0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SID1183K

SID1183K

  • 厂商:

    POWERINT(帕沃英蒂格盛)

  • 封装:

    ESOP-R16B_10.16X8.89MM

  • 描述:

    IC GATE DRV HI/LO SIDE ESOP-R16B

  • 数据手册
  • 价格&库存
SID1183K 数据手册
1700 V SCALE-iDriver Up to 8 A Single Channel IGBT/MOSFET Gate Driver Providing Basic Galvanic Isolation for 1700 V IGBT and MOSFET Product Highlights Description Highly Integrated, Compact Footprint The SID1183K is a single channel IGBT and MOSFET driver in an eSOP package. Galvanic isolation is provided by Power Integrations’ innovative solid insulator FluxLink technology. The up to 8 A peak output drive current enables the product to drive devices up to 600 A without requiring any additional active components. For gate drive requirements that exceed the stand-alone capability of the SID1183K, an external booster may be added. Stable positive and negative voltages for gate control are provided by one unipolar isolated voltage source. • Split outputs providing up to 8 A peak drive current • Integrated FluxLink™ technology providing galvanic isolation • • • • • • • • • between primary-side and secondary-side Rail-to-rail stabilized output voltage Unipolar supply voltage for secondary-side Suitable for 1700 V IGBT and MOSFET switches Up to 75 kHz switching frequency Low propagation delay time 260 ns Propagation delay jitter ±5 ns -40 °C to 125 °C operating ambient temperature High common-mode transient immunity eSOP package with 9.5 mm creepage and clearance distances Additional features are short-circuit protection (DESAT) with Advanced Soft Shut Down (ASSD), undervoltage lock-out (UVLO) for primary-side and secondary-side and rail-to-rail output with temperature and process compensated output impedance guarantee safe operation even in harsh conditions. Advanced Protection / Safety Features • Undervoltage lock-out protection for primary and secondary-side (UVLO) and fault feedback • Short-circuit protection using VCE SAT monitoring and fault feedback • Advanced Soft Shut Down (ASSD) Controller (PWM and fault) signals are compatible with 5 V CMOS logic, which may also be adjusted to 15 V levels by using external resistor divider. Product Portfolio Full Safety and Regulatory Compliance • 100% production partial discharge test • 100% production HIPOT compliance testing at 6 kV RMS 1 s • Basic insulation meets VDE 0884-10 Green Package • Halogen free and RoHS compliant Product1 Peak Output Drive Current SID1183K 8A Table 1. SCALE-iDriver 1700 V Portfolio. Notes: 1. Package: eSOP-R16B. Applications • General purpose and servo drives • UPS, solar, welding inverters and power supplies Figure 2. eSOP-R16B Package. SCALE-iDriver Primary-Side Logic Secondary-Side Logic VCE VGXX IN VISO Fault Output VTOT SO GH VIN VCC VVCC + - FluxLink + - GL GND VEE COM Figure 1. Typical Application Schematic. www.power.com PI-7949-072616 May 2017 This Product is Covered by Patents and/or Pending Patent Applications. 1700 V SCALE-iDriver VCE + VDES VGXX SHORT-CIRCUIT DETECTION VCC ASSD BOOTSTRAP CHARGE PUMP COM VISO LEVEL SHIFTER GH FluxLink SO TRANSCEIVER (BIDIRECTIONAL) TRANSCEIVER (BIDIRECTIONAL) GL GND IN CORE LOGIC SUPPLY MONITORING AUXILIARY POWER SUPPLIES CORE LOGIC SUPPLY MONITORING AUXILIARY POWER SUPPLIES COM VISO VEE VEE CONTROL PI-8285-0317171 Figure 3. Functional Block Diagram. Pin Functional Description VCC Pin (Pin 1): This pin is the primary-side supply voltage connection. GND Pin (Pin 3-6): This pin is the connection for the primary-side ground potential. All primary-side voltages refer to this pin. VISO Pin (Pin 14): This pin is the input for the secondary-side positive supply voltage. COM Pin (Pin 15): This pin provides the secondary-side reference potential. GL Pin (Pin 16): This pin is the driver output – sinking current (turn-off). IN Pin (Pin 7): This pin is the input for the logic command signal. SO Pin (Pin 8): This pin is the output for the logic fault signal (open drain). NC Pin (Pin 9): This pin must be un-connected. Minimum PCB pad size for soldering is required. VCC 1 VEE Pin (Pin 10): Common (IGBT emitter/MOSFET source) output supply voltage. GND 3-6 VCE Pin (Pin 11): This pin is the desaturation monitoring voltage input connection. IN 7 SO 8 VGXX Pin (Pin 12): This pin is the bootstrap and charge pump supply voltage source. GH Pin (Pin 13): This pin is the driver output – sourcing current (turn-on) connection. 16 GL 15 COM 14 VISO 13 GH 12 VGXX 11 VCE 10 VEE 9 NC PI-7648-041415 Figure 4. Pin Configuration. 2 Rev. A 05/17 www.power.com 1700 V SCALE-iDriver SCALE-iDriver Functional Description SCALE-iDriver The single channel SCALE-iDriver™ family drives IGBTs and MOSFETs or other semiconductor power switches with a blocking voltage of up to 1700 V and provides basic isolation between micro-controller and the power semiconductor switch. The status of the power semiconductor switch and SCALE-iDriver is monitored via the SO pin. R1 IN R2 Command signals are transferred from the primary (IN) to secondaryside via FluxLink isolation technology. The GH pin supplies a positive gate voltage and charges the semiconductor gate during the turn-on process. The GL pin supplies the negative voltage and discharges the gate during the turn-off process. SO RSO VCC C1 GND Short-circuit protection is implemented using a desaturation detection technique monitored via the VCE pin. After the SCALE-iDriver detects a short-circuit, the semiconductor turn-off process is implemented using an Advanced Soft Shut Down (ASSD) technique. Input and Fault Logic (Primary-Side) The input (IN) and output (SO) logic is designed to work directly with micro-controllers using 5 V CMOS logic. If the physical distance between the controller and the SCALE-iDriver is large or if a different logic level is required, the resistive divider in Figure 5 is recommended. This solution adjusts the logic level as necessary and will also improve the driver’s noise immunity. PI-7950-050916 Figure 5. Increased Threshold Voltages VIN+LT and V IN+HT. For