0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NYC008-6JRLREG

NYC008-6JRLREG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

  • 描述:

    NYC008-6JRLREG - Sensitive Gate Silicon Controlled Rectifiers - ON Semiconductor

  • 数据手册
  • 价格&库存
NYC008-6JRLREG 数据手册
NYC008-6JG Sensitive Gate Silicon Controlled Rectifiers Reverse Blocking Thyristors PNPN devices designed for high volume, line-powered consumer applications such as relay and lamp drivers, small motor controls, gate drivers for larger thyristors, and sensing and detection circuits. Supplied in an inexpensive plastic TO-226AA package which is readily adaptable for use in automatic insertion equipment. Features http://onsemi.com SCRs 0.8 A RMS 600 V G A K • Sensitive Gate Allows Triggering by Microcontrollers and Other • • • • • • • Logic Circuits Blocking Voltage to 600 V On−State Current Rating of 0.8 A RMS at 80°C High Surge Current Capability − 10 A Minimum and Maximum Values of IGT, VGT and IH Specified for Ease of Design Immunity to dV/dt − 50 V/msec Minimum at 110°C Glass-Passivated Surface for Reliability and Uniformity These are Pb−Free Devices TO−92 CASE 29 STYLE 10 12 1 2 3 STRAIGHT LEAD BULK PACK 3 BENT LEAD TAPE & REEL AMMO PACK MARKING DIAGRAM NYC 008−6 AYWWG G A = Assembly Location Y = Year WW = Work Week G = Pb−Free Package (Note: Microdot may be in either location) PIN ASSIGNMENT 1 2 3 Cathode Gate Anode *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ORDERING INFORMATION See detailed ordering and shipping information on page 5 of this data sheet. © Semiconductor Components Industries, LLC, 2010 January, 2010 − Rev. 0 1 Publication Order Number: NYC008−6JG/D NYC008−6JG MAXIMUM RATINGS (TJ = 25°C unless otherwise noted) Rating Peak Repetitive Off−State Voltage (Notes 1 and 2) (TJ = *40 to 110°C, Sine Wave, 50 to 60 Hz; RGK = 1 kW) On-State RMS Current, (TC = 80°C) 180° Conduction Angles Peak Non-Repetitive Surge Current, (1/2 Cycle, Sine Wave, 60 Hz, TJ = 25°C) Circuit Fusing Consideration, (t = 8.3 ms) Forward Peak Gate Power, (TA = 25°C, Pulse Width v 1.0 ms) Forward Average Gate Power, (TA = 25°C, t = 8.3 ms) Forward Peak Gate Current, (TA = 25°C, Pulse Width v 1.0 ms) Reverse Peak Gate Voltage, (TA = 25°C, Pulse Width v 1.0 ms) Operating Junction Temperature Range @ Rate VRRM and VDRM Storage Temperature Range Symbol VDRM, VRRM IT(RMS) ITSM I2t PGM PG(AV) IGM VGRM TJ Tstg Value 600 0.8 10 0.415 0.1 0.10 1.0 5.0 −40 to 110 −40 to 150 Unit V A A A2s W W A V °C °C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. VDRM and VRRM for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded. 2. See ordering information for exact device number options. THERMAL CHARACTERISTICS Characteristic Thermal Resistance,Junction−to−Case Junction−to−Ambient Lead Solder Temperature (t1/16″ from case, 10 secs max) Symbol RqJC RqJA TL Max 75 200 260 Unit °C/W °C ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol IDRM, IRRM Min Max Unit mA OFF CHARACTERISTICS Peak Repetitive Forward or Reverse Blocking Current (Note 3) TC = 25°C (VD = Rated VDRM and VRRM; RGK = 1 kW) TC = 110°C − − − − − − − − − − 50 − 10 100 1.7 200 5.0 10 10 15 0.8 1.2 − 50 ON CHARACTERISTICS Peak Forward On−State Voltage* (ITM = 1.0 A Peak @ TA = 25°C) Gate Trigger Current (Note 4) (VAK = 7.0 Vdc, RL = 100 W) TC = 25°C VTM IGT IH IL VGT V mA mA mA V Holding Current (Note 3) TC = 25°C (VAK = 7.0 Vdc, Initiating Current = 20 mA, RGK = 1 kW) TC = −40°C Latch Current (Note 4) (VAK = 7.0 V, Ig = 200 mA) Gate Trigger Voltage (Note 4) (VAK = 7.0 Vdc, RL = 100 W) TC = 25°C TC = −40°C TC = 25°C TC = −40°C DYNAMIC CHARACTERISTICS Critical Rate of Rise of Off−State Voltage (VD = Rated VDRM, Exponential Waveform, RGK = 1 kW,TJ = 110°C) Critical Rate of Rise of On−State Current (IPK = 20 A; Pw = 10 msec; diG/dt = 1 A/msec, Igt = 20 mA) *Indicates Pulse Test: Pulse Width ≤ 1.0 ms, Duty Cycle ≤ 1%. 3. RGK = 1000 W included in measurement. 4. Does not include RGK in measurement. dV/dt di/dt V/ms A/ms http://onsemi.com 2 NYC008−6JG Voltage Current Characteristic of SCR + Current Anode + VTM on state IRRM at VRRM IH Symbol VDRM IDRM VRRM IRRM VTM IH Parameter Peak Repetitive Off State Forward Voltage Peak Forward Blocking Current Peak Repetitive Off State Reverse Voltage Peak Reverse Blocking Current Peak on State Voltage Holding Current Reverse Blocking Region (off state) Reverse Avalanche Region Anode − + Voltage IDRM at VDRM Forward Blocking Region (off state) 100 GATE TRIGGER VOLTAGE (VOLTS) 95 110 GATE TRIGGER CURRENT ( mA) 90 80 70 60 50 40 30 20 −40 −25 −10 5 20 35 50 65 80 TJ, JUNCTION TEMPERATURE (°C) 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 −40 −25 −10 5 20 35 50 65 80 TJ, JUNCTION TEMPERATURE (°C) 95 110 Figure 1. Typical Gate Trigger Current versus Junction Temperature Figure 2. Typical Gate Trigger Voltage versus Junction Temperature http://onsemi.com 3 NYC008−6JG 3.0 2.8 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 −40 −25 −10 5 20 35 50 65 80 TJ, JUNCTION TEMPERATURE (°C) LATCHING CURRENT (mA) 95 110 HOLDING CURRENT (mA) 2.6 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 −40 −25 −10 5 20 35 50 65 80 TJ, JUNCTION TEMPERATURE (°C) 95 110 Figure 3. Typical Holding Current versus Junction Temperature Figure 4. Typical Latching Current versus Junction Temperature TC, MAXIMUM ALLOWABLE CASE TEMPERATURE ( °C) 120 110 100 90 80 70 60 50 40 0 30° 60° 90° 120° 0.5 180° DC I T, INSTANTANEOUS ON-STATE CURRENT (AMPS) 10 MAXIMUM @ TJ = 25°C MAXIMUM @ TJ = 110°C 1 0.1 0.2 0.3 0.4 IT(RMS), RMS ON-STATE CURRENT (AMPS) 0.1 0.5 0.8 1.1 1.4 1.7 2.0 2.3 2.6 2.9 3.2 3.5 VT, INSTANTANEOUS ON-STATE VOLTAGE (VOLTS) Figure 5. Typical RMS Current Derating Figure 6. Typical On−State Characteristics http://onsemi.com 4 NYC008−6JG ORDERING INFORMATION Device NYC008−6JG NYC008−6JRLRAG NYC008−6JRLREG TO−92 (TO−226) (Pb−Free) Package Code Shipping† 5000 Units / Box 2000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 5 NYC008−6JG TO−92 EIA RADIAL TAPE IN BOX OR ON REEL H2A H2A H2B H2B H W2 H4 H5 L1 L F1 F2 P2 P1 P P2 D H1 W1 W T T2 T1 Figure 7. Device Positioning on Tape Specification Inches Symbol D D2 F1, F2 H H1 H2A H2B H4 H5 L L1 P P1 P2 T T1 T2 W W1 W2 Millimeter Max Min 3.8 0.38 2.4 1.5 8.5 0 0 18 15.5 8.5 2.5 12.5 5.95 3.55 0.15 — 0.35 17.5 5.5 .15 Item Tape Feedhole Diameter Component Lead Thickness Dimension Component Lead Pitch Bottom of Component to Seating Plane Feedhole Location Deflection Left or Right Deflection Front or Rear Feedhole to Bottom of Component Feedhole to Seating Plane Defective Unit Clipped Dimension Lead Wire Enclosure Feedhole Pitch Feedhole Center to Center Lead First Lead Spacing Dimension Adhesive Tape Thickness Overall Taped Package Thickness Carrier Strip Thickness Carrier Strip Width Adhesive Tape Width Adhesive Tape Position Min 0.1496 0.015 0.0945 .059 0.3346 0 0 0.7086 0.610 0.3346 0.09842 0.4921 0.2342 0.1397 0.06 — 0.014 0.6889 0.2165 .0059 Max 4.2 0.51 2.8 4.0 9.5 1.0 1.0 19.5 16.5 11 — 12.9 6.75 3.95 0.20 1.44 0.65 19 6.3 0.5 0.1653 0.020 0.110 .156 0.3741 0.039 0.051 0.768 0.649 0.433 — 0.5079 0.2658 0.1556 0.08 0.0567 0.027 0.7481 0.2841 0.01968 NOTES: 1. Maximum alignment deviation between leads not to be greater than 0.2 mm. 2. Defective components shall be clipped from the carrier tape such that the remaining protrusion (L) does not exceed a maximum of 11 mm. 3. Component lead to tape adhesion must meet the pull test requirements. 4. Maximum non−cumulative variation between tape feed holes shall not exceed 1 mm in 20 pitches. 5. Hold down tape not to extend beyond the edge(s) of carrier tape and there shall be no exposure of adhesive. 6. No more than 1 consecutive missing component is permitted. 7. A tape trailer and leader, having at least three feed holes is required before the first and after the last component. 8. Splices will not interfere with the sprocket feed holes. http://onsemi.com 6 NYC008−6JG PACKAGE DIMENSIONS TO−92 (TO−226) CASE 29−11 ISSUE AM A R P L SEATING PLANE B STRAIGHT LEAD BULK PACK NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. INCHES MIN MAX 0.175 0.205 0.170 0.210 0.125 0.165 0.016 0.021 0.045 0.055 0.095 0.105 0.015 0.020 0.500 --0.250 --0.080 0.105 --0.100 0.115 --0.135 --MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.407 0.533 1.15 1.39 2.42 2.66 0.39 0.50 12.70 --6.35 --2.04 2.66 --2.54 2.93 --3.43 --- K XX H V 1 D G J C N N SECTION X−X DIM A B C D G H J K L N P R V R A B BENT LEAD TAPE & REEL AMMO PACK P T SEATING PLANE NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.40 0.54 2.40 2.80 0.39 0.50 12.70 --2.04 2.66 1.50 4.00 2.93 --3.43 --STYLE 10: PIN 1. CATHODE 2. GATE 3. ANODE K G XX V 1 D J C N SECTION X−X DIM A B C D G J K N P R V ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone : 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative http://onsemi.com 7 MCR100/D
NYC008-6JRLREG 价格&库存

很抱歉,暂时无法提供与“NYC008-6JRLREG”相匹配的价格&库存,您可以联系我们找货

免费人工找货