0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RDK-248

RDK-248

  • 厂商:

    POWERINT(帕沃英蒂格盛)

  • 封装:

    -

  • 描述:

    KIT REF DESIGN HIPERPFS

  • 数据手册
  • 价格&库存
RDK-248 数据手册
Title Reference Design Report for a Low-Power, Low-Cost 180 W PFC Front End Using HiperPFS™ PFS708EG Specification 90 VAC – 264 VAC Input; 380 VDC Output Application PFC Front End Author Applications Engineering Department Document Number RDR-248 Date March 25, 2011 Revision 1.0 Summary and Features  Low component count, low-cost, low-power PFC  EN61000-3-2 Class-D compliance  High PFC efficiency enables 80+ PC Main design  Frequency sliding maintains high efficiency across load range  Feed forward line sense gain – maintains relatively constant loop gain over entire operating voltage range  Excellent transient load response  Power Integration eSIP low-profile controller package  Integrated +15 VDC auxiliary power supply on board PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at . . Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 Table of Contents 1 2 3 4 5 Introduction.................................................................................................................5 Design Goals ..............................................................................................................5 Power Supply Specification ........................................................................................7 Schematic...................................................................................................................8 Circuit Description ......................................................................................................9 5.1 Input EMI Filter and Rectifier ...............................................................................9 5.2 PFS708EG Boost Converter ...............................................................................9 5.3 Input Feed Forward Sense Circuit.....................................................................10 5.4 Output Feedback...............................................................................................10 5.5 Bias Supply .......................................................................................................10 5.5.1 Input EMI Filtering ......................................................................................10 5.5.2 TNY274GN Primary ...................................................................................10 5.5.3 Output Rectification ....................................................................................11 5.5.4 Output Feedback........................................................................................11 5.5.5 Overvoltage Shutdown ...............................................................................11 5.5.6 Design Aspects for EMI..............................................................................11 5.5.7 Undervoltage Lockout ................................................................................11 5.6 Bias Supply Series Regulator............................................................................12 6 PCB Layout ..............................................................................................................13 7 Bill of Materials .........................................................................................................14 8 Transformer Design Spreadsheet (T2) .....................................................................17 9 Inductor Design Spreadsheet (L5)............................................................................20 10 Auxiliary Supply Transformer Specification...........................................................23 10.1 Electrical Diagram .............................................................................................23 10.2 Electrical Specifications.....................................................................................23 10.3 Materials............................................................................................................23 10.4 Transformer Build Diagram ...............................................................................24 10.5 Transformer Construction..................................................................................24 10.6 Transformer Illustrations....................................................................................25 11 Switching Inductor Specification ...........................................................................28 11.1 Electrical Diagram .............................................................................................28 11.2 Electrical Specifications.....................................................................................28 11.3 Materials............................................................................................................28 11.4 Inductor Winding Instruction ..............................................................................29 12 EMI Differential Inductor Specification ..................................................................32 12.1 Electrical Diagram .............................................................................................32 12.2 Electrical Specifications.....................................................................................32 12.3 Materials............................................................................................................32 12.4 Inductor Winding Instruction ..............................................................................33 12.5 Inductance Value and Mounting ........................................................................34 13 Heat Sink Specification .........................................................................................35 13.1 eSIP U1 Heat Sink ............................................................................................35 13.2 eSIP U1 Heat Sink Assembly ............................................................................36 13.3 eSIP U1 Heat Sink Assembly and Mounting Hardware.....................................37 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 2 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 13.4 Bridge BR1 Heat Sink........................................................................................38 13.5 Bridge BR1 Heat Sink Assembly .......................................................................39 13.6 Bridge BR1 Heat Sink Assembly and Mounting Hardware Assembly................40 14 Performance Data .................................................................................................41 14.1 Auxiliary Supply Efficiency (with PFC disabled).................................................41 14.2 Auxiliary Supply Load Regulation (with PFC disabled) ......................................42 14.3 Auxiliary Supply Line Regulation (with PFC disabled) .......................................43 14.4 No-Load Input Power.........................................................................................44 14.5 PFC Efficiency (with RT1 in-circuit) ...................................................................45 14.6 Input Power Factor ............................................................................................46 14.7 Regulation .........................................................................................................47 14.7.1 Load ...........................................................................................................47 14.7.2 Line.............................................................................................................48 14.7.3 Overload .....................................................................................................49 14.8 THDi ..................................................................................................................50 14.9 Input Current Harmonic Distortion (IEC 61000-3-2 Class-D) .............................51 14.9.1 50% Load at Output....................................................................................51 14.9.2 100% Load at Output..................................................................................52 15 Thermal Performance............................................................................................53 16 Waveforms ............................................................................................................55 16.1 Auxiliary +15 V Supply.......................................................................................55 16.1.1 Load Transient Response ..........................................................................55 16.2 Input Current at 115 VAC and 60 Hz .................................................................56 16.3 Input Current at 230 VAC and 50 Hz .................................................................56 16.4 Start-up at 90 VAC and 60 Hz ...........................................................................57 16.5 Start-up at 115 VAC and 60 Hz .........................................................................57 16.6 Start-up at 230 VAC and 50 Hz .........................................................................58 16.7 Start-up at 264 VAC and 50 Hz .........................................................................58 16.8 Load Transient Response (90 VAC, 60 Hz).......................................................59 16.9 Load Transient Response (115 VAC, 60 Hz).....................................................60 16.10 Load Transient Response (230 VAC, 50 Hz) .................................................60 16.11 Load Transient Response (264 VAC, 50 Hz) .................................................61 16.12 1000 ms Line Dropout (115 VAC / 60 Hz and 230 VAC / 50 Hz) ...................61 16.12.1 50% Load at Output ................................................................................61 16.12.2 Full Load at Output .................................................................................62 16.13 One Cycle Line Dropout (115 VAC / 60 Hz and 230 VAC / 50 Hz) ................62 16.13.1 Full Load at Output .................................................................................62 16.14 Line Sag (115 VAC ~ 85 VAC ~ 115 VAC, 60 Hz) .........................................63 16.15 Line Surge (132 VAC ~ 147 VAC ~ 132 VAC, 60 Hz) ....................................63 16.16 Line Sag (230 VAC ~ 170 VAC ~ 230 VAC, 50 Hz) .......................................64 16.17 Line Surge (264 VAC ~ 293 VAC ~ 264 VAC, 50 Hz) ....................................64 16.18 Brown-In and Brown-Out at 6 V / Minute Rate ...............................................65 16.19 Drain Voltage and Current .............................................................................66 16.19.1 Drain Voltage and Current at 115 VAC Input and Full Load....................66 16.19.2 Drain Voltage and Current at 230 VAC Input and Full Load....................67 16.20 Output Ripple Measurements ........................................................................68 Page 3 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 16.20.1 Ripple Measurement Technique .............................................................68 16.20.2 Measurement Results.............................................................................69 17 Gain-Phase Measurement Procedure and Results...............................................71 18 Line Surge Test.....................................................................................................73 19 EMI Scans.............................................................................................................74 19.1 EMI Test Set-up ................................................................................................74 19.2 EMI Scans .........................................................................................................75 20 Appendix A - Test Set-up for Efficiency Measurement..........................................77 21 Appendix B - Inductor Current Measurement Set-up ............................................78 22 Revision History ....................................................................................................80 Important Note: All testing should be performed using an isolation transformer to provide the AC input to the prototype board. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 4 of 81 25-Mar-11 1 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG Introduction This document is an engineering report describing a PFC power supply utilizing a HiperPFS PFS708EG integrated PFC controller. This power supply is intended as a general purpose evaluation platform that operates from universal input line power and provides a regulated 380 V DC output voltage and a continuous output power of 180 W. This power supply can deliver rated power at 115 VAC source voltage or higher at ambient temperature of 25 ºC. For operation at higher temperatures or lower input voltages, use of forced air cooling is recommended. The document contains the power supply specification, schematic, bill of materials, inductor documentation, printed circuit layout, and performance data. 2 Design Goals To meet the goal of low solution cost the following considerations where made:  Low cost Sendust core for boost inductor  Single strand wire used for boost inductor (vs. more expensive Litz)  Surface mount boost diode to eliminate heat sink  Standard ultrafast diode Figure 1 – Populated Circuit Board Photograph (Top). Page 5 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 Figure 2 – Populated Circuit Board Photograph (Bottom). Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 6 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 3 Power Supply Specification The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section. Description Input Voltage Frequency Output Output Voltage Output Ripple Voltage p-p Output Current Total Output Power Continuous Output Power Efficiency Full Load Minimum efficiency at 20, 50 and 100 % of POUT Symbol Min Typ Max Units Comment VIN fLINE 90 47 264 64 VAC Hz 3 Wire 50/60 VOUT VRIPPLE IOUT 370 380 390 30 0.474 V V A 180 W POUT 20 MHz bandwidth  94 % Measured at POUT 25 C 80+ 94 % Measured at 115 VAC Input kV kV 1.2/50 s surge, IEC 1000-4-5, Series Impedance: Differential Mode: 2  Common Mode: 12  o Environmental Line Surge Differential Mode (L1-L2) Common mode (L1/L2-PE) 1 2 Ambient Temperature TAMB 0 Auxiliary Supply Output Auxiliary Supply output current Auxiliary Supply Input Auxiliary Supply VAUX IAUX 14.5 VAUX 15 Page 7 of 81 50 15.0 o C Forced convection required at TAMB > 25 ºC and/or VIN < 115 V, sea level 16.5 0.2 V A DC Supply Output Voltage 24 V DC Supply DC Supply Output Current Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 4 25-Mar-11 Schematic Figure 3 – PFC Circuit Schematic. Figure 4 – VAUX Circuit Schematic (Standby). Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 8 of 81 25-Mar-11 5 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG Circuit Description This PFC is designed around the Power Integrations PFS708EG integrated PFC controller. This design is rated for a continuous output power of 180 W and provides a regulated output voltage of 380 VDC nominal, maintaining a high input power factor and overall efficiency over line and load, while minimizing overall solution in cost. 5.1 Input EMI Filter and Rectifier Fuse F1 provides over-current protection to the circuit and isolates it from the AC supply in the event of a fault. Diode Bridge BR1 rectifies the AC input. Capacitors C3, C4, C5 and C6 in conjunction with inductors L1 and L2, constitute the EMI filter for attenuating both common mode and differential mode conducted noise. Film capacitor C7 provides input decoupling charge storage to reduce input ripple current at the switching frequency and its harmonics. Resistors R1, R3 and CAPZero IC U2 are provided to discharge the EMI filter capacitors after line voltage has been removed from the circuit, while dissipating zero power during operation. CAPZero eliminates the losses from R1 and R3 by acting as a switch that only closes when the AC input is removed. Metal Oxide Varistor (MOV) RV1 protects the circuit during line surge events by effectively clamping the input voltage seen by the power supply. 5.2 PFS708EG Boost Converter The boost converter stage consists of inductor L5, ultrafast rectifier D2 and the PFS708EG IC U1. This converter stage operates as a boost converter, thereby maintaining a sinusoidal input current to the power supply while regulating the output DC voltage. During start-up, diode D1 provides an inrush current path to the output capacitor C15 which bypasses the switching inductor L5 and switch U1. This prevents a resonant interaction between the switching inductor and output capacitor which results in a higher drain voltage on U1 and potential saturation of the boost inductor. NTC Thermistor RT1 limits inrush current of the supply when line power is first applied. For improved efficiency operation, RT1 may be bypassed by a mechanical relay after power-on, or may be replaced with a fixed resistor and a FET which bypasses the resistor after the inrush transient. Capacitor C14 provides a short, high-frequency return path to RTN for improved EMI results and to reduce U1 MOSFET peak drain voltage overshoot after turn-off. Resistor R28 provides damping for this return path to minimize ringing. Capacitor C18 and C20 decouple and bypass the U1 VCC pin. Page 9 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 5.3 Input Feed Forward Sense Circuit The input voltage of the power supply is sensed by the IC U1 using resistors R4, R5 and R19. The capacitor C12 bypasses the V pin on IC U1. 5.4 Output Feedback An output voltage resistive divider network consisting of resistors R9, R10, R11 and R14 provide a scaled voltage proportional to the output voltage as feedback to the controller IC U1. The circuit consisting of diode D4, transistors Q1, Q2, resistors R12 and R13 and capacitor C16 form a non-linear feedback circuit which improves the transient response of the PFC circuit. Resistor R15 and capacitor C13 provide the control loop dominant pole. Capacitor C17, C11 and R7 attenuate high-frequency noise. The resistor R8 in series with capacitor C13 provides a low frequency compensation zero while diode D3 protects against errant operation caused by an accidentally shorted C13. If capacitor C13 is accidentally shorted, diode D3 ensures that the voltage at the FB pin of IC U1 is below the FB_OFF threshold preventing operation of the IC. 5.5 Bias Supply Integrated into the PFC design is a +15 V, 3.0 W auxiliary flyback power supply utilizing the TNY274GN. Secondary side constant voltage (CV) is accomplished through optocoupler feedback with a Zener reference. 5.5.1 Input EMI Filtering The PFC output is further filtered and decoupled by the bulk storage capacitor C28. 5.5.2 TNY274GN Primary The IC U3 integrates a power MOSFET, oscillator, control, start-up, and protection functions of the auxiliary supply. The high-voltage input is applied to the primary winding of transformer T2. The other end of the transformer primary is connected to the Drain terminal of IC U3. Diodes D10 and VR2 form the primary clamp network which limits the peak drain voltage resulting from leakage inductance of transformer T2 primary winding. The selection of a slow diode for D10 improves conducted EMI but should be a glass passivated type, with a recovery time of 4 s. IC U3 employs ON/OFF control to regulate the output in response to the feedback signal present on the EN/UV pin. During normal operation, switching of the power MOSFET is disabled when a current greater than 90 A is sourced from the EN/UV pin. Currents below this threshold enable a switching cycle, which is terminated when the peak primary current reaches the internal current limit. An internal state machine sets the current limit to one of 4 levels appropriate for the operating conditions, ensuring that the switching frequency remains above the audible range until the transformer flux density drops to a Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 10 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG level below that which can create audible noise. This practically eliminates audible noise when standard dip varnishing of the transformer is employed. Capacitor C25 is a 0.1 F BP/M pin bypass capacitor. 5.5.3 Output Rectification Output rectification is provided by diode D11. A low-ESR capacitor C26 achieves minimum output voltage ripple. 5.5.4 Output Feedback Output voltage is regulated by the Zener diode VR4. When the output exceeds the Zener threshold, current will flow in the optocoupler LED which will result in the photo-transistor of the optocoupler U4 to conduct, thereby inhibiting the next switching cycle by sinking sufficient current from the enable pin of IC U3. When the voltage reduces, the phototransistor current reduces, allowing a switching cycle to occur when current from the ENABLE pin falls below the enable threshold. Output regulation is maintained via this cycle-by-cycle on-off control. 5.5.5 Overvoltage Shutdown Overvoltage detection is accomplished by sensing the voltage at the output of the bias winding. The overvoltage threshold is the sum of VR5 and the BYPASS pin voltage (28 V + 5.8 V). When an overvoltage condition occurs such that the bias winding output voltage exceeds the overvoltage threshold, current begins to flow into the BYPASS pin of U3. When this current exceeds 5 mA, the internal shutdown circuit in the TinySwitch-III IC is activated. The IC is reset by removing input power allowing the BYPASS pin voltage to drop below 2 V. 5.5.6 Design Aspects for EMI The switching frequency jitter feature of TNY274GN provides excellent conducted and radiated EMI performance for the auxiliary supply circuitry. 5.5.7 Undervoltage Lockout Resistors R26 and R27 constitute an undervoltage UV detect resistor. The line UV detect feature of the TinySwitch-III senses the current flowing in EN/UV pin to determine the line voltage at which to start switching. In addition, this UV detect feature, prevents the power supply from attempting to restart once output regulation is lost, unless the input voltage is above the start-up threshold. The R26 and R27 combined value of 3.3 M shown in Figure 3 will set the auxiliary supply start-up threshold to approximately 90 VDC (65 VAC). The output of the auxiliary supply is available on an output power connector for use in powering supervisory or other auxiliary house keeping circuits. Page 11 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 5.6 Bias Supply Series Regulator The PFS708EG IC requires a regulated VCC supply of 12 V for operation, with an absolute maximum voltage rating of 13.4 V. VCC levels in excess of this maximum could result in failure of U1. Resistor R17, Zener diode VR1, and transistor Q3 form a shunt regulator that prevents the supply voltage to IC U1 from exceeding 12 V. Capacitors C8 and C20 filter the input and series regulated supply voltage to ensure reliable operation of IC U1. Resistors R6, R16 provide filtering of an alternate external voltage source and provide reverse polarity protection in conjunction with diode D5. Diodes D13 and D14 provide diode ORing, allowing U1 to be powered either from the onboard +15 V auxiliary flyback supply or from an external voltage source. The on-board +15 V auxiliary supply is made available on J4 to power external housekeeping circuitry. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 12 of 81 25-Mar-11 6 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG PCB Layout Figure 5 – Printed Circuit Layout. Page 13 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 7 25-Mar-11 Bill of Materials Item 1 2 Qty 1 1 Ref Des BR1 C29 3 2 C4 C5 4 5 1 1 C6 C7 6 1 C8 7 8 9 10 11 12 13 14 15 16 1 2 1 2 1 1 1 1 1 1 C11 C12 C20 C13 C14 C28 C15 C16 C17 C18 C22 C25 17 1 C26 18 1 C27 19 20 21 22 1 1 1 2 D1 D2 D3 D4 D14 23 1 D5 24 1 D10 25 26 27 1 1 1 28 1 29 1 D11 D12 D13 ESIPCLIP M4 METAL1 F1 30 1 HS1 31 1 HS2 32 1 33 34 35 1 1 2 HSPREADER _ESIPPFISW1 J1 J2 J3 J4 36 1 JP1 37 1 JP2 38 1 JP3 39 1 JP4 40 1 JP5 41 2 JP6 JP7 Description 600 V, 3 A, Bridge Rectifier 330 nF, 275 VAC, Film, X2 150 pF, 250 VAC, Thru Hole, Ceramic YCapacitor 220 nF, 275 VAC, Film, X2 470 nF, 400 V, Polypropylene Film 47 F, 50 V, Electrolytic, Gen. Purpose, (6.3 x 11) 10 nF, 50 V, Ceramic, X7R, 0805 100 nF, 50 V, Ceramic, X7R, 0805 4.7 F, 25 V, Ceramic, X7R, 1206 10 nF, 1 kV, Disc Ceramic, X7R 150 F, 450 V, Electrolytic, (25 x 30) 100 nF, 200 V, Ceramic, X7R, 1812 470 pF, 100 V, Ceramic, X7R, 0805 1 F, 25 V, Ceramic, X7R, 1206 1 F, 50 V, Ceramic, X7R, 0805 100 nF, 50 V, Ceramic, X7R, 1206 220 F, 25 V, Electrolytic, Very Low ESR, 72 m, (8 x 11.5) 100 F, 25 V, Electrolytic, Gen. Purpose, (6.3 x 11) 1000 V, 3 A, Recitifier, DO-201AD 600 V, 3 A, SMC, DO-214AB 130 V, 5%, 250 mW, SOD-123 75 V, 0.15 A, Fast Switching, 4 ns, MELF 50 V, 1 A, Rectifier, Glass Passivated, DO213AA (MELF) 600 V, 1 A, Fast Recovery Diode, 200 ns, DO-41 100 V, 1 A, Ultrafast Recovery, 35 ns, DO-41 150 V, 1 A, Ultrafast Recovery, 50 ns, DO-41 75 V, 300 mA, Fast Switching, DO-35 Heat sink Hardware, Edge Clip, 20.76 mm L x 8 mm W x 0.015 mm Thk 3.15 A, 250V, Slow, TR5 U-shaped, e-SIP Heat sink w/ mounting brackets; L-shaped, diode bridge Heat sink w/ mounting brackets; Mfg Part Number 3KBP06M-E4/51 R46KI333000N1M PHE840MB6220MB12R17 ECW-F4474JL Mfg Vishay Kemet Vishay / Roederstein Kemet Panasonic EKMG500ELL470MF11D Nippon Chemi-Con ECJ-2VB1H103K CC0805KRX7R9BB104 ECJ-3YB1E475M SV01AC103KAR EET-HC2W151CA 18122C104KAT2A 08051C471KAT2A C3216X7R1E105K 08055D105KAT2A GRM319R71H104KA01D Panasonic Yageo Panasonic AVX Panasonic AVX AVX TDK AVX Murata EKZE250ELL221MHB5D Nippon Chemi-Con EKMG250ELL101MF11D Nippon Chemi-Con 1N5408-T STTH3R06S BAV116W-7-F LL4148-13 Diodes, Inc. ST Micro Diodes, Inc. Diodes, Inc. DL4001-13-F Diodes, Inc. WKO151MCPCF0KR 1N4937RLG On Semi MUR110RLG MUR115G 1N4148TR On Semi On Semi Vishay NP975864 Aavid Thermalloy 37213150411 Wickman PI P/N: 76-00006-05 Power Integrations PI P/N: 76-00007-04 Power Integrations Heat Spreader, Custom, Al, 3003, 0.030" Thk 61-00040-00 Custom 5 Position (1x5) header, 0.156 pitch, Vertical CONN HEADER 3 po (1x3).156 Vertical TIN 2 Position (1x2) header, 0.1 pitch, Vertical Wire Jumper, [high-temp. e.g. Teflon] Insulated, #22 AWG, 0.2 in Wire Jumper, [high-temp. e.g. Teflon] Insulated, #22 AWG, 0.8 in Wire Jumper, [high-temp. e.g. Teflon] Insulated, #22 AWG, 0.3 in Wire Jumper, [high-temp. e.g. Teflon] Insulated, #18 AWG, 1.0 in Wire Jumper, [high-temp. e.g. Teflon] Insulated, #22 AWG, 0.6 in Wire Jumper, [high-temp. e.g. Teflon] Insulated, #22 AWG, 0.4 in 26-64-4050 26-64-4030 22-23-2021 Molex Molex Molex 2855/1 WH005 AlphaWire 2855/1 WH005 AlphaWire 2855/1 WH005 AlphaWire 2857/1 WH005 AlphaWire 2855/1 WH005 AlphaWire 2855/1 WH005 AlphaWire Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 14 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG Item 42 Qty 1 Ref Des L1 43 1 L2 44 1 L5 45 1 L8 46 1 47 4 NUT1 POSTCRKT_BRD_632_HEX1 POSTCRKT_BRD_632_HEX2 POSTCRKT_BRD_632_HEX3 POSTCRKT_BRD_632_HEX4 48 1 POWERCLIP1 49 2 Q1 Q3 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 1 1 1 2 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Q2 R1 R3 R4 R19 R5 R6 R16 R7 R8 R17 R9 R10 R11 R12 R13 R14 R15 R20 R21 R23 R24 R25 R26 R27 R28 RT1 RTV1 RV1 SCREW1 76 1 T2 77 78 79 80 81 1 3 1 1 1 TO-220 PAD1 TP1 TP5 TP7 TP2 TP4 TP6 Page 15 of 81 Description Common Mode Choke Toroidal Custom, 330 H constructed on Micrometals T94-26 toroidal core Custom, 180 W PFC Inductor, 1.80 mH, constructed on Lodestone Pacific base PN VTM120-4 Mfg Part Number T22148-902S Mfg Fontaine Tech SNX-R1575 Santronics SNX-R1563 Santronics Ferrite Bead, 250 , 4A, 2220 SMD HI2220P251R-10 Laird-Signal Integrity Products 561-0375A Eagle Hardware CLP212TG Aavid Thermalloy MMBT4401-TP Micro Commercial MMBT4403-7-F CFR-25JB-750K ERJ-8GEYJ754V ERJ-8ENF1504V MFR-25FBF-1M00 ERJ-8ENF1000V ERJ-8GEYJ202V ERJ-8GEYJ302V RNF14FTD1M50 ERJ-8ENF1604V ERJ-8ENF7323V ERJ-8ENF2211V ERJ-8ENF5762V ERJ-6GEYJ164V ERJ-8ENF3012V MFR-25FBF-681R ERJ-6GEYJ102V ERJ-6GEYJ470V CFR-12JB-20R ERJ-8GEYJ185V ERJ-8GEYJ155V ERJ-12ZYJ1R0U CL-110 120-SA V320LA10P PMSSS 440 0038 PH PM-9820 [PI P/N: 25-00861-00] SNX-R1562 K10-104 5011 5010 5012 5014 Diodes, Inc. Yageo Panasonic Panasonic Yageo Panasonic Panasonic Panasonic Stackpole Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Yageo Panasonic Panasonic Yageo Panasonic Panasonic Panasonic GE Sensing Wakefield Littlefuse Building Fasteners Ho Jinn Plastic Nut, Hex 4-40, SS Post, Circuit Board, Female, Hex, 6-32, snap, 0.375L, Nylon Heat sink Hardware, Edge Clip 34N (7.6 lbs) 14.6 mm L x 10 mm W x 0.6 mm H NPN, Small Signal BJT, GP SS, 40 V, 0.6 A, SOT-23 PNP, Small Signal BJT, 40 V, 0.6 A, SOT-23 750 k, 5%, 1/4 W, Carbon Film 750 k, 5%, 1/4 W, Thick Film, 1206 1.50 M, 1%, 1/4 W, Thick Film, 1206 1 M, 1%, 1/4 W, Metal Film 100 , 1%, 1/4 W, Thick Film, 1206 2 k, 5%, 1/4 W, Thick Film, 1206 3 k, 5%, 1/4 W, Thick Film, 1206 1.5M, 1%, 1/4 W, Metal Film 1.60 M, 1%, 1/4 W, Thick Film, 1206 732 k, 1%, 1/4 W, Thick Film, 1206 2.21 k, 1%, 1/4 W, Thick Film, 1206 57.6 k, 1%, 1/4 W, Thick Film, 1206 160 k, 5%, 1/8 W, Thick Film, 0805 30.1 k, 1%, 1/4 W, Thick Film, 1206 681 , 1%, 1/4 W, Metal Film 1 k, 5%, 1/8 W, Thick Film, 0805 47 , 5%, 1/8 W, Thick Film, 0805 20 , 5%, 1/8 W, Carbon Film 1.8 M, 5%, 1/4 W, Thick Film, 1206 1.5 M, 5%, 1/4 W, Thick Film, 1206 1 , 5%, 3/4 W, Thick Film, 2010 NTC Thermistor, 10 , 3.2 A Thermally conductive Silicone Grease 320 V, 23 J, 10 mm, RADIAL SCREW MACHINE PHIL 4-40 X 3/8 SS Bobbin, EE16, Horizontal, 10 pins Transformer HEATPAD TO-247 .006" K10 Test Point, BLK,THRU-HOLE MOUNT Test Point, RED,THRU-HOLE MOUNT Test Point, WHT,THRU-HOLE MOUNT Test Point, YEL,THRU-HOLE MOUNT Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Santronics Bergquist Keystone Keystone Keystone Keystone RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG Item 82 83 84 85 86 87 88 89 90 Qty 1 1 1 1 1 1 1 1 1 Ref Des TP8 U1 U2 U3 U4 VR1 VR2 VR4 VR5 91 1 WASHER6 92 1 WASHER7 93 94 1 1 Label Adhesive1 Description Test Point, ORG,THRU-HOLE MOUNT HiperPFS, eSIP7/6-TH CAPZero, SO-8C TinySwitch-III, SMD-8C Optocoupler, 35 V, CTR 80-160%, 4-DIP 12 V, 5%, 225 mW, SOT23 200 V, 5 W, 5%, TVS, DO204AC (DO-15) 13 V, 2%, 300 mW, SOD-323 28 V, 5%, 500 mW, DO-213AA (MELF) Washer, Shoulder, #4, 0.095 Shoulder x 0.117 Dia, Polyphenylene Sulfide PPS Washer Teflon #6, ID 0.156, OD 0.312, Thk 0.031 “High Voltage” warning label, (eSIP Heat sink) Hot-melt Adhesive Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 25-Mar-11 Mfg Part Number 5013 PFS708EG CAP002DG TNY274GN LTV-817A BZX84C12LT1G P6KE200ARLG BZX384-B13,115 ZMM5255B-7 Mfg Keystone Power Integrations Power Integrations Power Integrations Liteon On Semi On Semi NXP Semi Diodes, Inc. 7721-10PPSG Aavid Thermalloy FWF-6 Distributor LPP0580 3748-VO-TC Image-Tek 3M Page 16 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 8 Transformer Design Spreadsheet (T2) ACDC_TinySwitchIII_120209; Rev.1.26; INPUT INFO Copyright Power Integrations 2008 ENTER APPLICATION VARIABLES VACMIN 65 VACMAX 290 fL 50 VO 15.00 IO n 0.75 Z 0.50 tC 0.75 CIN 120.00 ENTER TinySwitch-III VARIABLES TinySwitch-III Auto Chosen Device TNY274G STD ILIMITMIN ILIMITTYP ILIMITMAX fSmin I^2fmin UNIT Volts Volts Hertz Volts 0.20 Power Chose Configuration OUTPUT Amps 3 Watts 120 mSeconds uFarads TNY274G ACDC_TinySwitch-III_120209_Rev1-26.xls; TinySwitch-III Continuous/Discontinuous Flyback Transformer Design Spreadsheet Minimum AC Input Voltage Maximum AC Input Voltage AC Mains Frequency Output Voltage (at continuous power) Power Supply Output Current (corresponding to peak power) Continuous Output Power Efficiency Estimate at output terminals. Under 0.7 if no better data available Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available Bridge Rectifier Conduction Time Estimate Input Capacitance Recommended TinySwitch-III Standard Current Limit 0.233 0.250 0.267 124000 Amps Amps Amps Hertz 7.43 A^2kHz VOR 115.00 115 Volts VDS 11.30 11.3 Volts VD KP 0.85 0.85 2.03 Volts KP_TRANSIENT 1.72 ENTER BIAS WINDING VARIABLES VB 22 VDB 0.95 NB VZOV 28 22.00 0.95 13.88 28.00 Volts Volts 90.00 Volts Volts Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit or "INC" for increased current limit (peak or higher power applications) Minimum Current Limit Typical Current Limit Maximum Current Limit Minimum Device Switching Frequency I^2f (product of current limit squared and frequency is trimmed for tighter tolerance) Reflected Output Voltage (VOR < 135 V Recommended) TinySwitch-III on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop Ripple to Peak Current Ratio (KP < 6) Transient Ripple to Peak Current Ratio. Ensure KP_TRANSIENT > 0.25 Bias Winding Voltage Bias Winding Diode Forward Voltage Drop Bias Winding Number of Turns Over Voltage Protection zener diode voltage. UVLO VARIABLES V_UV_TARGET 90 V_UV_ACTUAL 92.20 Volts RUV_IDEAL 3.51 Mohms RUV_ACTUAL 3.60 Mohms ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type EE16 EE16 Core EE16 Bobbin EE16_BOBBIN AE 0.192 LE 3.5 AL 1140 Page 17 of 81 P/N: P/N: cm^2 cm nH/T^2 Target DC under-voltage threshold, above which the power supply with start Typical DC start-up voltage based on standard value of RUV_ACTUAL Calculated value for UV Lockout resistor Closest standard value of resistor to RUV_IDEAL Enter Transformer Core PC40EE16-Z EE16_BOBBIN Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG BW M 2.50 L 3.00 NS 10 DC INPUT VOLTAGE PARAMETERS VMIN 87.00 VMAX 410.00 CURRENT WAVEFORM SHAPE PARAMETERS DMAX 8.6 mm 2.5 mm 3 10 87 410 LP Minimum DC Input Voltage Maximum DC Input Voltage Amps Amps Amps Amps Duty Ratio at full load, minimum primary inductance and minimum input voltage Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current 1037 uHenries 10 73 197 % nH/T^2 BM 1988 Gauss BAC 994 Gauss ur LG BWE 1654 0.10 10.8 mm mm OD 0.150 mm INS 0.03 mm DIA 0.110 mm 37 AWG LP_TOLERANCE NP ALG 10.00 AWG Bobbin Physical Winding Width Safety Margin Width (Half the Primary to Secondary Creepage Distance) Number of Primary Layers Number of Secondary Turns Volts Volts 0.39 IAVG 0.05 IP 0.2300 IR 0.2300 IRMS 0.10 TRANSFORMER PRIMARY DESIGN PARAMETERS 25-Mar-11 CM 20 Cmils CMA 208 Cmils/Amp TRANSFORMER SECONDARY DESIGN PARAMETERS Lumped parameters ISP 1.69 ISRMS 0.61 IRIPPLE 0.58 Amps Amps Amps CMS 122 Cmils AWGS 29 AWG VDRAIN 672 Volts PIVS 72 Volts Typical Primary Inductance. +/- 10% to ensure a minimum primary inductance of 942 uH Primary inductance tolerance Primary Winding Number of Turns Gapped Core Effective Inductance Maximum Operating Flux Density, BM 0.1 mm) Effective Bobbin Width Maximum Primary Wire Diameter including insulation Estimated Total Insulation Thickness (= 2 * film thickness) Bare conductor diameter Primary Wire Gauge (Rounded to next smaller standard AWG value) Bare conductor effective area in circular mils Primary Winding Current Capacity (200 < CMA < 500) Peak Secondary Current Secondary RMS Current Output Capacitor RMS Ripple Current Secondary Bare Conductor minimum circular mils Secondary Wire Gauge (Rounded up to next larger standard AWG value) VOLTAGE STRESS PARAMETERS Maximum Drain Voltage Estimate (Assumes 20% zener clamp tolerance and an additional 10% temperature tolerance) Output Rectifier Maximum Peak Inverse Voltage TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) 1st output VO1 IO1 PO1 VD1 NS1 ISRMS1 IRIPPLE1 PIVS1 15 Volts 0.200 3.00 0.850 10.00 0.611 0.58 72 Amps Watts Volts Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Amps Amps Volts Main Output Voltage (if unused, defaults to single output design) Output DC Current Output Power Output Diode Forward Voltage Drop Output Winding Number of Turns Output Winding RMS Current Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Page 18 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG Voltage Recommended Diodes MUR110, UF4002, SB1100 Recommended Diodes for this output CMS1 122 Cmils AWGS1 29 AWG DIAS1 0.29 mm ODS1 0.36 mm 2nd output VO2 IO2 PO2 VD2 NS2 ISRMS2 IRIPPLE2 PIVS2 0.00 0.7 0.44 0.000 0.00 2 Volts Amps Watts Volts Amps Amps Volts Recommended Diode CMS2 Cmils AWGS2 N/A AWG DIAS2 N/A mm ODS2 N/A mm PIVS3 0.00 0.7 0.44 0.000 0.00 2 Volts Amps Watts Volts Amps Amps Volts Recommended Diode CMS3 Cmils AWGS3 N/A AWG DIAS3 N/A mm ODS3 N/A mm 3 Watts Negative Output Page 19 of 81 Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter Maximum Outside Diameter for Triple Insulated Wire Output Voltage Output DC Current Output Power Output Diode Forward Voltage Drop Output Winding Number of Turns Output Winding RMS Current Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Recommended Diodes for this output 0 Total power Output Voltage Output DC Current Output Power Output Diode Forward Voltage Drop Output Winding Number of Turns Output Winding RMS Current Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Recommended Diodes for this output 0 3rd output VO3 IO3 PO3 VD3 NS3 ISRMS3 IRIPPLE3 Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter Maximum Outside Diameter for Triple Insulated Wire N/A Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter Maximum Outside Diameter for Triple Insulated Wire Total Output Power If negative output exists enter Output number; eg: If VO2 is negative output, enter 2 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 9 Inductor Design Spreadsheet (L5) ACDC_PFS_101210; INPUT Rev.1.0; Copyright Power Integrations 2010 Enter Applications Variables Input Voltage Range Universal VACMIN VACMAX VBROWNIN VBROWNOUT VO 385 PO 180 fL TA Max n INFO OUTPUT Universal 90 265 77.76 70.40 50 40 UNITS V V V V W Hz deg C 0.93 KP 0.390 0.39 16 365.75 20 16 V V ms VHOLDUP_MIN 310 V I_INRUSH 40 A VO_MIN VO_RIPPLE_MAX tHOLDUP Yes Yes Auto PFS708 5.50 6.10 6.70 0.73 4.00 1.00 100.00 10.00 83.11 67.65 3.77 2.04 3.04 1.45 4.49 100 A A A ohms Mohms uF nF nF kHz kHz A A W W W deg C Rth-JS 3.00 degC/W HEATSINK Theta-CA Basic Inductor Calculation 10.36 degC/W LPFC 626.17 uH LPFC (0 Bias) 1797.35 uH 2.42 A Forced Air Cooling PFS Parameters PFS Part Number IOCP min IOCP typ IOCP max RDSON RV C_VCC C_V C_FB FS_PK FS_AVG IP PFS_IRMS PCOND_LOSS_PFS PSW_LOSS_PFS PFS_TOTAL TJ Max LPFC_RMS Inductor Construction Parameters Core Type Sendust 90u Core Material Core Geometry Core AE Sendust 90u TOROID TOROID Auto 77589(OD=35.2) 45.4 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com mm^2 ACDC_HiperPFS_101210_Rev1-0.xls; Continuous Mode Boost Converter Design Spreadsheet Select Universal or High_Line option Minimum AC input voltage Maximum AC input voltage Expected Minimum Brown-in Voltage Specify brownout voltage. Nominal Output voltage Nominal Output power Line frequency Maximum ambient temperature Enter the efficiency estimate for the boost converter at VACMIN Ripple to peak inductor current ratio at the peak of VACMIN Minimum Output voltage Maximum Output voltage ripple Holdup time Minimum Voltage Output can drop to during holdup Maximum allowable inrush current Enter "Yes" for Forced air cooling. Otherwise enter "No" Selected PFS device Minimum Current limit Typical current limit Maximum current limit Typical RDSon at 100 'C Line sense resistor Supply decoupling capacitor V pin decoupling capacitor Feedback pin decoupling capacitor Estimated peak frequency of operation Estimated average frequency of operation MOSFET peak current PFS MOSFET RMS current Estimated PFS conduction losses Estimated PFS switching losses Total Estimated PFS losses Maximum steady-state junction temperature Maximum thermal resistance (Junction to heatsink) Maximum thermal resistance of heatsink Value of PFC inductor at peak of VACMIN and Full Load Value of PFC inductor at No load. This is the value measured with LCR meter Inductor RMS current (calculated at VACMIN and Full Load) Enter "Sendust", "Pow Iron" or "Ferrite" Select from 60u, 75u, 90u or 125 u for Sendust cores. Fixed at PC44 or equivalent for Ferrite cores. Fixed at 52 material for Pow Iron cores. Select from Toroid or EE for Sendust cores and from EE, or PQ for Ferrite cores Core part number Core cross sectional area Page 20 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG LE AL VE HT MLT BW NL LG ILRMS AC Resistance Ratio 3.08 J 7.47 A/mm^2 BM_TARGET N/A Gauss BM 2962 Gauss BP 1840 Gauss LPFC_CORE_LOSS LPFC_COPPER_LOSS LPFC_TOTAL LOSS Critical Parameters IRMS IO_AVG Output Diode Part Number 1.27 2.43 3.70 W W W Core mean path length Core AL value Core volume Core height/Height of window Mean length per turn Bobbin width Inductor turns Gap length (Ferrite cores only) Inductor RMS current Select between "Litz" or "Regular" for double coated magnet wire !!! Info. Selected wire gauge is too too thick and may caused increased proximity losses. Selecta thinner wire gauge Inductor wire number of parallel strands Outer diameter of single strand of wire Ratio of AC resistance to the DC resistance (using Dowell curves) Estimated current density of wires. It is recommended that 6 < J < 8 Target flux density at VACMIN (Ferrite cores only) Maximum operating flux density Peak Flux density (Estimated at VBROWNOUT) Estimated Inductor core Loss Estimated Inductor copper losses Total estimated Inductor Losses 2.15 0.47 A A AC input RMS current Output average current Wire type 89.5 57 4060 9.78 38.4 N/A 177 N/A 2.42 mm nH/t^2 mm^3 mm cm mm 22 AWG 1 0.643 mm mm A Regular AWG 22 Filar OD 1 Auto Type Info STTH3R06 ULTRAFAST Manufacturer VRRM IF TRR VF PCOND_DIODE PSW_DIODE P_DIODE TJ Max ST 600 3 70 1.1 0.51 3.00 3.52 125 V A ns V W W W deg C Rth-JS 20.00 degC/W HEATSINK Theta-CA Output Capacitor CO 3.67 degC/W 150.00 uF VO_RIPPLE_EXPECTED 10.7 V T_HOLDUP_EXPECTED 19.7 ms ESR_LF ESR_HF IC_RMS_LF IC_RMS_HF 1.11 0.442 0.33 0.95 ohms ohms A A CO_LF_LOSS 0.12 W CO_HF_LOSS 0.40 W Total CO LOSS Input Bridge and Fuse I^2t Rating 0.52 W 10.53 A^2s Page 21 of 81 Auto PFC Diode Part Number Diode Type - Special - Diodes specially catered for PFC applications, SiC - Silicon Carbide type, UF - Ultrafast recovery type Diode Manufacturer Diode rated reverse voltage Diode rated forward current Diode Reverse recovery time Diode rated forward voltage drop Estimated Diode conduction losses Estimated Diode switching losses Total estimated Diode losses Maximum Operating temperature Maximum thermal resistance (Junction to heatsink) Maximum thermal resistance of heatsink Minimum value of Output capacitance Expected ripple voltage on Output with selected Output capacitor Expected holdup time with selected Output capacitor Low Frequency Capacitor RMS current High Frequency Capacitor RMS current Estimated Low Frequency ESR loss in Output capacitor Estimated High frequency ESR loss in Output capacitor Total estimated losses in Output Capacitor Minimum I^2t rating for fuse Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG Fuse Current rating VF IAVG PIV_INPUT BRIDGE PCOND_LOSS_BRIDGE 3.27 0.90 2.03 375 3.49 A V A V W 0 uF 8.42 1N5407 ohms R2 1.54 Mohms R3 1.54 Mohms R4 698.00 kohms C2 100.00 nF R5 2.20 kohms R6 2.20 kohms R7 57.60 kohms C3 470.00 pF R8 R9 R10 C4 D3 160.00 2.49 10.00 10.00 1N4148 kohms kohms kohms uF D4 1N4001 Q1 2N4401 Q2 2N4403 CIN RT D_Precharge Feedback Components Loss Budget (Estimated at VACMIN) PFS Losses Boost diode Losses Input Bridge losses Inductor losses Output Capacitor Loss Total losses 4.49 3.52 3.49 3.70 0.52 15.71 Efficiency 0.92 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com W W W W W W 25-Mar-11 Minimum Current rating of fuse Input bridge Diode forward Diode drop Input average current at 70 VAC. Peak inverse voltage of input bridge Estimated Bridge Diode conduction loss Input capacitor. Use metallized polypropylene or film foil type with high ripple current rating Input Thermistor value Recommended precharge Diode Feedback network, first high voltage divider resistor Feedback network, second high voltage divider resistor Feedback network, third high voltage divider resistor Feedback network, loop speedup capacitor Feedback component, NPN transistor bias resistor Feedback component, PNP transistor bias resistor Feedback network, lower divider resistor Feedback component- noise suppression capacitor Feedback network - pole setting resistor Feedback network - zero setting resistor Feedback pin filter resistor Feedback network - compensation capacitor Feedback network reverse blocking Diode Feedback network - capacitor failure detection Diode Feedback network - speedup circuit NPN transistor Feedback network - speedup circuit PNP transistor Total estimated losses in PFS Total estimated losses in Output Diode Total estimated losses in input bridge module Total estimated losses in PFC choke Total estimated losses in Output capacitor Overall loss estimate Estimated efficiency at VACMIN. Verify efficiency at other line voltages Page 22 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 10 Auxiliary Supply Transformer Specification 10.1 Electrical Diagram 3.0 W PFC VAUX - Flyback-EE16 Figure 6 – Transformer Electrical Diagram. 10.2 Electrical Specifications Electrical Strength Primary Inductance Resonant Frequency Leakage Inductance 1 second, 60 Hz, from pins 1, 2, 4, 5 to pins 8, 10 Pins 4-5, all other windings open, measured at 100 kHz, 1.0 Vpk-pk Pins 4-5, all other windings open Pins 4-5, with secondary pins shorted, measured at 100 kHz, 1.0 Vpk-pk 3000 VAC 1037 H ±10% 1.1 MHz Min 41.5 H Max 10.3 Materials Item [1] [2] [3] [4] [5] [6] [7] [8] Description Core: EE16, NC-2H (Nicera) or Equivalent, gapped for ALG of 197 nH/T² Bobbin: EE16, Horizontal, 10 pins, (5/5), Ho Jinn Plastic Elect. Co, Ltd. part #: PM-9820 Tape: Polyester web 2.50 mm wide Barrier Tape: Polyester film (1 mil base thickness), 8.60 mm wide Teflon Tubing # 22 Varnish Magnet wire: #37 AWG, Solderable Double Coated Magnet wire: #29 AWG, Solderable Double Coated Page 23 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 10.4 Transformer Build Diagram Figure 7 – Transformer Build Diagram. 10.5 Transformer Construction Winding preparation Left Margin Tape Right Margin Tape WD1 Primary Insulation WD2 Bias Winding Insulation WD3 Secondary Insulation Gap Core Assembly Varnish Position the bobbin on the mandrel such that the pin side is on the left side of bobbin mandrel. Winding direction is clock-wise direction Wind 2.5mm margin tape [Item 3] on left hand side of the bobbin Wind 2.5mm margin tape [Item 3] on right hand side of the bobbin Start on pin(s) 4 using item [5] at the start leads and wind 73 turns (x 1 filar) of item [7] in 3 layer(s) from left to right. At the end of 1st layer, continue to wind the next layer from right to left. At the end of 2nd layer, continue to wind the next layer from left to right. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin(s) 5 using item [5] at the finish leads. Add 1 layer of tape, item [4], for insulation. Start on pin(s) 2 using item [5] at the start leads and wind 14 turns (x 1 filar) of item [7]. Wind in same rotational direction as primary winding. Spread the winding evenly across entire bobbin. Finish this winding on pin(s) 1 using item [5] at the finish leads. Add 3 layers of tape, item [4], for insulation. Start on pin(s) 10 using item [5] at the start leads and wind 10 turns (x 1 filar) of item [8]. Spread the winding evenly across entire bobbin. Wind in same rotational direction as primary winding. Finish this winding on pin(s) 8 using item [5] at the finish leads. Add 2 layers of tape, item [4], for insulation. Grind the cores to get 1037 µH, Assemble and secure core halves with tape. Item [1]. Dip varnish uniformly in item [6]. Do not vacuum impregnate. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 24 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 10.6 Transformer Illustrations Bobbin Preparation One bobbin EE16 horizontal (5/5) and two core NC-2H or equivalent. Winding Preparation Position the bobbin on the mandrel as shown. Use 2.5 mm margin tape (item [3]) on the left-hand side. Use 2.5 mm margin tape (item [3]) on the right-hand side. WD1 Primary Starting at pin 4 using item [5] at the start leads, wind 73 turns of item [7] in four layers, with tight tension; wind first layer from left to right and at the end of the first layer, wind second layer from right to left, then left to right for third layer and right to left for fourth layer, terminating at pin 5 using item [5] at the finish leads. Insulation and Margin Tape Apply one layer of tape (item [4]) for insulation. Use 2.5 mm margin tape for both sides left and right. Page 25 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 WD2 Bias Winding Starting at pin 2 using item [5] at start leads, wind 14 single-filar turns of item [7] in one layer. Bring the wire back to the left-hand side and terminate at pin 1, using item [5] at the finish leads. Insulation. Tape and Margin. Apply three layers of tape (item [4]). Use 2.5 mm margin for both sides left and right. WD3 Secondary Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Starting at pin 10 using item [5] at the start leads, wind 10 turns (x1 filar) of item [8] in one layer spreading the winding evenly across entire bobbin. Wind in the same rotational direction as primary winding. Terminate at pin 8 using item [5] at the finish leads. Page 26 of 81 25-Mar-11 Insulation RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG Apply two layers of tape (item [4]). Finish Wrap Apply three layers of tape for finish wrap. Final Assembly Assemble, grind the cores to get 1037 H, and secure the cores with tape. Varnish item [6]. Page 27 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 11 Switching Inductor Specification 11.1 Electrical Diagram Figure 8 – Inductor Electrical Diagram. 11.2 Electrical Specifications Primary Inductance Pins 1-4 measured at kHz, 0.4 V RMS 1.8 mH 8% 11.3 Materials Item [1] [2] [3] [4] [5] Description Core: Selmag, Inc.: Sendust core: CS270090; Alternate: Magnetics Inc, Mfg: 77934-A7 Magnet wire: #22 AWG insulated magnet wire. Base: Toroid mounting base, Lodestone Pacific, P/N VTM160-4, or similar. See below. PI P/N: 76-00004-00. High Temperature Epoxy, Mfg: MG Chemicals, P/N: 832HT-375ML, Digikey: 473-1085-ND, or similar, PI P/N: 66-00087-00. Divider: Tie-wrap, Panduit, P/N: PLT.7M-M or similar. Figure 9 – Top View of Toroid Mounting Base Item [3]. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 28 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 11.4 Inductor Winding Instruction   Insert 2 dividers item [5] in the core item [1] to divide into 2 sections equally. See photo. Superglue dividers in place if necessary to prevent slipping. Take approximately 17 feet of wire item [2], Align center of wire with 1 divider. This location on the inductor is your ‘top’ reference point. Center of wire  Start winding on the left section with approximately 24 turns of wire item [2], for the 1st layer, wind wire laminar fashion and ensure that turns do not overlap.  Next, wind another 24 turns on the right hand side of the core. Page 29 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11  Continue winding on the right hand side for the 2nd layer approximately 22 turns, spread wire evenly and try to ensure that turns do not overlap.  Continue winding on the right section on the 3rd layer the remaining [approximately 17] turns, distributing wire evenly and try to ensure that turns do not overlap.  Wind the same as above for the 2nd and 3rd layers on the left section. Inductor leads will finish at the ‘bottom’ of the inductor after all turns are wound. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 30 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG  Invert toroid with ‘top’ side down for mounting.   Place wound toroid into the mount with ‘top’ side down. Solder the leads to pins 1 and 4 of mounting base item [3]. Secure the ‘top’ side of the inductor to the base by using High Temperature Epoxy item [4]. Front view Page 31 of 81 Back view Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 12 EMI Differential Inductor Specification 12.1 Electrical Diagram Figure 10 – Inductor Electrical Diagram. 12.2 Electrical Specifications Primary Inductance Pins 1-2 measured at kHz, 0.4 V RMS 330 H +8% 12.3 Materials Item [1] [2] [3] Description Core: Micrometals T94-26 Magnet wire: #23 AWG insulated magnet wire, approximately 8 ft. Hot-melt mounting glue Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 32 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 12.4 Inductor Winding Instruction Obtain approximately 8 feet of item [2] and begin winding around toroidal core, item [1] as illustrated below: Page 33 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 12.5 Inductance Value and Mounting Verify inductor value is within electrical specifications. Log measured inductance and self-resonant frequency for report. Trim leads 1 and 2, tin leads and mount inductor on PC board by inserting leads through board, soldering leads, then stabilizing inductor mechanically by application of item [3] between inductor and PC board. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 34 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 13 Heat Sink Specification (Note: Heat sinks are designed for operation with open-frame convection cooling for 115 VAC operation at 100% rated load. Heat sink dimensions may be reduced for designs employing augmented [e.g.:forced-air] cooling.) 13.1 eSIP U1 Heat Sink Page 35 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 13.2 eSIP U1 Heat Sink Assembly Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 36 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 13.3 eSIP U1 Heat Sink Assembly and Mounting Hardware Page 37 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 13.4 Bridge BR1 Heat Sink Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 38 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 13.5 Bridge BR1 Heat Sink Assembly Page 39 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 13.6 Bridge BR1 Heat Sink Assembly and Mounting Hardware Assembly Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 40 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 14 Performance Data All measurements performed at room temperature, 60 Hz input frequency for voltages below 150 VAC and input frequency of 50 Hz for 150 VAC and higher. All performance data is with Thermistor RT1 in-circuit to represent a low-cost configuration. 14.1 Auxiliary Supply Efficiency (with PFC disabled) 80 Efficiency (%) 75 70 65 60 90 VAC 115 VAC 55 230 VAC 265 VAC 50 0.00 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.23 Output Load Current (A) Figure 11 – Auxiliary Supply Efficiency, PFC Disabled. Page 41 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 0.25 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 14.2 Auxiliary Supply Load Regulation (with PFC disabled) 15.35 90 VAC 115 VAC 15.30 230 VAC Output Voltage (V) 265 VAC 15.25 15.20 15.15 15.10 15.05 0.00 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.23 0.25 Output Load Current (A) Figure 12 – Auxiliary Supply Load Regulation. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 42 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 14.3 Auxiliary Supply Line Regulation (with PFC disabled) 15.30 20% 40% 60% 80% 100% Output Voltage (V) 15.25 15.20 15.15 15.10 15.05 15.00 60 80 100 120 140 160 180 200 220 240 260 Input Line Voltage (VAC) Figure 13 – Auxiliary Supply Line Regulation. Page 43 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 280 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 14.4 No-Load Input Power 250 245 Input Power (mW) 240 235 230 225 220 215 210 205 200 80 100 120 140 160 180 200 220 240 260 280 Input Voltage (VAC) Figure 14 – No-Load Input Power. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 44 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 14.5 PFC Efficiency (with RT1 in-circuit) 100 99 Efficiency (%) 98 97 96 95 94 90 VAC 115 VAC 230 VAC 264 VAC 93 92 91 0 20 40 60 80 100 120 140 160 180 Output Power (W) [180 W Rated] Figure 15 – Efficiency vs. Output Power. Page 45 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 200 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 14.6 Input Power Factor 1.00 Input Power Factor (PF) 0.95 0.90 0.85 0.80 0.75 0.70 0.65 90 VAC 115 VAC 230 VAC 264 VAC 0.60 0.55 0 20 40 60 80 100 120 140 160 180 200 Output Power (W) Figure 16 – Input Power Factor vs. Output Power. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 46 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 14.7 Regulation 14.7.1 Load 400 395 Output Voltage (V) 390 385 380 375 370 90 VAC 115 VAC 230 VAC 264 VAC 365 360 0 20 40 60 80 100 120 140 160 180 Output Power (W) [180 W Rated] Figure 17 – Load Regulation. Page 47 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 200 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 14.7.2 Line 383 382 Output Voltage (VDC) 381 380 379 378 377 376 10% Load 25% Load 50% Load 75% Load 100% Load 375 374 373 80 100 120 140 160 180 200 220 240 260 280 Input Voltage (VAC) Figure 18 – Line Regulation. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 48 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 14.7.3 Overload 385 Output Voltage (VDC) 380 375 370 365 360 355 350 90 VAC 115 VAC 230 VAC 264 VAC 345 340 160 170 180 190 200 210 220 230 240 250 260 Output Power (W) [180 W Rated] Figure 19 – Overload Regulation. Page 49 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 270 280 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 14.8 THDi 70 60 THDi (%) 50 40 90 VAC 115 VAC 230 VAC 264 VAC 30 20 10 0 0 20 40 60 80 100 120 140 160 180 200 Output Power (W) Figure 20 – Input Current THD vs. Load. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 50 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 14.9 Input Current Harmonic Distortion (IEC 61000-3-2 Class-D) Measured at 230 VAC Input 50Hz 14.9.1 50% Load at Output 0.70 Input Harmonic Current Class D Harmonic Limit 0.60 Amplitude (A) 0.50 0.40 0.30 0.20 0.10 0.00 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic # Figure 21 – Amplitude of Input Current Harmonics for 50% Load at 230 VAC Input. Page 51 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 14.9.2 100% Load at Output 0.70 Input Harmonic Current Class D Harmonic Limit 0.60 Amplitude (A) 0.50 0.40 0.30 0.20 0.10 0.00 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Harmonic # Figure 22 – Amplitude of Input Current Harmonics for 100% Load at 230 VAC Input. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 52 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 15 Thermal Performance The unit was allowed to reach thermal equilibrium prior to thermal measurement with a FLIR camera. Table 1 shows full load temperature of key components measured at equilibrium, room temperature and without any forced air cooling. Tests were performed with auxiliary supply loaded to 200 mA. Temperature (C) 180 W Load Item 115 VAC 230 VAC Ambient 23.4 23.1 PFS708EG (U1) 97.2 57.8 Inductor (L5) 68.8 51.6 Output Rectifier (D2) 87.8 63 Output Capacitor (C15) 55.5 44.0 Switching Capacitor (C7) 70.6 49.0 Bridge (BR1) 88.7 57.3 Input X2 Capacitor (C3) 35.7 30.5 Input X2 Capacitor (C6) 59.0 42.1 Input CM Choke(L1) 49.0 34.2 Input DM Choke (L2) 55.0 36.0 Thermistor (RT1) 160 112 Heat-Sink (HS1) [eSIP] 75.7 50.8 Heat Sink (HS2) [BR1] 72.8 50.0 Table 1 – Steady State Thermal Performance. Page 53 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 Figure 23 – Infra-Red Image of the Top and Bottom of the Board at Thermal Equilibrium,115 VAC, Full Load, No Forced-Air Flow, 25ºC Ambient. Figure 24 – Infra-Red Image of the Top and Bottom Sides of the Board at Thermal Equilibrium, 230 VAC, Full Load, No Forced-Air Flow, 25ºC Ambient. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 54 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 16 Waveforms 16.1 Auxiliary +15 V Supply 16.1.1 Load Transient Response Figure 25 – Transient Response, 115 VAC, 50%-100%-50% Load Step. Upper: VOUT, 50 mV / div., AC Coupled Lower: ILOAD 100 mA / div., 2 ms / div. Page 55 of 81 Figure 26 – Transient Response, 230VAC / 50 Hz., 50-100-50% Load Step. Upper: VOUT, 50 mV / div., AC Coupled Lower: ILOAD 100 mA, 2 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 16.2 Input Current at 115 VAC and 60 Hz Figure 27 – 115 VAC, 50% Load. Upper: VIN, 200 V / div. Lower: IIN, 1 A, 10 ms / div. Figure 28 – 115 VAC, 100% Load. Upper: VIN, 200 V / div. Lower: IIN, 2 A, 10 ms / div. 16.3 Input Current at 230 VAC and 50 Hz Figure 29 – 230 VAC, 50% Load. Upper: VIN, 200 V / div. Lower: IIN, 500 mA, 10 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 30 – 230 VAC, 100% Load. Upper: VIN, 200 V / div. Lower: IIN, 1 A, 10 ms / div. Page 56 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 16.4 Start-up at 90 VAC and 60 Hz Load in CC mode during turn-on of PFC Figure 31 – 90 VAC, No-Load. Upper: VIN, 500 V / div. Second: IIN, 5 A / div., Third: VOUT, 200 V / div. Lower: VCC, 10 V, 50 ms / div. Figure 32 – 90 VAC, Full Load. Upper: VIN, 500 V / div. Second: IIN, 5 A / div., Third: VOUT, 200 V / div. Lower: VCC, 10 V, 50 ms / div. 16.5 Start-up at 115 VAC and 60 Hz Load in CC mode during turn-on of PFC Figure 33 – 115 VAC, No-Load. Upper: VIN, 500 V / div. Second: IIN, 5 A / div. Third: VOUT, 200 V / div. Lower: VCC, 10 V, 50 ms / div. Page 57 of 81 Figure 34 – 115 VAC, Full Load. Upper: VIN, 500 V / div. Second: IIN, 5 A / div. Third: VOUT, 200 V / div. Lower: VCC, 10 V, 50 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 16.6 Start-up at 230 VAC and 50 Hz Load in CC mode during turn-on of PFC Figure 35 – 230 VAC, No-load. Upper: VIN, 1 kV / div. Second: IIN, 5 A / div. Third: VOUT, 200 V / div. Lower: VCC, 10 V, 50 ms / div. Figure 36 – 230 VAC, Full Load. Upper: VIN, 1 kV / div. Second: IIN, 5 A / div. Third: VOUT, 200 V / div. Lower: VCC, 10 V, 50 ms / div. 16.7 Start-up at 264 VAC and 50 Hz Load in CC mode during turn-on of PFC Figure 37 – 264 VAC, No-load. Upper: VIN, 1 kV / div. Second: IIN, 5 A / div. Third: VOUT, 200 V / div. Lower: VCC, 10 V, 50 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 38 – 264 VAC, Full Load. Upper: VIN, 1 kV / div. Second: IIN, 5 A / div. Third: VOUT, 200 V / div. Lower: VCC, 10 V, 50 ms / div. Page 58 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 16.8 Load Transient Response (90 VAC, 60 Hz) In the figures shown below, signal averaging was used to better enable viewing the load transient response. The oscilloscope was triggered using the load current step as a trigger source. Since the output switching and line frequency occur essentially at random with respect to the load transient, contributions to the output ripple from these sources will average out, leaving the contribution only from the load step response. Figure 39 – Transient Response, 90 VAC, 10-100-10% Load Step. Upper: VIN, 500 V / div. Second: IIN, 5 A /div. Third: VOUT (AC Coupled), 50 V / div. Lower: ILOAD 500 mA, 100 ms / div. Page 59 of 81 Figure 40 – Transient Response, 90 VAC, 50-100-50% Load Step Upper: VIN, 500 V / div. Second: IIN, 5 A / div. Third: VOUT (AC Coupled), 50 V / div. Lower: ILOAD 500 mA, 100 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 16.9 Load Transient Response (115 VAC, 60 Hz) Figure 41 – Transient Response, 115 VAC, 10-100-10% Load Step. Upper: VIN, 500 V / div. Second: IIN, 2 A /div. Third: VOUT (AC Coupled), 50 V / div. Lower: ILOAD 500 mA, 100 ms / div. Figure 42 – Transient Response, 115VAC, 50-100-50% Load Step Upper: VIN, 500 V / div. Second: IIN, 2 A /div. Third: VOUT (AC Coupled), 50 V / div. Lower: ILOAD 500 mA, 100 ms / div. 16.10 Load Transient Response (230 VAC, 50 Hz) Figure 43 – Transient Response, 230 VAC, 10-100-10% Load Step. Upper: VIN, 1 kV / div. Second: IIN, 2 A / div. Third: VOUT (AC Coupled), 50 V / div. Lower: ILOAD 500 mA, 100 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 44 – Transient Response, 230VAC, 50-100-50% Load Step Upper: VIN, 1 kV / div. Second: IIN, 2 A / div. Third: VOUT (AC Coupled), 50 V / div. Lower: ILOAD 500 mA, 100 ms / div Page 60 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 16.11 Load Transient Response (264 VAC, 50 Hz) Figure 45 – Transient Response, 264 VAC, 10-100-10% Load Step. Upper: VIN, 1 kV / div. Second: IIN, 2 A / div. Third: VOUT (AC Coupled), 50 V / div. Lower: ILOAD 500 mA, 100 ms / div. Figure 46 – Transient Response, 264 VAC, 50-100-50% Load Step. Upper: VIN, 1 kV / div. Second: IIN, 2 A / div. Third: VOUT (AC Coupled), 50 V / div. Lower: ILOAD 500 mA, 100 ms / div. 16.12 1000 ms Line Dropout (115 VAC / 60 Hz and 230 VAC / 50 Hz) 16.12.1 50% Load at Output Figure 47 – Line Dropout 115 VAC, 1000 ms. Upper: VIN, 500 V / div. Middle: IIN, 5 A / div. Lower: VOUT, 200 V, 200 ms / div. Page 61 of 81 Figure 48 – Line Dropout 230 VAC, 1000 ms. Upper: VIN, 500 V / div. Middle: IIN, 5 A / div. Lower: VOUT, 200 V, 200 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 16.12.2 25-Mar-11 Full Load at Output Figure 49 – Line Dropout 115 VAC, 1000 ms. Upper: VIN, 500 V / div. Middle: IIN, 5 A / div. Lower: VOUT, 200 V, 200 ms / div. Figure 50 – Line Dropout 230 VAC, 1000 ms. Upper: VIN, 500 V / div. Middle: IIN, 5 A / div. Lower: VOUT, 200 V, 200 ms / div. 16.13 One Cycle Line Dropout (115 VAC / 60 Hz and 230 VAC / 50 Hz) 16.13.1 Full Load at Output Figure 51 – Line Dropout 115 VAC, 60 Hz. Upper: VIN, 500 V / div. Middle: IIN, 5 A / div. Lower: VOUT, 100 V / div., 50 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 52 – Line Dropout 230 VAC, 50 Hz. Upper: VIN, 500 V / div. Middle: IIN, 5 A / div. Lower: VOUT, 100 V / div., 50 ms /div. Page 62 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 16.14 Line Sag (115 VAC ~ 85 VAC ~ 115 VAC, 60 Hz) Figure 53 – Line Sag 115 VAC, 50% Load. Upper: VIN, 200 V / div. Middle: IIN, 2 A / div. Lower: VOUT (AC Coupled), 10 V / div., 50 ms / div. Figure 54 – Line Sag 115 VAC, 100% Load. Upper: VIN, 200 V / div. Middle: IIN, 5 A / div. Lower: VOUT (AC Coupled), 10 V / div., 50 ms / div. 16.15 Line Surge (132 VAC ~ 147 VAC ~ 132 VAC, 60 Hz) Figure 55 – Line Surge 132 VAC, 50% Load. Upper: VIN, 200 V / div. Middle: IIN, 2 A / div. Lower: VOUT (AC Coupled), 10 V / div. Page 63 of 81 Figure 56 – Line Surge 132 VAC, 100% Load. Upper: VIN, 200 V / div. Middle: IIN, 2 A / div. Lower: VOUT (AC Coupled), 10 V / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 16.16 Line Sag (230 VAC ~ 170 VAC ~ 230 VAC, 50 Hz) Figure 57 – Line Sag 230 VAC, 50% Load. Upper: VIN, 500 V / div. Middle: IIN, 1 A / div. Lower: VOUT (AC Coupled), 10 V / div. Figure 58 – Line Sag 230 VAC, 100% Load. Upper: VIN, 500 V / div. Middle: IIN, 2 A / div. Lower: VOUT (AC Coupled), 20 V / div 16.17 Line Surge (264 VAC ~ 293 VAC ~ 264 VAC, 50 Hz) Figure 59 – Line Surge 264 VAC, 50% Load. Upper: VIN, 500 V / div. Middle: IIN, 2 A / div. Lower: VOUT (AC Coupled), 50 V / div. , 50 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 60 – Line Surge 264 VAC, 100% Load. Upper: VIN, 500 V / div. Middle: IIN, 5 A / div. Lower: VOUT (AC Coupled), 50 V / div. , 50 ms / div. Page 64 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 16.18 Brown-In and Brown-Out at 6 V / Minute Rate Test conducted by first reducing, followed by increasing input AC voltage source at a rate of 6 V / min. The PFC converter DC output was loaded to 100% of rated load (electronic load), which was programmed to release the load when the DC output of the PFC dropped below 300 V [at brown-out]. The auxiliary +15 V supply is connected to the output of the PFC and discharges the output capacitor of the PFC after the dynamic load is released at brown-out. Measured PFC Brown-Out Threshold Measured PFC Brown-In Threshold Measured auxiliary Supply Brown-In Threshold 70.8 VAC 80.6 VAC 61.7 VAC Note: Operation at low input voltages results in higher power dissipation in many components on the board. Forced air cooling is necessary during this test. Figure 61 – Brown-Out Followed by Brown-In at 100% Load. Top: VIN, 200 V / div. Middle: IIN, 5 A / div. Lower: VOUT, 200 V / div., 200 s / div. Page 65 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 16.19 Drain Voltage and Current The drain current was measured at jumper JP4 location by replacing JP4 with a very short wire loop in order to insert the current probe. The drain voltage was measured at the DRAIN and SOURCE pins of IC U1. Keep the wire loop as short as possible to minimize drain node inductance since the added inductance at the drain node can result in a high VDS voltage that could damage U1. Drain current can be indirectly measured by measuring the switching inductor current during the MOSFET on-time. Refer to Appendix C for output inductor current measurement set-up and calculations. 16.19.1 Drain Voltage and Current at 115 VAC Input and Full Load Figure 62 – Input Voltage 115 VAC, 100% Load. Upper: IDRAIN, 2 A / div. Lower: VDRAIN, 200 V / div., 1 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 63 – Input Voltage 115 VAC, 100% Load. Upper: IDRAIN, 2 A / div. Lower: VDRAIN, 200 V / div., 1 ms / div. Zoom Upper: IDRAIN, 2 A / div. Zoom Lower: VDRAIN, 200 V / div., 5 s / div Page 66 of 81 25-Mar-11 16.19.2 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG Drain Voltage and Current at 230 VAC Input and Full Load Figure 64 – Input Voltage 230 VAC, 100% Load. Upper: IDRAIN, 2A / div. Lower: VDRAIN, 200V / div., 1 ms / div. Page 67 of 81 Figure 65 – Input Voltage 230 VAC, 100% Load. Upper: IDRAIN, 2 A / div. Lower: VDRAIN, 200 V / div., 1 ms / div. Zoom Upper: IDRAIN, 2 A / div., Zoom Lower: VDRAIN, 200 V / div., 5 s / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 16.20 Output Ripple Measurements 16.20.1 Ripple Measurement Technique For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in the figures below. The 4987BA probe adapter is affixed with one capacitor 0.02 F/1 kV ceramic disc type tied in parallel across the probe tip. Probe Ground Probe Tip Figure 66 – Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed). Figure 67 – Oscilloscope Probe with Probe Master (www.probemaster.com) 4987A BNC Adapter (Modified with wires for ripple measurement, and one parallel decoupling capacitor added.) Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 68 of 81 25-Mar-11 16.20.2 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG Measurement Results Figure 68 – Ripple, 90 VAC, 50% Load. 5 ms, 5 V / div. Figure 69 – Ripple, 90 VAC, 100% Load. 5 ms, 5 V / div. Figure 70 – Ripple, 115 VAC, 50% Load. 5 ms, 5 V / div. Figure 71 – Ripple, 115 VAC, 100% Load. 5 ms, 5 V / div. Page 69 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 Figure 72 – Ripple, 230 VAC, 50% Load. 5 ms, 5 V / div. Figure 73 – Ripple, 230 VAC, 100% Load. 5 ms, 5 V / div. Figure 74 – Ripple, 264 VAC, 50% Load. 5 ms, 5 V / div. Figure 75 – Ripple, 264 VAC, 100% Load. 5 ms, 5 V / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 70 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 17 Gain-Phase Measurement Procedure and Results ● The PFC stage is supplied form an adjustable DC source for this test. Connect the circuit as shown in Figure 76. Open the top end of the feedback divider network and insert a 100 2 W resistor in series as shown. The signal injected in the loop for gain phase measurement will be injected across this resistor. ● Nodes A and B (two ends of the injection resistor) are connected to Channel 1 and Channel 2 of the frequency response analyzer using high voltage x100 attenuator probes. GND leads of both probes are connected to output return as shown. ● The signal to be injected is isolated using the Bode-Box injection transformer model 200–000 from Venable Industries. Test Procedure: ● Adjust the input voltage to 150 VDC and confirm that the PFC output voltage is within regulation limits. ● Inject a signal from the frequency response analyzer. ● The injected signal can be seen in the output voltage ripple of the PFC. ● Plot the gain phase pot by sweeping the injected signal frequency from 3 Hz to 90 Hz. Figure 76 – System Test Set-up for Loop Gain-Phase Measurement. Page 71 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 Figure 77 – Bode Plot with VIN = 120 VDC at 100% Load (Red) and 50% Load (Green). Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 72 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 18 Line Surge Test Surge Level (V) C.M. +500 -500 +500 -500 +500 -500 D.M. +500 -500 C.M. +1000 -1000 +1000 -1000 +1000 -1000 D.M. +1000 -1000 C.M. +1500 -1500 +1500 -1500 +1500 -1500 C.M. +2000 -2000 +2000 -2000 +2000 -2000 Input Voltage (VAC) 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 Injection Location (12Ω source) L1 to PE L1 to PE L2 to PE L2 to PE L1, L2 to PE L1, L2 to PE (2Ω source) L1 to L2 L1 to L2 (12Ω source) L1 to PE L1 to PE L2 to PE L2 to PE L1, L2 to PE L1, L2 to PE (2Ω source) L1 to L2 L1 to L2 (12Ω source) L1 to PE L1 to PE L2 to PE L2 to PE L1, L2 to PE L1, L2 to PE (12Ω source) L1 to PE L1 to PE L2 to PE L2 to PE L1, L2 to PE L1, L2 to PE Injection Phase (°) 90 Test Results (Pass / Fail, # Strikes) 10 Strikes each Level Pass Pass Pass Pass Pass Pass 902 270 Pass Pass 90 270 270 90 901 90 Pass Pass Pass Pass Pass Pass 902 270 Pass Pass 90 270 270 90 901 Pass Pass Pass Pass Pass Pass 90 270 270 90 901 90 90 270 270 90 901 90 Pass Pass Pass Pass Pass Pass 1 Note: 0° and 270° phase angle [relative to L1] was not tested; however, negative voltage polarity was performed at 90° phase angle for worst case total negative pulse on alternate phase [neutral]. 2 Note: 0° and 270° phase angle [relative to L1] was not tested on both polarities; however, negative voltage polarity was performed at 270° phase angle for worst case total negative pulse on alternate phase [neutral]. Page 73 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 19 EMI Scans 19.1 EMI Test Set-up Using a plexi-glass board with the underside copper coated, electrically connect the copper side of the board to test point TP8 with a wire clip. The RD-248 assembly should be placed on top of the plexi-glass board. Connect output connector J2 to a high-voltage DC load. All interconnections should be made as short as possible. See Figure 78 for setup. Copper Clad FR-4 Board Figure 78 – EMI Test Set-up. To load Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 74 of 81 To RD-91, J1/J2 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 19.2 EMI Scans Figure 79 – 115 VAC, 100% Load. Figure 80 – 115 VAC, 100% Load EMI Measurement Results. Page 75 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 Figure 81 – 230 VAC, 100% Load. Figure 82 – 230 VAC, 100% Load EMI Measurement Results. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 76 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 20 Appendix A - Test Set-up for Efficiency Measurement The following setup is recommended for system efficiency, PF and THDi measurements. A 3” 12 VDC muffin fan is placed adjacent to the RD-248 board and powered by a 12 V supply for forced air cooling. Use of high resolution meters is recommended for output current and output voltage measurements. See Figure 83 for a typical equipment set-up. Figure 83 – Front View of the Test Set-up for Efficiency, PF and THDi Measurements. Page 77 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 21 Appendix B - Inductor Current Measurement Set-up The switching inductor current can be measured at the input side of L5. Simply remove the base of L5 from the PCB, bend the input side leg 90°, reinsert into the PCB, then reconnect the leg to the pad through a short [~1.5”] loop of wire to accommodate a current probe. Solder a scope probe adapter jack directly at the D [DRAIN] and S [SOURCE] pins of IC U1 on the bottom side of the board to measure Drain-Source voltage. See Figure 84 and 85 for details. Figure 84 – Current Probe and Scope Probe Jack Insertion Locations. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 78 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG Figure 85 – Inductor Current and Drain Source Voltage Measurements Set-up. Page 79 of 81 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG 25-Mar-11 22 Revision History Date 25-Mar-10 Author DCP Revision 1.0 Description & changes Initial Release Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Reviewed Apps & Mktg Page 80 of 81 25-Mar-11 RDR-248 180 W Low-Power Low-Cost PFC Using PFS708EG For the latest updates, visit our website: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2011 Power Integrations, Inc. Power Integrations Worldwide Sales Support Locations WORLD HEADQUARTERS 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@powerint.com GERMANY Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 e-mail: eurosales@powerint.com JAPAN Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales@powerint.com TAIWAN 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 114, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: taiwansales@powerint.com CHINA (SHANGHAI) Rm 1601/1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-021-6354-6323 Fax: +86-021-6354-6325 e-mail: chinasales@powerint.com INDIA #1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: indiasales@powerint.com KOREA RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: koreasales@powerint.com EUROPE HQ 1st Floor, St. James’s House East Street, Farnham Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: eurosales@powerint.com CHINA (SHENZHEN) Rm A, B & C 4th Floor, Block C, Electronics Science and Technology Building 2070 Shennan Zhong Road Shenzhen, Guangdong, P.R.C. 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: chinasales@powerint.com ITALY Via De Amicis 2 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 e-mail: eurosales@powerint.com SINGAPORE 51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: singaporesales@powerint.com APPLICATIONS HOTLINE World Wide +1-408-414-9660 Page 81 of 81 APPLICATIONS FAX World Wide +1-408-414-9760 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
RDK-248 价格&库存

很抱歉,暂时无法提供与“RDK-248”相匹配的价格&库存,您可以联系我们找货

免费人工找货