0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
71V67703S75PFG8

71V67703S75PFG8

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    LQFP-100

  • 描述:

    IC SRAM 9MBIT PARALLEL 100TQFP

  • 数据手册
  • 价格&库存
71V67703S75PFG8 数据手册
256K X 36, 512K X 18 3.3V Synchronous SRAMs 3.3V I/O, Burst Counter Flow-Through Outputs, Single Cycle Deselect Features ◆ ◆ ◆ ◆ ◆ 256K x 36, 512K x 18 memory configurations Supports fast access times: – 7.5ns up to 117MHz clock frequency – 8.0ns up to 100MHz clock frequency – 8.5ns up to 87MHz clock frequency LBO input selects interleaved or linear burst mode Self-timed write cycle with global write control (GW), byte write enable (BWE), and byte writes (BWx) ◆ ◆ ◆ ◆ ◆ 71V67703 71V67903 3.3V core power supply Power down controlled by ZZ input 3.3V I/O supply (VDDQ) Packaged in a JEDEC Standard 100-pin thin plastic quad flatpack (TQFP), 119 ball grid array (BGA) and 165 fine pitch ball grid array (fBGA) Industrial temperature range (–40°C to +85°C) is available for selected speeds Green parts available, see ordering information Functional Block Diagram LBO ADV CLK 2 Binary Counter ADSC Burst Logic Q0 CLR ADSP Q1 CLK EN ADDRESS REGISTER A0–A17/18 GW BWE INTERNAL ADDRESS Burst Sequence CEN 18/19 A0* A1* 256K x 36/ 512K x 18BIT MEMORY ARRAY 2 A0,A1 A2 - A18 36/18 18/19 Byte 1 Write Register 36/18 Byte 1 Write Driver BW1 9 Byte 2 Write Register Byte 2 Write Driver BW2 9 Byte 3 Write Register Byte 3 Write Driver BW3 9 Byte 4 Write Register Byte 4 Write Driver BW4 9 CE CS0 CS1 D Q Enable Register DATA INPUT REGISTER CLK EN ZZ Powerdown OE OE I/O0–I/O31 I/OP1–I/OP4 OUTPUT BUFFER 36/18 5309 drw 01 1 Aug.11.21 , 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Description The IDT71V67703/7903 are high-speed SRAMs organized as 256K x 36/512K x 18. The IDT71V67703/7903 SRAMs contain write, data, address and control registers. There are no registers in the data output path (flow-through architecture). Internal logic allows the SRAM to generate a self-timed write based upon a decision which can be left until the end of the write cycle. The burst mode feature offers the highest level of performance to the system designer, as the IDT71V67703/7903 can provide four cycles of data for a single address presented to the SRAM. An internal burst address counter accepts the first cycle address from the processor, Commercial and Industrial Temperature Ranges initiating the access sequence. The first cycle of output data will flowthrough from the array after a clock-to-data access time delay from the rising clock edge of the same cycle. If burst mode operation is selected (ADV=LOW), the subsequent three cycles of output data will be available to the user on the next three rising clock edges. The order of these three addresses are defined by the internal burst counter and the LBO input pin. The IDT71V67703/7903 SRAMs utilize a high-performance CMOS process and are packaged in a JEDEC standard 14mm x 20mm 100-pin thin plastic quad flatpack (TQFP) as well as a 119 ball grid array (BGA) and a 165 fine pitch ball grid array (fBGA). Pin Description Summary A0-A 18 Address Inputs Input Synchronous CE Chip Enable Input Synchronous CS0, CS1 Chip Selects Input Synchronous OE Output Enable Input Asynchronous GW Global Write Enable Input Synchronous BWE Byte Write Enable Input Synchronous BW1, BW2, BW3, BW4(1) Individual Byte Write Selects Input Synchronous CLK Clock Input N/A ADV Burst Address Advance Input Synchronous ADSC Address Status (Cache Controller) Input Synchronous ADSP Address Status (Processor) Input Synchronous LBO Linear / Interleaved Burst Order Input DC ZZ Sleep Mode Input Asynchronous I/O0-I/O31, I/OP1-I/OP4 Data Input / Output I/O Synchronous VDD, VDDQ Core Power, I/O Power Supply N/A VSS Ground Supply N/A 5309 tbl 01 NOTE: 1. BW3 and BW4 are not applicable for the IDT71V67903. 