVMFS6H801N/D
NVMFS6H801N
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise specified)
Parameter
Symbol
Test Condition
Min
Drain−to−Source Breakdown Voltage
V(BR)DSS
VGS = 0 V, ID = 250 mA
80
Drain−to−Source Breakdown Voltage
Temperature Coefficient
V(BR)DSS/
TJ
Typ
Max
Unit
OFF CHARACTERISTICS
Zero Gate Voltage Drain Current
IDSS
Gate−to−Source Leakage Current
V
38
VGS = 0 V,
VDS = 80 V
mV/°C
TJ = 25 °C
10
TJ = 125°C
100
IGSS
VDS = 0 V, VGS = 20 V
VGS(TH)
VGS = VDS, ID = 250 mA
100
mA
nA
ON CHARACTERISTICS (Note 4)
Gate Threshold Voltage
Threshold Temperature Coefficient
VGS(TH)/TJ
Drain−to−Source On Resistance
Forward Transconductance
RDS(on)
2.0
4.0
7.2
VGS = 10 V
gFS
ID = 50 A
VDS =15 V, ID = 50 A
2.3
V
mV/°C
2.8
128
mW
S
CHARGES, CAPACITANCES & GATE RESISTANCE
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
4120
VGS = 0 V, f = 1 MHz, VDS = 40 V
586
pF
22
Total Gate Charge
QG(TOT)
VGS = 10 V, VDS = 40 V; ID = 50 A
Threshold Gate Charge
QG(TH)
11
Gate−to−Source Charge
QGS
19
Gate−to−Drain Charge
QGD
Plateau Voltage
VGP
5.0
td(ON)
25
VGS = 10 V, VDS = 40 V; ID = 50 A
64
nC
13
V
SWITCHING CHARACTERISTICS (Note 5)
Turn−On Delay Time
Rise Time
Turn−Off Delay Time
Fall Time
tr
td(OFF)
VGS = 10 V, VDS = 64 V,
ID = 50 A, RG = 2.5 W
tf
74
ns
70
19
DRAIN−SOURCE DIODE CHARACTERISTICS
Forward Diode Voltage
Reverse Recovery Time
VSD
TJ = 25°C
0.8
TJ = 125°C
0.7
tRR
Charge Time
ta
Discharge Time
tb
Reverse Recovery Charge
VGS = 0 V,
IS = 50 A
1.2
V
64
VGS = 0 V, dIS/dt = 100 A/ms,
IS = 50 A
QRR
36
ns
28
98
nC
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Pulse Test: pulse width v 300 ms, duty cycle v 2%.
5. Switching characteristics are independent of operating junction temperatures.
www.onsemi.com
2
NVMFS6H801N
TYPICAL CHARACTERISTICS
300
VGS = 6.0 V to 10 V
250
VGS = 5.5 V
200
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
300
5.0 V
150
100
4.5 V
50
VDS = 10 V
250
200
150
100
TJ = 25°C
50
TJ = 125°C
4.0 V
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
0
8.0
4
5
6
Figure 1. On−Region Characteristics
Figure 2. Transfer Characteristics
12
TJ = 25°C
ID = 50 A
11
10
9
8
7
6
5
4
3
2
5
6
7
8
9
10
VGS, GATE−TO−SOURCE VOLTAGE (V)
7
4.0
TJ = 25°C
3.5
3.0
VGS = 10 V
2.5
2.0
1.5
1.0
5
10
15
20
25
30
35
40
45
50
ID, DRAIN CURRENT (A)
Figure 3. On−Resistance vs. Gate−to−Source
Voltage
Figure 4. On−Resistance vs. Drain Current and
Gate Voltage
1.E+06
2.4
2.2 VGS = 10 V
ID = 50 A
2.0
TJ = 150°C
TJ = 175°C
1.E+05
IDSS, LEAKAGE (nA)
RDS(on), NORMALIZED DRAIN−TO−
SOURCE RESISTANCE
3
VGS, GATE−TO−SOURCE VOLTAGE (V)
13
1
2
TJ = −55°C
VDS, DRAIN−TO−SOURCE VOLTAGE (V)
RDS(on), DRAIN−TO−SOURCE RESISTANCE (mW)
RDS(on), DRAIN−TO−SOURCE RESISTANCE (mW)
0
1.8
TJ = 125°C
1.E+04
1.6
TJ = 85°C
1.E+03
1.4
1.2
TJ = 25°C
1.E+02
1.0
0.8
1.E+01
0.6
0.4
−50
1.E+00
−25
0
25
50
75
100
125
150
175
5
15
25
35
45
55
65
75
TJ, JUNCTION TEMPERATURE (°C)
VDS, DRAIN−TO−SOURCE VOLTAGE (V)
Figure 5. On−Resistance Variation with
Temperature
Figure 6. Drain−to−Source Leakage Current
vs. Voltage
www.onsemi.com
3
NVMFS6H801N
TYPICAL CHARACTERISTICS
C, CAPACITANCE (pF)
CISS
1.E+03
COSS
1.E+02
1.E+01
VGS = 0 V
TJ = 25°C