R1 = 3.3 kW and R 2 = 1 kW the IN Logic Level is 15 V. connected together. Note: The SCALE-iDriver SID1183K data sheet defines the RGH and RGL values as total resistances connected to the respective pins GH and GL. Note that most power semiconductor data sheets specify an internal gate resistor RGINT which is already integrated into the power semiconductor switch. In addition to RGINT, external resistor devices RGON and RGOFF are specified to setup the gate current levels to the application requirements. Consequently, RGH is the sum of RGON and RGINT, as shown in Figures 9 and 10. Careful consideration should be given to the power dissipation and peak current associated with the external gate resistors. The GH pin output current source (IGH) of SID1183K is capable of handling (typically) up to 7.3 A during turn-on, and the GL pin output current source (IGL) is able to sink up to 8.0 A during turn-off at 25 °C. The SCALE-iDriver’s internal resistances are described as RGHI and RGLI respectively. If the gate resistors for SCALE-iDriver family attempt to draw a higher peak current, the peak current will be internally limited to a safe value, see Figures 6 and 7. Figure 8 shows the peak current that can be achieved for a given supply voltage for same gate resistor values, load capacitance and layout design. Gate driver commands are transferred from the IN pin to the GH and GL pins with a propagation delay tP(LH) and tP(HL). The SO pin current is defined as ISO; voltage during low status is defined as VSO(FAULT). Output (Secondary-Side) The gate of the power semiconductor switch should be connected to the SCALE-iDriver output via pins GH and GL, using suitable turn-on and turn-off gate resistors. Turn-on gate resistor RGON needs to be connected to the GH pin and turn-off gate resistor RGOFF to the GL pin. If both gate resistors have the same value, the GL and GH pins may be Turn-On Peak Gate Current IGH (A) During normal operation, when there is no fault detected, the SO pin stays at high impedance (open). Any fault is reported by connecting the SO pin to GND. The SO pin stays low as long as the V VCC voltage (primary-side) stays below UVLOVCC, and the propagation delay is negligible. If desaturation is detected (there is a short-circuit), or the supply voltages V VISO, V VEE, (secondary-side) drop below UVLOVISO, UVLOVEE, the SO status changes with a delay time tFAULT and keeps status low for a time defined as tSO. In case of a fault condition the driver applies the off-state (the GL pin is connected to COM). During the tSO period, command signal transitions from the IN pin are ignored. A new turn-on command transition is required before the driver will enter the on-state. 9 PI-7910-050916 Power Supplies The SID1183K requires two power supplies. One is the primary-side (V VCC) which powers the primary-side logic and communication with the secondary (insulated) side. One supply voltage is required for the secondary-side, V TOT is applied between the VISO pin and the COM pin. V TOT should be insulated from the primary-side and should provide at least the same insulation capabilities as the SCALE-iDriver. V TOT should have a low capacitive coupling to the primary or any other secondary-side. The positive gate-emitter voltage is provided by V VISO which is internally generated and stabilized to 15 V (typically) with respect to VEE. The negative gate-emitter voltage is provided by V VEE with respect to COM. Due to the limited current sourcing capabilities of the VEE pin, any additional load needs to be applied between the VISO and COM pins. No additional load between VISO and VEE pins or between VEE and COM pins is allowed. 8 7 6 5 4 4 RGH = 4 Ω, RGL = 3.4 Ω, CLOAD = 47 nF RGH = 4 Ω, RGL = 3.4 Ω, CLOAD = 100 nF RGH = RGL = 0 Ω, CLOAD = 47 nF 3 1 0 -60 -40 -20 0 20 40 60 80 100 120 140 Ambient Temperature (°C) Figure 6. Turn-On Peak Output Current (Source) vs. Ambient Temperature. Conditions: VCC = 5 V, V TOT = 25 V, fS = 20 kHz, Duty Cycle = 50%. 3 www.power.com Rev. A 05/17 1700 V SCALE-iDriver RGH = 4 Ω, RGL = 3.4 Ω, CLOAD = 47 nF RGH = 4 Ω, RGL = 3.4 Ω, CLOAD = 100 nF RGH = RGL = 0 Ω, CLOAD = 47 nF -2 -3 -4 -5 -6 -7 -8 PI-7912-042816 PI-7911-042816 -1 7 6 Gate Peak Current (A) Turn-Off Peak Gate Current IGL (A) 0 5 4 3 2 IGH, Turn-On Peak Gate Current IGL, Turn-Off Peak Gate Current 1 -9 0 -10 -60 -40 -20 0 20 40 60 80 100 120 140 Ambient Temperature (°C) Figure 7. Turn-Off Peak Output Current (Sink) vs. Ambient Temperature. Conditions: VVCC = 5 V, V TOT = 25 V, fS = 20 kHz, Duty Cycle = 50%. Short-Circuit Protection The SCALE-iDriver uses the semiconductor desaturation effect to detect short-circuits and protects the device against damage by employing an Advanced Soft Shut Down (ASSD) technique. Desaturation can be detected using two different circuits, either with diode sense circuitry DVCE (Figure 9) or with resistors RVCEX (Figure 10). With the help of a well stabilized V VISO and a Schottky diode (DSTO) connected between semiconductor gate and VISO pin the short-circuit current value can be limited to a safe value. During the off-state, the VCE pin is internally connected to the COM pin and CRES is discharged (red curve in Figure 11 represents the potential of the VCE pin). When the power semiconductor switch receives a turn-on command, the collector-emitter voltage (VCE) decreases from the off-state level same as the DC-link voltage to a normally much lower on-state level (see blue curve in Figure 11) and CRES begins to be charged up to the VCE saturation level (VCE SAT). The VCE voltage during on-state is continuously observed and compared with a reference voltage VDES. As soon as VCE>VDES the driver turns off the power semiconductor switch with a controlled collector current slope, limiting the VCE overvoltage excursions to below the maximum collector-emitter voltage (VCES). Turn-on commands during this time and during tSO are ignored, and the SO pin is connected to GND. The response time tRES is the CRES charging time and describes the delay between VCE asserting and the voltage on the VCE pin rising (see Figure 11). Response time should be long enough to avoid false tripping during semiconductor turn-on and is adjustable via RRES and CRES (Figure 9) or RVCE and CRES (Figure 10) values. It should not be longer than the period allowed by the semiconductor manufacturer. Note: The response time for short-circuit protection using a resistor network depends also on the actual DC-link voltage. The implementation according to Figure 10 is preferred as it avoids unintended tripping of the gate driver during zero-crossing of the load current, which depending on actual application conditions may lead to a transient VCESAT increase. The circuitry according to Figure 10 provides an inherent filter, which prevents a false short-circuit detection. The implementation according to Figure 9, however, does not provide this filtering and may lead to unintended tripping events. 20 21 22 23 24 25 26 27 28 29 Secondary-Side Total Supply Voltage – VTOT (V) Figure 8. Turn-On and Turn-Off Peak Output Current vs. Secondary-Side Total Supply Voltage (V TOT). Conditions: VVCC = 5 V, TJ = 25 °C, RGH = 4 W, RGL = 3.4 W, CLOAD = 100 nF, fS = 1 kHz, Duty Cycle = 50%. SCALE-iDriver RVCE VCE VGXX CRES DVCE RRES CGXX VISO RGON GH GL RGOFF DSTO Collector Gate RGINT Emitter VEE COM PI-7951-080416 Figure 9. Short-Circuit Protection Using Diode DVCE. Safe Power-Up and Power-Down During power-up and power-down the IN pin should stay at logic low. In order to avoid these effects, it is recommended that the IN pin is kept at logic low during power-up and power-down. Any supply voltage related to VCC, VISO, VEE and VGXX pins should be stabilized using ceramic capacitors C1, CS1X, CS2X, CGXX respectively as shown in Figures 13 and 14. After supply voltages reach their nominal values, the driver will begin to function after a time delay tSTART. Short-Pulse Operation If command signals applied to the IN pin are shorter than the minimum specified by tGE(MIN), then SID1183K output signals, GH and GL pins, will extend to value tGE(MIN). The duration of pulses longer than tGE(MIN) will not be changed. 4 Rev. A 05/17 30 www.power.com 1700 V SCALE-iDriver SCALE-iDriver V RVCE VCE VGXX CRES RVCEX VCE (IGBT) Signal DCL CGXX RGON GH DSTO Collector VCE SAT Gate RGINT RGOFF GL Fault VDES VISO tRES t Emitter VEE VCE Pin Signal COM COM PI-7952-080416 PI-7671-093016 Figure 10. Short-Circuit Protection Using a Resistor Network RVCEX. Figure 11. Short-Circuit Protection Using Resistor Network RVCEX. Advanced Soft Shut Down (ASSD) This function is activated after a short-circuit is detected. It protects the power semiconductor switch against destruction by ending the turn-on state and limiting the current slope in order to keep momentary VCE overvoltages below VCES. This function is particularly suited to IGBT applications. Figure 12 shows how the ASSD function operates. The VCE desaturation is visible during time period P1 (yellow line). During this time, the gate-emitter voltage (green line) is kept very stable. Collector current (pink line) is also well stabilized and limited to a safe value. At the end of period P1, VGE is reduced until the beginning of tFSSD1. Due to collector current decrease a small VCE overvoltage is seen. During tFSSD1 VGE is further reduced and the gate of the power semiconductor switch is further discharged. During tFSSD2 additional small VCE overvoltage events may occur. Once VGE drops below the gate threshold of the IGBT, the collector current has decayed almost to zero and the remaining gate charge is removed ‒ ending the short- circuit event. The whole short-circuit current detection and safe switch-off is shorter than 10 µs (7.1 µs from 10%-to-10% of the collector current in this example). VGE tFSSD1 IGE VCE ICE P1 tFSSD2 Figure 12. Advanced Soft Shut Down Function. 5 www.power.com Rev. A 05/17 1700 V SCALE-iDriver Application Examples and Components Selection Figures 13 and 14 show the schematic and typical components used for a SID1183K design. In both cases the primary-side supply voltage (V VCC) is connected between VCC and GND pins and supported through a supply bypass ceramic capacitor C1 (4.7 mF typically). If the command signal voltage level is higher than the rated IN pin voltage (in this case 15 V) a resistive voltage divider should be used. Additional capacitor CF and Schmitt trigger IC1 can be used to provide input signal filtering. The SO output has 5 V logic and the RSO is selected so that it does not exceed absolute maximum rated ISO current. The secondary-side isolated power supply (V TOT) is connected between VISO and COM. The positive voltage rail (V VISO) is supported through 4.7 µF ceramic capacitors CS21 and CS22 connected in parallel. The negative voltage rail (V VEE) is similarly supported through capacitors CS11 and CS12. The gate charge will vary according to the type of power semiconductor switch that is being driven. Typically, CS11 + CS12 should be at least 3 mF multiplied by the total gate charge of the power semiconductor switch (QGATE) divided by 1 mC. A 10 nF capacitor CGXX is connected between the GH and VGXX pins. The gate of the power semiconductor switch is connected through resistor RGON to the GH pin and by RGOFF to the GL pin. If the value of RGON is the same as RGOFF the GH pin can be connected to the GL pin and a common gate resistor can be connected to the gate. In each case, proper consideration needs to be given to the power dissipation and temperature performance of the gate resistors. To ensure gate voltage stabilization and collector current limitation during a short-circuit, the gate is connected to the VISO pin through a Schottky diode DSTO (for example PMEG4010). SCALE-iDriver Primary-Side Logic Command Signal R1 3.3 kΩ IC1 74LVC CGXX 10 nF RSO 4.7 kΩ CF C1 4.7 µF R2 1 kΩ CS21 4.7 µF GH VCC FluxLink GL DCL BAS416 DSTO SO VCC RVCE2-13 150 kΩ × 12 CRES 33 pF VGXX IN VISO SO GND Secondary-Side Logic RVCE 120 kΩ VCE CS22 4.7 µF Collector RGON Gate + V TOT RGOFF GND RGE 6.8 kΩ VEE CS12 4.7 µF CS11 4.7 µF COM Emitter PI-8249-032317 Figure 13. SCALE-iDriver Application Example Using a Resistor Network for Desaturation Detection. SCALE-iDriver Primary-Side Logic Command Signal R1 3.3 kΩ IC1 74LVC VGXX IN VISO SO CGXX 10 nF SO RSO 4.7 kΩ VCC GND Secondary-Side Logic RVCE 330 Ω VCE CF R2 1 kΩ C1 4.7 µF VCC FluxLink GL DSTO CS22 4.7 µF RGON Collector Gate + V TOT RGOFF GND RGE 6.8 kΩ VEE COM DVCE1 CRES 33 pF RRES 62 kΩ CS21 4.7 µF GH DVCE2 CS11 4.7 µF Emitter CS12 4.7 µF PI-8286-031717 Figure 14. SCALE-iDriver Application Example Using Diodes for Desaturation Detection. 6 Rev. A 05/17 www.power.com 1700 V SCALE-iDriver To avoid parasitic power-switch-conduction during system power-on, the gate is connected to COM through 6.8 kΩ resistor. Figure 13 shows how switch desaturation can be measured using resistors RVCE2 – RVCE13. In this example all the resistors have a value of 150 kW and 1206 size. The total resistance is 1.8 MW. The resistors should be chosen to limit current to between 0.6 mA to 0.8 mA at maximum DC-link voltage. The sum of RVCE2 – RVCE13 should be typically 1.8 MW for 1700 V semiconductors. In each case the resistor string must provide sufficient creepage and clearance distances between collector of the semiconductor and SCALE-iDriver. The low leakage diode DCL keeps the short-circuit duration constant over a wide DC-link voltage range. Response time is set up through RVCE and CRES (typically 120 kW and 33 pF respectively for 1700 V semiconductors). If short-circuit detection proves to be too sensitive, the CRES value can be increased. The maximum short-circuit duration must be limited to the maximum value given in the semiconductor data sheet. Figure 14 illustrates how diodes DVCE1 and DVCE2 may be used to measure switch desaturation. For insulation, two or more diodes in SMD packages are used (STTH212U for example depending on actual application conditions). RRES connected to VISO guarantees current flow through the diodes when the semiconductor is in the on-state. When the switch desaturates, CRES starts to be charged through RRES. In this configuration the response time is controlled by RRES and CRES. In this application example CRES = 33 pF and RRES = 62 kW; if desaturation is too sensitive or the short-circuit duration too long, both CRES and RRES can be adjusted. Figure 15 shows the recommended PCB layout and corresponds to the schematic in Figure 13. The PCB is a two layer design. It is important to ensure that PCB traces do not cover the area below the desaturation resistors or diodes DVCE1 and DVCE2. This is a critical design requirement to avoid coupling capacitance with the SCALEiDriver’s VCE pin and isolation issues within the PCB. Gate resistors are located physically close to the power semiconductor switch. As these components can get hot, it is recommended that they are placed away from the SCALE-iDriver. During IC operation, the PDRV power is shared between turn-on (RGH), turn-off (RGL) external gate resistors and internal driver resistances RGHI and RGLI. For junction temperature estimation purposes, the dissipated power under load (POL) inside the IC can be calculated accordingly to equation 4: R GHI R GL I l POL = 0.5 # Q GATE # fS # VTOT # b R + R GH + R GL I + RG L GHI RGH and RGL represent sum of external (RGON, RGOFF) and power semiconductor internal gate resistance (RGINT): R GH = R GON + R GINT R GL = R GOFF + R GINT Total IC power dissipation (PDIS) is estimated as sum of equations 2, 3 and 4: PDIS = PP + PSNL + POL TJ = i JA # PDIS + T A ƒS = 20 kHz, TA = 85 °C, V TOT = 25 V, V VCC = 5 V. QGATE = 1.5 mC (the gate charge value here should correspond to selected V TOT), RGINT = 2.5 W, RGON = RGOFF = 1.8 W. PDRV = 1.5 mC × 20 kHz × 25 V = 0.75 W, according to equation 1. PP = 5 V × 13.5 mA = 68 mW, according to equation 2 (see Figure 18). PSNL = 25 V × 7.7 mA = 193 mW, according to equation 3 (see Figure 20). The dissipated power under load is: POL = 0.5 # 1.5 nC # 20 kHz # 25 V # 1.2 X 1.1 X b l ≅ 176 mW , + 1.2 X + 4 .3 X 1.1 X + 4.3 X RGHI = 1.2 W as maximum data sheet value. RGLI = 1.1 W as maximum data sheet value. RGH = RGL = 1.8 W + 2.5 W = 4.3 W. (1) QGATE – Controlled power semiconductor switch gate charge (derived for the particular gate potential range defined by V TOT). See semiconductor manufacturer data sheet. ƒS – Switching frequency which is same as applied to the IN pin of SCALE-iDriver. (6) An example is given below, First calculation in designing the power semiconductor switch gate driver stage is to calculate the required gate power - PDRV. The power is calculated based on equation 1: (5) Example according to equation 4. PDRV = Q GATE # fS # VTOT The operating junction temperature (TJ) for given ambient temperature (TA) can be estimated according to equation 6: Power Dissipation and IC Junction Temperature Estimation where, (4) PDIS = 68 mW + 193 mW + 176 mW = 437 mW according to equation 5. TJ = 67 °C/W × 437 mW + 85 °C = 113 °C according to equation 6. Estimated junction temperature for this design would be approximately 113 °C and is lower than the recommended maximum value. As the internal IC resistor values are maximum values, it is understood that the example represents worst-case conditions. V TOT – SCALE-iDriver secondary-side supply voltage. In addition to PDRV, PP (primary-side IC power dissipation) and PSNL (secondary-side IC power dissipation without capacitive load) must be considered. Both are ambient temperature and switching frequency dependent (see typical performance characteristics). PP = VVCC # I VCC PSNL = VTOT # I VISO (2) (3) 7 www.power.com Rev. A 05/17 1700 V SCALE-iDriver Table 2 describes the recommended capacitor and resistor characteristics and layout requirements to achieve optimum performances of SCALE-iDriver. Pin Return to Pin Recommended Value Symbol VCC GND 4.7 mF C1 VISO VEE 4.7 mF CS21/CS22 25V X7R type is recommended. Example part number could be Murata 25 V part #GRM31CR71E475KA88. This capacitor needs to be close to IC pins. VEE COM 4.7 mF CS11/CS12 25 V X7R type is recommended. Example part number could be Murata 25 V part #GRM31CR71E-475KA88. This capacitor needs to be close to IC pins. CGXX To avoid misoperation, this pin should not be connected to anything else. This capacitor needs to be as close to IC pins as possible. 25 V X7R type is recommended. Example part number could be Yageo 25 V part#CC0603KRX7R9BB103. CRES Select CRES to achieve needed desaturation protection response time. 50 V COG/NPO is recommended. A value of 33 pF is initially recommended. Example part number could be KEMET 50 V part C0603C330J5GACTU. Any net and any other layer should provide sufficient distance to components CRES in order to avoid parasitic effects (capacitance) RVCE, DVCE, CRES, RRES, DCL Select RVCE or RRES for the proper operation of the short-circuit protection. Any net and any other layer should provide sufficient distance to components RVCE, DVCE, RRES, and DCL in order to avoid parasitic effects. VGXX VCE GH COM VCE Table 2. 10 nF 33 pF Notes VCC blocking capacitor must be placed close to IC. Enlarged loop could result in inadequate VCC supply voltage during operation. PCB Layout and Component Guidelines. 8 Rev. A 05/17 www.power.com 1700 V SCALE-iDriver SID1183K PI-8287-031717 Figure 15a. Top View of Recommended PCB Layout. Corresponds to Schematic Shown in Figure 13. PI-7956-092216 Figure 15b. Bottom View of Recommended PCB Layout. Corresponds to Schematic Shown in Figure 13. 9 www.power.com Rev. A 05/17 1700 V SCALE-iDriver Parameter Symbol Conditions Min Max Units Absolute Maximum Ratings1 Primary-Side Supply Voltage2 V VCC VCC to GND -0.5 6.5 V Secondary-Side Total Supply Voltage V TOT VISO to COM -0.5 30 V Secondary-Side Positive Supply Voltage V VISO VISO to VEE -0.5 17.5 V Secondary-Side Negative Supply Voltage V VEE VEE to COM -0.5 15 V Logic Input Voltage (command signal) VIN IN to GND -0.5 V VCC + 0.5 V Logic Output Voltage (fault signal) VSO SO to GND -0.5 V VCC + 0.5 V Logic Output Current (fault signal) ISO Positive Current Flowing into the Pin 10 mA VCE Pin Voltage V VCE VCE - COM -0.5 V TOT + 0.5 V 75 kHz Switching Frequency fS Storage Temperature TS -65 150 °C Operating Junction Temperature TJ -40 150 °C Operating Ambient Temperature TA -40 125 °C Operating Case Temperature TC -40 125 °C Input Power Dissipation 4 PP Output Power Dissipation4 PS Total IC Power Dissipation4 PDIS V VCC = 5 V V TOT = 28 V 3 115 1675 1790 mW mW NOTES: 1. Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. 2. Defined as peak voltage measured directly on VCC pin. 3. Transmission of command signals could be affected by PCB layout parasitic inductances at junction temperatures higher than recommended. 4. Input Power Dissipation refers to equation 2. Output Power Dissipation is secondary-side IC power dissipation without capacitive load (PSNL, equation 3) and dissipated power under load (POL, equation 4). Total IC power dissipation is sum of PP and PS. Thermal Resistance Thermal Resistance: eSOP-R16B Package: qJA ..................................................... 67 °C/W1 qJC .....................................................34 °C/W2 Notes: 1. 2 oz. (610 g/m2) copper clad. Measured with layout shown in Figure 15. 2. The case temperature is measured at the plastic surface at the top of the package. 10 Rev. A 05/17 www.power.com 1700 V SCALE-iDriver Parameter Symbol Conditions TJ = -40 °C to +125 °C See Note 1 (Unless Otherwise Specified) Min Typ Max Units Recommended Operation Conditions Primary-Side Supply Voltage V VCC VCC - GND 4.75 5.25 V Secondary-Side Total Supply Voltage V TOT VISO - COM 22 28 V 0.5 V Logic Low Input Voltage VIL Logic High Input Voltage VIH 3.3 Switching Frequency fS 0 75 kHz Operating IC Junction Temperature TJ -40 125 °C V Electrical Characteristics Logic Low Input Threshold Voltage VIN+LT fS = 0 Hz 0.6 1.25 1.8 V Logic High Input Threshold Voltage VIN+HT fS = 0 Hz 1.7 2.2 3.05 V Logic Input Voltage Hysteresis VIN+HS fS = 0 Hz 0.1 VIN = 5 V 56 Input Bias Current Supply Current (Primary-Side) Supply Current (Secondary-Side) Power Supply Monitoring Threshold (Primary-Side) Power Supply Monitoring Threshold (Secondary-Side, Positive Rail V VISO) Power Supply Monitoring Blanking Time, V VISO Power Supply Monitoring Threshold (Secondary-Side, Negative Rail V VEE) IIN IVCC IVISO VIN > 3 V See Note 12 UVLOVISO(BL) mA 17 VIN = 5 V 23 fS = 20 kHz 20 fS = 75 kHz 23 VIN = 0 V 8 VIN = 5 V 9 fS = 20 kHz 10 fS = 75 kHz 14 4.28 Set Fault 3.85 Hysteresis, See Notes 3, 4 0.02 Set Fault, Note 3 11.7 Hysteresis 0.3 Voltage Drop 13.5 V to 11.5 V See Note 12 0.5 4.67 Hysteresis 0.1 mA V 13.5 12.35 V ms 5.15 Set Fault, V TOT = 20 V mA 4.65 4.12 12.85 Clear Fault, V TOT = 20 V UVLOVEE 165 VIN = 0 V Clear Fault UVLOVISO 113 106 Clear Fault UVLOVCC V 4.93 5.5 V 11 www.power.com Rev. A 05/17 1700 V SCALE-iDriver Parameter Symbol Conditions TJ = -40 °C to +125 °C See Note 1 (Unless Otherwise Specified) Min Typ Max Units Electrical Characteristics (cont.) Power Supply Monitoring Blanking Time, V VEE UVLOVEE(BL) Voltage Drop 5.5 V to 4.5 V See Note 12 0.5 Secondary-Side Positive Supply Voltage Regulation V VISO(HS) 21 V ≤ V TOT ≤ 30 V, |i(VEE)| ≤ 1.5 mA 14.4 V TOT = 15 V, V VEE set to 0 V 0.1 VEE Source Capability IVEE(SO) V TOT = 25 V, V VEE set to 7.5 V See Note 13 VEE Sink Capability IVEE(SI) DESAT Detection Level ms 15.07 15.75 1.85 3.3 4.5 V TOT = 25 V, V VEE set to 12.5 V 1.74 3.1 4.5 mA VDES VCE-VEE, VIN = 5 V 7.2 7.8 8.3 V DESAT Sink Current IDES V VCE = 10 V, VIN = 0 V 15 28 50 mA DESAT Bias Current IDES(BS) V VCE - V VEE = 4.5 V, VIN = 5 V -0.5 3 mA VCE Pin Capacitance C VCE Between VCE and COM pins See Note 12 Turn-On Propagation Delay Turn-Off Propagation Delay Minimum Turn-On and Off Pulses tP(LH) tP(HL) tGE(MIN) 12.5 180 TJ = 125 °C See Note 5 210 278 364 TJ = 25 °C See Note 6 200 262 330 TJ = 125 °C See Note 6 211 287 359 tR ns See Note 12 650 tF 22 45 CG = 10 nF, See Note 7 55 90 150 CG = 47 nF, See Note 7 300 465 650 18 45 No CG See Note 8 Output Fall Time 340 ns No CG See Note 7 Output Rise Time mA pF TJ = 25 °C See Note 5 253 V CG = 10 nF See Note 8 40 81 150 CG = 47 nF See Note 8 300 460 650 ns ns ns 12 Rev. A 05/17 www.power.com 1700 V SCALE-iDriver Parameter Symbol Conditions TJ = -40 °C to +125 °C See Note 1 (Unless Otherwise Specified) Min Typ Max Units Electrical Characteristics (cont.) tFSSD1 VGE change from 14.5 V to 14 V See Note 12 tFSSD2 VGE change from 14.5 V to 2.5 V See Note 12 ASSD Rate of Change Propagation Delay Jitter Fault Signalization Delay Time tFAULT SO Fault Signalization time tSO Power-On Start-Up Time Gate Sourcing Peak Current, GH Pin Gate Sinking Peak Current GL Pin tSTART IGH IGL 60 ns 950 1828 2800 See Note 12 ±5 See Note 10 190 750 ns 10 13.4 µs 10 ms 6.8 See Note 11 VGH ≥ VTOT - 8.8 V CG = 470 nF See Note 13 3.6 5.5 A RG = 0, CG = 47 nF See Notes 2, 12, 13 TA = 25 °C VGL ≤ 7.5 V CG = 470 nF VGL is referenced to COM 4.6 ns 7.3 4 4.8 5.5 A RG = 0, CG = 47 nF See Notes 2, 12 TA = 25 °C 7.8 Turn-On Internal Gate Resistance RGHI I(GH) = 250 mA VIN= 5 V See Note 13 0.76 1.2 Ω Turn-Off Internal Gate Resistance RGLI I(GL) = 250 mA VIN = 0 V See Note 13 0.68 1.1 Ω VGH(ON) I(GH) = 20 mA VIN = 5 V See Note 13 Turn-On Gate Output Voltage V TOT-0.04 V 13 www.power.com Rev. A 05/17 1700 V SCALE-iDriver Parameter Symbol Conditions TJ = -40 °C to +125 °C See Note 1 (Unless Otherwise Specified) Min Typ Max Units 0.04 V 450 mV Electrical Characteristics (cont.) Turn-Off Gate Output Voltage (Referred to COM Pin) SO Output Voltage VGL(OFF) I(GL) = 20 mA VIN = 0 V VSO(FAULT) Fault Condition, ISO = 3.4 mA, V VCC ≥ 3.9 V 210 Package Characteristics (See Notes 12, 14) Distance Through the Insulation DTI Minimum Internal Gap (Internal Clearance) 0.4 mm Minimum Air Gap (Clearance) L1 (IO1) Shortest Terminal-to-Terminal Distance Through Air 9.5 mm Minimum External Tracking (Creepage) L2 (IO2) Shortest Terminal-to-Terminal Distance Across the Package Surface 9.5 mm Tracking Resistance (Comparative Tracking Index) CTI DIN EN 60112 (VDE 0303-11): 2010-05 EN / IEC 60112:2003 + A1:2009 600 Isolation Resistance, Input to Output See Note 16 R IO VIO = 500 V, TJ = 25 °C 1012 VIO = 500 V, 100 °C ≤ TJ ≤ TC(MAX) 1011 Isolation Capacitance, Input to Output See Note 16 CIO W 1 pF Package Insulation Characteristics Maximum Working Isolation Voltage VIOWM 1202 VRMS Maximum Repetitive Peak Isolation Voltage VIORM 1700 VPEAK Input to Output Test Voltage VPD Method A, After Environmental Tests Subgroup 1, VPR = 1.3 × VIORM, t = 10 s (qualification) Partial Discharge < 5 pC 2210 Method A, After Input/Output Safety Test Subgroup 2/3, VPR = 1.2 x VIORM, t = 10 s, (qualification) Partial Discharge < 5 pC 2040 Method B1, 100% Production Test, VPR = 1.5 × VIORM, t = 1 s Partial Discharge < 5 pC 2550 VPEAK Maximum Transient Isolation Voltage VIOTM V TEST = VIOTM, t = 60 s (qualification), t = 1 s (100% production) 8000 VPEAK Maximum Surge Isolation Voltage VIOSM Test Method Per IEC 60065, 1.2/50 μs Waveform, V TEST = 1.3 x VIOSM = 10400 V (qualification) 8000 VPEAK Insulation Resistance RS VIO = 500 V at TS >109 W Maximum Case Temperature TS 150 °C 14 Rev. A 05/17 www.power.com 1700 V SCALE-iDriver Parameter Symbol Conditions TJ = -40 °C to +125 °C See Note 1 (Unless Otherwise Specified) Min Typ Max Units 1.79 W Package Insulation Characteristics (cont.) Safety Total Dissipated Power PS TJ = 25 °C Pollution Degree 2 Climatic Classification Withstanding Isolation Voltage 50/105/21 VISO V TEST = VISO, t = 60 s (qualification), V TEST = 1.2 × VISO = 6000 VRMS, t = 1 s (100% production) 5000 VRMS 15 www.power.com Rev. A 05/17 1700 V SCALE-iDriver PI-8288-032317 Safe Operating Power (W) 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 20 40 60 80 100 120 140 160 TA (°C) Figure 16. Thermal Derating Curve Showing Dependence of Limited Dissipated Power on Case Temperature (DIN V VDE V 0884-10). Operation is allowed until reaching TJ and/or case temperature of 125 °C are reached. Thermal stress beyond those values but below thermal derating curve may lead to permanent functional product damage. Operating beyond thermal SR derating curve may affect product reliability. NOTES: 1. V VCC = 5 V, V TOT = 25 V; GH and GL pins are shorted together. RG = 4 W, No CG; VCC pin is connected to the SO pin through a 2 kW resistor. The VGXX pin is connected to the GH pin through a 10 nF capacitor. Typical values are defined at TJ = 25 °C; fS = 20 kHz, Duty Cycle = 50%. Positive currents are assumed to be flowing into pins. 2. Pulse width ≤ 10 ms, duty cycle ≤ 1%. The maximum value is controlled by the ASIC to a safe level. The internal peak power is safely controlled for RG ≥ 0 and power semiconductor module input gate capacitance CIES ≤ 47 nF. 3. During very slow V VCC power-up and power-down related to V TOT, V VCC and V VEE respectively, several SO fault pulses may be generated. 4. SO pin connected to GND as long as V VCC stays below minimum value. No signal is transferred from primary to secondary-side. 5. VIN potential changes from 0 V to 5 V within 10 ns. Delay is measured from 50% voltage increase on IN pin to 10% voltage increase on GH pin. 6. VIN potential changes from 5 V to 0 V within 10 ns. Delay is measured from 50% voltage decrease on IN pin to 10% voltage decrease on GL pin. 7. Measured from 10% to 90% of VGE (CG simulates semiconductor gate capacitance). The VGE is measured across CG. 8. Measured from 90% to 10% of VGE (CG simulates semiconductor gate capacitance). The VGE is measured across CG. 9. ASSD function limits G-E voltage of controlled semiconductor in specified time. Conditions: CG = 10 nF, V TOT = V VISO = 15 V, V VEE = 0 V (VEE shorted to COM). 10. The amount of time needed to transfer fault event (UVLO or DESAT) from secondary-side to SO pin. 11. The amount of time after primary and secondary-side supply voltages (V VCC and V TOT) reach minimal required level for driver proper operation. No signal is transferred from primary to secondary-side during that time, and no fault condition will be transferred from the secondary-side to the primary-side. 12. Guaranteed by design. 13. Positive current is flowing out of the pin. 14. Safety distances are application dependent and the creepage and clearance requirements should follow specific equipment isolation standards of an application. Board design should ensure that the soldering pads of an IC maintain required safety relevant distances. 15. Measured accordingly to IEC 61000-4-8 (fS = 50 Hz, and 60 Hz) and IEC 61000-4-9. 16. All pins on each side of the barrier tied together creating a two-terminal device. 16 Rev. A 05/17 www.power.com 1700 V SCALE-iDriver Typical Performance Characteristics 115 114 113 112 111 110 109 -40 -20 0 20 40 60 80 100 120 IN = 0 V DC IN = 5 V DC fSW = 20 kHz fSW = 75 kHz 20 15 10 5 108 -60 0 140 -60 -40 -20 Ambient Temperature (°C) 20 40 60 80 100 120 140 Figure 18. Supply Current Primary-Side I VCC vs. Ambient Temperature. Conditions: V VCC = 5 V, V TOT = 25 V, No-Load. 15 10 5 PI-7915-110716 20 11.0 10.5 Supply Current IVISO (mA) PI-8290-032417 25 Supply Current IVCC (mA) 0 Ambient Temperature (°C) Figure 17. Input Bias Current vs. Ambient Temperature. Conditions: V VCC = 5 V, VIN = 5 V, V TOT = 25 V. 10.0 9.5 IN = 0 V DC IN = 5 V DC fS = 20 kHz fS = 75 kHz 9.0 8.5 8.0 7.5 7.0 6.5 6.0 0 0 10 20 30 40 50 60 70 -60 80 -40 -20 20 40 60 80 100 120 140 Figure 20. Supply Current Secondary-Side I VISO vs. Ambient Temperature. Conditions: V VCC = 5 V, V TOT = 25 V, No-Load. VTOT = 22 V VTOT = 25 V VTOT = 28 V 8 6 4 2 350 PI-7918-041416 PI-8293-032717 12 Propagation Delay (ns) Figure 19. Supply Current Primary-Side I VCC vs. Switching Frequency. Conditions: V VCC = 5 V, V TOT = 25 V, TJ= 25 °C, No-Load. 10 0 Ambient Temperature (°C) Switching Frequency – fS (kHz) Supply Current IVISO (mA) PI-8289-032317 116 25 Supply Current IVCC (mA) PI-7913-110716 Input Bias Current IIN (µA) 117 300 250 tP(HL), Turn-On Delay tP(LH), Turn-Off Delay 200 150 100 50 0 0 0 10 20 30 40 50 60 70 Switching Frequency – fS (kHz) Figure 21. Supply Current Secondary-Side I VISO vs. Switching Frequency. Conditions: V VCC = 5 V, No-Load. 80 -60 -40 -20 0 20 40 60 80 100 120 140 Ambient Temperature (°C) Figure 22. Propagation Delay Time vs. Ambient Temperature. Conditions: V VCC = 5 V, V TOT = 25 V, fS = 20 kHz, CLOAD = 2.2 nF. 17 www.power.com Rev. A 05/17 1700 V SCALE-iDriver 8 6 4 2 4.0 3.5 Clear Fault Set Fault 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 -40 -20 0 20 40 60 80 100 120 -60 140 -40 -20 140 120 100 80 60 40 20 0 0 20 40 60 80 100 120 140 600 500 400 300 200 100 0 0 20 40 60 80 120 100 120 140 Ambient Temperature (°C) Figure 27 Power Supply Monitoring Positive Rail Hysteresis UVLOVISO vs. Ambient Temperature. Conditions: V VCC = 5 V. 12 10 Clear Fault Set Fault 8 6 4 2 0 -60 -40 -20 0 20 40 60 80 100 120 6 5 Clear Fault Set Fault 4 140 3 2 1 0 -60 -40 -20 0 20 40 60 80 100 120 Ambient Temperature (°C) Figure 28. Power Supply Monitoring Negative Rail UVLOVEE vs. Ambient Temperature. Conditions: V VCC = 5 V. 18 Rev. A 05/17 140 Figure 26. Power Supply Monitoring Positive Rail UVLOVISO vs. Ambient Temperature. Conditions: V VCC = 5 V. Secondary-Side Power Supply Monitoring Negative Rail UVLOVEE (V) PI-7923-040116 700 -20 100 Ambient Temperature (°C) 800 -40 80 14 Ambient Temperature (°C) Figure 25. Power Supply Monitoring Hysteresis UVLOVCC vs. Ambient Temperature. Conditions: V TOT = 25 V. -60 60 PI-7924-040116 160 Secondary-Side Power Supply Monitoring Positive Rail UVLOVISO (V) PI-7922-051716 Primary-Side Power Supply Monitoring Hysteresis UVLOVCC (mV) 180 -20 40 Figure 24. Power Supply Monitoring UVLOVCC vs. Ambient Temperature. Conditions: V TOT = 25 V. 200 -40 20 Ambient Temperature (°C) Ambient Temperature (°C) -60 0 PI-7926-040116 -60 Figure 23. SO Fault Signalization Time vs. Ambient Temperature. Conditions: V VCC = 5 V, V TOT = 25 V, RSO = 4.7 kW. Secondary-Side Power Supply Monitoring Positive Rail Hysteresis UVLOVISO (mV) PI-7921-040116 10 4.5 Primary-Side Power Supply Monitoring UVLOVCC (V) 12 PI-7919-110716 SO Fault Signalization Time – tSO (µs) Typical Performance Characteristics www.power.com 140 1700 V SCALE-iDriver 200 150 100 50 0 -40 -20 0 20 40 60 80 100 120 8.5 8.0 VTOT = 22 V VTOT = 25 V VTOT = 28 V 7.5 7.0 6.5 6.0 5.5 5.0 -60 140 -40 -20 40 60 80 100 120 140 VTOT = 22 V and VVISO = 17.5 V VTOT = 25 V and VVISO = 17.5 V VTOT = 28 V and VVISO = 17.5 V 3.45 3.40 3.35 3.30 3.25 3.20 3.15 Figure 30. Desaturation Detection Level VDES vs. Ambient Temperature. Conditions: V VCC = 5 V. 3.50 IVEE(SI) Sink Capability (mA) 3.60 PI-7928-110716 IVEE(SO) Source Capability (mA) Figure 29. Power Supply Monitoring Negative Rail Hysteresis UVLOVEE vs. Ambient Temperature. Conditions: V VCC = 5 V. 3.50 20 Ambient Temperature (°C) Ambient Temperature (°C) 3.55 0 PI-7948-050416 -60 9.0 PI-7927-040116 250 DESAT Detection Level VDES (V) 300 PI-7925-110716 Secondary-Side Power Supply Monitoring Negative Rail Hysteresis UVLOVEE (mV) Typical Performance Characteristics VTOT = 22 V and VVISO = 12.5 V VTOT = 25 V and VVISO = 12.5 V VTOT = 28 V and VVISO = 12.5 V 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 3.10 -60 -40 -20 0 20 40 60 80 100 120 140 Ambient Temperature (°C) Figure 31. VEE Source Capability I VEE(SO) vs. Ambient Temperature and V VISO. Conditions: V VCC = 5 V, fS = 20 kHz, Duty Cycle = 50%. -60 -40 -20 0 20 40 60 80 100 120 140 Ambient Temperature (°C) Figure 32. VEE Sink Capability I VEE(SI) vs. Ambient Temperature and V VISO. Conditions: V VCC = 5 V, fS = 20 kHz, Duty Cycle = 50%. 19 www.power.com Rev. A 05/17 1700 V SCALE-iDriver eSOP-R16B 3 2X 4 0.023 [0.58] 13X 0.018 [0.46] 0.010 [0.25] M C A B 2X 0.004 [0.10] C B 0.050 [1.27] 0.400 [10.16] A 8 Lead Tips 0.006 [0.15] C 9 16 0.057 [1.45] Ref. 2 H 9 10 11 12 13 14 15 16 0.010 [0.25] Gauge Plane 2 0.059 [1.50] Ref. Typ. 0.464 [11.79] 0.350 [8.89] B 0.004 [0.10] C A 0° - 8° 0.059 [1.50] Ref. Typ. 8 7 0.006 [0.15] C 4 Lead Tips 3 4 0.158 [4.01] 0.045 [1.14] Ref. 0.152 [3.86] 1 8 Pin #1 I.D. (Laser Marked) 6 5 4 3 Seating Plane 0.040 [1.02] 0.028 [0.71] DETAIL A 0.020 [0.51] Ref. 1 0.010 [0.24] Ref. 0.022 [0.56] Ref. 0.019 [0.48] Ref. 0.080 [2.03] Ref. TOP VIEW BOTTOM VIEW C 0.032 [0.81] 0.029 [0.74] 0.028 [0.71] Ref. 0.010 [0.25] Ref. Detail A 0.356 [9.04]Ref. 0.105 [2.67] 0.093 [2.36] 0.012 [0.30] 0.004 [0.10] Seating Plane to Molded Bumps Standoff 0.049 [1.23] 0.046 [1.16] 7 C 0.004 [0.10] C 12 Leads SIDE VIEW 0.306 [7.77] Ref. .028 [0.71] .050 [1.27] 3 0.016 [0.41] 0.011 [0.28] 12X Seating Plane 0.092 [2.34] 0.086 [2.18] END VIEW Notes: 1. Dimensioning and tolerancing per ASME Y14.5M-1994. 2. Dimensions noted are determined at the outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs, and inter-lead flash, but including any mismatch between the top and bottom of the plastic body. Maximum mold protrusion is 0.007 [0.18] per side. 3. Dimensions noted are inclusive of plating thickness. .070 [1.78] .460 [11.68] Reference Solder Pad Dimensions .162 [4.11] .165 [4.19] .300 [7.62] .350 [8.89] INCH [mm] 4. Does not include inter-lead flash or protrusions. 5. Controlling dimensions in inches [mm]. 6. Datums A and B to be determined in Datum H. 7. Exposed metal at the plastic package body outline/surface between leads 6 and 7, connected internally to wide lead 3/4/5/6. PI-6995-051716 POD-eSOP-R16B Rev B 20 Rev. A 05/17 www.power.com 1700 V SCALE-iDriver MSL Table Part Number MSL Rating SID1183K 3 ESD and Latch-Up Table Test Conditions Results Latch-up at 125 °C JESD78D Human Body Model ESD JESD22-A114F > ±2000 V on all pins Charged Device Model ESD JESD22-C101 > ±500 V on all pins Machine Model ESD JESD22-A115C > ±200 V on all pins > ±100 mA or > 1.5 × VMAX on all pins IEC 60664-1 Rating Table Parameter Conditions Specifications Basic Isolation Group Material Group I Rated mains voltage ≤ 150 VRMS I - IV Rated mains voltage ≤ 300 VRMS I - IV Rated mains voltage ≤ 600 VRMS I - IV Rated mains voltage ≤ 1000 VRMS I - III Installation Classification Electrical Characteristics (EMI) Table Parameter Symbol Conditions Common-Mode Transient Immunity, Logic High CMH Common-Mode Transient Immunity, Logic Low Variable Magnetic Field Immunity Typ Max Units Typical values measured according to Figures 33, 34. Maximum values are design values assuming trapezoid waveforms -35 / 50 -100 / 100 kV/ms CML Typical values measured according to Figures 33, 34. Maximum values are design values assuming trapezoid waveforms -35 / 50 -100 / 100 kV/ms HHPEAK See Note 15 1000 HLPEAK See Note 15 1000 Figure 33. Applied Common Mode Pulses for Generating Negative dv/dt. Min A/m Figure 34. Applied Common Mode Pulses for Generating Positive dv/dt. 21 www.power.com Rev. A 05/17 1700 V SCALE-iDriver Regulatory Information Table VDE UL CSA Certified to DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 UR recognized under UL1577 Component Recognition Program UR recognized to CSA Component Acceptance Notice 5A Basic insulation for Max. Transient Isolation voltage 8 kVPEAK, Max. Surge Isolation voltage 8 kVPEAK, Max. Repetitive Peak Isolation voltage 1700 VPEAK Single protection, 5000 VRMS dielectric voltage withstand Single protection, 5000 VRMS dielectric voltage withstand File No. 5020828-4880-0002 File No. Pending File No. Pending Part Ordering Information • SCALE-iDriver Product Family • Series Number • Package Identifier K eSOP-R16B • Tape & Reel and Other Options Blank SID 1183 K - TL TL Tube of 48 pcs. Tape & Reel, 1000 pcs min/mult. 22 Rev. A 05/17 www.power.com 1700 V SCALE-iDriver Notes 23 www.power.com Rev. A 05/17 Revision Notes A Date Code A Initial Release. 05/17 For the latest updates, visit our website: www.power.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. Patent Information The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm. Life Support Policy POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein: 1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. The PI logo, TOPSwitch, TinySwitch, SENZero, SCALE, SCALE-iDriver, Qspeed, PeakSwitch, LYTSwitch, LinkZero, LinkSwitch, InnoSwitch, HiperTFS, HiperPFS, HiperLCS, DPA-Switch, CAPZero, Clampless, EcoSmart, E-Shield, Filterfuse, FluxLink, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2017, Power Integrations, Inc. Power Integrations Worldwide Sales Support Locations World Headquarters 5245 Hellyer Avenue San Jose, CA 95138, USA Main: +1-408-414-9200 Customer Service: Worldwide: +1-65-635-64480 Americas: +1-408-414-9621 e-mail: usasales@power.com China (Shanghai) Rm 2410, Charity Plaza, No. 88 North Caoxi Road Shanghai, PRC 200030 Phone: +86-21-6354-6323 e-mail: chinasales@power.com Germany (AC-DC/LED Sales) Lindwurmstrasse 114 D-80337 München Germany Phone: +49-89-5527-39100 e-mail: eurosales@power.com Germany (IGBT Driver Sales) HellwegForum 1 59469 Ense Germany Tel: +49-2938-64-39990 e-mail: igbt-driver.sales@ power.com India China (Shenzhen) #1, 14th Main Road 17/F, Hivac Building, No. 2, Keji Nan Vasanthanagar 8th Road, Nanshan District, Bangalore-560052 India Shenzhen, China, 518057 Phone: +91-80-4113-8020 Phone: +86-755-8672-8689 e-mail: indiasales@power.com e-mail: chinasales@power.com Italy Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 e-mail: eurosales@power.com Japan Kosei Dai-3 Bldg. 2-12-11, Shin-Yokohama, Kohoku-ku Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 e-mail: japansales@power.com Korea RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 e-mail: koreasales@power.com Singapore 51 Newton Road #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 e-mail: singaporesales@power.com Taiwan 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 e-mail: taiwansales@power.com UK Building 5, Suite 21 The Westbrook Centre Milton Road Cambridge CB4 1YG Phone: +44 (0) 7823-557484 e-mail: eurosales@power.com
SID1183K 价格&库存

很抱歉,暂时无法提供与“SID1183K”相匹配的价格&库存,您可以联系我们找货

免费人工找货