6.42 2 Aug.11.21 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges Pin Definitions(1) Symbol Pin Function I/O Active Description A0-A18 Address Inputs I N/A Synchronous Address inputs. The address register is trigge red by a combi-nation of the rising e dge of CLK and ADSC Low or ADSP Low and CE Low. ADSC Address Status (Cache Controller) I LOW Synchronous Address Status from Cache Controller. ADSC is an active LOW input that is used to load the address registers with new addresses. ADSP Address Status (Processor) I LOW Synchronous Address Status from Processor. ADSP is an active LOW inp ut that is used to load the address registers with new addresses. ADSP is gated by CE. ADV Burst Address Advance I LOW Synchronous Address Advance. ADV is an active LOW input that is used to advance the internal burst counter, controlling burst access after the initial address is loaded. When the inp ut is HIGH the burst counter is not incremented; that is, there is no address advance. BWE Byte Write Enable I LOW Synchronous byte write enable gates the byte write inputs BW1-BW4. If BWE is LOW at the rising ed ge of CLK then BWx inputs are passed to the next stage in the circuit. If BWE is HIGH then the byte write inputs are blocked and only GW can initiate a write cycle. BW1-BW4 Individual Byte Write Enables I LOW Synchronous byte write enables. BW1 controls I/O0-7, I/OP1, BW2 controls I/O8-15, I/OP2, etc. Any active byte write cause s all outputs to be disabled. CE Chip Enable I LOW Synchronous chip enable. CE is used with CS 0 and CS1 to enable the IDT71V67703/7903. CE also gates ADSP. CLK Clock I N/A This is the clock input. All timing references for the device are made with respect to this input. CS0 Chip Select 0 I HIGH Synchronous active HIGH chip select. CS 0 is used with CE and CS1 to enable the chip. CS1 Chip Select 1 I LOW Synchrono us active LOW chip select. CS1 is used with CE and CS0 to enable the chip. GW Global Write Enable I LOW Synchronous global write enable. This input will write all four 9-bit data bytes when LOW on the rising edge of CLK. GW supersedes individual byte write enables. I/O0-I/O31 I/OP1-I/OP4 Data Input/Output I/O N/A Synchronous data input/output (I/O) pins. The data input path is registered, triggered by the rising edge of CLK. The data output path is flow-through (no output register). LBO Linear Burst Order I LOW Asynchro nous burst order selection input. When LBO is HIGH, the inter-leaved burst sequence is selected. When LBO is LOW the Linear burst sequence is selected. LBO is a static input and must not change state while the device is operating. OE Output Enable I LOW Asynchronous output enable. When OE is LOW the data output drivers are enabled on the I/O pins if the chip is also selected. When OE is HIGH the I/O p ins are in a highimpedance state. VDD Power Supply N/A N/A 3.3V core power supply. VDDQ Power Supply N/A N/A 3.3V I/O Supply. VSS Ground N/A N/A Ground. NC No Connect N/A N/A NC pins are not electrically connected to the device. ZZ Sleep Mode 1 HIGH Asynchronous sleep mode input. ZZ HIGH will g ate the CLK internally and power down the IDT71V67703/7903 to its lowest power consump tion level. Data retention is guaranteed in Sleep Mode. NOTE: 1. All synchronous inputs must meet specified setup and hold times with respect to CLK. 6.42 3 Aug.11.21 5309 tbl 02 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect CLK GW BWE OE ADSC ADSP ADV A8 A9 A6 A7 CE CS0 BW4 BW3 BW2 BW1 CS1 VDD VSS Pin Configuration – 256K x 36, PKG100 Commercial and Industrial Temperature Ranges (3) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 I/OP3 I/O16 I/O17 VDDQ VSS I/O18 I/O19 I/O20 I/O21 VSS VDDQ I/O22 I/O23 VSS(1) VDD NC VSS I/O24 I/O25 VDDQ VSS I/O26 I/O27 I/O28 I/O29 VSS VDDQ I/O30 I/O31 I/OP4 1 80 2 79 3 4 78 77 5 76 6 75 7 74 73 8 9 72 10 71 11 70 12 69 71V67703 PKG100 13 14 15 68 67 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 51 30 I/OP2 I/O15 I/O14 VDDQ VSS I/O13 I/O12 I/O11 I/O10 VSS VDDQ I/O9 I/O8 VSS NC VDD ZZ(2) I/O7 I/O6 VDDQ VSS I/O5 I/O4 I/O3 I/O2 VSS VDDQ I/O1 I/O0 I/OP1 NC A17 A10 A11 A12 A13 A14 A15 A16 NC NC VSS VDD LBO A5 A4 A3 A2 A1 A0 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Top View NOTES: 1. Pin 14 does not have to be directly connected to VSS as long as the input voltage is < VIL. 2. Pin 64 can be left unconnected and the device will always remain in active mode. 3. This text does not indicate orientation of actual part-marking. 6.42 4 Aug.11.21 5309 drw 02a , 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges A6 A7 CE CS0 NC NC BW2 BW1 CS1 VDD VSS CLK GW BWE OE ADSC ADSP ADV A8 A9 Pin Configuration – 512K x 18, PKG100(3) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 NC NC NC 1 80 2 79 3 VDDQ VSS NC NC I/O8 I/O9 VSS VDDQ I/O10 I/O11 VSS(1) VDD NC VSS I/O12 I/O13 VDDQ VSS I/O14 I/O15 I/OP2 NC VSS VDDQ NC NC NC 4 78 77 5 76 6 75 7 74 8 73 9 72 10 71 11 70 12 69 13 14 15 71V67903 PKG100 16 68 67 66 65 64 17 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 51 30 A10 NC NC VDDQ VSS NC I/OP1 I/O7 I/O6 VSS VDDQ I/O5 I/O4 VSS NC VDD ZZ(2) I/O3 I/O2 VDDQ VSS I/O1 I/O0 NC NC VSS VDDQ NC NC NC LBO A5 A4 A3 A2 A1 A0 NC NC VSS VDD NC A18 A11 A12 A13 A14 A15 A16 A17 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Top View NOTES: 1. Pin 14 does not have to be directly connected to VSS as long as the input voltage is < VIL. 2. Pin 64 can be left unconnected and the device will always remain in active mode. 3. This text does not indicate orientation of actual part-marking, 6.42 5 Aug.11.21 5309 drw 02b , 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges Pin Configuration – 256K x 36, BG119, BGG119(4) 1 2 3 4 5 6 7 A VDDQ A6 A4 ADSP A8 A16 VDDQ B NC CS0 A3 ADSC A9 A17 NC C NC A7 A2 VDD A12 A15 NC D I/O16 I/OP3 VSS NC VSS I/OP2 I/O15 E I/O17 I/O18 VSS CE VSS I/O13 I/O14 F VDDQ I/O19 VSS OE VSS I/O12 VDDQ G I/O20 I/O21 BW3 ADV BW2 I/O11 I/O10 H I/O22 I/O23 VSS GW VSS I/O9 I/O8 J VDDQ VDD NC VDD NC VDD VDDQ K I/O24 I/O26 VSS CLK VSS I/O 6 I/O7 L I/O25 I/O 27 BW4 NC BW1 I/O 4 I/O 5 M VDDQ I/O 28 VSS BWE VSS I/O 3 VDDQ N I/O29 I/O30 VSS A1 VSS I/O2 I/O1 P I/O31 I/OP4 VSS A0 VSS I/OP1 I/O 0 A13 NC NC ZZ(2) R NC T NC U VDDQ A5 NC DNU(3) LBO VDD VSS(1) A10 A11 A14 DNU(3) DNU(3) DNU(3) DNU(3) VDDQ 5309 drw 02c Top View Pin Configuration – 512K x 18, BG119, BGG119(4) 1 2 3 4 5 6 7 A VDDQ A6 A4 ADSP A8 A16 VDDQ B NC CS0 A3 ADSC A9 A18 NC C NC A7 A2 VDD A13 A17 NC D I/O8 NC VSS NC VSS I/OP1 NC E NC I/O 9 VSS CE VSS NC I/O 7 F VDDQ NC VSS OE VSS I/O 6 VDDQ G NC I/O10 BW2 ADV VSS NC I/O5 H I/O11 NC VSS GW VSS I/O4 NC J VDDQ VDD NC VDD NC VDD VDDQ K NC I/O12 VSS CLK VSS NC I/O 3 L I/O13 NC VSS NC BW1 I/O 2 NC M VDDQ I/O14 VSS BWE VSS NC VDDQ N I/O15 NC VSS A1 VSS I/O1 NC P NC I/OP2 VSS A0 VSS NC I/O 0 A12 NC ZZ(2) R NC A5 LBO VDD VSS(1) T NC A10 A15 NC A14 A11 U VDDQ DNU(3) DNU(3) DNU(3) DNU(3) DNU(3) Top View NOTES: 1. R5 does not have to be directly connected to VSS as long as the input voltage is < VIL. 2. T7 can be left unconnected and the device will always remain in active mode. 3. DNU= Do not use; these signals can either be left unconnected or tied to Vss. 4. This text does not indicate orientation of part-marking. 6.42 6 Aug.11.21 VDDQ 5309 drw 02d , 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Pin Configuration – 256K x 36, BQ165, BQG165 Commercial and Industrial Temperature Ranges (4) 1 2 3 4 5 6 7 8 9 10 11 A NC A7 CE BW3 BW2 CS1 BWE ADSC ADV A8 NC B NC A6 CS0 BW4 BW1 CLK GW OE ADSP A9 NC C I/OP3 NC VDDQ VSS VSS VSS VSS VSS VDDQ NC I/OP2 D I/O17 I/O16 VDDQ VDD VSS VSS VSS VDD VDDQ I/O15 I/O14 E I/O19 I/O18 VDDQ VDD VSS VSS VSS VDD VDDQ I/O13 I/O12 F I/O21 I/O20 VDDQ VDD VSS VSS VSS VDD VDDQ I/O11 I/O10 G I/O23 I/O22 VDDQ VDD VSS VSS VSS VDD VDDQ I/O9 I/O8 H VSS(1) NC NC VDD VSS VSS VSS VDD NC NC ZZ(2) J I/O25 I/O24 VDDQ VDD VSS VSS VSS VDD VDDQ I/O7 I/O6 K I/O27 I/O26 VDDQ VDD VSS VSS VSS VDD VDDQ I/O5 I/O4 L I/O29 I/O28 VDDQ VDD VSS VSS VSS VDD VDDQ I/O3 I/O2 M I/O31 I/O30 VDDQ VDD VSS VSS VSS VDD VDDQ I/O1 I/O0 N I/OP4 NC VDDQ VSS NC NC NC VSS VDDQ NC I/OP1 P NC NC A5 A2 DNU(3) A1 DNU(3) A10 A13 A14 A17 R LBO NC A4 A3 DNU(3) A0 DNU3) A11 A12 A15 A16 5309tbl 17a Pin Configuration – 512K x 18, BQ165, BQG165(4) 1 2 3 4 5 6 7 8 9 10 11 A NC A7 CE BW2 NC CS1 BWE ADSC ADV A8 A10 B NC A6 CS0 NC BW1 CLK GW OE ADSP A9 NC C NC NC VDDQ VSS VSS VSS VSS VSS VDDQ NC I/OP1 D NC I/O8 VDDQ VDD VSS VSS VSS VDD VDDQ NC I/O7 E NC I/O9 VDDQ VDD VSS VSS VSS VDD VDDQ NC I/O6 F NC I/O10 VDDQ VDD VSS VSS VSS VDD VDDQ NC I/O5 G NC I/O11 VDDQ VDD VSS VSS VSS VDD VDDQ NC I/O4 H VSS(1) NC NC VDD VSS VSS VSS VDD NC NC ZZ(2) J I/O12 NC VDDQ VDD VSS VSS VSS VDD VDDQ I/O3 NC K I/O13 NC VDDQ VDD VSS VSS VSS VDD VDDQ I/O2 NC L I/O14 NC VDDQ VDD VSS VSS VSS VDD VDDQ I/O1 NC M I/O15 NC VDDQ VDD VSS VSS VSS VDD VDDQ I/O0 NC N I/OP2 NC VDDQ VSS NC NC NC VSS VDDQ NC NC P NC NC A5 A2 DNU(3) A1 DNU(3) A11 A14 A15 A18 R LBO NC A4 A3 DNU(3) A0 DNU(3) A12 A13 A16 A17 NOTES: 1. H1 does not have to be directly connected to VSS, as long as the input voltage is < VIL. 2. H11 can be left unconnected and the device will always remain in active mode. 3. DNU= Do not use; these signals can either be left unconnected or tied to Vss. 4. This text does not indicate orientation of actual part-marking. 6.42 7 Aug.11.21 5309 tbl 17b 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Absolute Maximum Ratings(1) Symbol Rating (2) Commercial Unit VTERM Terminal Voltage with Respect to GND -0.5 to +4.6 V VTERM(3,6) Terminal Voltage with Respect to GND -0.5 to VDD V VTERM(4,6) Terminal Voltage with Respect to GND -0.5 to VDD +0.5 V VTERM(5,6) Terminal Voltage with Respect to GND -0.5 to VDDQ +0.5 V TA (7) Operating Temperature -0 to +70 o C Recommended Operating Temperature Supply Voltage Grade Temperature(1) VSS VDD VDDQ Commercial 0°C to +70°C 0V 3.3V±5% 3.3V±5% Industrial -40°C to +85°C 0V 3.3V±5% 3.3V±5% Temperature Under Bias -55 to +125 o C TSTG Storage Temperature -55 to +125 o C 5309 tbl 04 NOTE: 1. TA is the "instant on" case temperature. Recommended DC Operating Conditions Symbol TBIAS Commercial and Industrial Temperature Ranges Parameter Min. Typ. Max. Unit VDD Core Supply Voltage 3.135 3.3 3.465 V VDDQ I/O Supply Voltage 3.135 3.3 3.465 V VSS Supply Voltage 0 0 0 V PT Power Dissipation 2.0 W VIH Input High Voltage - Inputs 2.0 ____ VDD +0.3 V IOUT DC Output Current 50 mA VIH Input High Voltage - I/O 2.0 ____ VDDQ +0.3 V ____ 0.8 V 5309 tbl 03 VIL NOTES: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. VDD terminals only. 3. VDDQ terminals only. 4. Input terminals only. 5. I/O terminals only. 6. This is a steady-state DC parameter that applies after the power supplies have ramped up. Power supply sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up. 7. TA is the "instant on" case temperature. CIN Input Capacitance CI/O I/O Capacitance NOTE: 1. VIL (min) = -1.0V for pulse width less than tCYC/2, once per cycle. Max. Unit Symbol VIN = 3dV 5 pF CIN Input Capacitance VOUT = 3dV 7 pF CI/O I/O Capacitance 5309 tbl 07 (TA = +25° C, f = 1.0MHz) Parameter(1) CIN Input Capacitance CI/O I/O Capacitance Conditions Max. Unit VIN = 3dV 7 pF VOUT = 3dV 7 pF 5309 tbl 07a NOTE: 1. This parameter is guaranteed by device characterization, but not production tested. 6.42 8 Aug.11.21 Parameter(1) Conditions 119 BGA Capacitance Symbol 5309 tbl 05 (TA = +25° C, f = 1.0MHz) (TA = +25° C, f = 1.0MHz) Parameter(1) -0.3 165 fBGA Capacitance 100-Pin TQFP Capacitance Symbol Input Low Voltage (1) Conditions Max. Unit VIN = 3dV 7 pF VOUT = 3dV 7 pF 5309 tbl 07b 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V ± 5%) Symbol Parameter Test Conditions Min. Max. Unit |ILI| Input Leakage Current VDD = Max., VIN = 0V to V DD ___ 5 µA |ILI| LBO Input Leakage Current(1) VDD = Max., VIN = 0V to V DD ___ 30 µA |ILO| Output Leakage Current VOUT = 0V to V CC ___ 5 µA VOL Output Low Voltage IOL = +8mA, VDD = Min. ___ 0.4 V VOH Output High Voltage IOH = -8mA, VDD = Min. 2.4 ___ V 5309 tbl 08 NOTE: 1. The LBO pin will be internally pulled to VDD if it is not actively driven in the application and the ZZ in will be internally pulled to VSS if not actively driven. DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (1) 7.5ns Symbol Parameter Test Conditions Ind Com'l Ind Com'l Ind 265 285 210 230 190 210 50 70 50 70 50 70 Device Deselected, Outputs Open, VDD = Max., VDDQ = Max., VIN > VHD or < VLD, f = fMAX (2,.3) 145 165 140 160 135 155 ZZ > VHD, VDD = Max. 50 70 50 70 50 70 Operating Power Supply Current ISB1 CMOS Standby Power Supply Current Device Deselected, Outputs Open, VDD = Max., VDDQ = Max., VIN > VHD or < VLD, f = 0(2,3) IZZ Clock Running Power Supply Current Full Sleep Mode Supply Current 8.5ns Com'l IDD ISB2 8ns mA Device Selected, Outputs Open, V DD = Max., VDDQ = Max., VIN > VIH or < VIL, f = fMAX(2) mA mA AC Test Load (VDDQ = 3.3V/2.5V) Input Pulse Levels 0 to 2ns Input Timing Reference Levels 1.5V Output Timing Reference Levels 1.5V AC Test Load VDDQ/2 50Ω 3V Input Rise/Fall Times mA 5309 tbl 09 NOTES: 1. All values are maximum guaranteed values. 2. At f = fMAX, inputs are cycling at the maximum frequency of read cycles of 1/tCYC while ADSC = LOW; f=0 means no input lines are changing. 3. For I/Os VHD = VDDQ - 0.2V, VLD = 0.2V. For other inputs VHD = VDD - 0.2V, VLD = 0.2V. AC Test Conditions Unit I/O , Z0 = 50Ω Figure 1. AC Test Load 5309 drw 03 See Figure 1 5309 tbl 10 6 5 4 3 ΔtCD (Typical, ns) 2 1 20 30 50 80 100 Capacitance (pF) Figure 2. Lumped Capacitive Load, Typical Derating 6.42 9 Aug.11.21 200 5309 drw 05 , 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges Synchronous Truth Table (1,3) Address Used CE CS0 CS 1 ADSP ADSC ADV GW BWE BWx OE(2) CLK I/O Deselected Cycle, Power Down None H X X X L X X X X X ↑ HI-Z Deselected Cycle, Power Down None L X H L X X X X X X ↑ HI-Z Deselected Cycle, Power Down None L L X L X X X X X X ↑ HI-Z Deselected Cycle, Power Down None L X H X L X X X X X ↑ HI-Z Deselected Cycle, Power Down None L L X X L X X X X X ↑ HI-Z Read Cycle, Begin Burst External L H L L X X X X X L ↑ DOUT Read Cycle, Begin Burst External L H L L X X X X X H ↑ HI-Z Read Cycle, Begin Burst External L H L H L X H H X L ↑ DOUT Read Cycle, Begin Burst External L H L H L X H L H L ↑ DOUT Read Cycle, Begin Burst External L H L H L X H L H H ↑ HI-Z Write Cycle, Begin Burst External L H L H L X H L L X ↑ DIN Write Cycle, Begin Burst External L H L H L X L X X X ↑ DIN Read Cycle, Continue Burst Next X X X H H L H H X L ↑ DOUT Read Cycle, Continue Burst Next X X X H H L H H X H ↑ HI-Z Read Cycle, Continue Burst Next X X X H H L H X H L ↑ DOUT Read Cycle, Continue Burst Next X X X H H L H X H H ↑ HI-Z Read Cycle, Continue Burst Next H X X X H L H H X L ↑ DOUT Read Cycle, Continue Burst Next H X X X H L H H X H ↑ HI-Z Read Cycle, Continue Burst Next H X X X H L H X H L ↑ DOUT Read Cycle, Continue Burst Next H X X X H L H X H H ↑ HI-Z Write Cycle, Continue Burst Next X X X H H L H L L X ↑ DIN Write Cycle, Continue Burst Next X X X H H L L X X X ↑ DIN Write Cycle, Continue Burst Next H X X X H L H L L X ↑ DIN Write Cycle, Continue Burst Next H X X X H L L X X X ↑ DIN Read Cycle, Suspend Burst Current X X X H H H H H X L ↑ DOUT Read Cycle, Suspend Burst Current X X X H H H H H X H ↑ HI-Z Read Cycle, Suspend Burst Current X X X H H H H X H L ↑ DOUT Read Cycle, Suspend Burst Current X X X H H H H X H H ↑ HI-Z Read Cycle, Suspend Burst Current H X X X H H H H X L ↑ DOUT Read Cycle, Suspend Burst Current H X X X H H H H X H ↑ HI-Z Read Cycle, Suspend Burst Current H X X X H H H X H L ↑ DOUT Read Cycle, Suspend Burst Current H X X X H H H X H H ↑ HI-Z Write Cycle, Suspend Burst Current X X X H H H H L L X ↑ DIN Write Cycle, Suspend Burst Current X X X H H H L X X X ↑ DIN Write Cycle, Suspend Burst Current H X X X H H H L L X ↑ DIN Write Cycle, Suspend Burst Current H X X X H H L X X X ↑ DIN Operation 5309 tbl 11 NOTES: 1. L = VIL, H = VIH, X = Don’t Care. 2. OE is an asynchronous input. 3. ZZ - low for the table. 6.42 10 Aug.11.21 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges Synchronous Write Function Truth Table (1, 2) Operation GW BWE BW1 BW2 BW3 BW4 Read H H X X X X Read H L H H H H Write all Bytes L X X X X X Write all Bytes H L L L L L Write Byte 1(3) H L L H H H Write Byte 2(3) H L H L H H Write Byte 3(3) H L H H L H Write Byte 4(3) H L H H H L 5309 tbl 12 NOTES: 1. L = VIL, H = VIH, X = Don’t Care. 2. BW3 and BW4 are not applicable for the IDT71V67903. 3. Multiple bytes may be selected during the same cycle. Asynchronous Truth Table (1) Operation(2) OE ZZ I/O Status Power Read L L Data Out Active Read H L High-Z Active Write X L High-Z – Data In Active Deselected X L High-Z Standby Sleep Mode X H High-Z Sleep 5309 tbl 13 NOTES: 1. L = VIL, H = VIH, X = Don’t Care. 2. Synchronous function pins must be biased appropriately to satisfy operation requirements. Interleaved Burst Sequence Table ( LBO=VDD) Sequence 1 Sequence 2 Sequence 3 Sequence 4 A1 A0 A1 A0 A1 A0 A1 A0 First Address 0 0 0 1 1 0 1 1 Second Address 0 1 0 0 1 1 1 0 Third Address 1 0 1 1 0 0 0 1 Fourth Address (1) 1 1 1 0 0 1 0 0 5309 tbl 14 NOTE: 1. Upon completion of the Burst sequence the counter wraps around to its initial state. Linear Burst Sequence Table ( LBO=VSS) Sequence 1 Sequence 2 Sequence 3 Sequence 4 A1 A0 A1 A0 A1 A0 A1 A0 First Address 0 0 0 1 1 0 1 1 Second Address 0 1 1 0 1 1 0 0 Third Address 1 0 1 1 0 0 0 1 Fourth Address (1) 1 1 0 0 0 1 1 0 NOTE: 1. Upon completion of the Burst sequence the counter wraps around to its initial state. 6.42 11 Aug.11.21 5309 tbl 15 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges AC Electrical Characteristics (VDD = 3.3V ±5%, Commercial and Industrial Temperature Ranges) 7.5ns Symbol Parameter 8ns 8.5ns Min. Max. Min. Max. Min. Max. Unit 8.5 ____ 10 ____ 11.5 ____ ns 4 ____ 4.5 ____ ns Clock Parameter tCYC Clock Cycle Time (1) tCH Clock High Pulse Width 3 ____ tCL(1) Clock Low Pulse Width 3 ____ 4 ____ 4.5 ____ ns ____ 7.5 ____ 8 ____ 8.5 ns Output Parameters tCD Clock High to Valid Data tCDC Clock High to Data Change 2 ____ 2 ____ 2 ____ ns tCLZ(2) Clock High to Output Active 0 ____ 0 ____ 0 ____ ns tCHZ(2) Clock High to Data High-Z 2 3.5 2 3.5 2 3.5 ns tOE Output Enable Access Time ____ 3.5 ____ 3.5 ____ 3.5 ns tOLZ(2) Output Enable Low to Output Active 0 ____ 0 ____ 0 ____ ns tOHZ(2) Outp ut Enable High to Output High-Z ____ 3.5 ____ 3.5 ____ 3.5 ns Set Up Times tSA Address Setup Time 1.5 ____ 2 ____ 2 ____ ns tSS Address Status Setup Time 1.5 ____ 2 ____ 2 ____ ns tSD Data In Setup Time 1.5 ____ 2 ____ 2 ____ ns tSW Write Setup Time 1.5 ____ 2 ____ 2 ____ ns tSAV Address Advance Setup Time 1.5 ____ 2 ____ 2 ____ ns tSC Chip Enable/Select Setup Time 1.5 ____ 2 ____ 2 ____ ns Hold Times tHA Address Hold Time 0.5 ____ 0.5 ____ 0.5 ____ ns tHS Address Status Hold Time 0.5 ____ 0.5 ____ 0.5 ____ ns tHD Data In Hold Time 0.5 ____ 0.5 ____ 0.5 ____ ns tHW Write Hold Time 0.5 ____ 0.5 ____ 0.5 ____ ns tHAV Address Advance Hold Time 0.5 ____ 0.5 ____ 0.5 ____ ns tHC Chip Enable/Select Hold Time 0.5 ____ 0.5 ____ 0.5 ____ ns Sleep Mode and Configuration Parameters tZZPW ZZ Pulse Width 100 ____ 100 ____ 100 ____ ns tZZR ZZ Recovery Time 100 ____ 100 ____ 100 ____ ns Configuration Set-up Time 34 ____ 40 ____ 50 ____ ns (3) tCFG (4) NOTES: 1. Measured as HIGH above VIH and LOW below VIL. 2. Transition is measured ±200mV from steady-state. 3. Device must be deselected when powered-up from sleep mode. 4. tCFG is the minimum time required to configure the device based on the LBO input. LBO is a static input and must not change during normal operation. 6.42 12 Aug.11.21 5309 tbl 16 Aug.11.21 6.42 13 Output Disabled tSC tSA tSS tHS tOLZ tOE O1(Ax) tHC tHA Flow-through Read Ax tOHZ Ay (1) tCH tCD tSAV tHAV O1(Ay) tCDC tSW tCL O3(Ay) O4(Ay) (Burst wraps around to its initial state) ADV HIGH suspends burst Burst Flow-through Read O2(Ay) tHW O1(Ay) tCHZ O2(Ay) 5309 drw 06 , NOTES: 1. O1 (Ax) represents the first output from the external address Ax. O1 (Ay) represents the first output from the external address Ay; O2 (Ay) represents the next output data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. 2. ZZ input is LOW and LBO is Don't Care for this cycle. 3. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH. DATAOUT OE ADV (Note 3) CE, CS1 GW, BWE, BWx ADDRESS ADSC ADSP CLK tCYC 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges Timing Waveform of Flow-Through Read Cycle (1,2) Aug.11.21 6.42 14 Ax (2) Single Read tSA tHA tSS tHS tCLZ tCD tOE O1(Ax) tOHZ tSW Ay tCH Write I1(Ay) tSD tHD tCL tHW Az tCD tOLZ O2(Az) O3(Az) Flow-through Burst Read O1(Az) tCDC 5309 drw 07 O4(Az) , NOTES: 1. Device is selected through entire cycle; CE and CS1 are LOW, CS0 is HIGH. 2. ZZ input is LOW and LBO is Don't Care for this cycle. 3. O1 (Ax) represents the first output from the external address Ax. I1 (Ay) represents the first input from the external address Ay; O1 (Az) represents the first output from the external address Az; O2 (Az) represents the next output data in the burst sequence of the base address Az, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. DATAOUT DATAIN OE ADV GW ADDRESS ADSP CLK tCYC 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges Timing Waveform of Combined Flow-Through Read and Write Cycles (1,2,3) Aug.11.21 6.42 15 tHC O3(Aw) tSC tSA tHA tSS tHS Ax O4(Aw) (1) Ay tCL tOHZ I1(Ax) I1(Ay) I2(Ay) (ADV suspends burst) tSAV GW is ignored when ADSP initiates a cycle and is sampled on the next cycle rising edge tCH I2(Ay) (2) I3(Ay) tHAV I4(Ay) tSD I1(Az) tHW tSW Az I2(Az) tHD 5309 drw 08 I3(Az) , NOTES: 1. ZZ input is LOW, BWE is HIGH and LBO is Don't Care for this cycle. 2. O4 (Aw) represents the final output data in the burst sequence of the base address Aw. I1 (Ax) represents the first input from the external address Ax. I1 (Ay) represents the first input from the external address Ay; I2 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. In the case of input I2 (Ay) this data is valid for two cycles because ADV is high and has suspended the burst. 3. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH. DATAOUT DATAIN OE ADV (Note 3) CE, CS1 GW ADDRESS ADSC ADSP CLK tCYC 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges Timing Waveform of Write Cycle No. 1 - GW Controlled (1,2,3) Aug.11.21 6.42 16 tHC Burst Read O3(Aw) tSC tSA tHA tSS tHS O4(Aw) Ax Ay tCL Single Write tOHZ I1(Ax) I1(Ay) Burst Write I2(Ay) (ADV HIGH suspends burst) I2(Ay) BWx is ignored when ADSP initiates a cycle and is sampled on the next clock rising edge BWE is ignored when ADSP initiates a cycle and is sampled on the next cycle rising edge tCH I3(Ay) I4(Ay) tSD Extended Burst Write I1(Az) tSAV tHW tSW tHW tSW Az I2(Az) tHD 5309 drw 09 I3(Az) NOTES: 1. ZZ input is LOW, GW is HIGH and LBO is Don't Care for this cycle. 2. O4 (Aw) represents the final output data in the burst sequence of the base address Aw. I1 (Ax) represents the first input from the external address Ax. I1 (Ay) represents the first input from the external address Ay; I2 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. In the case of input I2 (Ay) this data is valid for two cycles because ADV is high and has suspended the burst. 3. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH. DATAOUT DATAIN OE ADV (Note 3) CE, CS1 BWx BWE ADDRESS ADSC ADSP CLK tCYC 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges Timing Waveform of Write Cycle No. 2 - Byte Controlled (1,2,3) , Aug.11.21 6.42 17 tSS tSC tSA tHS tOLZ tOE Ax Single Read O1(Ax) tHC tHA tCH tCL tZZPW Snooze Mode NOTES: 1. Device must power up in deselected Mode. 2. LBO is Don't Care for this cycle. 3. It is not necessary to retain the state of the input registers throughout the Power-down cycle. 4. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW ZZ DATAOUT OE ADV (Note 4) CE, CS1 GW ADDRESS ADSC ADSP CLK tCYC on this waveform, CS0 is HIGH. tZZR Az 5309 drw 13 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges Timing Waveform of Sleep (ZZ) and Power-Down Modes (1,2,3) , 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges Non-Burst Read Cycle Timing Waveform CLK ADSP ADSC ADDRESS Av Aw Ax Ay Az GW, BWE, BWx CE, CS1 CS0 OE (Av) DATAOUT (Aw) (Ax) (Ay) NOTES: 1. ZZ input is LOW, ADV is HIGH and LBO is Don't Care for this cycle. 2. (Ax) represents the data for address Ax, etc. 3. For read cycles, ADSP and ADSC function identically and are therefore interchangeable. 5309 drw 10 , Non-Burst Write Cycle Timing Waveform CLK ADSP ADSC ADDRESS Av Aw Ax Ay Az (Ax) (Ay) (Az) GW CE, CS1 CS0 DATAIN (Av) (Aw) 5309 drw 11 NOTES: 1. ZZ input is LOW, ADV and OE are HIGH, and LBO is Don't Care for this cycle. 2. (Ax) represents the data for address Ax, etc. 3. Although only GW writes are shown, the functionality of BWE and BWx together is the same as GW. 4. For write cycles, ADSP and ADSC have different limitations. 6.42 18 Aug.11.21 , 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges Ordering Information XXXX Device Type S Power X Speed XX Package X X X Process/ Temperature Range Blank 8 Tube or Tray Tape and Reel Blank I(1) Commercial (0°C to +70°C) Industrial (-40°C to +85°C) G(2) Green PF BG BQ 100-Pin Plastic Thin Quad Flatpack (TQFP) 119 Ball Grid Array (BGA) 165 fine pitch Ball Grid Array (fBGA) 75 80 85 Access Time in Tenths of Nanoseconds 71V67703 71V67903 256K x 36 Flow-Through Burst Synchronous SRAM 512K x 18 Flow-Through Burst Synchronous SRAM 5309 drw 12 NOTES: 1. Contact your local sales office for Industrial temp range for other speeds, packages and powers. 2. Green parts available. For specific speeds, packages and powers contact your local sales office. 6.42 19 Aug.11.21 , 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges Orderable Part Information Speed (ns) 7.5 8.0 Pkg. Code Pkg. Type Temp. Grade Speed (ns) BG119 PBGA C 8.5 71V67703S75BG8 BG119 PBGA C 71V67703S75BGG BGG119 PBGA C 71V67703S75BGG8 BGG119 PBGA 71V67703S75BGGI BGG119 71V67703S75BGGI8 BGG119 Orderable Part ID 71V67703S75BG Pkg. Code Pkg. Type Temp. Grade BG119 PBGA C 71V67703S85BG8 BG119 PBGA C 71V67703S85BGG BGG119 PBGA C C 71V67703S85BGG8 BGG119 PBGA C PBGA I 71V67703S85BGGI BGG119 PBGA I PBGA I 71V67703S85BGGI8 BGG119 PBGA I BQ165 CABGA C Orderable Part ID 71V67703S85BG 71V67703S75BQ BQ165 CABGA C 71V67703S85BQ 71V67703S75BQ8 BQ165 CABGA C 71V67703S85BQ8 BQ165 CABGA C 71V67703S75BQG BQG165 CABGA C 71V67703S85BQG BQG165 CABGA C 71V67703S75BQG8 BQG165 CABGA C 71V67703S85BQG8 BQG165 CABGA C BQG165 CABGA I BQG165 CABGA I BQ165 CABGA I 71V67703S75BQGI BQG165 CABGA I 71V67703S85BQGI 71V67703S75BQGI8 BQG165 CABGA I 71V67703S85BQGI8 71V67703S75PFG PKG100 TQFP C 71V67703S85BQI 71V67703S75PFG8 PKG100 TQFP C 71V67703S85BQI8 BQ165 CABGA I PKG100 TQFP C 71V67703S75PFGI PKG100 TQFP I 71V67703S85PFG 71V67703S75PFGI8 PKG100 TQFP I 71V67703S85PFG8 PKG100 TQFP C 71V67703S80BG BG119 PBGA C 71V67703S85PFGI PKG100 TQFP I 71V67703S80BG8 BG119 PBGA C 71V67703S85PFGI8 PKG100 TQFP I 71V67703S80BGG BGG119 PBGA C 71V67703S80BGG8 BGG119 PBGA C 71V67703S80BGGI BGG119 PBGA I 71V67703S80BGGI8 BGG119 PBGA I 71V67703S80BQ BQ165 CABGA C 71V67703S80BQ8 BQ165 CABGA C 71V67703S80BQG BQG165 CABGA C 71V67703S80BQG8 BQG165 CABGA C 71V67703S80BQGI BQG165 CABGA I 71V67703S80BQGI8 BQG165 CABGA I 71V67703S80BQI BQ165 CABGA I 71V67703S80BQI8 BQ165 CABGA I 71V67703S80PFG PKG100 TQFP C 71V67703S80PFG8 PKG100 TQFP C 71V67703S80PFGI PKG100 TQFP I 71V67703S80PFGI8 PKG100 TQFP I 6.42 20 Aug.11.21 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Orderable Part Information (con't) Speed (ns) 7.5 8.0 8.5 Pkg. Code Pkg. Type Temp. Grade 71V67903S75BG BG119 PBGA C 71V67903S75BG8 BG119 PBGA C 71V67903S75BQ BQ165 CABGA C 71V67903S75BQ8 BQ165 CABGA C Orderable Part ID 71V67903S75BQI BQ165 CABGA I 71V67903S75BQI8 BQ165 CABGA I 71V67903S75PFG PKG100 TQFP C 71V67903S75PFG8 PKG100 TQFP C 71V67903S75PFGI PKG100 TQFP I 71V67903S75PFGI8 PKG100 TQFP I 71V67903S80BG BG119 PBGA C 71V67903S80BG8 BG119 PBGA C 71V67903S80BQ BQ165 CABGA C 71V67903S80BQ8 BQ165 CABGA C 71V67903S80BQI BQ165 CABGA I 71V67903S80BQI8 BQ165 CABGA I 71V67903S80PFG PKG100 TQFP C 71V67903S80PFG8 PKG100 TQFP C 71V67903S80PFGI PKG100 TQFP I 71V67903S80PFGI8 PKG100 TQFP I 71V67903S85BG BG119 PBGA C 71V67903S85BG8 BG119 PBGA C 71V67903S85BQ BQ165 CABGA C 71V67903S85BQ8 BQ165 CABGA C 71V67903S85BQI BQ165 CABGA I 71V67903S85BQI8 BQ165 CABGA I 71V67903S85PFG PKG100 TQFP C 71V67903S85PFG8 PKG100 TQFP C 71V67903S85PFGI PKG100 TQFP I 71V67903S85PFGI8 PKG100 TQFP I 6.42 21 Aug.11.21 Commercial and Industrial Temperature Ranges 71V67703, 71V67903, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect Commercial and Industrial Temperature Ranges Datasheet Document History 12/31/99 04/26/00 Pg. 4 Pg. 7 Pg. 18 05/24/00 07/12/00 12/18/00 10/29/01 10/22/02 04/15/03 12/20/03 02/20/09 11/19/14 08/11/21 Pg. 1,4,8,21 22 Pg. 5,6,7,8 Pg. 20 Pg. 5,6,8 Pg. 7 Pg. 20 Pg. 9 Pg. 1,2 Pg. 7 Pg. 8 Pg. 9 Pg. 1-23 Pg. 4,9,12, 22 Pg. 4 Pg. 7 Created Datasheet from 71V677 and 71V679 Datasheets For 2.5V I/O offering, see 71V67702 AND 71V67902 Datasheets. Add capacitance for BGA package; Insert clarification note to Absolute Max Ratings and Recommended Operating Temperature tables. Replace Pin U6 with TRST pin in BGA pin configuration; Add pin description note in pinout Inserted 100 pin TQFP Package Diagram Outline Add new package offering, 13 x 15 fBGA Correct note 2 on BGA and TQFP pin configuration Correction in the 119 BGA Package Diagram Outline Remove note from TQFP and BQ165 pinouts Add/Remove note from BG119 pinout Update BG 119 pinout Updated ISB2 levels for 7.5-8.5ns. Remove JTAG pins Changed U2-U6 pins to DNU. Changed P5,P7,R5 & R7 to DNU pins. Raised specs by 10mA on 7.5ns, 8ns and 8.5ns. Changed datasheet from Advanced to Final Release. Added I temp to datasheet. Updated 165 fBGA table from TBD to 7. Updated 119BGS pin configurations- reordered I/O signals on P6, P7 (128K x 36) and P7, N6, L6, K7, H6, G7, F6, E7, D6 (256K x 18). Pg.22 Removed "IDT" from the orderable part number Pg.1 & 20 Added green parts available note to Features & to Ordering Information Pg. 1-3 Moved the FBD, the pin description and pin definition tables to pages 1 - 3 respectively to align the datasheet reading flow to that of our other established datasheets Pg. 20 Added tape & reel to ordering information Pg. 19-21 Removed three Package Diagram Outlines. from this datasheet. Please see idt.com for Package Diagram Outlines specific to these devices. Pg. 1-23 Rebranded as Renesas datasheet Pg. 1 & 19 Updated Industrial temp range and green availability Pg. 4-7 Updated package codes Pg. 20 & 21 Added Orderable Part Information tables 6.42 22 Aug.11.21 IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved.
71V67703S75PFG8 价格&库存

很抱歉,暂时无法提供与“71V67703S75PFG8”相匹配的价格&库存,您可以联系我们找货

免费人工找货