f = 1 MHz
0
CRSS
10
20
30
40
50
60
70
6
QGD
QGS
5
4
3
2
1
0
0
10.05
20.1
30.15
40.2
50.25
60.3
Figure 7. Capacitance Variation
Figure 8. Gate−to−Source vs. Total Charge
100
IS, SOURCE CURRENT (A)
VGS = 0 V
tf
100
tr
td(on)
td(off)
1
10
10
1
TJ = −55°C
TJ = 25°C
0.1
100
TJ = 125°C
0.3
0.4
0.5
0.6
0.7
0.8
0.9
RG, GATE RESISTANCE (W)
VSD, SOURCE−TO−DRAIN VOLTAGE (V)
Figure 9. Resistive Switching Time Variation
vs. Gate Resistance
Figure 10. Diode Forward Voltage vs. Current
TC = 25°C
VGS ≤ 10 V
Single Pulse
100
IPEAK, (A)
t, TIME (ns)
7
QG, TOTAL GATE CHARGE (nC)
1K
ID, DRAIN CURRENT (A)
8
VDS, DRAIN−TO−SOURCE VOLTAGE (V)
VGS = 10 V
VDS = 64 V
ID = 50 A
10 ms
10
1
0.1
VDS = 40 V
TJ = 25°C
ID = 50 A
9
80
1000
10
10
VGS, GATE−TO−SOURCE VOLTAGE (V)
1.E+04
RDS(on) Limit
Thermal Limit
Package Limit
0.1
1
10
TJ (initial) = 25°C
TJ (initial) = 100°C
0.5 ms
1 ms
10 ms
1K
100
VDS, DRAIN−TO−SOURCE VOLTAGE (V)
TIME IN AVALANCHE (s)
Figure 11. Maximum Rated Forward Biased
Safe Operating Area
Figure 12. IPEAK vs. Time in Avalanche
www.onsemi.com
4
1
NVMFS6H801N
100
50% Duty Cycle
RqJA(t) (°C/W)
10
1
20%
10%
5%
2%
1%
0.1
0.01
0.001
1.E−06
Single Pulse
1.E−05
1.E−04
1.E−03
1.E−02
1.E−01
1.E+00
1.E+01
1.E+02
1.E+03
PULSE TIME (sec)
Figure 13. Thermal Characteristics
DEVICE ORDERING INFORMATION
Device
Marking
Package
Shipping†
NVMFS6H801NT1G
6H801N
DFN5
(Pb−Free)
1500 / Tape & Reel
NVMFS6H801NT3G
6H801N
DFN5
(Pb−Free)
5000 / Tape & Reel
NVMFS6H801NWFT1G
801NWF
DFN5
(Pb−Free, Wettable Flanks)
1500 / Tape & Reel
NVMFS6H801NWFT3G
801NWF
DFN5
(Pb−Free, Wettable Flanks)
5000 / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
www.onsemi.com
5
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
DFN5 5x6, 1.27P
(SO−8FL)
CASE 488AA
ISSUE N
1
DATE 25 JUN 2018
SCALE 2:1
2X
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION D1 AND E1 DO NOT INCLUDE
MOLD FLASH PROTRUSIONS OR GATE
BURRS.
0.20 C
D
A
2
B
D1
2X
0.20 C
4X
E1
2
q
E
c
1
2
3
A1
4
TOP VIEW
C
DETAIL A
0.10 C
SEATING
PLANE
A
0.10 C
SIDE VIEW
MILLIMETERS
MIN
NOM
MAX
0.90
1.00
1.10
0.00
−−−
0.05
0.33
0.41
0.51
0.23
0.28
0.33
5.00
5.15
5.30
4.70
4.90
5.10
3.80
4.00
4.20
6.00
6.30
6.15
5.70
5.90
6.10
3.45
3.65
3.85
1.27 BSC
0.51
0.575
0.71
1.20
1.35
1.50
0.51
0.575
0.71
0.125 REF
3.00
3.40
3.80
0_
−−−
12 _
DIM
A
A1
b
c
D
D1
D2
E
E1
E2
e
G
K
L
L1
M
q
GENERIC
MARKING DIAGRAM*
DETAIL A
1
0.10
b
C A B
0.05
c
8X
XXXXXX
AYWZZ
e/2
e
L
1
4
K
RECOMMENDED
SOLDERING FOOTPRINT*
E2
PIN 5
(EXPOSED PAD)
L1
M
2X
0.495
4.560
2X
1.530
G
D2
2X
BOTTOM VIEW
XXXXXX = Specific Device Code
A
= Assembly Location
Y
= Year
W
= Work Week
ZZ
= Lot Traceability
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present. Some products
may not follow the Generic Marking.
0.475
3.200
4.530
STYLE 1:
PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
1.330
STYLE 2:
2X
PIN 1. ANODE
0.905
2. ANODE
3. ANODE
4. NO CONNECT
0.965
5. CATHODE
1
4X
1.000
4X 0.750
1.270
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
DOCUMENT NUMBER:
DESCRIPTION:
98AON14036D
DFN5 5x6, 1.27P (SO−8FL)
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2018
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative